// SPDX-License-Identifier: GPL-2.0-or-later OR BSD-3-Clause /* * Copyright (C) 2022, STMicroelectronics - All Rights Reserved * Author: Gabriel Fernandez for STMicroelectronics. */ #define LOG_CATEGORY UCLASS_CLK #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "clk-stm32-core.h" #include "stm32mp13_rcc.h" DECLARE_GLOBAL_DATA_PTR; static const char * const adc12_src[] = { "pll4_r", "ck_per", "pll3_q" }; static const char * const dcmipp_src[] = { "ck_axi", "pll2_q", "pll4_p", "ck_per", }; static const char * const eth12_src[] = { "pll4_p", "pll3_q" }; static const char * const fdcan_src[] = { "ck_hse", "pll3_q", "pll4_q", "pll4_r" }; static const char * const fmc_src[] = { "ck_axi", "pll3_r", "pll4_p", "ck_per" }; static const char * const i2c12_src[] = { "pclk1", "pll4_r", "ck_hsi", "ck_csi" }; static const char * const i2c345_src[] = { "pclk6", "pll4_r", "ck_hsi", "ck_csi" }; static const char * const lptim1_src[] = { "pclk1", "pll4_p", "pll3_q", "ck_lse", "ck_lsi", "ck_per" }; static const char * const lptim23_src[] = { "pclk3", "pll4_q", "ck_per", "ck_lse", "ck_lsi" }; static const char * const lptim45_src[] = { "pclk3", "pll4_p", "pll3_q", "ck_lse", "ck_lsi", "ck_per" }; static const char * const mco1_src[] = { "ck_hsi", "ck_hse", "ck_csi", "ck_lsi", "ck_lse" }; static const char * const mco2_src[] = { "ck_mpu", "ck_axi", "ck_mlahb", "pll4_p", "ck_hse", "ck_hsi" }; static const char * const qspi_src[] = { "ck_axi", "pll3_r", "pll4_p", "ck_per" }; static const char * const rng1_src[] = { "ck_csi", "pll4_r", "reserved", "ck_lsi" }; static const char * const saes_src[] = { "ck_axi", "ck_per", "pll4_r", "ck_lsi" }; static const char * const sai1_src[] = { "pll4_q", "pll3_q", "i2s_ckin", "ck_per", "pll3_r" }; static const char * const sai2_src[] = { "pll4_q", "pll3_q", "i2s_ckin", "ck_per", "spdif_ck_symb", "pll3_r" }; static const char * const sdmmc12_src[] = { "ck_axi", "pll3_r", "pll4_p", "ck_hsi" }; static const char * const spdif_src[] = { "pll4_p", "pll3_q", "ck_hsi" }; static const char * const spi123_src[] = { "pll4_p", "pll3_q", "i2s_ckin", "ck_per", "pll3_r" }; static const char * const spi4_src[] = { "pclk6", "pll4_q", "ck_hsi", "ck_csi", "ck_hse", "i2s_ckin" }; static const char * const spi5_src[] = { "pclk6", "pll4_q", "ck_hsi", "ck_csi", "ck_hse" }; static const char * const stgen_src[] = { "ck_hsi", "ck_hse" }; static const char * const usart12_src[] = { "pclk6", "pll3_q", "ck_hsi", "ck_csi", "pll4_q", "ck_hse" }; static const char * const usart34578_src[] = { "pclk1", "pll4_q", "ck_hsi", "ck_csi", "ck_hse" }; static const char * const usart6_src[] = { "pclk2", "pll4_q", "ck_hsi", "ck_csi", "ck_hse" }; static const char * const usbo_src[] = { "pll4_r", "ck_usbo_48m" }; static const char * const usbphy_src[] = { "ck_hse", "pll4_r", "clk-hse-div2" }; #define MUX_CFG(id, src, _offset, _shift, _witdh) \ [id] = { \ .num_parents = ARRAY_SIZE(src), \ .parent_names = (src), \ .reg_off = (_offset), \ .shift = (_shift), \ .width = (_witdh), \ } static const struct stm32_mux_cfg stm32mp13_muxes[] = { MUX_CFG(MUX_I2C12, i2c12_src, RCC_I2C12CKSELR, 0, 3), MUX_CFG(MUX_LPTIM45, lptim45_src, RCC_LPTIM45CKSELR, 0, 3), MUX_CFG(MUX_SPI23, spi123_src, RCC_SPI2S23CKSELR, 0, 3), MUX_CFG(MUX_UART35, usart34578_src, RCC_UART35CKSELR, 0, 3), MUX_CFG(MUX_UART78, usart34578_src, RCC_UART78CKSELR, 0, 3), MUX_CFG(MUX_ADC1, adc12_src, RCC_ADC12CKSELR, 0, 2), MUX_CFG(MUX_ADC2, adc12_src, RCC_ADC12CKSELR, 2, 2), MUX_CFG(MUX_DCMIPP, dcmipp_src, RCC_DCMIPPCKSELR, 0, 2), MUX_CFG(MUX_ETH1, eth12_src, RCC_ETH12CKSELR, 0, 2), MUX_CFG(MUX_ETH2, eth12_src, RCC_ETH12CKSELR, 8, 2), MUX_CFG(MUX_FDCAN, fdcan_src, RCC_FDCANCKSELR, 0, 2), MUX_CFG(MUX_FMC, fmc_src, RCC_FMCCKSELR, 0, 2), MUX_CFG(MUX_I2C3, i2c345_src, RCC_I2C345CKSELR, 0, 3), MUX_CFG(MUX_I2C4, i2c345_src, RCC_I2C345CKSELR, 3, 3), MUX_CFG(MUX_I2C5, i2c345_src, RCC_I2C345CKSELR, 6, 3), MUX_CFG(MUX_LPTIM1, lptim1_src, RCC_LPTIM1CKSELR, 0, 3), MUX_CFG(MUX_LPTIM2, lptim23_src, RCC_LPTIM23CKSELR, 0, 3), MUX_CFG(MUX_LPTIM3, lptim23_src, RCC_LPTIM23CKSELR, 3, 3), MUX_CFG(MUX_MCO1, mco1_src, RCC_MCO1CFGR, 0, 3), MUX_CFG(MUX_MCO2, mco2_src, RCC_MCO2CFGR, 0, 3), MUX_CFG(MUX_QSPI, qspi_src, RCC_QSPICKSELR, 0, 2), MUX_CFG(MUX_RNG1, rng1_src, RCC_RNG1CKSELR, 0, 2), MUX_CFG(MUX_SAES, saes_src, RCC_SAESCKSELR, 0, 2), MUX_CFG(MUX_SAI1, sai1_src, RCC_SAI1CKSELR, 0, 3), MUX_CFG(MUX_SAI2, sai2_src, RCC_SAI2CKSELR, 0, 3), MUX_CFG(MUX_SDMMC1, sdmmc12_src, RCC_SDMMC12CKSELR, 0, 3), MUX_CFG(MUX_SDMMC2, sdmmc12_src, RCC_SDMMC12CKSELR, 3, 3), MUX_CFG(MUX_SPDIF, spdif_src, RCC_SPDIFCKSELR, 0, 2), MUX_CFG(MUX_SPI1, spi123_src, RCC_SPI2S1CKSELR, 0, 3), MUX_CFG(MUX_SPI4, spi4_src, RCC_SPI45CKSELR, 0, 3), MUX_CFG(MUX_SPI5, spi5_src, RCC_SPI45CKSELR, 3, 3), MUX_CFG(MUX_STGEN, stgen_src, RCC_STGENCKSELR, 0, 2), MUX_CFG(MUX_UART1, usart12_src, RCC_UART12CKSELR, 0, 3), MUX_CFG(MUX_UART2, usart12_src, RCC_UART12CKSELR, 3, 3), MUX_CFG(MUX_UART4, usart34578_src, RCC_UART4CKSELR, 0, 3), MUX_CFG(MUX_UART6, usart6_src, RCC_UART6CKSELR, 0, 3), MUX_CFG(MUX_USBO, usbo_src, RCC_USBCKSELR, 4, 1), MUX_CFG(MUX_USBPHY, usbphy_src, RCC_USBCKSELR, 0, 2), }; enum enum_gate_cfg { GATE_ZERO, /* reserved for no gate */ GATE_MCO1, GATE_MCO2, GATE_DBGCK, GATE_TRACECK, GATE_DDRC1, GATE_DDRC1LP, GATE_DDRPHYC, GATE_DDRPHYCLP, GATE_DDRCAPB, GATE_DDRCAPBLP, GATE_AXIDCG, GATE_DDRPHYCAPB, GATE_DDRPHYCAPBLP, GATE_TIM2, GATE_TIM3, GATE_TIM4, GATE_TIM5, GATE_TIM6, GATE_TIM7, GATE_LPTIM1, GATE_SPI2, GATE_SPI3, GATE_USART3, GATE_UART4, GATE_UART5, GATE_UART7, GATE_UART8, GATE_I2C1, GATE_I2C2, GATE_SPDIF, GATE_TIM1, GATE_TIM8, GATE_SPI1, GATE_USART6, GATE_SAI1, GATE_SAI2, GATE_DFSDM, GATE_ADFSDM, GATE_FDCAN, GATE_LPTIM2, GATE_LPTIM3, GATE_LPTIM4, GATE_LPTIM5, GATE_VREF, GATE_DTS, GATE_PMBCTRL, GATE_HDP, GATE_SYSCFG, GATE_DCMIPP, GATE_DDRPERFM, GATE_IWDG2APB, GATE_USBPHY, GATE_STGENRO, GATE_LTDC, GATE_TZC, GATE_ETZPC, GATE_IWDG1APB, GATE_BSEC, GATE_STGENC, GATE_USART1, GATE_USART2, GATE_SPI4, GATE_SPI5, GATE_I2C3, GATE_I2C4, GATE_I2C5, GATE_TIM12, GATE_TIM13, GATE_TIM14, GATE_TIM15, GATE_TIM16, GATE_TIM17, GATE_DMA1, GATE_DMA2, GATE_DMAMUX1, GATE_DMA3, GATE_DMAMUX2, GATE_ADC1, GATE_ADC2, GATE_USBO, GATE_TSC, GATE_GPIOA, GATE_GPIOB, GATE_GPIOC, GATE_GPIOD, GATE_GPIOE, GATE_GPIOF, GATE_GPIOG, GATE_GPIOH, GATE_GPIOI, GATE_PKA, GATE_SAES, GATE_CRYP1, GATE_HASH1, GATE_RNG1, GATE_BKPSRAM, GATE_AXIMC, GATE_MCE, GATE_ETH1CK, GATE_ETH1TX, GATE_ETH1RX, GATE_ETH1MAC, GATE_FMC, GATE_QSPI, GATE_SDMMC1, GATE_SDMMC2, GATE_CRC1, GATE_USBH, GATE_ETH2CK, GATE_ETH2TX, GATE_ETH2RX, GATE_ETH2MAC, GATE_ETH1STP, GATE_ETH2STP, GATE_MDMA }; #define GATE_CFG(id, _offset, _bit_idx, _offset_clr) \ [id] = { \ .reg_off = (_offset), \ .bit_idx = (_bit_idx), \ .set_clr = (_offset_clr), \ } static const struct stm32_gate_cfg stm32mp13_gates[] = { GATE_CFG(GATE_MCO1, RCC_MCO1CFGR, 12, 0), GATE_CFG(GATE_MCO2, RCC_MCO2CFGR, 12, 0), GATE_CFG(GATE_DBGCK, RCC_DBGCFGR, 8, 0), GATE_CFG(GATE_TRACECK, RCC_DBGCFGR, 9, 0), GATE_CFG(GATE_DDRC1, RCC_DDRITFCR, 0, 0), GATE_CFG(GATE_DDRC1LP, RCC_DDRITFCR, 1, 0), GATE_CFG(GATE_DDRPHYC, RCC_DDRITFCR, 4, 0), GATE_CFG(GATE_DDRPHYCLP, RCC_DDRITFCR, 5, 0), GATE_CFG(GATE_DDRCAPB, RCC_DDRITFCR, 6, 0), GATE_CFG(GATE_DDRCAPBLP, RCC_DDRITFCR, 7, 0), GATE_CFG(GATE_AXIDCG, RCC_DDRITFCR, 8, 0), GATE_CFG(GATE_DDRPHYCAPB, RCC_DDRITFCR, 9, 0), GATE_CFG(GATE_DDRPHYCAPBLP, RCC_DDRITFCR, 10, 0), GATE_CFG(GATE_TIM2, RCC_MP_APB1ENSETR, 0, 1), GATE_CFG(GATE_TIM3, RCC_MP_APB1ENSETR, 1, 1), GATE_CFG(GATE_TIM4, RCC_MP_APB1ENSETR, 2, 1), GATE_CFG(GATE_TIM5, RCC_MP_APB1ENSETR, 3, 1), GATE_CFG(GATE_TIM6, RCC_MP_APB1ENSETR, 4, 1), GATE_CFG(GATE_TIM7, RCC_MP_APB1ENSETR, 5, 1), GATE_CFG(GATE_LPTIM1, RCC_MP_APB1ENSETR, 9, 1), GATE_CFG(GATE_SPI2, RCC_MP_APB1ENSETR, 11, 1), GATE_CFG(GATE_SPI3, RCC_MP_APB1ENSETR, 12, 1), GATE_CFG(GATE_USART3, RCC_MP_APB1ENSETR, 15, 1), GATE_CFG(GATE_UART4, RCC_MP_APB1ENSETR, 16, 1), GATE_CFG(GATE_UART5, RCC_MP_APB1ENSETR, 17, 1), GATE_CFG(GATE_UART7, RCC_MP_APB1ENSETR, 18, 1), GATE_CFG(GATE_UART8, RCC_MP_APB1ENSETR, 19, 1), GATE_CFG(GATE_I2C1, RCC_MP_APB1ENSETR, 21, 1), GATE_CFG(GATE_I2C2, RCC_MP_APB1ENSETR, 22, 1), GATE_CFG(GATE_SPDIF, RCC_MP_APB1ENSETR, 26, 1), GATE_CFG(GATE_TIM1, RCC_MP_APB2ENSETR, 0, 1), GATE_CFG(GATE_TIM8, RCC_MP_APB2ENSETR, 1, 1), GATE_CFG(GATE_SPI1, RCC_MP_APB2ENSETR, 8, 1), GATE_CFG(GATE_USART6, RCC_MP_APB2ENSETR, 13, 1), GATE_CFG(GATE_SAI1, RCC_MP_APB2ENSETR, 16, 1), GATE_CFG(GATE_SAI2, RCC_MP_APB2ENSETR, 17, 1), GATE_CFG(GATE_DFSDM, RCC_MP_APB2ENSETR, 20, 1), GATE_CFG(GATE_ADFSDM, RCC_MP_APB2ENSETR, 21, 1), GATE_CFG(GATE_FDCAN, RCC_MP_APB2ENSETR, 24, 1), GATE_CFG(GATE_LPTIM2, RCC_MP_APB3ENSETR, 0, 1), GATE_CFG(GATE_LPTIM3, RCC_MP_APB3ENSETR, 1, 1), GATE_CFG(GATE_LPTIM4, RCC_MP_APB3ENSETR, 2, 1), GATE_CFG(GATE_LPTIM5, RCC_MP_APB3ENSETR, 3, 1), GATE_CFG(GATE_VREF, RCC_MP_APB3ENSETR, 13, 1), GATE_CFG(GATE_DTS, RCC_MP_APB3ENSETR, 16, 1), GATE_CFG(GATE_PMBCTRL, RCC_MP_APB3ENSETR, 17, 1), GATE_CFG(GATE_HDP, RCC_MP_APB3ENSETR, 20, 1), GATE_CFG(GATE_SYSCFG, RCC_MP_NS_APB3ENSETR, 0, 1), GATE_CFG(GATE_DCMIPP, RCC_MP_APB4ENSETR, 1, 1), GATE_CFG(GATE_DDRPERFM, RCC_MP_APB4ENSETR, 8, 1), GATE_CFG(GATE_IWDG2APB, RCC_MP_APB4ENSETR, 15, 1), GATE_CFG(GATE_USBPHY, RCC_MP_APB4ENSETR, 16, 1), GATE_CFG(GATE_STGENRO, RCC_MP_APB4ENSETR, 20, 1), GATE_CFG(GATE_LTDC, RCC_MP_NS_APB4ENSETR, 0, 1), GATE_CFG(GATE_TZC, RCC_MP_APB5ENSETR, 11, 1), GATE_CFG(GATE_ETZPC, RCC_MP_APB5ENSETR, 13, 1), GATE_CFG(GATE_IWDG1APB, RCC_MP_APB5ENSETR, 15, 1), GATE_CFG(GATE_BSEC, RCC_MP_APB5ENSETR, 16, 1), GATE_CFG(GATE_STGENC, RCC_MP_APB5ENSETR, 20, 1), GATE_CFG(GATE_USART1, RCC_MP_APB6ENSETR, 0, 1), GATE_CFG(GATE_USART2, RCC_MP_APB6ENSETR, 1, 1), GATE_CFG(GATE_SPI4, RCC_MP_APB6ENSETR, 2, 1), GATE_CFG(GATE_SPI5, RCC_MP_APB6ENSETR, 3, 1), GATE_CFG(GATE_I2C3, RCC_MP_APB6ENSETR, 4, 1), GATE_CFG(GATE_I2C4, RCC_MP_APB6ENSETR, 5, 1), GATE_CFG(GATE_I2C5, RCC_MP_APB6ENSETR, 6, 1), GATE_CFG(GATE_TIM12, RCC_MP_APB6ENSETR, 7, 1), GATE_CFG(GATE_TIM13, RCC_MP_APB6ENSETR, 8, 1), GATE_CFG(GATE_TIM14, RCC_MP_APB6ENSETR, 9, 1), GATE_CFG(GATE_TIM15, RCC_MP_APB6ENSETR, 10, 1), GATE_CFG(GATE_TIM16, RCC_MP_APB6ENSETR, 11, 1), GATE_CFG(GATE_TIM17, RCC_MP_APB6ENSETR, 12, 1), GATE_CFG(GATE_DMA1, RCC_MP_AHB2ENSETR, 0, 1), GATE_CFG(GATE_DMA2, RCC_MP_AHB2ENSETR, 1, 1), GATE_CFG(GATE_DMAMUX1, RCC_MP_AHB2ENSETR, 2, 1), GATE_CFG(GATE_DMA3, RCC_MP_AHB2ENSETR, 3, 1), GATE_CFG(GATE_DMAMUX2, RCC_MP_AHB2ENSETR, 4, 1), GATE_CFG(GATE_ADC1, RCC_MP_AHB2ENSETR, 5, 1), GATE_CFG(GATE_ADC2, RCC_MP_AHB2ENSETR, 6, 1), GATE_CFG(GATE_USBO, RCC_MP_AHB2ENSETR, 8, 1), GATE_CFG(GATE_TSC, RCC_MP_AHB4ENSETR, 15, 1), GATE_CFG(GATE_GPIOA, RCC_MP_NS_AHB4ENSETR, 0, 1), GATE_CFG(GATE_GPIOB, RCC_MP_NS_AHB4ENSETR, 1, 1), GATE_CFG(GATE_GPIOC, RCC_MP_NS_AHB4ENSETR, 2, 1), GATE_CFG(GATE_GPIOD, RCC_MP_NS_AHB4ENSETR, 3, 1), GATE_CFG(GATE_GPIOE, RCC_MP_NS_AHB4ENSETR, 4, 1), GATE_CFG(GATE_GPIOF, RCC_MP_NS_AHB4ENSETR, 5, 1), GATE_CFG(GATE_GPIOG, RCC_MP_NS_AHB4ENSETR, 6, 1), GATE_CFG(GATE_GPIOH, RCC_MP_NS_AHB4ENSETR, 7, 1), GATE_CFG(GATE_GPIOI, RCC_MP_NS_AHB4ENSETR, 8, 1), GATE_CFG(GATE_PKA, RCC_MP_AHB5ENSETR, 2, 1), GATE_CFG(GATE_SAES, RCC_MP_AHB5ENSETR, 3, 1), GATE_CFG(GATE_CRYP1, RCC_MP_AHB5ENSETR, 4, 1), GATE_CFG(GATE_HASH1, RCC_MP_AHB5ENSETR, 5, 1), GATE_CFG(GATE_RNG1, RCC_MP_AHB5ENSETR, 6, 1), GATE_CFG(GATE_BKPSRAM, RCC_MP_AHB5ENSETR, 8, 1), GATE_CFG(GATE_AXIMC, RCC_MP_AHB5ENSETR, 16, 1), GATE_CFG(GATE_MCE, RCC_MP_AHB6ENSETR, 1, 1), GATE_CFG(GATE_ETH1CK, RCC_MP_AHB6ENSETR, 7, 1), GATE_CFG(GATE_ETH1TX, RCC_MP_AHB6ENSETR, 8, 1), GATE_CFG(GATE_ETH1RX, RCC_MP_AHB6ENSETR, 9, 1), GATE_CFG(GATE_ETH1MAC, RCC_MP_AHB6ENSETR, 10, 1), GATE_CFG(GATE_FMC, RCC_MP_AHB6ENSETR, 12, 1), GATE_CFG(GATE_QSPI, RCC_MP_AHB6ENSETR, 14, 1), GATE_CFG(GATE_SDMMC1, RCC_MP_AHB6ENSETR, 16, 1), GATE_CFG(GATE_SDMMC2, RCC_MP_AHB6ENSETR, 17, 1), GATE_CFG(GATE_CRC1, RCC_MP_AHB6ENSETR, 20, 1), GATE_CFG(GATE_USBH, RCC_MP_AHB6ENSETR, 24, 1), GATE_CFG(GATE_ETH2CK, RCC_MP_AHB6ENSETR, 27, 1), GATE_CFG(GATE_ETH2TX, RCC_MP_AHB6ENSETR, 28, 1), GATE_CFG(GATE_ETH2RX, RCC_MP_AHB6ENSETR, 29, 1), GATE_CFG(GATE_ETH2MAC, RCC_MP_AHB6ENSETR, 30, 1), GATE_CFG(GATE_ETH1STP, RCC_MP_AHB6LPENSETR, 11, 1), GATE_CFG(GATE_ETH2STP, RCC_MP_AHB6LPENSETR, 31, 1), GATE_CFG(GATE_MDMA, RCC_MP_NS_AHB6ENSETR, 0, 1), }; static const struct clk_div_table ck_trace_div_table[] = { { 0, 1 }, { 1, 2 }, { 2, 4 }, { 3, 8 }, { 4, 16 }, { 5, 16 }, { 6, 16 }, { 7, 16 }, { 0 }, }; #define DIV_CFG(id, _offset, _shift, _width, _flags, _table) \ [id] = { \ .reg_off = _offset, \ .shift = _shift, \ .width = _width, \ .div_flags = _flags, \ .table = _table, \ } static const struct stm32_div_cfg stm32mp13_dividers[] = { DIV_CFG(DIV_MCO1, RCC_MCO1CFGR, 4, 4, 0, NULL), DIV_CFG(DIV_MCO2, RCC_MCO2CFGR, 4, 4, 0, NULL), DIV_CFG(DIV_TRACE, RCC_DBGCFGR, 0, 3, 0, ck_trace_div_table), DIV_CFG(DIV_ETH1PTP, RCC_ETH12CKSELR, 4, 4, 0, NULL), DIV_CFG(DIV_ETH2PTP, RCC_ETH12CKSELR, 12, 4, 0, NULL), }; struct clk_stm32_security { u16 offset; u8 bit_idx; }; enum securit_clk { SECF_NONE, SECF_LPTIM2, SECF_LPTIM3, SECF_VREF, SECF_DCMIPP, SECF_USBPHY, SECF_RTC, SECF_TZC, SECF_ETZPC, SECF_IWDG1, SECF_BSEC, SECF_STGENC, SECF_STGENRO, SECF_USART1, SECF_USART2, SECF_SPI4, SECF_SPI5, SECF_I2C3, SECF_I2C4, SECF_I2C5, SECF_TIM12, SECF_TIM13, SECF_TIM14, SECF_TIM15, SECF_TIM16, SECF_TIM17, SECF_DMA3, SECF_DMAMUX2, SECF_ADC1, SECF_ADC2, SECF_USBO, SECF_TSC, SECF_PKA, SECF_SAES, SECF_CRYP1, SECF_HASH1, SECF_RNG1, SECF_BKPSRAM, SECF_MCE, SECF_FMC, SECF_QSPI, SECF_SDMMC1, SECF_SDMMC2, SECF_ETH1CK, SECF_ETH1TX, SECF_ETH1RX, SECF_ETH1MAC, SECF_ETH1STP, SECF_ETH2CK, SECF_ETH2TX, SECF_ETH2RX, SECF_ETH2MAC, SECF_ETH2STP, SECF_MCO1, SECF_MCO2 }; #define SECF(_sec_id, _offset, _bit_idx) \ [_sec_id] = { \ .offset = _offset, \ .bit_idx = _bit_idx, \ } #ifdef CONFIG_TFABOOT static const struct clk_stm32_security stm32mp13_security[] = { SECF(SECF_LPTIM2, RCC_APB3SECSR, RCC_APB3SECSR_LPTIM2SECF), SECF(SECF_LPTIM3, RCC_APB3SECSR, RCC_APB3SECSR_LPTIM3SECF), SECF(SECF_VREF, RCC_APB3SECSR, RCC_APB3SECSR_VREFSECF), SECF(SECF_DCMIPP, RCC_APB4SECSR, RCC_APB4SECSR_DCMIPPSECF), SECF(SECF_USBPHY, RCC_APB4SECSR, RCC_APB4SECSR_USBPHYSECF), SECF(SECF_RTC, RCC_APB5SECSR, RCC_APB5SECSR_RTCSECF), SECF(SECF_TZC, RCC_APB5SECSR, RCC_APB5SECSR_TZCSECF), SECF(SECF_ETZPC, RCC_APB5SECSR, RCC_APB5SECSR_ETZPCSECF), SECF(SECF_IWDG1, RCC_APB5SECSR, RCC_APB5SECSR_IWDG1SECF), SECF(SECF_BSEC, RCC_APB5SECSR, RCC_APB5SECSR_BSECSECF), SECF(SECF_STGENC, RCC_APB5SECSR, RCC_APB5SECSR_STGENCSECF), SECF(SECF_STGENRO, RCC_APB5SECSR, RCC_APB5SECSR_STGENROSECF), SECF(SECF_USART1, RCC_APB6SECSR, RCC_APB6SECSR_USART1SECF), SECF(SECF_USART2, RCC_APB6SECSR, RCC_APB6SECSR_USART2SECF), SECF(SECF_SPI4, RCC_APB6SECSR, RCC_APB6SECSR_SPI4SECF), SECF(SECF_SPI5, RCC_APB6SECSR, RCC_APB6SECSR_SPI5SECF), SECF(SECF_I2C3, RCC_APB6SECSR, RCC_APB6SECSR_I2C3SECF), SECF(SECF_I2C4, RCC_APB6SECSR, RCC_APB6SECSR_I2C4SECF), SECF(SECF_I2C5, RCC_APB6SECSR, RCC_APB6SECSR_I2C5SECF), SECF(SECF_TIM12, RCC_APB6SECSR, RCC_APB6SECSR_TIM12SECF), SECF(SECF_TIM13, RCC_APB6SECSR, RCC_APB6SECSR_TIM13SECF), SECF(SECF_TIM14, RCC_APB6SECSR, RCC_APB6SECSR_TIM14SECF), SECF(SECF_TIM15, RCC_APB6SECSR, RCC_APB6SECSR_TIM15SECF), SECF(SECF_TIM16, RCC_APB6SECSR, RCC_APB6SECSR_TIM16SECF), SECF(SECF_TIM17, RCC_APB6SECSR, RCC_APB6SECSR_TIM17SECF), SECF(SECF_DMA3, RCC_AHB2SECSR, RCC_AHB2SECSR_DMA3SECF), SECF(SECF_DMAMUX2, RCC_AHB2SECSR, RCC_AHB2SECSR_DMAMUX2SECF), SECF(SECF_ADC1, RCC_AHB2SECSR, RCC_AHB2SECSR_ADC1SECF), SECF(SECF_ADC2, RCC_AHB2SECSR, RCC_AHB2SECSR_ADC2SECF), SECF(SECF_USBO, RCC_AHB2SECSR, RCC_AHB2SECSR_USBOSECF), SECF(SECF_TSC, RCC_AHB4SECSR, RCC_AHB4SECSR_TSCSECF), SECF(SECF_PKA, RCC_AHB5SECSR, RCC_AHB5SECSR_PKASECF), SECF(SECF_SAES, RCC_AHB5SECSR, RCC_AHB5SECSR_SAESSECF), SECF(SECF_CRYP1, RCC_AHB5SECSR, RCC_AHB5SECSR_CRYP1SECF), SECF(SECF_HASH1, RCC_AHB5SECSR, RCC_AHB5SECSR_HASH1SECF), SECF(SECF_RNG1, RCC_AHB5SECSR, RCC_AHB5SECSR_RNG1SECF), SECF(SECF_BKPSRAM, RCC_AHB5SECSR, RCC_AHB5SECSR_BKPSRAMSECF), SECF(SECF_MCE, RCC_AHB6SECSR, RCC_AHB6SECSR_MCESECF), SECF(SECF_FMC, RCC_AHB6SECSR, RCC_AHB6SECSR_FMCSECF), SECF(SECF_QSPI, RCC_AHB6SECSR, RCC_AHB6SECSR_QSPISECF), SECF(SECF_SDMMC1, RCC_AHB6SECSR, RCC_AHB6SECSR_SDMMC1SECF), SECF(SECF_SDMMC2, RCC_AHB6SECSR, RCC_AHB6SECSR_SDMMC2SECF), SECF(SECF_ETH1CK, RCC_AHB6SECSR, RCC_AHB6SECSR_ETH1CKSECF), SECF(SECF_ETH1TX, RCC_AHB6SECSR, RCC_AHB6SECSR_ETH1TXSECF), SECF(SECF_ETH1RX, RCC_AHB6SECSR, RCC_AHB6SECSR_ETH1RXSECF), SECF(SECF_ETH1MAC, RCC_AHB6SECSR, RCC_AHB6SECSR_ETH1MACSECF), SECF(SECF_ETH1STP, RCC_AHB6SECSR, RCC_AHB6SECSR_ETH1STPSECF), SECF(SECF_ETH2CK, RCC_AHB6SECSR, RCC_AHB6SECSR_ETH2CKSECF), SECF(SECF_ETH2TX, RCC_AHB6SECSR, RCC_AHB6SECSR_ETH2TXSECF), SECF(SECF_ETH2RX, RCC_AHB6SECSR, RCC_AHB6SECSR_ETH2RXSECF), SECF(SECF_ETH2MAC, RCC_AHB6SECSR, RCC_AHB6SECSR_ETH2MACSECF), SECF(SECF_ETH2STP, RCC_AHB6SECSR, RCC_AHB6SECSR_ETH2STPSECF), SECF(SECF_MCO1, RCC_SECCFGR, RCC_SECCFGR_MCO1SECF), SECF(SECF_MCO2, RCC_SECCFGR, RCC_SECCFGR_MCO2SECF), }; #endif #define PCLK(_id, _name, _parent, _flags, _gate_id, _sec_id) \ STM32_GATE(_id, _name, _parent, _flags, _gate_id, _sec_id) #define TIMER(_id, _name, _parent, _flags, _gate_id, _sec_id) \ STM32_GATE(_id, _name, _parent, ((_flags) | CLK_SET_RATE_PARENT), \ _gate_id, _sec_id) #define KCLK(_id, _name, _flags, _gate_id, _mux_id, _sec_id) \ STM32_COMPOSITE(_id, _name, _flags, _sec_id, \ _gate_id, _mux_id, NO_STM32_DIV) static const struct clock_config stm32mp13_clock_cfg[] = { #ifndef CONFIG_XPL_BUILD TIMER(TIM2_K, "tim2_k", "timg1_ck", 0, GATE_TIM2, SECF_NONE), TIMER(TIM3_K, "tim3_k", "timg1_ck", 0, GATE_TIM3, SECF_NONE), TIMER(TIM4_K, "tim4_k", "timg1_ck", 0, GATE_TIM4, SECF_NONE), TIMER(TIM5_K, "tim5_k", "timg1_ck", 0, GATE_TIM5, SECF_NONE), TIMER(TIM6_K, "tim6_k", "timg1_ck", 0, GATE_TIM6, SECF_NONE), TIMER(TIM7_K, "tim7_k", "timg1_ck", 0, GATE_TIM7, SECF_NONE), TIMER(TIM1_K, "tim1_k", "timg2_ck", 0, GATE_TIM1, SECF_NONE), TIMER(TIM8_K, "tim8_k", "timg2_ck", 0, GATE_TIM8, SECF_NONE), TIMER(TIM12_K, "tim12_k", "timg3_ck", 0, GATE_TIM12, SECF_TIM12), TIMER(TIM13_K, "tim13_k", "timg3_ck", 0, GATE_TIM13, SECF_TIM13), TIMER(TIM14_K, "tim14_k", "timg3_ck", 0, GATE_TIM14, SECF_TIM14), TIMER(TIM15_K, "tim15_k", "timg3_ck", 0, GATE_TIM15, SECF_TIM15), TIMER(TIM16_K, "tim16_k", "timg3_ck", 0, GATE_TIM16, SECF_TIM16), TIMER(TIM17_K, "tim17_k", "timg3_ck", 0, GATE_TIM17, SECF_TIM17), #endif /* Peripheral clocks */ PCLK(SYSCFG, "syscfg", "pclk3", 0, GATE_SYSCFG, SECF_NONE), PCLK(VREF, "vref", "pclk3", 0, GATE_VREF, SECF_VREF), #ifndef CONFIG_XPL_BUILD PCLK(PMBCTRL, "pmbctrl", "pclk3", 0, GATE_PMBCTRL, SECF_NONE), PCLK(HDP, "hdp", "pclk3", 0, GATE_HDP, SECF_NONE), #endif PCLK(IWDG2, "iwdg2", "pclk4", 0, GATE_IWDG2APB, SECF_NONE), PCLK(STGENRO, "stgenro", "pclk4", 0, GATE_STGENRO, SECF_STGENRO), PCLK(TZPC, "tzpc", "pclk5", 0, GATE_TZC, SECF_TZC), PCLK(IWDG1, "iwdg1", "pclk5", 0, GATE_IWDG1APB, SECF_IWDG1), PCLK(BSEC, "bsec", "pclk5", 0, GATE_BSEC, SECF_BSEC), #ifndef CONFIG_XPL_BUILD PCLK(DMA1, "dma1", "ck_mlahb", 0, GATE_DMA1, SECF_NONE), PCLK(DMA2, "dma2", "ck_mlahb", 0, GATE_DMA2, SECF_NONE), PCLK(DMAMUX1, "dmamux1", "ck_mlahb", 0, GATE_DMAMUX1, SECF_NONE), PCLK(DMAMUX2, "dmamux2", "ck_mlahb", 0, GATE_DMAMUX2, SECF_DMAMUX2), PCLK(ADC1, "adc1", "ck_mlahb", 0, GATE_ADC1, SECF_ADC1), PCLK(ADC2, "adc2", "ck_mlahb", 0, GATE_ADC2, SECF_ADC2), #endif PCLK(GPIOA, "gpioa", "pclk4", 0, GATE_GPIOA, SECF_NONE), PCLK(GPIOB, "gpiob", "pclk4", 0, GATE_GPIOB, SECF_NONE), PCLK(GPIOC, "gpioc", "pclk4", 0, GATE_GPIOC, SECF_NONE), PCLK(GPIOD, "gpiod", "pclk4", 0, GATE_GPIOD, SECF_NONE), PCLK(GPIOE, "gpioe", "pclk4", 0, GATE_GPIOE, SECF_NONE), PCLK(GPIOF, "gpiof", "pclk4", 0, GATE_GPIOF, SECF_NONE), PCLK(GPIOG, "gpiog", "pclk4", 0, GATE_GPIOG, SECF_NONE), PCLK(GPIOH, "gpioh", "pclk4", 0, GATE_GPIOH, SECF_NONE), PCLK(GPIOI, "gpioi", "pclk4", 0, GATE_GPIOI, SECF_NONE), PCLK(TSC, "tsc", "pclk4", 0, GATE_TSC, SECF_TZC), PCLK(PKA, "pka", "ck_axi", 0, GATE_PKA, SECF_PKA), PCLK(CRYP1, "cryp1", "ck_axi", 0, GATE_CRYP1, SECF_CRYP1), PCLK(HASH1, "hash1", "ck_axi", 0, GATE_HASH1, SECF_HASH1), PCLK(BKPSRAM, "bkpsram", "ck_axi", 0, GATE_BKPSRAM, SECF_BKPSRAM), PCLK(MDMA, "mdma", "ck_axi", 0, GATE_MDMA, SECF_NONE), #ifndef CONFIG_XPL_BUILD PCLK(ETH1TX, "eth1tx", "ck_axi", 0, GATE_ETH1TX, SECF_ETH1TX), PCLK(ETH1RX, "eth1rx", "ck_axi", 0, GATE_ETH1RX, SECF_ETH1RX), PCLK(ETH1MAC, "eth1mac", "ck_axi", 0, GATE_ETH1MAC, SECF_ETH1MAC), PCLK(ETH2TX, "eth2tx", "ck_axi", 0, GATE_ETH2TX, SECF_ETH2TX), PCLK(ETH2RX, "eth2rx", "ck_axi", 0, GATE_ETH2RX, SECF_ETH2RX), PCLK(ETH2MAC, "eth2mac", "ck_axi", 0, GATE_ETH2MAC, SECF_ETH2MAC), #endif PCLK(CRC1, "crc1", "ck_axi", 0, GATE_CRC1, SECF_NONE), #ifndef CONFIG_XPL_BUILD PCLK(USBH, "usbh", "ck_axi", 0, GATE_USBH, SECF_NONE), #endif PCLK(DDRPERFM, "ddrperfm", "pclk4", 0, GATE_DDRPERFM, SECF_NONE), #ifndef CONFIG_XPL_BUILD PCLK(ETH1STP, "eth1stp", "ck_axi", 0, GATE_ETH1STP, SECF_ETH1STP), PCLK(ETH2STP, "eth2stp", "ck_axi", 0, GATE_ETH2STP, SECF_ETH2STP), #endif /* Kernel clocks */ KCLK(SDMMC1_K, "sdmmc1_k", 0, GATE_SDMMC1, MUX_SDMMC1, SECF_SDMMC1), KCLK(SDMMC2_K, "sdmmc2_k", 0, GATE_SDMMC2, MUX_SDMMC2, SECF_SDMMC2), KCLK(FMC_K, "fmc_k", 0, GATE_FMC, MUX_FMC, SECF_FMC), KCLK(QSPI_K, "qspi_k", 0, GATE_QSPI, MUX_QSPI, SECF_QSPI), KCLK(SPI2_K, "spi2_k", 0, GATE_SPI2, MUX_SPI23, SECF_NONE), KCLK(SPI3_K, "spi3_k", 0, GATE_SPI3, MUX_SPI23, SECF_NONE), KCLK(I2C1_K, "i2c1_k", 0, GATE_I2C1, MUX_I2C12, SECF_NONE), KCLK(I2C2_K, "i2c2_k", 0, GATE_I2C2, MUX_I2C12, SECF_NONE), #ifndef CONFIG_XPL_BUILD KCLK(LPTIM4_K, "lptim4_k", 0, GATE_LPTIM4, MUX_LPTIM45, SECF_NONE), KCLK(LPTIM5_K, "lptim5_k", 0, GATE_LPTIM5, MUX_LPTIM45, SECF_NONE), #endif KCLK(USART3_K, "usart3_k", 0, GATE_USART3, MUX_UART35, SECF_NONE), KCLK(UART5_K, "uart5_k", 0, GATE_UART5, MUX_UART35, SECF_NONE), KCLK(UART7_K, "uart7_k", 0, GATE_UART7, MUX_UART78, SECF_NONE), KCLK(UART8_K, "uart8_k", 0, GATE_UART8, MUX_UART78, SECF_NONE), KCLK(RNG1_K, "rng1_k", 0, GATE_RNG1, MUX_RNG1, SECF_RNG1), KCLK(USBPHY_K, "usbphy_k", 0, GATE_USBPHY, MUX_USBPHY, SECF_USBPHY), KCLK(STGEN_K, "stgen_k", 0, GATE_STGENC, MUX_STGEN, SECF_STGENC), #ifndef CONFIG_XPL_BUILD KCLK(SPDIF_K, "spdif_k", 0, GATE_SPDIF, MUX_SPDIF, SECF_NONE), #endif KCLK(SPI1_K, "spi1_k", 0, GATE_SPI1, MUX_SPI1, SECF_NONE), KCLK(SPI4_K, "spi4_k", 0, GATE_SPI4, MUX_SPI4, SECF_SPI4), KCLK(SPI5_K, "spi5_k", 0, GATE_SPI5, MUX_SPI5, SECF_SPI5), #ifdef CONFIG_TFABOOT KCLK(I2C3_K, "i2c3_k", 0, GATE_I2C3, MUX_I2C3, SECF_I2C3), #else KCLK(I2C3_K, "i2c3_k", 0, GATE_I2C3, MUX_I2C3, SECF_NONE), #endif KCLK(I2C4_K, "i2c4_k", 0, GATE_I2C4, MUX_I2C4, SECF_I2C4), KCLK(I2C5_K, "i2c5_k", 0, GATE_I2C5, MUX_I2C5, SECF_I2C5), #ifndef CONFIG_XPL_BUILD KCLK(LPTIM1_K, "lptim1_k", 0, GATE_LPTIM1, MUX_LPTIM1, SECF_NONE), KCLK(LPTIM2_K, "lptim2_k", 0, GATE_LPTIM2, MUX_LPTIM2, SECF_LPTIM2), KCLK(LPTIM3_K, "lptim3_k", 0, GATE_LPTIM3, MUX_LPTIM3, SECF_LPTIM3), #endif KCLK(USART1_K, "usart1_k", 0, GATE_USART1, MUX_UART1, SECF_USART1), KCLK(USART2_K, "usart2_k", 0, GATE_USART2, MUX_UART2, SECF_USART2), KCLK(UART4_K, "uart4_k", 0, GATE_UART4, MUX_UART4, SECF_NONE), KCLK(USART6_K, "uart6_k", 0, GATE_USART6, MUX_UART6, SECF_NONE), #ifndef CONFIG_XPL_BUILD KCLK(FDCAN_K, "fdcan_k", 0, GATE_FDCAN, MUX_FDCAN, SECF_NONE), KCLK(SAI1_K, "sai1_k", 0, GATE_SAI1, MUX_SAI1, SECF_NONE), KCLK(SAI2_K, "sai2_k", 0, GATE_SAI2, MUX_SAI2, SECF_NONE), KCLK(ADC1_K, "adc1_k", 0, GATE_ADC1, MUX_ADC1, SECF_ADC1), KCLK(ADC2_K, "adc2_k", 0, GATE_ADC2, MUX_ADC2, SECF_ADC2), KCLK(DCMIPP_K, "dcmipp_k", 0, GATE_DCMIPP, MUX_DCMIPP, SECF_DCMIPP), KCLK(ADFSDM_K, "adfsdm_k", 0, GATE_ADFSDM, MUX_SAI1, SECF_NONE), #endif KCLK(USBO_K, "usbo_k", 0, GATE_USBO, MUX_USBO, SECF_USBO), #ifndef CONFIG_XPL_BUILD KCLK(ETH1CK_K, "eth1ck_k", 0, GATE_ETH1CK, MUX_ETH1, SECF_ETH1CK), KCLK(ETH2CK_K, "eth2ck_k", 0, GATE_ETH2CK, MUX_ETH2, SECF_ETH2CK), KCLK(SAES_K, "saes_k", 0, GATE_SAES, MUX_SAES, SECF_SAES), STM32_GATE(DFSDM_K, "dfsdm_k", "ck_mlahb", 0, GATE_DFSDM, SECF_NONE), STM32_GATE(LTDC_PX, "ltdc_px", "pll4_q", CLK_SET_RATE_PARENT, GATE_LTDC, SECF_NONE), STM32_GATE(DTS_K, "dts_k", "ck_lse", 0, GATE_DTS, SECF_NONE), #endif STM32_COMPOSITE(ETH1PTP_K, "eth1ptp_k", CLK_OPS_PARENT_ENABLE | CLK_SET_RATE_NO_REPARENT, SECF_ETH1CK, NO_STM32_GATE, MUX_ETH1, DIV_ETH1PTP), STM32_COMPOSITE(ETH2PTP_K, "eth2ptp_k", CLK_OPS_PARENT_ENABLE | CLK_SET_RATE_NO_REPARENT, SECF_ETH2CK, NO_STM32_GATE, MUX_ETH2, DIV_ETH2PTP), /* MCO clocks */ STM32_COMPOSITE(CK_MCO1, "ck_mco1", CLK_OPS_PARENT_ENABLE | CLK_SET_RATE_NO_REPARENT, SECF_MCO1, GATE_MCO1, MUX_MCO1, DIV_MCO1), STM32_COMPOSITE(CK_MCO2, "ck_mco2", CLK_OPS_PARENT_ENABLE | CLK_SET_RATE_NO_REPARENT, SECF_MCO2, GATE_MCO2, MUX_MCO2, DIV_MCO2), /* Debug clocks */ STM32_GATE(CK_DBG, "ck_sys_dbg", "ck_axi", CLK_IGNORE_UNUSED, GATE_DBGCK, SECF_NONE), STM32_COMPOSITE_NOMUX(CK_TRACE, "ck_trace", "ck_axi", CLK_OPS_PARENT_ENABLE, SECF_NONE, GATE_TRACECK, DIV_TRACE), #ifdef CONFIG_XPL_BUILD STM32_GATE(AXIDCG, "axidcg", "ck_axi", CLK_IGNORE_UNUSED, GATE_AXIDCG, SECF_NONE), STM32_GATE(DDRC1, "ddrc1", "ck_axi", CLK_IGNORE_UNUSED, GATE_DDRC1, SECF_NONE), STM32_GATE(DDRPHYC, "ddrphyc", "pll2_r", CLK_IGNORE_UNUSED, GATE_DDRPHYC, SECF_NONE), STM32_GATE(DDRCAPB, "ddrcapb", "pclk4", CLK_IGNORE_UNUSED, GATE_DDRCAPB, SECF_NONE), STM32_GATE(DDRPHYCAPB, "ddrphycapb", "pclk4", CLK_IGNORE_UNUSED, GATE_DDRPHYCAPB, SECF_NONE), #endif }; #ifdef CONFIG_TFABOOT static int stm32mp13_check_security(struct udevice *dev, void __iomem *base, const struct clock_config *cfg) { int sec_id = cfg->sec_id; int secured = 0; if (sec_id != SECF_NONE) { const struct clk_stm32_security *secf; secf = &stm32mp13_security[sec_id]; secured = !!(readl(base + secf->offset) & BIT(secf->bit_idx)); } return secured; } #endif static const struct stm32_clock_match_data stm32mp13_data = { .tab_clocks = stm32mp13_clock_cfg, .num_clocks = ARRAY_SIZE(stm32mp13_clock_cfg), .clock_data = &(const struct clk_stm32_clock_data) { .num_gates = ARRAY_SIZE(stm32mp13_gates), .gates = stm32mp13_gates, .muxes = stm32mp13_muxes, .dividers = stm32mp13_dividers, }, #ifdef CONFIG_TFABOOT .check_security = stm32mp13_check_security, #endif }; #ifndef CONFIG_TFABOOT enum stm32mp1_parent_id { /* * _HSI, _HSE, _CSI, _LSI, _LSE should not be moved * they are used as index in osc_clk[] as clock reference */ _HSI, _HSE, _CSI, _LSI, _LSE, _I2S_CKIN, NB_OSC, /* other parent source */ _HSI_KER = NB_OSC, _HSE_KER, _HSE_KER_DIV2, _CSI_KER, _PLL1_P, _PLL1_Q, _PLL1_R, _PLL2_P, _PLL2_Q, _PLL2_R, _PLL3_P, _PLL3_Q, _PLL3_R, _PLL4_P, _PLL4_Q, _PLL4_R, _ACLK, _PCLK1, _PCLK2, _PCLK3, _PCLK4, _PCLK5, _HCLK6, _HCLK2, _CK_PER, _CK_MPU, _CK_MCU, _DSI_PHY, _USB_PHY_48, _PARENT_NB, _UNKNOWN_ID = 0xff, }; #if defined(CONFIG_XPL_BUILD) #define MAX_HSI_HZ 64000000 /* TIMEOUT */ #define TIMEOUT_200MS 200000 #define TIMEOUT_1S 1000000 /* STGEN registers */ #define STGENC_CNTCR 0x00 #define STGENC_CNTSR 0x04 #define STGENC_CNTCVL 0x08 #define STGENC_CNTCVU 0x0C #define STGENC_CNTFID0 0x20 #define STGENC_CNTCR_EN BIT(0) enum stm32mp1_clksrc_id { CLKSRC_MPU, CLKSRC_AXI, CLKSRC_MLAHB, CLKSRC_PLL12, CLKSRC_PLL3, CLKSRC_PLL4, CLKSRC_RTC, CLKSRC_MCO1, CLKSRC_MCO2, CLKSRC_NB }; enum stm32mp1_clkdiv_id { CLKDIV_AXI, CLKDIV_MLAHB, CLKDIV_APB1, CLKDIV_APB2, CLKDIV_APB3, CLKDIV_APB4, CLKDIV_APB5, CLKDIV_APB6, CLKDIV_RTC, CLKDIV_NB }; enum stm32mp1_pll_id { _PLL1, _PLL2, _PLL3, _PLL4, _PLL_NB }; enum stm32mp1_div_id { _DIV_P, _DIV_Q, _DIV_R, _DIV_NB, }; /* define characteristic of PLL according type */ #define DIVM_MIN 1 #define DIVM_MAX 63 #define DIVN_MIN 24 #define DIVP_MIN 0 #define DIVP_MAX 127 #define FRAC_MAX 8192 #define PLL2000_VCO_MIN 992000000 #define PLL2000_VCO_MAX 2000000000 enum stm32mp1_pllcfg { PLLCFG_M, PLLCFG_N, PLLCFG_P, PLLCFG_Q, PLLCFG_R, PLLCFG_O, PLLCFG_NB }; enum stm32mp1_pllcsg { PLLCSG_MOD_PER, PLLCSG_INC_STEP, PLLCSG_SSCG_MODE, PLLCSG_NB }; enum stm32mp1_plltype { PLL_800, PLL_1600, PLL_2000, PLL_TYPE_NB }; struct stm32mp1_pll { u8 refclk_min; u8 refclk_max; u8 divn_max; }; #define REFCLK_SIZE 4 struct stm32mp1_clk_pll { enum stm32mp1_plltype plltype; u16 rckxselr; u16 pllxcfgr1; u16 pllxcfgr2; u16 pllxfracr; u16 pllxcr; u16 pllxcsgr; u8 refclk[REFCLK_SIZE]; }; static const struct stm32mp1_pll stm32mp1_pll[PLL_TYPE_NB] = { [PLL_800] = { .refclk_min = 4, .refclk_max = 16, .divn_max = 99, }, [PLL_1600] = { .refclk_min = 8, .refclk_max = 16, .divn_max = 199, }, [PLL_2000] = { .refclk_min = 8, .refclk_max = 16, .divn_max = 99, }, }; #define STM32MP1_CLK_PLL(idx, type, off1, off2, off3, off4, off5, off6,\ p1, p2, p3, p4) \ [(idx)] = { \ .plltype = (type), \ .rckxselr = (off1), \ .pllxcfgr1 = (off2), \ .pllxcfgr2 = (off3), \ .pllxfracr = (off4), \ .pllxcr = (off5), \ .pllxcsgr = (off6), \ .refclk[0] = (p1), \ .refclk[1] = (p2), \ .refclk[2] = (p3), \ .refclk[3] = (p4), \ } static const struct stm32mp1_clk_pll stm32mp1_clk_pll[_PLL_NB] = { STM32MP1_CLK_PLL(_PLL1, PLL_2000, RCC_RCK12SELR, RCC_PLL1CFGR1, RCC_PLL1CFGR2, RCC_PLL1FRACR, RCC_PLL1CR, RCC_PLL1CSGR, _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID), STM32MP1_CLK_PLL(_PLL2, PLL_1600, RCC_RCK12SELR, RCC_PLL2CFGR1, RCC_PLL2CFGR2, RCC_PLL2FRACR, RCC_PLL2CR, RCC_PLL2CSGR, _HSI, _HSE, _UNKNOWN_ID, _UNKNOWN_ID), STM32MP1_CLK_PLL(_PLL3, PLL_800, RCC_RCK3SELR, RCC_PLL3CFGR1, RCC_PLL3CFGR2, RCC_PLL3FRACR, RCC_PLL3CR, RCC_PLL3CSGR, _HSI, _HSE, _CSI, _UNKNOWN_ID), STM32MP1_CLK_PLL(_PLL4, PLL_800, RCC_RCK4SELR, RCC_PLL4CFGR1, RCC_PLL4CFGR2, RCC_PLL4FRACR, RCC_PLL4CR, RCC_PLL4CSGR, _HSI, _HSE, _CSI, _I2S_CKIN), }; static ulong stm32mp1_clk_get_fixed(struct stm32mp_rcc_priv *priv, int idx) { if (idx >= NB_OSC) { log_debug("clk id %d not found\n", idx); return 0; } return clk_get_rate(&priv->osc_clk[idx]); } bool stm32mp1_supports_opp(u32 opp_id, u32 cpu_type) { /* 650 MHz is always supported */ if (opp_id == 1) return true; /* * 1000 MHz is supported on STM32MP13xDxx and STM32MP13xFxx, * which all have bit 11 i.e. 0x800 set in CPU ID. */ if (opp_id == 2) return !!(cpu_type & BIT(11)); /* Any other OPP is invalid. */ return false; } __weak void board_vddcore_init(u32 voltage_mv) { } /* * gets OPP parameters (frequency in KHz and voltage in mV) from * an OPP table subnode. Platform HW support capabilities are also checked. * Returns 0 on success and a negative FDT error code on failure. */ static int stm32mp1_get_opp(u32 cpu_type, ofnode subnode, u32 *freq_khz, u32 *voltage_mv) { u32 opp_hw; u64 read_freq_64; u32 read_voltage_32; *freq_khz = 0; *voltage_mv = 0; opp_hw = ofnode_read_u32_default(subnode, "opp-supported-hw", 0); if (opp_hw) if (!stm32mp1_supports_opp(opp_hw, cpu_type)) return -FDT_ERR_BADVALUE; read_freq_64 = ofnode_read_u64_default(subnode, "opp-hz", 0) / 1000ULL; read_voltage_32 = ofnode_read_u32_default(subnode, "opp-microvolt", 0) / 1000U; if (!read_voltage_32 || !read_freq_64) return -FDT_ERR_NOTFOUND; /* Frequency value expressed in KHz must fit on 32 bits */ if (read_freq_64 > U32_MAX) return -FDT_ERR_BADVALUE; /* Millivolt value must fit on 16 bits */ if (read_voltage_32 > U16_MAX) return -FDT_ERR_BADVALUE; *freq_khz = (u32)read_freq_64; *voltage_mv = read_voltage_32; return 0; } /* * parses OPP table in DT and finds the parameters for the * highest frequency supported by the HW platform. * Returns 0 on success and a negative FDT error code on failure. */ int stm32mp1_get_max_opp_freq(struct stm32mp_rcc_priv *priv, u64 *freq_hz) { ofnode node, subnode; int ret; u32 freq = 0U, voltage = 0U; u32 cpu_type = get_cpu_type(); node = ofnode_by_compatible(ofnode_null(), "operating-points-v2"); if (!ofnode_valid(node)) return -FDT_ERR_NOTFOUND; ofnode_for_each_subnode(subnode, node) { unsigned int read_freq; unsigned int read_voltage; ret = stm32mp1_get_opp(cpu_type, subnode, &read_freq, &read_voltage); if (ret) continue; if (read_freq > freq) { freq = read_freq; voltage = read_voltage; } } if (!freq || !voltage) return -FDT_ERR_NOTFOUND; *freq_hz = (u64)1000U * freq; board_vddcore_init(voltage); return 0; } static int stm32mp1_pll1_opp(struct stm32mp_rcc_priv *priv, int clksrc, u32 *pllcfg, u32 *fracv) { u32 post_divm; u32 input_freq; u64 output_freq; u64 freq; u64 vco; u32 divm, divn, divp, frac; int i, ret; u32 diff; u32 best_diff = U32_MAX; /* PLL1 is 2000 */ const u32 DIVN_MAX = stm32mp1_pll[PLL_2000].divn_max; const u32 POST_DIVM_MIN = stm32mp1_pll[PLL_2000].refclk_min * 1000000U; const u32 POST_DIVM_MAX = stm32mp1_pll[PLL_2000].refclk_max * 1000000U; ret = stm32mp1_get_max_opp_freq(priv, &output_freq); if (ret) { log_debug("PLL1 OPP configuration not found (%d).\n", ret); return ret; } switch (clksrc) { case CLK_PLL12_HSI: input_freq = stm32mp1_clk_get_fixed(priv, _HSI); break; case CLK_PLL12_HSE: input_freq = stm32mp1_clk_get_fixed(priv, _HSE); break; default: return -EINTR; } /* Following parameters have always the same value */ pllcfg[PLLCFG_Q] = 0; pllcfg[PLLCFG_R] = 0; pllcfg[PLLCFG_O] = PQR(1, 1, 1); for (divm = DIVM_MAX; divm >= DIVM_MIN; divm--) { post_divm = (u32)(input_freq / (divm + 1)); if (post_divm < POST_DIVM_MIN || post_divm > POST_DIVM_MAX) continue; for (divp = DIVP_MIN; divp <= DIVP_MAX; divp++) { freq = output_freq * (divm + 1) * (divp + 1); divn = (u32)((freq / input_freq) - 1); if (divn < DIVN_MIN || divn > DIVN_MAX) continue; frac = (u32)(((freq * FRAC_MAX) / input_freq) - ((divn + 1) * FRAC_MAX)); /* 2 loops to refine the fractional part */ for (i = 2; i != 0; i--) { if (frac > FRAC_MAX) break; vco = (post_divm * (divn + 1)) + ((post_divm * (u64)frac) / FRAC_MAX); if (vco < (PLL2000_VCO_MIN / 2) || vco > (PLL2000_VCO_MAX / 2)) { frac++; continue; } freq = vco / (divp + 1); if (output_freq < freq) diff = (u32)(freq - output_freq); else diff = (u32)(output_freq - freq); if (diff < best_diff) { pllcfg[PLLCFG_M] = divm; pllcfg[PLLCFG_N] = divn; pllcfg[PLLCFG_P] = divp; *fracv = frac; if (diff == 0) { return 0; } best_diff = diff; } frac++; } } } if (best_diff == U32_MAX) return -1; return 0; } static void stm32mp1_ls_osc_set(int enable, fdt_addr_t rcc, u32 offset, u32 mask_on) { u32 address = rcc + offset; if (enable) setbits_le32(address, mask_on); else clrbits_le32(address, mask_on); } static void stm32mp1_hs_ocs_set(int enable, fdt_addr_t rcc, u32 mask_on) { writel(mask_on, rcc + (enable ? RCC_OCENSETR : RCC_OCENCLRR)); } static int stm32mp1_osc_wait(int enable, fdt_addr_t rcc, u32 offset, u32 mask_rdy) { u32 mask_test = 0; u32 address = rcc + offset; u32 val; int ret; if (enable) mask_test = mask_rdy; ret = readl_poll_timeout(address, val, (val & mask_rdy) == mask_test, TIMEOUT_1S); if (ret) log_err("OSC %x @ %x timeout for enable=%d : 0x%x\n", mask_rdy, address, enable, readl(address)); return ret; } static void stm32mp1_lse_enable(fdt_addr_t rcc, int bypass, int digbyp, u32 lsedrv) { u32 value; if (digbyp) setbits_le32(rcc + RCC_BDCR, RCC_BDCR_DIGBYP); if (bypass || digbyp) setbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEBYP); /* * warning: not recommended to switch directly from "high drive" * to "medium low drive", and vice-versa. */ value = (readl(rcc + RCC_BDCR) & RCC_BDCR_LSEDRV_MASK) >> RCC_BDCR_LSEDRV_SHIFT; while (value != lsedrv) { if (value > lsedrv) value--; else value++; clrsetbits_le32(rcc + RCC_BDCR, RCC_BDCR_LSEDRV_MASK, value << RCC_BDCR_LSEDRV_SHIFT); } stm32mp1_ls_osc_set(1, rcc, RCC_BDCR, RCC_BDCR_LSEON); } static void stm32mp1_lse_wait(fdt_addr_t rcc) { stm32mp1_osc_wait(1, rcc, RCC_BDCR, RCC_BDCR_LSERDY); } static void stm32mp1_lsi_set(fdt_addr_t rcc, int enable) { stm32mp1_ls_osc_set(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSION); stm32mp1_osc_wait(enable, rcc, RCC_RDLSICR, RCC_RDLSICR_LSIRDY); } static void stm32mp1_hse_enable(fdt_addr_t rcc, int bypass, int digbyp, int css) { if (digbyp) writel(RCC_OCENR_DIGBYP, rcc + RCC_OCENSETR); if (bypass || digbyp) writel(RCC_OCENR_HSEBYP, rcc + RCC_OCENSETR); stm32mp1_hs_ocs_set(1, rcc, RCC_OCENR_HSEON); stm32mp1_osc_wait(1, rcc, RCC_OCRDYR, RCC_OCRDYR_HSERDY); if (css) writel(RCC_OCENR_HSECSSON, rcc + RCC_OCENSETR); } static void stm32mp1_csi_set(fdt_addr_t rcc, int enable) { stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_CSION); stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_CSIRDY); } static void stm32mp1_hsi_set(fdt_addr_t rcc, int enable) { stm32mp1_hs_ocs_set(enable, rcc, RCC_OCENR_HSION); stm32mp1_osc_wait(enable, rcc, RCC_OCRDYR, RCC_OCRDYR_HSIRDY); } static int stm32mp1_set_hsidiv(fdt_addr_t rcc, u8 hsidiv) { u32 address = rcc + RCC_OCRDYR; u32 val; int ret; clrsetbits_le32(rcc + RCC_HSICFGR, RCC_HSICFGR_HSIDIV_MASK, RCC_HSICFGR_HSIDIV_MASK & hsidiv); ret = readl_poll_timeout(address, val, val & RCC_OCRDYR_HSIDIVRDY, TIMEOUT_200MS); if (ret) log_err("HSIDIV failed @ 0x%x: 0x%x\n", address, readl(address)); return ret; } static int stm32mp1_hsidiv(fdt_addr_t rcc, ulong hsifreq) { u8 hsidiv; u32 hsidivfreq = MAX_HSI_HZ; for (hsidiv = 0; hsidiv < 4; hsidiv++, hsidivfreq = hsidivfreq / 2) if (hsidivfreq == hsifreq) break; if (hsidiv == 4) { log_err("hsi frequency invalid"); return -1; } if (hsidiv > 0) return stm32mp1_set_hsidiv(rcc, hsidiv); return 0; } static void pll_start(struct stm32mp_rcc_priv *priv, int pll_id) { clrsetbits_le32((u32)(priv->base) + stm32mp1_clk_pll[pll_id].pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN, RCC_PLLNCR_PLLON); } static int pll_output(struct stm32mp_rcc_priv *priv, int pll_id, int output) { u32 pllxcr = (u32)(priv->base) + stm32mp1_clk_pll[pll_id].pllxcr; u32 val; int ret; ret = readl_poll_timeout(pllxcr, val, val & RCC_PLLNCR_PLLRDY, TIMEOUT_200MS); if (ret) { log_err("PLL%d start failed @ 0x%x: 0x%x\n", pll_id, pllxcr, readl(pllxcr)); return ret; } /* start the requested output */ setbits_le32(pllxcr, output << RCC_PLLNCR_DIVEN_SHIFT); return 0; } static int pll_stop(struct stm32mp_rcc_priv *priv, int pll_id) { u32 pllxcr = (u32)(priv->base) + stm32mp1_clk_pll[pll_id].pllxcr; u32 val; /* stop all output */ clrbits_le32(pllxcr, RCC_PLLNCR_DIVPEN | RCC_PLLNCR_DIVQEN | RCC_PLLNCR_DIVREN); /* stop PLL */ clrbits_le32(pllxcr, RCC_PLLNCR_PLLON); /* wait PLL stopped */ return readl_poll_timeout(pllxcr, val, (val & RCC_PLLNCR_PLLRDY) == 0, TIMEOUT_200MS); } static void pll_config_output(struct stm32mp_rcc_priv *priv, int pll_id, u32 *pllcfg) { fdt_addr_t rcc = (u32)(priv->base); u32 value; value = (pllcfg[PLLCFG_P] << RCC_PLLNCFGR2_DIVP_SHIFT) & RCC_PLLNCFGR2_DIVP_MASK; value |= (pllcfg[PLLCFG_Q] << RCC_PLLNCFGR2_DIVQ_SHIFT) & RCC_PLLNCFGR2_DIVQ_MASK; value |= (pllcfg[PLLCFG_R] << RCC_PLLNCFGR2_DIVR_SHIFT) & RCC_PLLNCFGR2_DIVR_MASK; writel(value, rcc + stm32mp1_clk_pll[pll_id].pllxcfgr2); } static int pll_config(struct stm32mp_rcc_priv *priv, int pll_id, u32 *pllcfg, u32 fracv) { fdt_addr_t rcc = (u32)(priv->base); enum stm32mp1_plltype type = stm32mp1_clk_pll[pll_id].plltype; int src; ulong refclk; u8 ifrge = 0; u32 value; src = readl((u32)(priv->base) + stm32mp1_clk_pll[pll_id].rckxselr) & RCC_SELR_SRC_MASK; refclk = stm32mp1_clk_get_fixed(priv, stm32mp1_clk_pll[pll_id].refclk[src]) / (pllcfg[PLLCFG_M] + 1); if (refclk < (stm32mp1_pll[type].refclk_min * 1000000) || refclk > (stm32mp1_pll[type].refclk_max * 1000000)) { log_err("invalid refclk = %x\n", (u32)refclk); return -EINVAL; } if (type == PLL_800 && refclk >= 8000000) ifrge = 1; value = (pllcfg[PLLCFG_N] << RCC_PLLNCFGR1_DIVN_SHIFT) & RCC_PLLNCFGR1_DIVN_MASK; value |= (pllcfg[PLLCFG_M] << RCC_PLLNCFGR1_DIVM_SHIFT) & RCC_PLLNCFGR1_DIVM_MASK; value |= (ifrge << RCC_PLLNCFGR1_IFRGE_SHIFT) & RCC_PLLNCFGR1_IFRGE_MASK; writel(value, rcc + stm32mp1_clk_pll[pll_id].pllxcfgr1); /* fractional configuration: load sigma-delta modulator (SDM) */ /* Write into FRACV the new fractional value , and FRACLE to 0 */ writel(fracv << RCC_PLLNFRACR_FRACV_SHIFT, rcc + stm32mp1_clk_pll[pll_id].pllxfracr); /* Write FRACLE to 1 : FRACV value is loaded into the SDM */ setbits_le32(rcc + stm32mp1_clk_pll[pll_id].pllxfracr, RCC_PLLNFRACR_FRACLE); pll_config_output(priv, pll_id, pllcfg); return 0; } static void pll_csg(struct stm32mp_rcc_priv *priv, int pll_id, u32 *csg) { u32 pllxcsg; pllxcsg = ((csg[PLLCSG_MOD_PER] << RCC_PLLNCSGR_MOD_PER_SHIFT) & RCC_PLLNCSGR_MOD_PER_MASK) | ((csg[PLLCSG_INC_STEP] << RCC_PLLNCSGR_INC_STEP_SHIFT) & RCC_PLLNCSGR_INC_STEP_MASK) | ((csg[PLLCSG_SSCG_MODE] << RCC_PLLNCSGR_SSCG_MODE_SHIFT) & RCC_PLLNCSGR_SSCG_MODE_MASK); writel(pllxcsg, (u32)(priv->base) + stm32mp1_clk_pll[pll_id].pllxcsgr); setbits_le32((u32)(priv->base) + stm32mp1_clk_pll[pll_id].pllxcr, RCC_PLLNCR_SSCG_CTRL); } static ulong pll_get_fref_ck(struct stm32mp_rcc_priv *priv, int pll_id) { u32 selr; int src; /* Get current refclk */ selr = readl(priv->base + stm32mp1_clk_pll[pll_id].rckxselr); src = selr & RCC_SELR_SRC_MASK; return stm32mp1_clk_get_fixed(priv, stm32mp1_clk_pll[pll_id].refclk[src]); } static __maybe_unused int pll_set_rate(struct udevice *dev, int pll_id, int div_id, unsigned long clk_rate) { struct stm32mp_rcc_priv *priv = dev_get_priv(dev); unsigned int pllcfg[PLLCFG_NB]; ofnode plloff; char name[12]; enum stm32mp1_plltype type = stm32mp1_clk_pll[pll_id].plltype; int divm, divn, divy; int ret; ulong fck_ref; u32 fracv; u64 value; if (div_id > _DIV_NB) return -EINVAL; sprintf(name, "st,pll@%d", pll_id); plloff = dev_read_subnode(dev, name); if (!ofnode_valid(plloff)) return -FDT_ERR_NOTFOUND; ret = ofnode_read_u32_array(plloff, "cfg", pllcfg, PLLCFG_NB); if (ret < 0) return -FDT_ERR_NOTFOUND; fck_ref = pll_get_fref_ck(priv, pll_id); divm = pllcfg[PLLCFG_M]; /* select output divider = 0: for _DIV_P, 1:_DIV_Q 2:_DIV_R */ divy = pllcfg[PLLCFG_P + div_id]; /* For: PLL1 & PLL2 => VCO is * 2 but ck_pll_y is also / 2 * So same final result than PLL2 et 4 * with FRACV * Fck_pll_y = Fck_ref * ((DIVN + 1) + FRACV / 2^13) * / (DIVy + 1) * (DIVM + 1) * value = (DIVN + 1) * 2^13 + FRACV / 2^13 * = Fck_pll_y (DIVy + 1) * (DIVM + 1) * 2^13 / Fck_ref */ value = ((u64)clk_rate * (divy + 1) * (divm + 1)) << 13; value = lldiv(value, fck_ref); divn = (value >> 13) - 1; if (divn < DIVN_MIN || divn > stm32mp1_pll[type].divn_max) { dev_err(dev, "divn invalid = %d", divn); return -EINVAL; } fracv = value - ((divn + 1) << 13); pllcfg[PLLCFG_N] = divn; /* reconfigure PLL */ pll_stop(priv, pll_id); pll_config(priv, pll_id, pllcfg, fracv); pll_start(priv, pll_id); pll_output(priv, pll_id, pllcfg[PLLCFG_O]); return 0; } static int set_clksrc(struct stm32mp_rcc_priv *priv, unsigned int clksrc) { u32 address = (u32)(priv->base); u32 mux = (clksrc & MUX_ID_MASK) >> MUX_ID_SHIFT; u32 val; int ret; /* List of relevant muxes to keep the size down */ if (mux == MUX_PLL12) address += RCC_RCK12SELR; else if (mux == MUX_PLL3) address += RCC_RCK3SELR; else if (mux == MUX_PLL4) address += RCC_RCK4SELR; else if (mux == MUX_MPU) address += RCC_MPCKSELR; else if (mux == MUX_AXI) address += RCC_ASSCKSELR; else if (mux == MUX_MLAHB) address += RCC_MSSCKSELR; else if (mux == MUX_CKPER) address += RCC_CPERCKSELR; else return -EINVAL; clrsetbits_le32(address, RCC_SELR_SRC_MASK, clksrc & RCC_SELR_SRC_MASK); ret = readl_poll_timeout(address, val, val & RCC_SELR_SRCRDY, TIMEOUT_200MS); if (ret) log_err("CLKSRC %x start failed @ 0x%x: 0x%x\n", clksrc, address, readl(address)); return ret; } static void stgen_config(struct stm32mp_rcc_priv *priv) { u32 stgenc, cntfid0; ulong rate = clk_get_rate(&priv->osc_clk[_HSI]); stgenc = STM32_STGEN_BASE; cntfid0 = readl(stgenc + STGENC_CNTFID0); if (cntfid0 != rate) { u64 counter; log_debug("System Generic Counter (STGEN) update\n"); clrbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN); counter = (u64)readl(stgenc + STGENC_CNTCVL); counter |= ((u64)(readl(stgenc + STGENC_CNTCVU))) << 32; counter = lldiv(counter * (u64)rate, cntfid0); writel((u32)counter, stgenc + STGENC_CNTCVL); writel((u32)(counter >> 32), stgenc + STGENC_CNTCVU); writel(rate, stgenc + STGENC_CNTFID0); setbits_le32(stgenc + STGENC_CNTCR, STGENC_CNTCR_EN); __asm__ volatile("mcr p15, 0, %0, c14, c0, 0" : : "r" (rate)); /* need to update gd->arch.timer_rate_hz with new frequency */ timer_init(); } } static int set_clkdiv(unsigned int clkdiv, u32 address) { u32 val; int ret; clrsetbits_le32(address, RCC_DIVR_DIV_MASK, clkdiv & RCC_DIVR_DIV_MASK); ret = readl_poll_timeout(address, val, val & RCC_DIVR_DIVRDY, TIMEOUT_200MS); if (ret) log_err("CLKDIV %x start failed @ 0x%x: 0x%x\n", clkdiv, address, readl(address)); return ret; } static void set_rtcsrc(struct stm32mp_rcc_priv *priv, unsigned int clksrc, int lse_css) { u32 address = (u32)(priv->base) + RCC_BDCR; if (readl(address) & RCC_BDCR_RTCCKEN) goto skip_rtc; if (clksrc == CLK_RTC_DISABLED) goto skip_rtc; clrsetbits_le32(address, RCC_BDCR_RTCSRC_MASK, clksrc << RCC_BDCR_RTCSRC_SHIFT); setbits_le32(address, RCC_BDCR_RTCCKEN); skip_rtc: if (lse_css) setbits_le32(address, RCC_BDCR_LSECSSON); } static void pkcs_config(struct stm32mp_rcc_priv *priv, u32 pkcs) { u32 mux = (pkcs & MUX_ID_MASK) >> MUX_ID_SHIFT; u32 address = (u32)(priv->base) + stm32mp13_muxes[mux].reg_off; u32 mask = (BIT(stm32mp13_muxes[mux].width) - 1) << stm32mp13_muxes[mux].shift; u32 value = (pkcs << stm32mp13_muxes[mux].shift) & mask; clrsetbits_le32(address, mask, value); } static int stm32mp1_clktree(struct udevice *dev) { struct stm32mp_rcc_priv *priv = dev_get_priv(dev); fdt_addr_t rcc = (u32)(priv->base); unsigned int clksrc[CLKSRC_NB]; unsigned int clkdiv[CLKDIV_NB]; unsigned int pllcfg[_PLL_NB][PLLCFG_NB]; unsigned int pllfracv[_PLL_NB]; unsigned int pllcsg[_PLL_NB][PLLCSG_NB]; bool pllcfg_valid[_PLL_NB]; bool pllcsg_set[_PLL_NB]; int ret; int i, len; int lse_css = 0; const u32 *pkcs_cell; /* check mandatory field */ ret = dev_read_u32_array(dev, "st,clksrc", clksrc, CLKSRC_NB); if (ret < 0) { dev_dbg(dev, "field st,clksrc invalid: error %d\n", ret); return -FDT_ERR_NOTFOUND; } ret = dev_read_u32_array(dev, "st,clkdiv", clkdiv, CLKDIV_NB); if (ret < 0) { dev_dbg(dev, "field st,clkdiv invalid: error %d\n", ret); return -FDT_ERR_NOTFOUND; } /* check mandatory field in each pll */ for (i = 0; i < _PLL_NB; i++) { char name[12]; ofnode node; sprintf(name, "st,pll@%d", i); node = dev_read_subnode(dev, name); pllcfg_valid[i] = ofnode_valid(node); pllcsg_set[i] = false; if (pllcfg_valid[i]) { dev_dbg(dev, "DT for PLL %d @ %s\n", i, name); ret = ofnode_read_u32_array(node, "cfg", pllcfg[i], PLLCFG_NB); if (ret < 0) { dev_dbg(dev, "field cfg invalid: error %d\n", ret); return -FDT_ERR_NOTFOUND; } pllfracv[i] = ofnode_read_u32_default(node, "frac", 0); ret = ofnode_read_u32_array(node, "csg", pllcsg[i], PLLCSG_NB); if (!ret) { pllcsg_set[i] = true; } else if (ret != -FDT_ERR_NOTFOUND) { dev_dbg(dev, "invalid csg node for pll@%d res=%d\n", i, ret); return ret; } } else if (i == _PLL1) { /* use OPP for PLL1 for A7 CPU */ dev_dbg(dev, "DT for PLL %d with OPP\n", i); ret = stm32mp1_pll1_opp(priv, clksrc[CLKSRC_PLL12], pllcfg[i], &pllfracv[i]); if (ret) { dev_dbg(dev, "PLL %d with OPP error = %d\n", i, ret); return ret; } pllcfg_valid[i] = true; } } dev_dbg(dev, "switch ON osillator\n"); /* * switch ON oscillator found in device-tree, * HSI already ON after bootrom */ if (clk_valid(&priv->osc_clk[_LSI])) stm32mp1_lsi_set(rcc, 1); if (clk_valid(&priv->osc_clk[_LSE])) { int bypass, digbyp; u32 lsedrv; struct udevice *dev = priv->osc_clk[_LSE].dev; bypass = dev_read_bool(dev, "st,bypass"); digbyp = dev_read_bool(dev, "st,digbypass"); lse_css = dev_read_bool(dev, "st,css"); lsedrv = dev_read_u32_default(dev, "st,drive", LSEDRV_MEDIUM_HIGH); stm32mp1_lse_enable(rcc, bypass, digbyp, lsedrv); } if (clk_valid(&priv->osc_clk[_HSE])) { int bypass, digbyp, css; struct udevice *dev = priv->osc_clk[_HSE].dev; bypass = dev_read_bool(dev, "st,bypass"); digbyp = dev_read_bool(dev, "st,digbypass"); css = dev_read_bool(dev, "st,css"); stm32mp1_hse_enable(rcc, bypass, digbyp, css); } /* CSI is mandatory for automatic I/O compensation (SYSCFG_CMPCR) * => switch on CSI even if node is not present in device tree */ stm32mp1_csi_set(rcc, 1); /* come back to HSI */ dev_dbg(dev, "come back to HSI\n"); set_clksrc(priv, CLK_MPU_HSI); set_clksrc(priv, CLK_AXI_HSI); set_clksrc(priv, CLK_MLAHBS_HSI); dev_dbg(dev, "pll stop\n"); for (i = 0; i < _PLL_NB; i++) pll_stop(priv, i); /* configure HSIDIV */ dev_dbg(dev, "configure HSIDIV\n"); if (clk_valid(&priv->osc_clk[_HSI])) { stm32mp1_hsidiv(rcc, clk_get_rate(&priv->osc_clk[_HSI])); stgen_config(priv); } /* select DIV */ dev_dbg(dev, "select DIV\n"); /* no ready bit when MPUSRC != CLK_MPU_PLL1P_DIV, MPUDIV is disabled */ set_clkdiv(clkdiv[CLKDIV_AXI], rcc + RCC_AXIDIVR); set_clkdiv(clkdiv[CLKDIV_APB4], rcc + RCC_APB4DIVR); set_clkdiv(clkdiv[CLKDIV_APB5], rcc + RCC_APB5DIVR); set_clkdiv(clkdiv[CLKDIV_APB6], rcc + RCC_APB6DIVR); set_clkdiv(clkdiv[CLKDIV_APB1], rcc + RCC_APB1DIVR); set_clkdiv(clkdiv[CLKDIV_APB2], rcc + RCC_APB2DIVR); set_clkdiv(clkdiv[CLKDIV_APB3], rcc + RCC_APB3DIVR); /* no ready bit for RTC */ writel(clkdiv[CLKDIV_RTC] & RCC_DIVR_DIV_MASK, rcc + RCC_RTCDIVR); /* configure PLLs source */ dev_dbg(dev, "configure PLLs source\n"); set_clksrc(priv, clksrc[CLKSRC_PLL12]); set_clksrc(priv, clksrc[CLKSRC_PLL3]); set_clksrc(priv, clksrc[CLKSRC_PLL4]); /* configure and start PLLs */ dev_dbg(dev, "configure PLLs\n"); for (i = 0; i < _PLL_NB; i++) { if (!pllcfg_valid[i]) continue; dev_dbg(dev, "configure PLL %d\n", i); pll_config(priv, i, pllcfg[i], pllfracv[i]); if (pllcsg_set[i]) pll_csg(priv, i, pllcsg[i]); pll_start(priv, i); } /* wait and start PLLs ouptut when ready */ for (i = 0; i < _PLL_NB; i++) { if (!pllcfg_valid[i]) continue; dev_dbg(dev, "output PLL %d\n", i); pll_output(priv, i, pllcfg[i][PLLCFG_O]); } /* wait LSE ready before to use it */ if (clk_valid(&priv->osc_clk[_LSE])) stm32mp1_lse_wait(rcc); /* configure with expected clock source */ dev_dbg(dev, "CLKSRC\n"); set_clksrc(priv, clksrc[CLKSRC_MPU]); set_clksrc(priv, clksrc[CLKSRC_AXI]); set_clksrc(priv, clksrc[CLKSRC_MLAHB]); set_rtcsrc(priv, clksrc[CLKSRC_RTC], lse_css); /* configure PKCK */ dev_dbg(dev, "PKCK\n"); pkcs_cell = dev_read_prop(dev, "st,pkcs", &len); if (pkcs_cell) { bool ckper_disabled = false; for (i = 0; i < len / sizeof(u32); i++) { u32 pkcs = (u32)fdt32_to_cpu(pkcs_cell[i]); if (pkcs == CLK_CKPER_DISABLED) { ckper_disabled = true; continue; } pkcs_config(priv, pkcs); } /* CKPER is source for some peripheral clock * (FMC-NAND / QPSI-NOR) and switching source is allowed * only if previous clock is still ON * => deactivated CKPER only after switching clock */ if (ckper_disabled) pkcs_config(priv, CLK_CKPER_DISABLED); } /* STGEN clock source can change with CLK_STGEN_XXX */ stgen_config(priv); dev_dbg(dev, "oscillator off\n"); /* switch OFF HSI if not found in device-tree */ if (!clk_valid(&priv->osc_clk[_HSI])) stm32mp1_hsi_set(rcc, 0); /* Software Self-Refresh mode (SSR) during DDR initilialization */ clrsetbits_le32((u32)(priv->base) + RCC_DDRITFCR, RCC_DDRITFCR_DDRCKMOD_MASK, RCC_DDRITFCR_DDRCKMOD_SSR << RCC_DDRITFCR_DDRCKMOD_SHIFT); return 0; } #endif static int stm32mp1_osc_init(struct udevice *dev) { struct stm32mp_rcc_priv *priv = dev_get_priv(dev); fdt_addr_t base = dev_read_addr(dev->parent); struct clk *ck; int i; const char *name[NB_OSC] = { [_LSI] = "lsi", [_LSE] = "lse", [_HSI] = "hsi", [_HSE] = "hse", [_CSI] = "csi", [_I2S_CKIN] = "i2s_ckin", }; const struct { const char *name; const int rate; } fixed_clk[] = { { "bsec", 66625000 }, { "ck_axi", 266500000 }, { "ck_mlahb", 200000000 }, { "ck_mpu", 1000000000 }, { "ck_per", 24000000 }, { "ck_rtc", 32768 }, { "clk-hse-div2", 12000000 }, { "pclk1", 100000000 }, { "pclk2", 100000000 }, { "pclk3", 100000000 }, { "pclk4", 133250000 }, { "pclk5", 66625000 }, { "pclk6", 100000000 }, { "pll2_q", 266500000 }, { "pll2_r", 533000000 }, { "pll3_p", 200000000 }, { "pll3_q", 150000000 }, { "pll3_r", 200000000 }, { "pll4_p", 125000000 }, { "pll4_q", 83333333 }, { "pll4_r", 75000000 }, { "rtcapb", 66625000 }, { "timg1_ck", 200000000 }, { "timg2_ck", 200000000 }, { "timg3_ck", 200000000 }, }; if (base == FDT_ADDR_T_NONE) return -EINVAL; priv->base = (void __iomem *)base; for (i = 0; i < NB_OSC; i++) { if (clk_get_by_name(dev, name[i], &priv->osc_clk[i])) dev_dbg(dev, "No source clock \"%s\"\n", name[i]); else dev_dbg(dev, "%s clock rate: %luHz\n", name[i], clk_get_rate(&priv->osc_clk[i])); } for (i = 0; i < ARRAY_SIZE(fixed_clk); i++) { ck = clk_register_fixed_rate(NULL, fixed_clk[i].name, fixed_clk[i].rate); if (!ck) dev_dbg(dev, "Cannot register fixed clock \"%s\"\n", fixed_clk[i].name); } return 0; } #endif static int stm32mp1_clk_probe(struct udevice *dev) { int err; #ifdef CONFIG_TFABOOT struct udevice *scmi; /* force SCMI probe to register all SCMI clocks */ uclass_get_device_by_driver(UCLASS_CLK, DM_DRIVER_GET(scmi_clock), &scmi); #else err = stm32mp1_osc_init(dev); if (err) return err; #if defined(CONFIG_XPL_BUILD) /* clock tree init is done only one time, before relocation */ if (!(gd->flags & GD_FLG_RELOC)) err = stm32mp1_clktree(dev); if (err) dev_err(dev, "clock tree initialization failed (%d)\n", err); #endif #endif err = stm32_rcc_init(dev, &stm32mp13_data); if (err) return err; gd->cpu_clk = clk_stm32_get_rate_by_name("ck_mpu"); gd->bus_clk = clk_stm32_get_rate_by_name("ck_axi"); /* DDRPHYC father */ gd->mem_clk = clk_stm32_get_rate_by_name("pll2_r"); #ifndef CONFIG_XPL_BUILD if (IS_ENABLED(CONFIG_DISPLAY_CPUINFO)) { if (gd->flags & GD_FLG_RELOC) { char buf[32]; log_info("Clocks:\n"); log_info("- MPU : %s MHz\n", strmhz(buf, gd->cpu_clk)); log_info("- AXI : %s MHz\n", strmhz(buf, gd->bus_clk)); log_info("- PER : %s MHz\n", strmhz(buf, clk_stm32_get_rate_by_name("ck_per"))); log_info("- DDR : %s MHz\n", strmhz(buf, gd->mem_clk)); } } #endif return 0; } U_BOOT_DRIVER(stm32mp1_clock) = { .name = "stm32mp13_clk", .id = UCLASS_CLK, .ops = &stm32_clk_ops, .priv_auto = sizeof(struct stm32mp_rcc_priv), .probe = stm32mp1_clk_probe, };