mirror of
				https://source.denx.de/u-boot/u-boot.git
				synced 2025-10-31 08:21:36 +01:00 
			
		
		
		
	This converts 7 usages of this option to the non-SPL form, since there is no SPL_CMD_CLK defined in Kconfig Signed-off-by: Simon Glass <sjg@chromium.org> Reviewed-by: Sean Anderson <seanga2@gmail.com>
		
			
				
	
	
		
			1345 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1345 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Copyright (C) 2019-20 Sean Anderson <seanga2@gmail.com>
 | |
|  */
 | |
| #define LOG_CATEGORY UCLASS_CLK
 | |
| 
 | |
| #include <common.h>
 | |
| #include <clk.h>
 | |
| #include <clk-uclass.h>
 | |
| #include <div64.h>
 | |
| #include <dm.h>
 | |
| #include <log.h>
 | |
| #include <mapmem.h>
 | |
| #include <serial.h>
 | |
| #include <dt-bindings/clock/k210-sysctl.h>
 | |
| #include <dt-bindings/mfd/k210-sysctl.h>
 | |
| #include <k210/pll.h>
 | |
| #include <linux/bitfield.h>
 | |
| 
 | |
| DECLARE_GLOBAL_DATA_PTR;
 | |
| 
 | |
| /**
 | |
|  * struct k210_clk_priv - K210 clock driver private data
 | |
|  * @base: The base address of the sysctl device
 | |
|  * @in0: The "in0" external oscillator
 | |
|  */
 | |
| struct k210_clk_priv {
 | |
| 	void __iomem *base;
 | |
| 	struct clk in0;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * All parameters for different sub-clocks are collected into parameter arrays.
 | |
|  * These parameters are then initialized by the clock which uses them during
 | |
|  * probe. To save space, ids are automatically generated for each sub-clock by
 | |
|  * using an enum. Instead of storing a parameter struct for each clock, even for
 | |
|  * those clocks which don't use a particular type of sub-clock, we can just
 | |
|  * store the parameters for the clocks which need them.
 | |
|  *
 | |
|  * So why do it like this? Arranging all the sub-clocks together makes it very
 | |
|  * easy to find bugs in the code.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * enum k210_clk_div_type - The type of divider
 | |
|  * @K210_DIV_ONE: freq = parent / (reg + 1)
 | |
|  * @K210_DIV_EVEN: freq = parent / 2 / (reg + 1)
 | |
|  * @K210_DIV_POWER: freq = parent / (2 << reg)
 | |
|  * @K210_DIV_FIXED: freq = parent / factor
 | |
|  */
 | |
| enum k210_clk_div_type {
 | |
| 	K210_DIV_ONE,
 | |
| 	K210_DIV_EVEN,
 | |
| 	K210_DIV_POWER,
 | |
| 	K210_DIV_FIXED,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct k210_div_params - Parameters for dividing clocks
 | |
|  * @type: An &enum k210_clk_div_type specifying the dividing formula
 | |
|  * @off: The offset of the divider from the sysctl base address
 | |
|  * @shift: The offset of the LSB of the divider
 | |
|  * @width: The number of bits in the divider
 | |
|  * @div: The fixed divisor for this divider
 | |
|  */
 | |
| struct k210_div_params {
 | |
| 	u8 type;
 | |
| 	union {
 | |
| 		struct {
 | |
| 			u8 off;
 | |
| 			u8 shift;
 | |
| 			u8 width;
 | |
| 		};
 | |
| 		u8 div;
 | |
| 	};
 | |
| };
 | |
| 
 | |
| #define DIV_LIST \
 | |
| 	DIV(K210_CLK_ACLK,   K210_SYSCTL_SEL0,  1,  2, K210_DIV_POWER) \
 | |
| 	DIV(K210_CLK_APB0,   K210_SYSCTL_SEL0,  3,  3, K210_DIV_ONE) \
 | |
| 	DIV(K210_CLK_APB1,   K210_SYSCTL_SEL0,  6,  3, K210_DIV_ONE) \
 | |
| 	DIV(K210_CLK_APB2,   K210_SYSCTL_SEL0,  9,  3, K210_DIV_ONE) \
 | |
| 	DIV(K210_CLK_SRAM0,  K210_SYSCTL_THR0,  0,  4, K210_DIV_ONE) \
 | |
| 	DIV(K210_CLK_SRAM1,  K210_SYSCTL_THR0,  4,  4, K210_DIV_ONE) \
 | |
| 	DIV(K210_CLK_AI,     K210_SYSCTL_THR0,  8,  4, K210_DIV_ONE) \
 | |
| 	DIV(K210_CLK_DVP,    K210_SYSCTL_THR0, 12,  4, K210_DIV_ONE) \
 | |
| 	DIV(K210_CLK_ROM,    K210_SYSCTL_THR0, 16,  4, K210_DIV_ONE) \
 | |
| 	DIV(K210_CLK_SPI0,   K210_SYSCTL_THR1,  0,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_SPI1,   K210_SYSCTL_THR1,  8,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_SPI2,   K210_SYSCTL_THR1, 16,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_SPI3,   K210_SYSCTL_THR1, 24,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_TIMER0, K210_SYSCTL_THR2,  0,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_TIMER1, K210_SYSCTL_THR2,  8,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_TIMER2, K210_SYSCTL_THR2, 16,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_I2S0,   K210_SYSCTL_THR3,  0, 16, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_I2S1,   K210_SYSCTL_THR3, 16, 16, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_I2S2,   K210_SYSCTL_THR4,  0, 16, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_I2S0_M, K210_SYSCTL_THR4, 16,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_I2S1_M, K210_SYSCTL_THR4, 24,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_I2S2_M, K210_SYSCTL_THR4,  0,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_I2C0,   K210_SYSCTL_THR5,  8,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_I2C1,   K210_SYSCTL_THR5, 16,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_I2C2,   K210_SYSCTL_THR5, 24,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_WDT0,   K210_SYSCTL_THR6,  0,  8, K210_DIV_EVEN) \
 | |
| 	DIV(K210_CLK_WDT1,   K210_SYSCTL_THR6,  8,  8, K210_DIV_EVEN) \
 | |
| 	DIV_FIXED(K210_CLK_CLINT, 50) \
 | |
| 
 | |
| #define _DIVIFY(id) K210_CLK_DIV_##id
 | |
| #define DIVIFY(id) _DIVIFY(id)
 | |
| 
 | |
| enum k210_div_id {
 | |
| #define DIV(id, ...) DIVIFY(id),
 | |
| #define DIV_FIXED DIV
 | |
| 	DIV_LIST
 | |
| #undef DIV
 | |
| #undef DIV_FIXED
 | |
| 	K210_CLK_DIV_NONE,
 | |
| };
 | |
| 
 | |
| static const struct k210_div_params k210_divs[] = {
 | |
| #define DIV(id, _off, _shift, _width, _type) \
 | |
| 	[DIVIFY(id)] = { \
 | |
| 		.type = (_type), \
 | |
| 		.off = (_off), \
 | |
| 		.shift = (_shift), \
 | |
| 		.width = (_width), \
 | |
| 	},
 | |
| #define DIV_FIXED(id, _div) \
 | |
| 	[DIVIFY(id)] = { \
 | |
| 		.type = K210_DIV_FIXED, \
 | |
| 		.div = (_div) \
 | |
| 	},
 | |
| 	DIV_LIST
 | |
| #undef DIV
 | |
| #undef DIV_FIXED
 | |
| };
 | |
| 
 | |
| #undef DIV
 | |
| #undef DIV_LIST
 | |
| 
 | |
| /**
 | |
|  * struct k210_gate_params - Parameters for gated clocks
 | |
|  * @off: The offset of the gate from the sysctl base address
 | |
|  * @bit_idx: The index of the bit within the register
 | |
|  */
 | |
| struct k210_gate_params {
 | |
| 	u8 off;
 | |
| 	u8 bit_idx;
 | |
| };
 | |
| 
 | |
| #define GATE_LIST \
 | |
| 	GATE(K210_CLK_CPU,    K210_SYSCTL_EN_CENT,  0) \
 | |
| 	GATE(K210_CLK_SRAM0,  K210_SYSCTL_EN_CENT,  1) \
 | |
| 	GATE(K210_CLK_SRAM1,  K210_SYSCTL_EN_CENT,  2) \
 | |
| 	GATE(K210_CLK_APB0,   K210_SYSCTL_EN_CENT,  3) \
 | |
| 	GATE(K210_CLK_APB1,   K210_SYSCTL_EN_CENT,  4) \
 | |
| 	GATE(K210_CLK_APB2,   K210_SYSCTL_EN_CENT,  5) \
 | |
| 	GATE(K210_CLK_ROM,    K210_SYSCTL_EN_PERI,  0) \
 | |
| 	GATE(K210_CLK_DMA,    K210_SYSCTL_EN_PERI,  1) \
 | |
| 	GATE(K210_CLK_AI,     K210_SYSCTL_EN_PERI,  2) \
 | |
| 	GATE(K210_CLK_DVP,    K210_SYSCTL_EN_PERI,  3) \
 | |
| 	GATE(K210_CLK_FFT,    K210_SYSCTL_EN_PERI,  4) \
 | |
| 	GATE(K210_CLK_GPIO,   K210_SYSCTL_EN_PERI,  5) \
 | |
| 	GATE(K210_CLK_SPI0,   K210_SYSCTL_EN_PERI,  6) \
 | |
| 	GATE(K210_CLK_SPI1,   K210_SYSCTL_EN_PERI,  7) \
 | |
| 	GATE(K210_CLK_SPI2,   K210_SYSCTL_EN_PERI,  8) \
 | |
| 	GATE(K210_CLK_SPI3,   K210_SYSCTL_EN_PERI,  9) \
 | |
| 	GATE(K210_CLK_I2S0,   K210_SYSCTL_EN_PERI, 10) \
 | |
| 	GATE(K210_CLK_I2S1,   K210_SYSCTL_EN_PERI, 11) \
 | |
| 	GATE(K210_CLK_I2S2,   K210_SYSCTL_EN_PERI, 12) \
 | |
| 	GATE(K210_CLK_I2C0,   K210_SYSCTL_EN_PERI, 13) \
 | |
| 	GATE(K210_CLK_I2C1,   K210_SYSCTL_EN_PERI, 14) \
 | |
| 	GATE(K210_CLK_I2C2,   K210_SYSCTL_EN_PERI, 15) \
 | |
| 	GATE(K210_CLK_UART1,  K210_SYSCTL_EN_PERI, 16) \
 | |
| 	GATE(K210_CLK_UART2,  K210_SYSCTL_EN_PERI, 17) \
 | |
| 	GATE(K210_CLK_UART3,  K210_SYSCTL_EN_PERI, 18) \
 | |
| 	GATE(K210_CLK_AES,    K210_SYSCTL_EN_PERI, 19) \
 | |
| 	GATE(K210_CLK_FPIOA,  K210_SYSCTL_EN_PERI, 20) \
 | |
| 	GATE(K210_CLK_TIMER0, K210_SYSCTL_EN_PERI, 21) \
 | |
| 	GATE(K210_CLK_TIMER1, K210_SYSCTL_EN_PERI, 22) \
 | |
| 	GATE(K210_CLK_TIMER2, K210_SYSCTL_EN_PERI, 23) \
 | |
| 	GATE(K210_CLK_WDT0,   K210_SYSCTL_EN_PERI, 24) \
 | |
| 	GATE(K210_CLK_WDT1,   K210_SYSCTL_EN_PERI, 25) \
 | |
| 	GATE(K210_CLK_SHA,    K210_SYSCTL_EN_PERI, 26) \
 | |
| 	GATE(K210_CLK_OTP,    K210_SYSCTL_EN_PERI, 27) \
 | |
| 	GATE(K210_CLK_RTC,    K210_SYSCTL_EN_PERI, 29)
 | |
| 
 | |
| #define _GATEIFY(id) K210_CLK_GATE_##id
 | |
| #define GATEIFY(id) _GATEIFY(id)
 | |
| 
 | |
| enum k210_gate_id {
 | |
| #define GATE(id, ...) GATEIFY(id),
 | |
| 	GATE_LIST
 | |
| #undef GATE
 | |
| 	K210_CLK_GATE_NONE,
 | |
| };
 | |
| 
 | |
| static const struct k210_gate_params k210_gates[] = {
 | |
| #define GATE(id, _off, _idx) \
 | |
| 	[GATEIFY(id)] = { \
 | |
| 		.off = (_off), \
 | |
| 		.bit_idx = (_idx), \
 | |
| 	},
 | |
| 	GATE_LIST
 | |
| #undef GATE
 | |
| };
 | |
| 
 | |
| #undef GATE_LIST
 | |
| 
 | |
| /* The most parents is PLL2 */
 | |
| #define K210_CLK_MAX_PARENTS 3
 | |
| 
 | |
| /**
 | |
|  * struct k210_mux_params - Parameters for muxed clocks
 | |
|  * @parents: A list of parent clock ids
 | |
|  * @num_parents: The number of parent clocks
 | |
|  * @off: The offset of the mux from the base sysctl address
 | |
|  * @shift: The offset of the LSB of the mux selector
 | |
|  * @width: The number of bits in the mux selector
 | |
|  */
 | |
| struct k210_mux_params {
 | |
| 	u8 parents[K210_CLK_MAX_PARENTS];
 | |
| 	u8 num_parents;
 | |
| 	u8 off;
 | |
| 	u8 shift;
 | |
| 	u8 width;
 | |
| };
 | |
| 
 | |
| #define MUX(id, reg, shift, width) \
 | |
| 	MUX_PARENTS(id, reg, shift, width, K210_CLK_IN0, K210_CLK_PLL0)
 | |
| #define MUX_LIST \
 | |
| 	MUX_PARENTS(K210_CLK_PLL2, K210_SYSCTL_PLL2, 26, 2, \
 | |
| 		    K210_CLK_IN0, K210_CLK_PLL0, K210_CLK_PLL1) \
 | |
| 	MUX(K210_CLK_ACLK, K210_SYSCTL_SEL0, 0, 1) \
 | |
| 	MUX(K210_CLK_SPI3,   K210_SYSCTL_SEL0, 12, 1) \
 | |
| 	MUX(K210_CLK_TIMER0, K210_SYSCTL_SEL0, 13, 1) \
 | |
| 	MUX(K210_CLK_TIMER1, K210_SYSCTL_SEL0, 14, 1) \
 | |
| 	MUX(K210_CLK_TIMER2, K210_SYSCTL_SEL0, 15, 1)
 | |
| 
 | |
| #define _MUXIFY(id) K210_CLK_MUX_##id
 | |
| #define MUXIFY(id) _MUXIFY(id)
 | |
| 
 | |
| enum k210_mux_id {
 | |
| #define MUX_PARENTS(id, ...) MUXIFY(id),
 | |
| 	MUX_LIST
 | |
| #undef MUX_PARENTS
 | |
| 	K210_CLK_MUX_NONE,
 | |
| };
 | |
| 
 | |
| static const struct k210_mux_params k210_muxes[] = {
 | |
| #define MUX_PARENTS(id, _off, _shift, _width, ...) \
 | |
| 	[MUXIFY(id)] = { \
 | |
| 		.parents = { __VA_ARGS__ }, \
 | |
| 		.num_parents = __count_args(__VA_ARGS__), \
 | |
| 		.off = (_off), \
 | |
| 		.shift = (_shift), \
 | |
| 		.width = (_width), \
 | |
| 	},
 | |
| 	MUX_LIST
 | |
| #undef MUX_PARENTS
 | |
| };
 | |
| 
 | |
| #undef MUX
 | |
| #undef MUX_LIST
 | |
| 
 | |
| /**
 | |
|  * struct k210_pll_params - K210 PLL parameters
 | |
|  * @off: The offset of the PLL from the base sysctl address
 | |
|  * @shift: The offset of the LSB of the lock status
 | |
|  * @width: The number of bits in the lock status
 | |
|  */
 | |
| struct k210_pll_params {
 | |
| 	u8 off;
 | |
| 	u8 shift;
 | |
| 	u8 width;
 | |
| };
 | |
| 
 | |
| static const struct k210_pll_params k210_plls[] = {
 | |
| #define PLL(_off, _shift, _width) { \
 | |
| 	.off = (_off), \
 | |
| 	.shift = (_shift), \
 | |
| 	.width = (_width), \
 | |
| }
 | |
| 	[0] = PLL(K210_SYSCTL_PLL0,  0, 2),
 | |
| 	[1] = PLL(K210_SYSCTL_PLL1,  8, 1),
 | |
| 	[2] = PLL(K210_SYSCTL_PLL2, 16, 1),
 | |
| #undef PLL
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * enum k210_clk_flags - The type of a K210 clock
 | |
|  * @K210_CLKF_MUX: This clock has a mux and not a static parent
 | |
|  * @K210_CLKF_PLL: This clock is a PLL
 | |
|  */
 | |
| enum k210_clk_flags {
 | |
| 	K210_CLKF_MUX = BIT(0),
 | |
| 	K210_CLKF_PLL = BIT(1),
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct k210_clk_params - The parameters defining a K210 clock
 | |
|  * @name: The name of the clock
 | |
|  * @flags: A set of &enum k210_clk_flags defining which fields are valid
 | |
|  * @mux: An &enum k210_mux_id of this clock's mux
 | |
|  * @parent: The clock id of this clock's parent
 | |
|  * @pll: The id of the PLL (if this clock is a PLL)
 | |
|  * @div: An &enum k210_div_id of this clock's divider
 | |
|  * @gate: An &enum k210_gate_id of this clock's gate
 | |
|  */
 | |
| struct k210_clk_params {
 | |
| #if IS_ENABLED(CONFIG_CMD_CLK)
 | |
| 	const char *name;
 | |
| #endif
 | |
| 	u8 flags;
 | |
| 	union {
 | |
| 		u8 parent;
 | |
| 		u8 mux;
 | |
| 	};
 | |
| 	union {
 | |
| 		u8 pll;
 | |
| 		struct {
 | |
| 			u8 div;
 | |
| 			u8 gate;
 | |
| 		};
 | |
| 	};
 | |
| };
 | |
| 
 | |
| static const struct k210_clk_params k210_clks[] = {
 | |
| #if IS_ENABLED(CONFIG_CMD_CLK)
 | |
| #define NAME(_name) .name = (_name),
 | |
| #else
 | |
| #define NAME(name)
 | |
| #endif
 | |
| #define CLK(id, _name, _parent, _div, _gate) \
 | |
| 	[id] = { \
 | |
| 		NAME(_name) \
 | |
| 		.parent = (_parent), \
 | |
| 		.div = (_div), \
 | |
| 		.gate = (_gate), \
 | |
| 	}
 | |
| #define CLK_MUX(id, _name, _mux, _div, _gate) \
 | |
| 	[id] = { \
 | |
| 		NAME(_name) \
 | |
| 		.flags = K210_CLKF_MUX, \
 | |
| 		.mux = (_mux), \
 | |
| 		.div = (_div), \
 | |
| 		.gate = (_gate), \
 | |
| 	}
 | |
| #define CLK_PLL(id, _pll, _parent) \
 | |
| 	[id] = { \
 | |
| 		NAME("pll" #_pll) \
 | |
| 		.flags = K210_CLKF_PLL, \
 | |
| 		.parent = (_parent), \
 | |
| 		.pll = (_pll), \
 | |
| 	}
 | |
| #define CLK_FULL(id, name) \
 | |
| 	CLK_MUX(id, name, MUXIFY(id), DIVIFY(id), GATEIFY(id))
 | |
| #define CLK_NOMUX(id, name, parent) \
 | |
| 	CLK(id, name, parent, DIVIFY(id), GATEIFY(id))
 | |
| #define CLK_DIV(id, name, parent) \
 | |
| 	CLK(id, name, parent, DIVIFY(id), K210_CLK_GATE_NONE)
 | |
| #define CLK_GATE(id, name, parent) \
 | |
| 	CLK(id, name, parent, K210_CLK_DIV_NONE, GATEIFY(id))
 | |
| 	CLK_PLL(K210_CLK_PLL0, 0, K210_CLK_IN0),
 | |
| 	CLK_PLL(K210_CLK_PLL1, 1, K210_CLK_IN0),
 | |
| 	[K210_CLK_PLL2] = {
 | |
| 		NAME("pll2")
 | |
| 		.flags = K210_CLKF_MUX | K210_CLKF_PLL,
 | |
| 		.mux = MUXIFY(K210_CLK_PLL2),
 | |
| 		.pll = 2,
 | |
| 	},
 | |
| 	CLK_MUX(K210_CLK_ACLK, "aclk", MUXIFY(K210_CLK_ACLK),
 | |
| 		DIVIFY(K210_CLK_ACLK), K210_CLK_GATE_NONE),
 | |
| 	CLK_FULL(K210_CLK_SPI3,   "spi3"),
 | |
| 	CLK_FULL(K210_CLK_TIMER0, "timer0"),
 | |
| 	CLK_FULL(K210_CLK_TIMER1, "timer1"),
 | |
| 	CLK_FULL(K210_CLK_TIMER2, "timer2"),
 | |
| 	CLK_NOMUX(K210_CLK_SRAM0, "sram0",  K210_CLK_ACLK),
 | |
| 	CLK_NOMUX(K210_CLK_SRAM1, "sram1",  K210_CLK_ACLK),
 | |
| 	CLK_NOMUX(K210_CLK_ROM,   "rom",    K210_CLK_ACLK),
 | |
| 	CLK_NOMUX(K210_CLK_DVP,   "dvp",    K210_CLK_ACLK),
 | |
| 	CLK_NOMUX(K210_CLK_APB0,  "apb0",   K210_CLK_ACLK),
 | |
| 	CLK_NOMUX(K210_CLK_APB1,  "apb1",   K210_CLK_ACLK),
 | |
| 	CLK_NOMUX(K210_CLK_APB2,  "apb2",   K210_CLK_ACLK),
 | |
| 	CLK_NOMUX(K210_CLK_AI,    "ai",     K210_CLK_PLL1),
 | |
| 	CLK_NOMUX(K210_CLK_I2S0,  "i2s0",   K210_CLK_PLL2),
 | |
| 	CLK_NOMUX(K210_CLK_I2S1,  "i2s1",   K210_CLK_PLL2),
 | |
| 	CLK_NOMUX(K210_CLK_I2S2,  "i2s2",   K210_CLK_PLL2),
 | |
| 	CLK_NOMUX(K210_CLK_WDT0,  "wdt0",   K210_CLK_IN0),
 | |
| 	CLK_NOMUX(K210_CLK_WDT1,  "wdt1",   K210_CLK_IN0),
 | |
| 	CLK_NOMUX(K210_CLK_SPI0,  "spi0",   K210_CLK_PLL0),
 | |
| 	CLK_NOMUX(K210_CLK_SPI1,  "spi1",   K210_CLK_PLL0),
 | |
| 	CLK_NOMUX(K210_CLK_SPI2,  "spi2",   K210_CLK_PLL0),
 | |
| 	CLK_NOMUX(K210_CLK_I2C0,  "i2c0",   K210_CLK_PLL0),
 | |
| 	CLK_NOMUX(K210_CLK_I2C1,  "i2c1",   K210_CLK_PLL0),
 | |
| 	CLK_NOMUX(K210_CLK_I2C2,  "i2c2",   K210_CLK_PLL0),
 | |
| 	CLK_DIV(K210_CLK_I2S0_M,  "i2s0_m", K210_CLK_PLL2),
 | |
| 	CLK_DIV(K210_CLK_I2S1_M,  "i2s1_m", K210_CLK_PLL2),
 | |
| 	CLK_DIV(K210_CLK_I2S2_M,  "i2s2_m", K210_CLK_PLL2),
 | |
| 	CLK_DIV(K210_CLK_CLINT,   "clint",  K210_CLK_ACLK),
 | |
| 	CLK_GATE(K210_CLK_CPU,    "cpu",    K210_CLK_ACLK),
 | |
| 	CLK_GATE(K210_CLK_DMA,    "dma",    K210_CLK_ACLK),
 | |
| 	CLK_GATE(K210_CLK_FFT,    "fft",    K210_CLK_ACLK),
 | |
| 	CLK_GATE(K210_CLK_GPIO,   "gpio",   K210_CLK_APB0),
 | |
| 	CLK_GATE(K210_CLK_UART1,  "uart1",  K210_CLK_APB0),
 | |
| 	CLK_GATE(K210_CLK_UART2,  "uart2",  K210_CLK_APB0),
 | |
| 	CLK_GATE(K210_CLK_UART3,  "uart3",  K210_CLK_APB0),
 | |
| 	CLK_GATE(K210_CLK_FPIOA,  "fpioa",  K210_CLK_APB0),
 | |
| 	CLK_GATE(K210_CLK_SHA,    "sha",    K210_CLK_APB0),
 | |
| 	CLK_GATE(K210_CLK_AES,    "aes",    K210_CLK_APB1),
 | |
| 	CLK_GATE(K210_CLK_OTP,    "otp",    K210_CLK_APB1),
 | |
| 	CLK_GATE(K210_CLK_RTC,    "rtc",    K210_CLK_IN0),
 | |
| #undef NAME
 | |
| #undef CLK_PLL
 | |
| #undef CLK
 | |
| #undef CLK_FULL
 | |
| #undef CLK_NOMUX
 | |
| #undef CLK_DIV
 | |
| #undef CLK_GATE
 | |
| #undef CLK_LIST
 | |
| };
 | |
| 
 | |
| #define K210_PLL_CLKR		GENMASK(3, 0)
 | |
| #define K210_PLL_CLKF		GENMASK(9, 4)
 | |
| #define K210_PLL_CLKOD		GENMASK(13, 10) /* Output Divider */
 | |
| #define K210_PLL_BWADJ		GENMASK(19, 14) /* BandWidth Adjust */
 | |
| #define K210_PLL_RESET		BIT(20)
 | |
| #define K210_PLL_PWRD		BIT(21) /* PoWeReD */
 | |
| #define K210_PLL_INTFB		BIT(22) /* Internal FeedBack */
 | |
| #define K210_PLL_BYPASS		BIT(23)
 | |
| #define K210_PLL_TEST		BIT(24)
 | |
| #define K210_PLL_EN		BIT(25)
 | |
| #define K210_PLL_TEST_EN	BIT(26)
 | |
| 
 | |
| #define K210_PLL_LOCK		0
 | |
| #define K210_PLL_CLEAR_SLIP	2
 | |
| #define K210_PLL_TEST_OUT	3
 | |
| 
 | |
| #ifdef CONFIG_CLK_K210_SET_RATE
 | |
| static int k210_pll_enable(struct k210_clk_priv *priv, int id);
 | |
| static int k210_pll_disable(struct k210_clk_priv *priv, int id);
 | |
| static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id, ulong rate_in);
 | |
| 
 | |
| /*
 | |
|  * The PLL included with the Kendryte K210 appears to be a True Circuits, Inc.
 | |
|  * General-Purpose PLL. The logical layout of the PLL with internal feedback is
 | |
|  * approximately the following:
 | |
|  *
 | |
|  *  +---------------+
 | |
|  *  |reference clock|
 | |
|  *  +---------------+
 | |
|  *          |
 | |
|  *          v
 | |
|  *        +--+
 | |
|  *        |/r|
 | |
|  *        +--+
 | |
|  *          |
 | |
|  *          v
 | |
|  *   +-------------+
 | |
|  *   |divided clock|
 | |
|  *   +-------------+
 | |
|  *          |
 | |
|  *          v
 | |
|  *  +--------------+
 | |
|  *  |phase detector|<---+
 | |
|  *  +--------------+    |
 | |
|  *          |           |
 | |
|  *          v   +--------------+
 | |
|  *        +---+ |feedback clock|
 | |
|  *        |VCO| +--------------+
 | |
|  *        +---+         ^
 | |
|  *          |    +--+   |
 | |
|  *          +--->|/f|---+
 | |
|  *          |    +--+
 | |
|  *          v
 | |
|  *        +---+
 | |
|  *        |/od|
 | |
|  *        +---+
 | |
|  *          |
 | |
|  *          v
 | |
|  *       +------+
 | |
|  *       |output|
 | |
|  *       +------+
 | |
|  *
 | |
|  * The k210 PLLs have three factors: r, f, and od. Because of the feedback mode,
 | |
|  * the effect of the division by f is to multiply the input frequency. The
 | |
|  * equation for the output rate is
 | |
|  *   rate = (rate_in * f) / (r * od).
 | |
|  * Moving knowns to one side of the equation, we get
 | |
|  *   rate / rate_in = f / (r * od)
 | |
|  * Rearranging slightly,
 | |
|  *   abs_error = abs((rate / rate_in) - (f / (r * od))).
 | |
|  * To get relative, error, we divide by the expected ratio
 | |
|  *   error = abs((rate / rate_in) - (f / (r * od))) / (rate / rate_in).
 | |
|  * Simplifying,
 | |
|  *   error = abs(1 - f / (r * od)) / (rate / rate_in)
 | |
|  *   error = abs(1 - (f * rate_in) / (r * od * rate))
 | |
|  * Using the constants ratio = rate / rate_in and inv_ratio = rate_in / rate,
 | |
|  *   error = abs((f * inv_ratio) / (r * od) - 1)
 | |
|  * This is the error used in evaluating parameters.
 | |
|  *
 | |
|  * r and od are four bits each, while f is six bits. Because r and od are
 | |
|  * multiplied together, instead of the full 256 values possible if both bits
 | |
|  * were used fully, there are only 97 distinct products. Combined with f, there
 | |
|  * are 6208 theoretical settings for the PLL. However, most of these settings
 | |
|  * can be ruled out immediately because they do not have the correct ratio.
 | |
|  *
 | |
|  * In addition to the constraint of approximating the desired ratio, parameters
 | |
|  * must also keep internal pll frequencies within acceptable ranges. The divided
 | |
|  * clock's minimum and maximum frequencies have a ratio of around 128.  This
 | |
|  * leaves fairly substantial room to work with, especially since the only
 | |
|  * affected parameter is r. The VCO's minimum and maximum frequency have a ratio
 | |
|  * of 5, which is considerably more restrictive.
 | |
|  *
 | |
|  * The r and od factors are stored in a table. This is to make it easy to find
 | |
|  * the next-largest product. Some products have multiple factorizations, but
 | |
|  * only when one factor has at least a 2.5x ratio to the factors of the other
 | |
|  * factorization. This is because any smaller ratio would not make a difference
 | |
|  * when ensuring the VCO's frequency is within spec.
 | |
|  *
 | |
|  * Throughout the calculation function, fixed point arithmetic is used. Because
 | |
|  * the range of rate and rate_in may be up to 1.75 GHz, or around 2^30, 64-bit
 | |
|  * 32.32 fixed-point numbers are used to represent ratios. In general, to
 | |
|  * implement division, the numerator is first multiplied by 2^32. This gives a
 | |
|  * result where the whole number part is in the upper 32 bits, and the fraction
 | |
|  * is in the lower 32 bits.
 | |
|  *
 | |
|  * In general, rounding is done to the closest integer. This helps find the best
 | |
|  * approximation for the ratio. Rounding in one direction (e.g down) could cause
 | |
|  * the function to miss a better ratio with one of the parameters increased by
 | |
|  * one.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The factors table was generated with the following python code:
 | |
|  *
 | |
|  * def p(x, y):
 | |
|  *    return (1.0*x/y > 2.5) or (1.0*y/x > 2.5)
 | |
|  *
 | |
|  * factors = {}
 | |
|  * for i in range(1, 17):
 | |
|  *    for j in range(1, 17):
 | |
|  *       fs = factors.get(i*j) or []
 | |
|  *       if fs == [] or all([
 | |
|  *             (p(i, x) and p(i, y)) or (p(j, x) and p(j, y))
 | |
|  *             for (x, y) in fs]):
 | |
|  *          fs.append((i, j))
 | |
|  *          factors[i*j] = fs
 | |
|  *
 | |
|  * for k, l in sorted(factors.items()):
 | |
|  *    for v in l:
 | |
|  *       print("PACK(%s, %s)," % v)
 | |
|  */
 | |
| #define PACK(r, od) (((((r) - 1) & 0xF) << 4) | (((od) - 1) & 0xF))
 | |
| #define UNPACK_R(val) ((((val) >> 4) & 0xF) + 1)
 | |
| #define UNPACK_OD(val) (((val) & 0xF) + 1)
 | |
| static const u8 factors[] = {
 | |
| 	PACK(1, 1),
 | |
| 	PACK(1, 2),
 | |
| 	PACK(1, 3),
 | |
| 	PACK(1, 4),
 | |
| 	PACK(1, 5),
 | |
| 	PACK(1, 6),
 | |
| 	PACK(1, 7),
 | |
| 	PACK(1, 8),
 | |
| 	PACK(1, 9),
 | |
| 	PACK(3, 3),
 | |
| 	PACK(1, 10),
 | |
| 	PACK(1, 11),
 | |
| 	PACK(1, 12),
 | |
| 	PACK(3, 4),
 | |
| 	PACK(1, 13),
 | |
| 	PACK(1, 14),
 | |
| 	PACK(1, 15),
 | |
| 	PACK(3, 5),
 | |
| 	PACK(1, 16),
 | |
| 	PACK(4, 4),
 | |
| 	PACK(2, 9),
 | |
| 	PACK(2, 10),
 | |
| 	PACK(3, 7),
 | |
| 	PACK(2, 11),
 | |
| 	PACK(2, 12),
 | |
| 	PACK(5, 5),
 | |
| 	PACK(2, 13),
 | |
| 	PACK(3, 9),
 | |
| 	PACK(2, 14),
 | |
| 	PACK(2, 15),
 | |
| 	PACK(2, 16),
 | |
| 	PACK(3, 11),
 | |
| 	PACK(5, 7),
 | |
| 	PACK(3, 12),
 | |
| 	PACK(3, 13),
 | |
| 	PACK(4, 10),
 | |
| 	PACK(3, 14),
 | |
| 	PACK(4, 11),
 | |
| 	PACK(3, 15),
 | |
| 	PACK(3, 16),
 | |
| 	PACK(7, 7),
 | |
| 	PACK(5, 10),
 | |
| 	PACK(4, 13),
 | |
| 	PACK(6, 9),
 | |
| 	PACK(5, 11),
 | |
| 	PACK(4, 14),
 | |
| 	PACK(4, 15),
 | |
| 	PACK(7, 9),
 | |
| 	PACK(4, 16),
 | |
| 	PACK(5, 13),
 | |
| 	PACK(6, 11),
 | |
| 	PACK(5, 14),
 | |
| 	PACK(6, 12),
 | |
| 	PACK(5, 15),
 | |
| 	PACK(7, 11),
 | |
| 	PACK(6, 13),
 | |
| 	PACK(5, 16),
 | |
| 	PACK(9, 9),
 | |
| 	PACK(6, 14),
 | |
| 	PACK(8, 11),
 | |
| 	PACK(6, 15),
 | |
| 	PACK(7, 13),
 | |
| 	PACK(6, 16),
 | |
| 	PACK(7, 14),
 | |
| 	PACK(9, 11),
 | |
| 	PACK(10, 10),
 | |
| 	PACK(8, 13),
 | |
| 	PACK(7, 15),
 | |
| 	PACK(9, 12),
 | |
| 	PACK(10, 11),
 | |
| 	PACK(7, 16),
 | |
| 	PACK(9, 13),
 | |
| 	PACK(8, 15),
 | |
| 	PACK(11, 11),
 | |
| 	PACK(9, 14),
 | |
| 	PACK(8, 16),
 | |
| 	PACK(10, 13),
 | |
| 	PACK(11, 12),
 | |
| 	PACK(9, 15),
 | |
| 	PACK(10, 14),
 | |
| 	PACK(11, 13),
 | |
| 	PACK(9, 16),
 | |
| 	PACK(10, 15),
 | |
| 	PACK(11, 14),
 | |
| 	PACK(12, 13),
 | |
| 	PACK(10, 16),
 | |
| 	PACK(11, 15),
 | |
| 	PACK(12, 14),
 | |
| 	PACK(13, 13),
 | |
| 	PACK(11, 16),
 | |
| 	PACK(12, 15),
 | |
| 	PACK(13, 14),
 | |
| 	PACK(12, 16),
 | |
| 	PACK(13, 15),
 | |
| 	PACK(14, 14),
 | |
| 	PACK(13, 16),
 | |
| 	PACK(14, 15),
 | |
| 	PACK(14, 16),
 | |
| 	PACK(15, 15),
 | |
| 	PACK(15, 16),
 | |
| 	PACK(16, 16),
 | |
| };
 | |
| 
 | |
| TEST_STATIC int k210_pll_calc_config(u32 rate, u32 rate_in,
 | |
| 				     struct k210_pll_config *best)
 | |
| {
 | |
| 	int i;
 | |
| 	s64 error, best_error;
 | |
| 	u64 ratio, inv_ratio; /* fixed point 32.32 ratio of the rates */
 | |
| 	u64 max_r;
 | |
| 	u64 r, f, od;
 | |
| 
 | |
| 	/*
 | |
| 	 * Can't go over 1.75 GHz or under 21.25 MHz due to limitations on the
 | |
| 	 * VCO frequency. These are not the same limits as below because od can
 | |
| 	 * reduce the output frequency by 16.
 | |
| 	 */
 | |
| 	if (rate > 1750000000 || rate < 21250000)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Similar restrictions on the input rate */
 | |
| 	if (rate_in > 1750000000 || rate_in < 13300000)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ratio = DIV_ROUND_CLOSEST_ULL((u64)rate << 32, rate_in);
 | |
| 	inv_ratio = DIV_ROUND_CLOSEST_ULL((u64)rate_in << 32, rate);
 | |
| 	/* Can't increase by more than 64 or reduce by more than 256 */
 | |
| 	if (rate > rate_in && ratio > (64ULL << 32))
 | |
| 		return -EINVAL;
 | |
| 	else if (rate <= rate_in && inv_ratio > (256ULL << 32))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * The divided clock (rate_in / r) must stay between 1.75 GHz and 13.3
 | |
| 	 * MHz. There is no minimum, since the only way to get a higher input
 | |
| 	 * clock than 26 MHz is to use a clock generated by a PLL. Because PLLs
 | |
| 	 * cannot output frequencies greater than 1.75 GHz, the minimum would
 | |
| 	 * never be greater than one.
 | |
| 	 */
 | |
| 	max_r = DIV_ROUND_DOWN_ULL(rate_in, 13300000);
 | |
| 
 | |
| 	/* Variables get immediately incremented, so start at -1th iteration */
 | |
| 	i = -1;
 | |
| 	f = 0;
 | |
| 	r = 0;
 | |
| 	od = 0;
 | |
| 	best_error = S64_MAX;
 | |
| 	error = best_error;
 | |
| 	/* do-while here so we always try at least one ratio */
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * Whether we swapped r and od while enforcing frequency limits
 | |
| 		 */
 | |
| 		bool swapped = false;
 | |
| 		/*
 | |
| 		 * Whether the intermediate frequencies are out-of-spec
 | |
| 		 */
 | |
| 		bool out_of_spec;
 | |
| 		u64 last_od = od;
 | |
| 		u64 last_r = r;
 | |
| 
 | |
| 		/*
 | |
| 		 * Try the next largest value for f (or r and od) and
 | |
| 		 * recalculate the other parameters based on that
 | |
| 		 */
 | |
| 		if (rate > rate_in) {
 | |
| 			/*
 | |
| 			 * Skip factors of the same product if we already tried
 | |
| 			 * out that product
 | |
| 			 */
 | |
| 			do {
 | |
| 				i++;
 | |
| 				r = UNPACK_R(factors[i]);
 | |
| 				od = UNPACK_OD(factors[i]);
 | |
| 			} while (i + 1 < ARRAY_SIZE(factors) &&
 | |
| 				 r * od == last_r * last_od);
 | |
| 
 | |
| 			/* Round close */
 | |
| 			f = (r * od * ratio + BIT(31)) >> 32;
 | |
| 			if (f > 64)
 | |
| 				f = 64;
 | |
| 		} else {
 | |
| 			u64 tmp = ++f * inv_ratio;
 | |
| 			bool round_up = !!(tmp & BIT(31));
 | |
| 			u32 goal = (tmp >> 32) + round_up;
 | |
| 			u32 err, last_err;
 | |
| 
 | |
| 			/* Get the next r/od pair in factors */
 | |
| 			while (r * od < goal && i + 1 < ARRAY_SIZE(factors)) {
 | |
| 				i++;
 | |
| 				r = UNPACK_R(factors[i]);
 | |
| 				od = UNPACK_OD(factors[i]);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * This is a case of double rounding. If we rounded up
 | |
| 			 * above, we need to round down (in cases of ties) here.
 | |
| 			 * This prevents off-by-one errors resulting from
 | |
| 			 * choosing X+2 over X when X.Y rounds up to X+1 and
 | |
| 			 * there is no r * od = X+1. For the converse, when X.Y
 | |
| 			 * is rounded down to X, we should choose X+1 over X-1.
 | |
| 			 */
 | |
| 			err = abs(r * od - goal);
 | |
| 			last_err = abs(last_r * last_od - goal);
 | |
| 			if (last_err < err || (round_up && last_err == err)) {
 | |
| 				i--;
 | |
| 				r = last_r;
 | |
| 				od = last_od;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Enforce limits on internal clock frequencies. If we
 | |
| 		 * aren't in spec, try swapping r and od. If everything is
 | |
| 		 * in-spec, calculate the relative error.
 | |
| 		 */
 | |
| again:
 | |
| 		out_of_spec = false;
 | |
| 		if (r > max_r) {
 | |
| 			out_of_spec = true;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * There is no way to only divide once; we need
 | |
| 			 * to examine the frequency with and without the
 | |
| 			 * effect of od.
 | |
| 			 */
 | |
| 			u64 vco = DIV_ROUND_CLOSEST_ULL(rate_in * f, r);
 | |
| 
 | |
| 			if (vco > 1750000000 || vco < 340000000)
 | |
| 				out_of_spec = true;
 | |
| 		}
 | |
| 
 | |
| 		if (out_of_spec) {
 | |
| 			u64 new_r, new_od;
 | |
| 
 | |
| 			if (!swapped) {
 | |
| 				u64 tmp = r;
 | |
| 
 | |
| 				r = od;
 | |
| 				od = tmp;
 | |
| 				swapped = true;
 | |
| 				goto again;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Try looking ahead to see if there are additional
 | |
| 			 * factors for the same product.
 | |
| 			 */
 | |
| 			if (i + 1 < ARRAY_SIZE(factors)) {
 | |
| 				i++;
 | |
| 				new_r = UNPACK_R(factors[i]);
 | |
| 				new_od = UNPACK_OD(factors[i]);
 | |
| 				if (r * od == new_r * new_od) {
 | |
| 					r = new_r;
 | |
| 					od = new_od;
 | |
| 					swapped = false;
 | |
| 					goto again;
 | |
| 				}
 | |
| 				i--;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Try looking back to see if there is a worse ratio
 | |
| 			 * that we could try anyway
 | |
| 			 */
 | |
| 			while (i > 0) {
 | |
| 				i--;
 | |
| 				new_r = UNPACK_R(factors[i]);
 | |
| 				new_od = UNPACK_OD(factors[i]);
 | |
| 				/*
 | |
| 				 * Don't loop over factors for the same product
 | |
| 				 * to avoid getting stuck because of the above
 | |
| 				 * clause
 | |
| 				 */
 | |
| 				if (r * od != new_r * new_od) {
 | |
| 					if (new_r * new_od > last_r * last_od) {
 | |
| 						r = new_r;
 | |
| 						od = new_od;
 | |
| 						swapped = false;
 | |
| 						goto again;
 | |
| 					}
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* We ran out of things to try */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		error = DIV_ROUND_CLOSEST_ULL(f * inv_ratio, r * od);
 | |
| 		/* The lower 16 bits are spurious */
 | |
| 		error = abs64((error - BIT_ULL(32))) >> 16;
 | |
| 
 | |
| 		if (error < best_error) {
 | |
| 			best->r = r;
 | |
| 			best->f = f;
 | |
| 			best->od = od;
 | |
| 			best_error = error;
 | |
| 		}
 | |
| 	} while (f < 64 && i + 1 < ARRAY_SIZE(factors) && error != 0);
 | |
| 
 | |
| 	log_debug("best error %lld\n", best_error);
 | |
| 	if (best_error == S64_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
 | |
| 			       ulong rate_in)
 | |
| {
 | |
| 	int err;
 | |
| 	const struct k210_pll_params *pll = &k210_plls[id];
 | |
| 	struct k210_pll_config config = {};
 | |
| 	u32 reg;
 | |
| 	ulong calc_rate;
 | |
| 
 | |
| 	err = k210_pll_calc_config(rate, rate_in, &config);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	log_debug("Got r=%u f=%u od=%u\n", config.r, config.f, config.od);
 | |
| 
 | |
| 	/* Don't bother setting the rate if we're already at that rate */
 | |
| 	calc_rate = DIV_ROUND_DOWN_ULL(((u64)rate_in) * config.f,
 | |
| 				       config.r * config.od);
 | |
| 	if (calc_rate == k210_pll_get_rate(priv, id, rate))
 | |
| 		return calc_rate;
 | |
| 
 | |
| 	k210_pll_disable(priv, id);
 | |
| 
 | |
| 	reg = readl(priv->base + pll->off);
 | |
| 	reg &= ~K210_PLL_CLKR
 | |
| 	    &  ~K210_PLL_CLKF
 | |
| 	    &  ~K210_PLL_CLKOD
 | |
| 	    &  ~K210_PLL_BWADJ;
 | |
| 	reg |= FIELD_PREP(K210_PLL_CLKR, config.r - 1)
 | |
| 	    |  FIELD_PREP(K210_PLL_CLKF, config.f - 1)
 | |
| 	    |  FIELD_PREP(K210_PLL_CLKOD, config.od - 1)
 | |
| 	    |  FIELD_PREP(K210_PLL_BWADJ, config.f - 1);
 | |
| 	writel(reg, priv->base + pll->off);
 | |
| 
 | |
| 	k210_pll_enable(priv, id);
 | |
| 
 | |
| 	serial_setbrg();
 | |
| 	return k210_pll_get_rate(priv, id, rate);
 | |
| }
 | |
| #else
 | |
| static ulong k210_pll_set_rate(struct k210_clk_priv *priv, int id, ulong rate,
 | |
| 			       ulong rate_in)
 | |
| {
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| #endif /* CONFIG_CLK_K210_SET_RATE */
 | |
| 
 | |
| static ulong k210_pll_get_rate(struct k210_clk_priv *priv, int id,
 | |
| 			       ulong rate_in)
 | |
| {
 | |
| 	u64 r, f, od;
 | |
| 	u32 reg = readl(priv->base + k210_plls[id].off);
 | |
| 
 | |
| 	if (reg & K210_PLL_BYPASS)
 | |
| 		return rate_in;
 | |
| 
 | |
| 	if (!(reg & K210_PLL_PWRD))
 | |
| 		return 0;
 | |
| 
 | |
| 	r = FIELD_GET(K210_PLL_CLKR, reg) + 1;
 | |
| 	f = FIELD_GET(K210_PLL_CLKF, reg) + 1;
 | |
| 	od = FIELD_GET(K210_PLL_CLKOD, reg) + 1;
 | |
| 
 | |
| 	return DIV_ROUND_DOWN_ULL(((u64)rate_in) * f, r * od);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wait for the PLL to be locked. If the PLL is not locked, try clearing the
 | |
|  * slip before retrying
 | |
|  */
 | |
| static void k210_pll_waitfor_lock(struct k210_clk_priv *priv, int id)
 | |
| {
 | |
| 	const struct k210_pll_params *pll = &k210_plls[id];
 | |
| 	u32 mask = (BIT(pll->width) - 1) << pll->shift;
 | |
| 
 | |
| 	while (true) {
 | |
| 		u32 reg = readl(priv->base + K210_SYSCTL_PLL_LOCK);
 | |
| 
 | |
| 		if ((reg & mask) == mask)
 | |
| 			break;
 | |
| 
 | |
| 		reg |= BIT(pll->shift + K210_PLL_CLEAR_SLIP);
 | |
| 		writel(reg, priv->base + K210_SYSCTL_PLL_LOCK);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool k210_pll_enabled(u32 reg)
 | |
| {
 | |
| 	return (reg & K210_PLL_PWRD) && (reg & K210_PLL_EN) &&
 | |
| 		!(reg & K210_PLL_RESET);
 | |
| }
 | |
| 
 | |
| /* Adapted from sysctl_pll_enable */
 | |
| static int k210_pll_enable(struct k210_clk_priv *priv, int id)
 | |
| {
 | |
| 	const struct k210_pll_params *pll = &k210_plls[id];
 | |
| 	u32 reg = readl(priv->base + pll->off);
 | |
| 
 | |
| 	if (k210_pll_enabled(reg))
 | |
| 		return 0;
 | |
| 
 | |
| 	reg |= K210_PLL_PWRD;
 | |
| 	writel(reg, priv->base + pll->off);
 | |
| 
 | |
| 	/* Ensure reset is low before asserting it */
 | |
| 	reg &= ~K210_PLL_RESET;
 | |
| 	writel(reg, priv->base + pll->off);
 | |
| 	reg |= K210_PLL_RESET;
 | |
| 	writel(reg, priv->base + pll->off);
 | |
| 	nop();
 | |
| 	nop();
 | |
| 	reg &= ~K210_PLL_RESET;
 | |
| 	writel(reg, priv->base + pll->off);
 | |
| 
 | |
| 	k210_pll_waitfor_lock(priv, id);
 | |
| 
 | |
| 	reg &= ~K210_PLL_BYPASS;
 | |
| 	reg |= K210_PLL_EN;
 | |
| 	writel(reg, priv->base + pll->off);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int k210_pll_disable(struct k210_clk_priv *priv, int id)
 | |
| {
 | |
| 	const struct k210_pll_params *pll = &k210_plls[id];
 | |
| 	u32 reg = readl(priv->base + pll->off);
 | |
| 
 | |
| 	/*
 | |
| 	 * Bypassing before powering off is important so child clocks don't stop
 | |
| 	 * working. This is especially important for pll0, the indirect parent
 | |
| 	 * of the cpu clock.
 | |
| 	 */
 | |
| 	reg |= K210_PLL_BYPASS;
 | |
| 	writel(reg, priv->base + pll->off);
 | |
| 
 | |
| 	reg &= ~K210_PLL_PWRD;
 | |
| 	reg &= ~K210_PLL_EN;
 | |
| 	writel(reg, priv->base + pll->off);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32 k210_clk_readl(struct k210_clk_priv *priv, u8 off, u8 shift,
 | |
| 			  u8 width)
 | |
| {
 | |
| 	u32 reg = readl(priv->base + off);
 | |
| 
 | |
| 	return (reg >> shift) & (BIT(width) - 1);
 | |
| }
 | |
| 
 | |
| static void k210_clk_writel(struct k210_clk_priv *priv, u8 off, u8 shift,
 | |
| 			    u8 width, u32 val)
 | |
| {
 | |
| 	u32 reg = readl(priv->base + off);
 | |
| 	u32 mask = (BIT(width) - 1) << shift;
 | |
| 
 | |
| 	reg &= ~mask;
 | |
| 	reg |= mask & (val << shift);
 | |
| 	writel(reg, priv->base + off);
 | |
| }
 | |
| 
 | |
| static int k210_clk_get_parent(struct k210_clk_priv *priv, int id)
 | |
| {
 | |
| 	u32 sel;
 | |
| 	const struct k210_mux_params *mux;
 | |
| 
 | |
| 	if (!(k210_clks[id].flags & K210_CLKF_MUX))
 | |
| 		return k210_clks[id].parent;
 | |
| 	mux = &k210_muxes[k210_clks[id].mux];
 | |
| 
 | |
| 	sel = k210_clk_readl(priv, mux->off, mux->shift, mux->width);
 | |
| 	assert(sel < mux->num_parents);
 | |
| 	return mux->parents[sel];
 | |
| }
 | |
| 
 | |
| static ulong do_k210_clk_get_rate(struct k210_clk_priv *priv, int id)
 | |
| {
 | |
| 	int parent;
 | |
| 	u32 val;
 | |
| 	ulong parent_rate;
 | |
| 	const struct k210_div_params *div;
 | |
| 
 | |
| 	if (id == K210_CLK_IN0)
 | |
| 		return clk_get_rate(&priv->in0);
 | |
| 
 | |
| 	parent = k210_clk_get_parent(priv, id);
 | |
| 	parent_rate = do_k210_clk_get_rate(priv, parent);
 | |
| 	if (IS_ERR_VALUE(parent_rate))
 | |
| 		return parent_rate;
 | |
| 
 | |
| 	if (k210_clks[id].flags & K210_CLKF_PLL)
 | |
| 		return k210_pll_get_rate(priv, k210_clks[id].pll, parent_rate);
 | |
| 
 | |
| 	if (k210_clks[id].div == K210_CLK_DIV_NONE)
 | |
| 		return parent_rate;
 | |
| 	div = &k210_divs[k210_clks[id].div];
 | |
| 
 | |
| 	if (div->type == K210_DIV_FIXED)
 | |
| 		return parent_rate / div->div;
 | |
| 
 | |
| 	val = k210_clk_readl(priv, div->off, div->shift, div->width);
 | |
| 	switch (div->type) {
 | |
| 	case K210_DIV_ONE:
 | |
| 		return parent_rate / (val + 1);
 | |
| 	case K210_DIV_EVEN:
 | |
| 		return parent_rate / 2 / (val + 1);
 | |
| 	case K210_DIV_POWER:
 | |
| 		/* This is ACLK, which has no divider on IN0 */
 | |
| 		if (parent == K210_CLK_IN0)
 | |
| 			return parent_rate;
 | |
| 		return parent_rate / (2 << val);
 | |
| 	default:
 | |
| 		assert(false);
 | |
| 		return -EINVAL;
 | |
| 	};
 | |
| }
 | |
| 
 | |
| static ulong k210_clk_get_rate(struct clk *clk)
 | |
| {
 | |
| 	return do_k210_clk_get_rate(dev_get_priv(clk->dev), clk->id);
 | |
| }
 | |
| 
 | |
| static int do_k210_clk_set_parent(struct k210_clk_priv *priv, int id, int new)
 | |
| {
 | |
| 	int i;
 | |
| 	const struct k210_mux_params *mux;
 | |
| 
 | |
| 	if (!(k210_clks[id].flags & K210_CLKF_MUX))
 | |
| 		return -ENOSYS;
 | |
| 	mux = &k210_muxes[k210_clks[id].mux];
 | |
| 
 | |
| 	for (i = 0; i < mux->num_parents; i++) {
 | |
| 		if (mux->parents[i] == new) {
 | |
| 			k210_clk_writel(priv, mux->off, mux->shift, mux->width,
 | |
| 					i);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int k210_clk_set_parent(struct clk *clk, struct clk *parent)
 | |
| {
 | |
| 	return do_k210_clk_set_parent(dev_get_priv(clk->dev), clk->id,
 | |
| 				      parent->id);
 | |
| }
 | |
| 
 | |
| static ulong k210_clk_set_rate(struct clk *clk, unsigned long rate)
 | |
| {
 | |
| 	int parent, ret, err;
 | |
| 	ulong rate_in, val;
 | |
| 	const struct k210_div_params *div;
 | |
| 	struct k210_clk_priv *priv = dev_get_priv(clk->dev);
 | |
| 
 | |
| 	if (clk->id == K210_CLK_IN0)
 | |
| 		return clk_set_rate(&priv->in0, rate);
 | |
| 
 | |
| 	parent = k210_clk_get_parent(priv, clk->id);
 | |
| 	rate_in = do_k210_clk_get_rate(priv, parent);
 | |
| 	if (IS_ERR_VALUE(rate_in))
 | |
| 		return rate_in;
 | |
| 
 | |
| 	log_debug("id=%ld rate=%lu rate_in=%lu\n", clk->id, rate, rate_in);
 | |
| 
 | |
| 	if (clk->id == K210_CLK_PLL0) {
 | |
| 		/* Bypass ACLK so the CPU keeps going */
 | |
| 		ret = do_k210_clk_set_parent(priv, K210_CLK_ACLK, K210_CLK_IN0);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	} else if (clk->id == K210_CLK_PLL1 && gd->flags & GD_FLG_RELOC) {
 | |
| 		/*
 | |
| 		 * We can't bypass the AI clock like we can ACLK, and after
 | |
| 		 * relocation we are using the AI ram.
 | |
| 		 */
 | |
| 		return -EPERM;
 | |
| 	}
 | |
| 
 | |
| 	if (k210_clks[clk->id].flags & K210_CLKF_PLL) {
 | |
| 		ret = k210_pll_set_rate(priv, k210_clks[clk->id].pll, rate,
 | |
| 					rate_in);
 | |
| 		if (!IS_ERR_VALUE(ret) && clk->id == K210_CLK_PLL0) {
 | |
| 			/*
 | |
| 			 * This may have the side effect of reparenting ACLK,
 | |
| 			 * but I don't really want to keep track of what the old
 | |
| 			 * parent was.
 | |
| 			 */
 | |
| 			err = do_k210_clk_set_parent(priv, K210_CLK_ACLK,
 | |
| 						     K210_CLK_PLL0);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (k210_clks[clk->id].div == K210_CLK_DIV_NONE)
 | |
| 		return -ENOSYS;
 | |
| 	div = &k210_divs[k210_clks[clk->id].div];
 | |
| 
 | |
| 	switch (div->type) {
 | |
| 	case K210_DIV_ONE:
 | |
| 		val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate);
 | |
| 		val = val ? val - 1 : 0;
 | |
| 		break;
 | |
| 	case K210_DIV_EVEN:
 | |
| 		val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, 2 * rate);
 | |
| 		break;
 | |
| 	case K210_DIV_POWER:
 | |
| 		/* This is ACLK, which has no divider on IN0 */
 | |
| 		if (parent == K210_CLK_IN0)
 | |
| 			return -ENOSYS;
 | |
| 
 | |
| 		val = DIV_ROUND_CLOSEST_ULL((u64)rate_in, rate);
 | |
| 		val = __ffs(val);
 | |
| 		break;
 | |
| 	default:
 | |
| 		assert(false);
 | |
| 		return -EINVAL;
 | |
| 	};
 | |
| 
 | |
| 	val = val ? val - 1 : 0;
 | |
| 	k210_clk_writel(priv, div->off, div->shift, div->width, val);
 | |
| 	return do_k210_clk_get_rate(priv, clk->id);
 | |
| }
 | |
| 
 | |
| static int k210_clk_endisable(struct k210_clk_priv *priv, int id, bool enable)
 | |
| {
 | |
| 	int parent = k210_clk_get_parent(priv, id);
 | |
| 	const struct k210_gate_params *gate;
 | |
| 
 | |
| 	if (id == K210_CLK_IN0) {
 | |
| 		if (enable)
 | |
| 			return clk_enable(&priv->in0);
 | |
| 		else
 | |
| 			return clk_disable(&priv->in0);
 | |
| 	}
 | |
| 
 | |
| 	/* Only recursively enable clocks since we don't track refcounts */
 | |
| 	if (enable) {
 | |
| 		int ret = k210_clk_endisable(priv, parent, true);
 | |
| 
 | |
| 		if (ret && ret != -ENOSYS)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (k210_clks[id].flags & K210_CLKF_PLL) {
 | |
| 		if (enable)
 | |
| 			return k210_pll_enable(priv, k210_clks[id].pll);
 | |
| 		else
 | |
| 			return k210_pll_disable(priv, k210_clks[id].pll);
 | |
| 	}
 | |
| 
 | |
| 	if (k210_clks[id].gate == K210_CLK_GATE_NONE)
 | |
| 		return -ENOSYS;
 | |
| 	gate = &k210_gates[k210_clks[id].gate];
 | |
| 
 | |
| 	k210_clk_writel(priv, gate->off, gate->bit_idx, 1, enable);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int k210_clk_enable(struct clk *clk)
 | |
| {
 | |
| 	return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, true);
 | |
| }
 | |
| 
 | |
| static int k210_clk_disable(struct clk *clk)
 | |
| {
 | |
| 	return k210_clk_endisable(dev_get_priv(clk->dev), clk->id, false);
 | |
| }
 | |
| 
 | |
| static int k210_clk_request(struct clk *clk)
 | |
| {
 | |
| 	if (clk->id >= ARRAY_SIZE(k210_clks))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct clk_ops k210_clk_ops = {
 | |
| 	.request = k210_clk_request,
 | |
| 	.set_rate = k210_clk_set_rate,
 | |
| 	.get_rate = k210_clk_get_rate,
 | |
| 	.set_parent = k210_clk_set_parent,
 | |
| 	.enable = k210_clk_enable,
 | |
| 	.disable = k210_clk_disable,
 | |
| };
 | |
| 
 | |
| static int k210_clk_probe(struct udevice *dev)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct k210_clk_priv *priv = dev_get_priv(dev);
 | |
| 
 | |
| 	priv->base = dev_read_addr_ptr(dev_get_parent(dev));
 | |
| 	if (!priv->base)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = clk_get_by_index(dev, 0, &priv->in0);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Force setting defaults, even before relocation. This is so we can
 | |
| 	 * set the clock rate for PLL1 before we relocate into aisram.
 | |
| 	 */
 | |
| 	if (!(gd->flags & GD_FLG_RELOC))
 | |
| 		clk_set_defaults(dev, CLK_DEFAULTS_POST_FORCE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct udevice_id k210_clk_ids[] = {
 | |
| 	{ .compatible = "canaan,k210-clk" },
 | |
| 	{ },
 | |
| };
 | |
| 
 | |
| U_BOOT_DRIVER(k210_clk) = {
 | |
| 	.name = "k210_clk",
 | |
| 	.id = UCLASS_CLK,
 | |
| 	.of_match = k210_clk_ids,
 | |
| 	.ops = &k210_clk_ops,
 | |
| 	.probe = k210_clk_probe,
 | |
| 	.priv_auto = sizeof(struct k210_clk_priv),
 | |
| };
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_CMD_CLK)
 | |
| static char show_enabled(struct k210_clk_priv *priv, int id)
 | |
| {
 | |
| 	bool enabled;
 | |
| 
 | |
| 	if (k210_clks[id].flags & K210_CLKF_PLL) {
 | |
| 		const struct k210_pll_params *pll =
 | |
| 			&k210_plls[k210_clks[id].pll];
 | |
| 
 | |
| 		enabled = k210_pll_enabled(readl(priv->base + pll->off));
 | |
| 	} else if (k210_clks[id].gate == K210_CLK_GATE_NONE) {
 | |
| 		return '-';
 | |
| 	} else {
 | |
| 		const struct k210_gate_params *gate =
 | |
| 			&k210_gates[k210_clks[id].gate];
 | |
| 
 | |
| 		enabled = k210_clk_readl(priv, gate->off, gate->bit_idx, 1);
 | |
| 	}
 | |
| 
 | |
| 	return enabled ? 'y' : 'n';
 | |
| }
 | |
| 
 | |
| static void show_clks(struct k210_clk_priv *priv, int id, int depth)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(k210_clks); i++) {
 | |
| 		if (k210_clk_get_parent(priv, i) != id)
 | |
| 			continue;
 | |
| 
 | |
| 		printf(" %-9lu %-7c %*s%s\n", do_k210_clk_get_rate(priv, i),
 | |
| 		       show_enabled(priv, i), depth * 4, "",
 | |
| 		       k210_clks[i].name);
 | |
| 
 | |
| 		show_clks(priv, i, depth + 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int soc_clk_dump(void)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct udevice *dev;
 | |
| 	struct k210_clk_priv *priv;
 | |
| 
 | |
| 	ret = uclass_get_device_by_driver(UCLASS_CLK, DM_DRIVER_GET(k210_clk),
 | |
| 					  &dev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	priv = dev_get_priv(dev);
 | |
| 
 | |
| 	puts(" Rate      Enabled Name\n");
 | |
| 	puts("------------------------\n");
 | |
| 	printf(" %-9lu %-7c %*s%s\n", clk_get_rate(&priv->in0), 'y', 0, "",
 | |
| 	       priv->in0.dev->name);
 | |
| 	show_clks(priv, K210_CLK_IN0, 1);
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 |