u-boot/drivers/memory/stm32_omm.c
Patrice Chotard b7328e2f39 memory: Add STM32 Octo Memory Manager driver
Octo Memory Manager driver (OMM) manages:
  - the muxing between 2 OSPI busses and 2 output ports.
    There are 4 possible muxing configurations:
      - direct mode (no multiplexing): OSPI1 output is on port 1 and OSPI2
        output is on port 2
      - OSPI1 and OSPI2 are multiplexed over the same output port 1
      - swapped mode (no multiplexing), OSPI1 output is on port 2,
        OSPI2 output is on port 1
      - OSPI1 and OSPI2 are multiplexed over the same output port 2
  - the split of the memory area shared between the 2 OSPI instances.
  - chip select selection override.
  - the time between 2 transactions in multiplexed mode.
  - check firewall access.

Signed-off-by: Patrice Chotard <patrice.chotard@foss.st.com>
Reviewed-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
2025-09-18 17:20:39 +02:00

422 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later OR BSD-3-Clause
/*
* Copyright (C) 2025, STMicroelectronics - All Rights Reserved
*/
#define LOG_CATEGORY UCLASS_NOP
#include <clk.h>
#include <dm.h>
#include <regmap.h>
#include <reset.h>
#include <syscon.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/of_addr.h>
#include <dm/of_access.h>
#include <linux/bitfield.h>
#include <linux/ioport.h>
#include <mach/rif.h>
/* OCTOSPI control register */
#define OCTOSPIM_CR 0
#define CR_MUXEN BIT(0)
#define CR_MUXENMODE_MASK GENMASK(1, 0)
#define CR_CSSEL_OVR_EN BIT(4)
#define CR_CSSEL_OVR_MASK GENMASK(6, 5)
#define CR_REQ2ACK_MASK GENMASK(23, 16)
#define OMM_CHILD_NB 2
#define OMM_CLK_NB 3
#define OMM_RESET_NB 3
#define NSEC_PER_SEC 1000000000L
struct stm32_omm_plat {
phys_addr_t regs_base;
struct regmap *syscfg_regmap;
struct clk clk[OMM_CLK_NB];
struct reset_ctl reset_ctl[OMM_RESET_NB];
resource_size_t mm_ospi2_size;
u32 mux;
u32 cssel_ovr;
u32 req2ack;
u32 amcr_base;
u32 amcr_mask;
unsigned long clk_rate_max;
u8 nb_child;
};
static int stm32_omm_set_amcr(struct udevice *dev, bool set)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
unsigned int amcr, read_amcr;
amcr = plat->mm_ospi2_size / SZ_64M;
if (set)
regmap_update_bits(plat->syscfg_regmap, plat->amcr_base,
plat->amcr_mask, amcr);
/* read AMCR and check coherency with memory-map areas defined in DT */
regmap_read(plat->syscfg_regmap, plat->amcr_base, &read_amcr);
read_amcr = read_amcr >> (ffs(plat->amcr_mask) - 1);
if (amcr != read_amcr) {
dev_err(dev, "AMCR value not coherent with DT memory-map areas\n");
return -EINVAL;
}
return 0;
}
static int stm32_omm_toggle_child_clock(struct udevice *dev, bool enable)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
int i, ret;
for (i = 0; i < plat->nb_child; i++) {
if (enable) {
ret = clk_enable(&plat->clk[i + 1]);
if (ret) {
dev_err(dev, "Can not enable clock\n");
goto clk_error;
}
} else {
clk_disable(&plat->clk[i + 1]);
}
}
return 0;
clk_error:
while (i--)
clk_disable(&plat->clk[i + 1]);
return ret;
}
static int stm32_omm_disable_child(struct udevice *dev)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
int ret;
u8 i;
ret = stm32_omm_toggle_child_clock(dev, true);
if (ret)
return ret;
for (i = 0; i < plat->nb_child; i++) {
/* reset OSPI to ensure CR_EN bit is set to 0 */
reset_assert(&plat->reset_ctl[i + 1]);
udelay(2);
reset_deassert(&plat->reset_ctl[i + 1]);
}
return stm32_omm_toggle_child_clock(dev, false);
}
static int stm32_omm_configure(struct udevice *dev)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
int ret;
u32 mux = 0;
u32 cssel_ovr = 0;
u32 req2ack = 0;
/* Ensure both OSPI instance are disabled before configuring OMM */
ret = stm32_omm_disable_child(dev);
if (ret)
return ret;
ret = clk_enable(&plat->clk[0]);
if (ret) {
dev_err(dev, "Failed to enable OMM clock (%d)\n", ret);
return ret;
}
reset_assert(&plat->reset_ctl[0]);
udelay(2);
reset_deassert(&plat->reset_ctl[0]);
if (plat->mux & CR_MUXEN) {
if (plat->req2ack) {
req2ack = DIV_ROUND_UP(plat->req2ack,
NSEC_PER_SEC / plat->clk_rate_max) - 1;
if (req2ack > 256)
req2ack = 256;
}
req2ack = FIELD_PREP(CR_REQ2ACK_MASK, req2ack);
clrsetbits_le32(plat->regs_base + OCTOSPIM_CR, CR_REQ2ACK_MASK,
req2ack);
/*
* If the mux is enabled, the 2 OSPI clocks have to be
* always enabled
*/
ret = stm32_omm_toggle_child_clock(dev, true);
if (ret)
return ret;
}
if (plat->cssel_ovr != 0xff) {
cssel_ovr = FIELD_PREP(CR_CSSEL_OVR_MASK, cssel_ovr);
cssel_ovr |= CR_CSSEL_OVR_EN;
clrsetbits_le32(plat->regs_base + OCTOSPIM_CR, CR_CSSEL_OVR_MASK,
cssel_ovr);
}
mux = FIELD_PREP(CR_MUXENMODE_MASK, plat->mux);
clrsetbits_le32(plat->regs_base + OCTOSPIM_CR, CR_MUXENMODE_MASK, mux);
clk_disable(&plat->clk[0]);
return stm32_omm_set_amcr(dev, true);
}
static void stm32_omm_release_childs(ofnode *child_list, u8 nb_child)
{
u8 i;
for (i = 0; i < nb_child; i++)
stm32_rifsc_release_access(child_list[i]);
}
static int stm32_omm_probe(struct udevice *dev)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
ofnode child_list[OMM_CHILD_NB];
ofnode child;
int ret;
u8 child_access_granted = 0;
bool child_access[OMM_CHILD_NB];
/* check child's access */
for (child = ofnode_first_subnode(dev_ofnode(dev));
ofnode_valid(child);
child = ofnode_next_subnode(child)) {
if (plat->nb_child > OMM_CHILD_NB) {
dev_err(dev, "Bad DT, found too much children\n");
return -E2BIG;
}
if (!ofnode_device_is_compatible(child, "st,stm32mp25-ospi"))
return -EINVAL;
ret = stm32_rifsc_grant_access(child);
if (ret < 0 && ret != -EACCES)
return ret;
child_access[plat->nb_child] = false;
if (!ret) {
child_access_granted++;
child_access[plat->nb_child] = true;
}
child_list[plat->nb_child] = child;
plat->nb_child++;
}
if (plat->nb_child != OMM_CHILD_NB)
return -EINVAL;
/* check if OMM's resource access is granted */
ret = stm32_rifsc_grant_access(dev_ofnode(dev));
if (ret < 0 && ret != -EACCES)
goto end;
/* All child's access are granted ? */
if (!ret && child_access_granted == plat->nb_child) {
ret = stm32_omm_configure(dev);
if (ret)
goto end;
} else {
dev_dbg(dev, "Octo Memory Manager resource's access not granted\n");
/*
* AMCR can't be set, so check if current value is coherent
* with memory-map areas defined in DT
*/
ret = stm32_omm_set_amcr(dev, false);
}
end:
stm32_omm_release_childs(child_list, plat->nb_child);
stm32_rifsc_release_access(dev_ofnode(dev));
return ret;
}
static int stm32_omm_of_to_plat(struct udevice *dev)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
static const char * const clocks_name[] = {"omm", "ospi1", "ospi2"};
static const char * const mm_name[] = { "ospi1", "ospi2" };
static const char * const resets_name[] = {"omm", "ospi1", "ospi2"};
struct resource res, res1, mm_res;
struct ofnode_phandle_args args;
struct udevice *child;
unsigned long clk_rate;
struct clk child_clk;
int ret, idx;
u8 i;
plat->regs_base = dev_read_addr(dev);
if (plat->regs_base == FDT_ADDR_T_NONE)
return -EINVAL;
ret = dev_read_resource_byname(dev, "memory_map", &mm_res);
if (ret) {
dev_err(dev, "can't get omm_mm mmap resource(ret = %d)!\n", ret);
return ret;
}
for (i = 0; i < OMM_CLK_NB; i++) {
ret = clk_get_by_name(dev, clocks_name[i], &plat->clk[i]);
if (ret < 0) {
dev_err(dev, "Can't find I/O manager clock %s\n", clocks_name[i]);
return ret;
}
ret = reset_get_by_name(dev, resets_name[i], &plat->reset_ctl[i]);
if (ret < 0) {
dev_err(dev, "Can't find I/O manager reset %s\n", resets_name[i]);
return ret;
}
}
/* parse children's clock */
plat->clk_rate_max = 0;
device_foreach_child(child, dev) {
ret = clk_get_by_index(child, 0, &child_clk);
if (ret) {
dev_err(dev, "Failed to get clock for %s\n",
dev_read_name(child));
return ret;
}
clk_rate = clk_get_rate(&child_clk);
if (!clk_rate) {
dev_err(dev, "Invalid clock rate\n");
return -EINVAL;
}
if (clk_rate > plat->clk_rate_max)
plat->clk_rate_max = clk_rate;
}
plat->mux = dev_read_u32_default(dev, "st,omm-mux", 0);
plat->req2ack = dev_read_u32_default(dev, "st,omm-req2ack-ns", 0);
plat->cssel_ovr = dev_read_u32_default(dev, "st,omm-cssel-ovr", 0xff);
plat->mm_ospi2_size = 0;
for (i = 0; i < 2; i++) {
idx = dev_read_stringlist_search(dev, "memory-region-names",
mm_name[i]);
if (idx < 0)
continue;
/* res1 only used on second loop iteration */
res1.start = res.start;
res1.end = res.end;
dev_read_phandle_with_args(dev, "memory-region", NULL, 0, idx,
&args);
ret = ofnode_read_resource(args.node, 0, &res);
if (ret) {
dev_err(dev, "unable to resolve memory region\n");
return ret;
}
/* check that memory region fits inside OMM memory map area */
if (!resource_contains(&mm_res, &res)) {
dev_err(dev, "%s doesn't fit inside OMM memory map area\n",
mm_name[i]);
dev_err(dev, "[0x%llx-0x%llx] doesn't fit inside [0x%llx-0x%llx]\n",
res.start, res.end,
mm_res.start, mm_res.end);
return -EFAULT;
}
if (i == 1) {
plat->mm_ospi2_size = resource_size(&res);
/* check that OMM memory region 1 doesn't overlap memory region 2 */
if (resource_overlaps(&res, &res1)) {
dev_err(dev, "OMM memory-region %s overlaps memory region %s\n",
mm_name[0], mm_name[1]);
dev_err(dev, "[0x%llx-0x%llx] overlaps [0x%llx-0x%llx]\n",
res1.start, res1.end, res.start, res.end);
return -EFAULT;
}
}
}
plat->syscfg_regmap = syscon_regmap_lookup_by_phandle(dev, "st,syscfg-amcr");
if (IS_ERR(plat->syscfg_regmap)) {
dev_err(dev, "Failed to get st,syscfg-amcr property\n");
ret = PTR_ERR(plat->syscfg_regmap);
return ret;
}
ret = dev_read_u32_index(dev, "st,syscfg-amcr", 1, &plat->amcr_base);
if (ret) {
dev_err(dev, "Failed to get st,syscfg-amcr base\n");
return ret;
}
ret = dev_read_u32_index(dev, "st,syscfg-amcr", 2, &plat->amcr_mask);
if (ret) {
dev_err(dev, "Failed to get st,syscfg-amcr mask\n");
return ret;
}
return 0;
};
static int stm32_omm_bind(struct udevice *dev)
{
int ret = 0, err = 0;
ofnode node;
for (node = ofnode_first_subnode(dev_ofnode(dev));
ofnode_valid(node);
node = ofnode_next_subnode(node)) {
const char *node_name = ofnode_get_name(node);
if (!ofnode_is_enabled(node) || stm32_rifsc_grant_access(node)) {
dev_dbg(dev, "%s failed to bind\n", node_name);
continue;
}
err = lists_bind_fdt(dev, node, NULL, NULL,
gd->flags & GD_FLG_RELOC ? false : true);
if (err && !ret) {
ret = err;
dev_dbg(dev, "%s: ret=%d\n", node_name, ret);
}
}
if (ret)
dev_dbg(dev, "Some drivers failed to bind\n");
return ret;
}
static const struct udevice_id stm32_omm_ids[] = {
{ .compatible = "st,stm32mp25-omm", },
{},
};
U_BOOT_DRIVER(stm32_omm) = {
.name = "stm32_omm",
.id = UCLASS_NOP,
.probe = stm32_omm_probe,
.of_match = stm32_omm_ids,
.of_to_plat = stm32_omm_of_to_plat,
.plat_auto = sizeof(struct stm32_omm_plat),
.bind = stm32_omm_bind,
};