The ubifsload command is truncating any address above 4GiB as it casts
this address to an u32, instead of using an unsigned long which most of
the other load commands do. Change this to an unsigned long to allow
loading into high memory for boards which use these areas.
Fixes the following error:
=> ubifsload 0x2100000000 /boot/Image.lzma
Loading file '/boot/Image.lzma' to addr 0x00000000...
Unhandled exception: Store/AMO access fault
Signed-off-by: Ben Dooks <ben.dooks@sifive.com>
Signed-off-by: Ben Dooks <ben.dooks@codethink.co.uk>
If a file does not exist, it should be created.
Fixes: f676b45151 ("fs: Add semihosting filesystem")
Signed-off-by: Heinrich Schuchardt <heinrich.schuchardt@canonical.com>
Use asm/unaligned.h instead of linux/unaligned/access_ok.h for unaligned
access. This is needed on architectures that doesn't handle unaligned
accesses directly.
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Reviewed-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
btrfs_read_extent_reg correctly computed the extent offset in the
BTRFS_COMPRESS_NONE case, but did not account for the 'offset - key.offset'
part correctly in the compressed case, making the function read
incorrect data.
In the case I examined, the last 4k of a file was corrupted and
contained data from a few blocks prior, e.g. reading a 10k file with a
single extent:
btrfs_file_read()
-> btrfs_read_extent_reg
(aligned part loop, until 8k)
-> read_and_truncate_page
-> btrfs_read_extent_reg
(re-reads the last extent from 8k to the end,
incorrectly reading the first 2k of data)
This can be reproduced as follow:
$ truncate -s 200M btr
$ mount btr -o compress /mnt
$ pat() { dd if=/dev/zero bs=1M count=$1 iflag=count_bytes status=none | tr '\0' "\\$2"; }
$ { pat 4K 1; pat 4K 2; pat 2K 3; } > /mnt/file
$ sync
$ filefrag -v /mnt/file
File size of /mnt/file is 10240 (3 blocks of 4096 bytes)
ext: logical_offset: physical_offset: length: expected: flags:
0: 0.. 2: 3328.. 3330: 3: last,encoded,eof
$ umount /mnt
Then in u-boot:
=> load scsi 0 2000000 file
10240 bytes read in 3 ms (3.3 MiB/s)
=> md 2001ff0
02001ff0: 02020202 02020202 02020202 02020202 ................
02002000: 01010101 01010101 01010101 01010101 ................
02002010: 01010101 01010101 01010101 01010101 ................
(02002000 onwards should contain '03' pattern but went back to 01,
start of the extent)
After patch, data is read properly:
=> md 2001ff0
02001ff0: 02020202 02020202 02020202 02020202 ................
02002000: 03030303 03030303 03030303 03030303 ................
02002010: 03030303 03030303 03030303 03030303 ................
Note that the code previously (before commit e3427184f3 ("fs: btrfs:
Implement btrfs_file_read()")) did not split that read in two, so
this is a regression even if the previous code might not have been
handling offsets correctly either (something that booted now fails to
boot)
Fixes: a26a6bedaf ("fs: btrfs: Introduce btrfs_read_extent_inline() and btrfs_read_extent_reg()")
Signed-off-by: Dominique Martinet <dominique.martinet@atmark-techno.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
The deletion process handles special case for symlinks whose target are
small enough that it fits in struct ext2_inode.b.symlink. So no block had
been allocated. But the check of file type wrongly considered regular
files as symlink. So, no block was freed. So, the EXT4 partition could be
corrupted because of no free block available.
Signed-off-by: Corentin GUILLEVIC <corentin.guillevic@smile.fr>
Do not mangle lower or mixed case filenames which fit into the upper
case 8.3 short filename. This ensures FAT standard compatible short
filenames (SFN) to support systems without long filename (LFN) support
like boot roms (ex. SFN BOOT.BIN instead of BOOT~1.BIN for LFN
boot.bin).
Signed-off-by: Stefan Herbrechtsmeier <stefan.herbrechtsmeier@weidmueller.com>
No need to mount a too small partition to handle a EXT4 file system.
This patch add a test on partition size before to read the
SUPERBLOCK_SIZE buffer and avoid error latter in fs_devread() function.
Signed-off-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
[BUG]
There is a bug report that btrfs driver caused hang during file read:
This breaks btrfs on the HiFive Unmatched.
=> pci enum
PCIE-0: Link up (Gen1-x8, Bus0)
=> nvme scan
=> load nvme 0:2 0x8c000000 /boot/dtb/sifive/hifive-unmatched-a00.dtb
[hangs]
[CAUSE]
The reporter provided some debug output:
read_extent_data: cur=615817216, orig_len=16384, cur_len=16384
read_extent_data: btrfs_map_block: cur_len=479944704; ret=0
read_extent_data: ret=0
read_extent_data: cur=615833600, orig_len=4096, cur_len=4096
read_extent_data: btrfs_map_block: cur_len=479928320; ret=0
Note the second and the last line, the @cur_len is 450+MiB, which is
almost a chunk size.
And inside __btrfs_map_block(), we limits the returned value to stripe
length, but that's depending on the chunk type:
if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4 |
BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
BTRFS_BLOCK_GROUP_RAID10 |
BTRFS_BLOCK_GROUP_DUP)) {
/* we limit the length of each bio to what fits in a stripe */
*length = min_t(u64, ce->size - offset,
map->stripe_len - stripe_offset);
} else {
*length = ce->size - offset;
}
This means, if the chunk is SINGLE profile, then we don't limit the
returned length at all, and even for other profiles, we can still return
a length much larger than the requested one.
[FIX]
Properly clamp the returned length, preventing it from returning a much
larger range than expected.
Reported-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Qu Wenruo <wqu@suse.com>
This converts 1 usage of this option to the non-SPL form, since there is
no SPL_FS_EROFS defined in Kconfig
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Huang Jianan <jnhuang95@gmail.com>
Sometimes it is useful to log things related to filesystems. Add a new
category and place it at the top of one of the FAT files.
Signed-off-by: Simon Glass <sjg@chromium.org>
UEFI applications call file system functions to determine if a file exists.
The return codes are evaluated to show appropriate messages.
U-Boot's file system layer should not interfere with the output.
Rename file_fat_read_at() to fat_read_file() adjusting the parameter
sequence and names and eliminate the old wrapper function.
Signed-off-by: Heinrich Schuchardt <heinrich.schuchardt@canonical.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
Reviewed-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Update the zstd implementation to match Linux zstd 1.5.2 from commit
2aa14b1ab2.
This was motivated by running into decompression corruption issues when
trying to uncompress files compressed with newer versions of zstd. zstd
users also claim significantly improved decompression times with newer
zstd versions which is a side benefit.
Original zstd code was copied from Linux commit 2aa14b1ab2 which is a
custom-built implementation based on zstd 1.3.1. Linux switched to an
implementation that is a copy of the upstream zstd code in Linux commit
e0c1b49f5b, this results in a large code diff. However this should make
future updates easier along with other benefits[1].
This commit is a straight mirror of the Linux zstd code, except to:
- update a few #include that do not translate cleanly
- linux/swab.h -> asm/byteorder.h
- linux/limits.h -> linux/kernel.h
- linux/module.h -> linux/compat.h
- remove assert() from debug.h so it doesn't conflict with u-boot's
assert()
- strip out the compressor code as was done in the previous u-boot zstd
- update existing zstd users to the new Linux zstd API
- change the #define for MEM_STATIC to use INLINE_KEYWORD for codesize
- add a new KConfig option that sets zstd build options to minify code
based on zstd's ZSTD_LIB_MINIFY[2].
These changes were tested by booting a zstd 1.5.2 compressed kernel inside a
FIT. And the squashfs changes by loading a file from zstd compressed squashfs
with sqfsload. buildman was used to compile test other boards and check for
binary bloat, as follows:
> $ buildman -b zstd2 --boards dh_imx6,m53menlo,mvebu_espressobin-88f3720,sandbox,sandbox64,stm32mp15_dhcom_basic,stm32mp15_dhcor_basic,turris_mox,turris_omnia -sS
> Summary of 6 commits for 9 boards (8 threads, 1 job per thread)
> 01: Merge branch '2023-01-10-platform-updates'
> arm: w+ m53menlo dh_imx6
> 02: lib: zstd: update to latest Linux zstd 1.5.2
> aarch64: (for 2/2 boards) all -3186.0 rodata +920.0 text -4106.0
> arm: (for 5/5 boards) all +1254.4 rodata +940.0 text +314.4
> sandbox: (for 2/2 boards) all -4452.0 data -16.0 rodata +640.0 text -5076.0
[1] e0c1b49f5b
[2] f302ad8811/lib/libzstd.mk (L31)
Signed-off-by: Brandon Maier <brandon.maier@collins.com>
[trini: Set ret to -EINVAL for the error of "failed to detect
compressed" to fix warning, drop ZSTD_SRCSIZEHINT_MAX for non-Linux host
tool builds]
Signed-off-by: Tom Rini <trini@konsulko.com>
[BUG]
Since btrfs supports single device RAID0 at mkfs time after btrfs-progs
v5.14, if we create a single device raid0 btrfs, and created a file
crossing stripe boundary:
# mkfs.btrfs -m dup -d raid0 test.img
# mount test.img mnt
# xfs_io -f -c "pwrite 0 128K" mnt/file
# umount mnt
Since btrfs is using 64K as stripe length, above 128K data write is
definitely going to cross at least one stripe boundary.
Then u-boot would fail to read above 128K file:
=> host bind 0 /home/adam/test.img
=> ls host 0
< > 131072 Fri Dec 30 00:18:25 2022 file
=> load host 0 0 file
BTRFS: An error occurred while reading file file
Failed to load 'file'
[CAUSE]
Unlike tree blocks read, data extent reads doesn't consider cases in which
one data extent can cross stripe boundary.
In read_data_extent(), we just call btrfs_map_block() once and read the
first mapped range.
And if the first mapped range is smaller than the desired range, it
would return error.
But since even single device btrfs can utilize RAID0 profiles, the first
mapped range can only be at most 64K for RAID0 profiles, and cause false
error.
[FIX]
Just like read_whole_eb(), we should call btrfs_map_block() in a loop
until we read all data.
Since we're here, also add extra error messages for the following cases:
- btrfs_map_block() failure
We already have the error message for it.
- Missing device
This should not happen, as we only support single device for now.
- __btrfs_devread() failure
With this bug fixed, btrfs driver of u-boot can properly read the above
128K file, and have the correct content:
=> host bind 0 /home/adam/test.img
=> ls host 0
< > 131072 Fri Dec 30 00:18:25 2022 file
=> load host 0 0 file
131072 bytes read in 0 ms
=> md5sum 0 0x20000
md5 for 00000000 ... 0001ffff ==> d48858312a922db7eb86377f638dbc9f
^^^ Above md5sum also matches.
Reported-by: Sam Winchenbach <swichenbach@tethers.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
For a squashfs filesystem, the fragment table is followed by
the following tables: NFS export table, ID table, xattr table.
The export and xattr tables are both completely optional, but
the ID table is mandatory. The Linux implementation refuses to
mount the image if the ID table is missing. Tables that are no
present have their location in the super block set
to 0xFFFFFFFFFFFFFFFF.
The u-boot implementation previously assumed that it can always
rely on the export table location as an upper bound for the fragment
table, trying (and failing) to read past filesystem bounds if it
is not present.
This patch changes the driver to use the ID table instead and only
use the export table location if it lies between the two.
Signed-off-by: David Oberhollenzer <goliath@infraroot.at>
Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com>
When compling for x86:
u-boot/fs/squashfs/sqfs.c:90: undefined reference to `__udivmoddi4'
Signed-off-by: Kasper Revsbech <kasper.revsbech.ext@siemensgamesa.com>
Tested-by: Sean Nyekjaer <sean@geanix.com>
The 'depth_dirname', 'ptr', 'parent_inode' and 'first_inode' pointers
may be null. Thus, it is necessary to check them before using free() to
avoid free(NULL) cases.
Fixes: 934b14f2bb ("ext4: free allocations by parse_path()")
Signed-off-by: Mikhail Ilin <ilin.mikhail.ol@gmail.com>
Debug dump logs are not always required. Add a new config option
UBIFS_SILENCE_DEBUG_DUMP to silence all debug dumps. On powerpc/mpc85xx
when enabled this will decrease size of U-Boot binary by 11 kB.
Signed-off-by: Pali Rohár <pali@kernel.org>
Tested-by: Tony Dinh <mibodhi@gmail.com>
Move the symbol SYS_JFFS2_SORT_FRAGMENTS to Kconfig and use the only
remaining part of doc/README.JFFS2 that is still relevant and useful to
the help for this option.
Signed-off-by: Tom Rini <trini@konsulko.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
When looking for a filesystem on a partition we should do so quietly. At
present if the filesystem is very small (e.g. 512 bytes) we get a host of
messages.
Update these to only show when debugging.
Signed-off-by: Simon Glass <sjg@chromium.org>
This line probably got in by mistake as there is no fs_mutex member in
the btrfs_fs_info struct.
Signed-off-by: Pankaj Raghav <p.raghav@samsung.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Globally replace all occurances of WATCHDOG_RESET() with schedule(),
which handles the HW_WATCHDOG functionality and the cyclic
infrastructure.
Signed-off-by: Stefan Roese <sr@denx.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
Tested-by: Tom Rini <trini@konsulko.com> [am335x_evm, mx6cuboxi, rpi_3,dra7xx_evm, pine64_plus, am65x_evm, j721e_evm]
At present we use HAVE_BLOCK_DEVICE to indicate when block devices are
available.
This is a very strange option, since it partially duplicates the BLK
option used by driver model. It also covers both U-Boot proper and SPL,
even though one might have block devices and another not.
As a first step towards correcting this, create a new inline function
called blk_enabled() which indicates if block devices are available.
This cannot be used in Makefiles, or #if clauses, but can be used in C
code.
A function is useful because we cannot use CONFIG_IS_ENABLED(BLK) to
decide if block devices are needed, since we must consider the legacy
block interface, enabled by HAVE_BLOCK_DEVICE
Update a few places where it can be used and drop some unnecessary #if
checks around some functions in disk/part.c - rely on the compiler's
dead-code elimination instead.
Signed-off-by: Simon Glass <sjg@chromium.org>
This patch integrates the main function responsible for calling all
registered cyclic functions cyclic_run() into the common WATCHDOG_RESET
macro. This guarantees that cyclic_run() is executed very often, which
is necessary for the cyclic functions to get scheduled and executed at
their configured periods.
If CONFIG_WATCHDOG is not enabled, only cyclic_run() without calling
watchdog_reset(). This guarantees that the cyclic functionality does not
rely on CONFIG_WATCHDOG being enabled.
Signed-off-by: Stefan Roese <sr@denx.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
fs_set_blk_dev() probes all file-systems until it finds one that matches
the volume. We do not expect any console output for non-matching
file-systems.
Convert error messages in erofs_read_superblock() to debug output.
Fixes: 830613f8f5 ("fs/erofs: add erofs filesystem support")
Signed-off-by: Heinrich Schuchardt <heinrich.schuchardt@canonical.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Huang Jianan <jnhuang95@gmail.com>
A large number of files include <flash.h> as it used to be how various
SPI flash related functions were found, or for other reasons entirely.
In order to migrate some further CONFIG symbols to Kconfig we need to
not include flash.h in cases where we don't have a NOR flash of some
sort enabled. Furthermore, in cases where we are in common code and it
doesn't make sense to try and further refactor the code itself in to new
files we need to guard this inclusion.
Signed-off-by: Tom Rini <trini@konsulko.com>
Fix diacritics in some instances of my name and change my e-mail address
to kabel@kernel.org.
Add corresponding .mailmap entries.
Signed-off-by: Marek Behún <kabel@kernel.org>
Reviewed-by: Stefan Roese <sr@denx.de>
U-Boot does not implement down_write_trylock() and its stub always returns
true that lock was acquired. Therefore ubifs_assert_cmt_locked() assert
currently always fails.
Fix this issue by redefining ubifs_assert_cmt_locked() to just empty stub
as there is nothing to assert.
Signed-off-by: Pali Rohár <pali@kernel.org>
Original ubifs code was designed that after ubifs_umount() call it is
required to also call ubi_close_volume() which closes underlying UBI
volume. But U-Boot ubifs modification have not implemented it properly
which caused that ubifsumount command contains resource leak. It can be
observed by calling simple sequence of commands:
=> ubi part mtd2
ubi0: attaching mtd2
...
=> ubifsmount ubi0
=> ubifsumount
Unmounting UBIFS volume rootfs!
=> ubi detach
ubi0 error: ubi_detach_mtd_dev: ubi0 reference count 1, destroy anyway
ubi0: detaching mtd2
ubi0: mtd2 is detached
Fix this issue by calling ubi_close_volume() and mutex_unlock() in
directly in ubifs_umount() function before freeing U-Boot's global
ubifs_sb. And remove duplicate calls of these two functions in remaining
places. Note that when ubifs_umount() is not called then during error
handling is still needed to call ubi_close_volume() and mutex_unlock.
With this change ubifsumount command does not throw that error anymore:
=> ubi part rootfs
ubi0: attaching mtd2
...
=> ubifsmount ubi0
=> ubifsumount
Unmounting UBIFS volume rootfs!
=> ubi detach
ubi0: detaching mtd2
ubi0: mtd2 is detached
Signed-off-by: Pali Rohár <pali@kernel.org>
Tighten up symbol dependencies in a number of places. Ensure that a SPL
specific option has at least a direct dependency on SPL. In places
where it's clear that we depend on something more specific, use that
dependency instead. This means in a very small number of places we can
drop redundant dependencies.
Reported-by: Pali Rohár <pali@kernel.org>
Signed-off-by: Tom Rini <trini@konsulko.com>
A crafted squashfs image could embed a huge number of empty metadata
blocks in order to make the amount of malloc()'d memory overflow and be
much smaller than expected. Because of this flaw, any random code
positioned at the right location in the squashfs image could be memcpy'd
from the squashfs structures into U-Boot code location while trying to
access the rearmost blocks, before being executed.
In order to prevent this vulnerability from being exploited in eg. a
secure boot environment, let's add a check over the amount of data
that is going to be allocated. Such a check could look like:
if (!elem_size || n > SIZE_MAX / elem_size)
return NULL;
The right way to do it would be to enhance the calloc() implementation
but this is quite an impacting change for such a small fix. Another
solution would be to add the check before the malloc call in the
squashfs implementation, but this does not look right. So for now, let's
use the kcalloc() compatibility function from Linux, which has this
check.
Fixes: c510061303 ("fs/squashfs: new filesystem")
Reported-by: Tatsuhiko Yasumatsu <Tatsuhiko.Yasumatsu@sony.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Tested-by: Tatsuhiko Yasumatsu <Tatsuhiko.Yasumatsu@sony.com>
Following Jincheng's report, an out-of-band write leading to arbitrary
code execution is possible because on one side the squashfs logic
accepts directory names up to 65535 bytes (u16), while U-Boot fs logic
accepts directory names up to 255 bytes long.
Prevent such an exploit from happening by capping directory name sizes
to 255. Use a define for this purpose so that developers can link the
limitation to its source and eventually kill it some day by dynamically
allocating this array (if ever desired).
Link: https://lore.kernel.org/all/CALO=DHFB+yBoXxVr5KcsK0iFdg+e7ywko4-e+72kjbcS8JBfPw@mail.gmail.com
Reported-by: Jincheng Wang <jc.w4ng@gmail.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Tested-by: Jincheng Wang <jc.w4ng@gmail.com>
Setting sblk = NULL has no effect on the caller.
We want to set *sblk = NULL if an error occurrs to avoid usage after free.
Signed-off-by: Heinrich Schuchardt <heinrich.schuchardt@canonical.com>
After returning if ret <= 0 we know that ret > 0. No need to check it.
Signed-off-by: Heinrich Schuchardt <heinrich.schuchardt@canonical.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain>
Commit b1a14f8a1c ("UBIFS: Change ubifsload to not read beyond the
requested size") added optimization to do not read more bytes than it is
really needed. But this commit introduced incorrect handling of the hole at
the end of file. This logic cause U-Boot to crash or lockup when trying to
read from the ubifs filesystem.
When read_block() call returns -ENOENT error (not an error, but the hole)
then dn-> structure is not filled and contain garbage. So using of dn->size
for memcpy() argument cause that U-Boot tries to copy unspecified amount of
bytes from possible unmapped memory. Which randomly cause lockup of P2020
CPU.
Fix this issue by copying UBIFS_BLOCK_SIZE bytes from read buffer when
dn->size is not available. UBIFS_BLOCK_SIZE is the size of the buffer
itself and read_block() fills buffer by zeros when it returns -ENOENT.
This patch fixes ubifsload on P2020.
Fixes: b1a14f8a1c ("UBIFS: Change ubifsload to not read beyond the requested size")
Signed-off-by: Pali Rohár <pali@kernel.org>
Reviewed-by: Stefan Roese <sr@denx.de>
When compling for x86:
ld.bfd: fs/squashfs/sqfs.o: in function `sqfs_read':
u-boot/fs/squashfs/sqfs.c:1443: undefined reference to `__udivmoddi4'
ld.bfd: u-boot/fs/squashfs/sqfs.c:1521: undefined reference to `__udivmoddi4'
Signed-off-by: Sean Nyekjaer <sean.nyekjaer.ext@siemensgamesa.com>
Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com>
Reviewed-by: Pali Rohár <pali@kernel.org>
It is helpful to be able to try out bootstd on sandbox, using host files.
This is easier than using a block device, which must have a filesystem,
partition table, etc.
Add a new driver which provides this feature. For now it is not used in
tests, but it is likely to be useful.
Add notes in the devicetree also, but don't disturb the tests.
Signed-off-by: Simon Glass <sjg@chromium.org>
When sandbox is used with hostfs we won't have a block device, but still
must set up the filesystem type before any filesystem operation, such as
loading a file. Add a function to handle this.
Signed-off-by: Simon Glass <sjg@chromium.org>
Implementation in linux/crc16.h provides standard CRC-16 algorithm with
polynomial x^16 + x^15 + x^2 + 1. Use it and remove duplicate ext4 CRC-16
specific code.
Signed-off-by: Pali Rohár <pali@kernel.org>
Reviewed-by: Stefan Roese <sr@denx.de>
File fs/ubifs/crc16.h is standard linux's crc16.h include file. So move it
from fs/ubifs to include/linux where are also other linux include files.
Signed-off-by: Pali Rohár <pali@kernel.org>
Reviewed-by: Stefan Roese <sr@denx.de>
Currently there is no btrfs support in SPL. But macro CONFIG_FS_BTRFS is
defined also when building SPL. When both FS_BTRFS and SPL are enabled
then build process throw compile error.
Fix check for btrfs code in fstypes[] to allow compiling FS_BTRFS only in
proper U-Boot.
Signed-off-by: Pali Rohár <pali@kernel.org>
Fix following two compile errors on big endian systems:
CC fs/btrfs/btrfs.o
In file included from include/linux/byteorder/big_endian.h:107,
from ./arch/powerpc/include/asm/byteorder.h:82,
from ./arch/powerpc/include/asm/bitops.h:8,
from include/linux/bitops.h:152,
from include/uuid.h:9,
from fs/btrfs/btrfs.c:10:
fs/btrfs/conv-funcs.h: In function ‘btrfs_key_to_disk’:
include/linux/byteorder/generic.h:90:21: error: ‘__cpu_to_le16’ undeclared (first use in this function); did you mean ‘__cpu_to_le16p’?
#define cpu_to_le16 __cpu_to_le16
^~~~~~~~~~~~~
fs/btrfs/conv-funcs.h:79:10: note: in expansion of macro ‘cpu_to_le16’
__u16: cpu_to_le16, \
^~~~~~~~~~~
CC fs/btrfs/compression.o
In file included from ./arch/powerpc/include/asm/unaligned.h:9,
from fs/btrfs/compression.c:16:
include/linux/unaligned/access_ok.h:6:19: error: redefinition of ‘get_unaligned_le16’
static inline u16 get_unaligned_le16(const void *p)
^~~~~~~~~~~~~~~~~~
In file included from fs/btrfs/ctree.h:16,
from fs/btrfs/btrfs.h:12,
from fs/btrfs/compression.c:8:
include/linux/unaligned/le_byteshift.h:40:19: note: previous definition of ‘get_unaligned_le16’ was here
static inline u16 get_unaligned_le16(const void *p)
^~~~~~~~~~~~~~~~~~
Include file asm/unaligned.h contains arch specific macros and functions
for unaligned access as opposite to linux/unaligned le_byteshift.h which
contains macros and functions specific to little endian systems only.
Signed-off-by: Pali Rohár <pali@kernel.org>
Reviewed-by: Marek Behún <marek.behun@nic.cz>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Currently there is no UBIFS support in SPL. But macro CONFIG_CMD_UBIFS is
defined also when building SPL. when both CMD_UBIFS and SPL are enabled
then build process throw compile error.
Fix check for ubifs code in fstypes[] to allow compiling CMD_UBIFS only in
proper U-Boot.
Signed-off-by: Pali Rohár <pali@kernel.org>
Backport commit 1cb51a15b576 ("ubifs: Fix journal replay wrt. xattr
nodes") from the Linux Kernel, which has the following Signed-off-by
line:
Signed-off-by: Richard Weinberger <richard@nod.at>
For U-Boot, after comapring with the upstream commit:
Signed-off-by: Tom Rini <trini@konsulko.com>
This adds a filesystem which is backed by the host's filesystem. It is
modeled off of sandboxfs, which has very similar aims. Semihosting
doesn't support listing directories (except with SYS_SYSTEM), so neither
do we. it's possible to optimize a bit for the common case of reading a
whole file by omitting a call to smh_seek, but this is left as a future
optimization.
Signed-off-by: Sean Anderson <sean.anderson@seco.com>
[BUG]
When passing a btrfs with NO_HOLE feature to U-boot, and if one file
contains holes, then the hash of the file is not correct in U-boot:
# mkfs.btrfs -f test.img # Since v5.15, mkfs defaults to NO_HOLES
# mount test.img /mnt/btrfs
# xfs_io -f -c "pwrite 0 4k" -c "pwrite 8k 4k" /mnt/btrfs/file
# md5sum /mnt/btrfs/file
277f3840b275c74d01e979ea9d75ac19 /mnt/btrfs/file
# umount /mnt/btrfs
# ./u-boot
=> host bind 0 /home/adam/test.img
=> ls host 0
< > 12288 Mon Dec 27 05:35:23 2021 file
=> load host 0 0x1000000 file
12288 bytes read in 0 ms
=> md5sum 0x1000000 0x3000
md5 for 01000000 ... 01002fff ==> 855ffdbe4d0ccc5acab92e1b5330e4c1
The md5sum doesn't match at all.
[CAUSE]
In U-boot btrfs implementation, the function btrfs_read_file() has the
following iteration for file extent iteration:
/* Read the aligned part */
while (cur < aligned_end) {
ret = lookup_data_extent(root, &path, ino, cur, &next_offset);
if (ret < 0)
goto out;
if (ret > 0) {
/* No next, direct exit */
if (!next_offset) {
ret = 0;
goto out;
}
}
/* Read file extent */
But for NO_HOLES features, hole extents will not have any extent item
for it.
Thus if @cur is at a hole, lookup_data_extent() will just return >0, and
update @next_offset.
But we still believe there is some data to read for @cur for ret > 0
case, causing we read extent data from the next file extent.
This means, what we do for above NO_HOLES btrfs is:
- Read 4K data from disk to file offset [0, 4K)
So far the data is still correct
- Read 4K data from disk to file offset [4K, 8K)
We didn't skip the 4K hole, but read the data at file offset [8K, 12K)
into file offset [4K, 8K).
This causes the checksum mismatch.
[FIX]
Add extra check to skip to the next non-hole range after
lookup_data_extent().
Signed-off-by: Qu Wenruo <wqu@suse.com>
This converts the following to Kconfig:
CONFIG_JFFS2_DEV
CONFIG_JFFS2_LZO
CONFIG_JFFS2_NAND
CONFIG_JFFS2_PART_OFFSET
CONFIG_JFFS2_PART_SIZE
Signed-off-by: Tom Rini <trini@konsulko.com>
For the symbols which are both hard-coded as enabled and used, move to
Kconfig. The rest of the CONFIG_YAFFS namespace is unselected anywhere,
so we leave it as is.
Signed-off-by: Tom Rini <trini@konsulko.com>
The original purpose of mtd_erase_callback() in Linux at the time it was
imported to U-Boot, was to inform the caller that erasing is done (since
it was an asynchronous operation).
All supplied callback methods in U-Boot do nothing, but the
mtd_erase_callback() function was (until previous patch) grossly abused
in U-Boot's mtdpart implementation for completely different purpose.
Since we got rid of the abusement, remove the mtd_erase_callback()
function and the .callback member from struct erase_info entirely, in
order to avoid such problems in the future.
Signed-off-by: Marek Behún <marek.behun@nic.cz>
This patch optimizes the commit mentioned below by avoiding running
a set of commands which are useless in the case when
size < mydata->sect_size and sect_count would be 0.
Fixes: 5b3ddb17ba ("fs/fat/fat.c: Do not perform zero block reads if there are no blocks left")
Signed-off-by: Ricardo Salveti <ricardo@foundries.io>
Co-developed-by: Oleksandr Suvorov <oleksandr.suvorov@foundries.io>
Signed-off-by: Oleksandr Suvorov <oleksandr.suvorov@foundries.io>
We only include <linux/mtd/rawnand.h> in <nand.h> for the forward
declaration of struct nand_chip, so do that directly. Then, include
<linux/mtd/rawnand.h> where required directly.
Signed-off-by: Tom Rini <trini@konsulko.com>
Output like the following is quite irritating:
=> bootefi hello
Scanning disk mmc2.blk...
No valid Btrfs found
Bad magic number for SquashFS image.
** Unrecognized filesystem type **
Scanning disk mmc1.blk...
No valid Btrfs found
Bad magic number for SquashFS image.
** Unrecognized filesystem type **
Scanning disk mmc0.blk...
No valid Btrfs found
Bad magic number for SquashFS image.
** Unrecognized filesystem type **
Albeit a whole disk may be formatted with a filesystem in most cases
a partition table is used and the whole disk (partition number 0) doesn't
contain a filesytem. Some partitions may only contain a blob. Not seeing a
filesytem on the whole disk or on any partition is only worth a debug
message.
Signed-off-by: Heinrich Schuchardt <heinrich.schuchardt@canonical.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
This message comes up a lot when scanning filesystems. It suggests to the
user that there is some sort of error, but in fact there is no reason to
expect that a particular partition has a sqfs filesystem. Other
filesystems don't print this error.
Turn it into a debug message.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com>
This message comes up a lot when scanning filesystems. It suggests to the
user that there is some sort of error, but in fact there is no reason to
expect that a particular partition has a btrfs filesystem. Other
filesystems don't print this error.
Turn it into a debug message.
Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Marek Behún <marek.behun@nic.cz>
Reviewed-by: Qu Wenruo <wqu@suse.com>
BTRFS volume consists of a number of subvolumes which can be mounted separately
from each other. The top-level subvolume always exists even if no subvolumes
were created manually. A subvolume can be denoted as the default subvolume i.e.
the subvolume which is mounted by default.
The default "default subvolume" is the top-level one, but this is far from the
common practices used in the wild. For instance, openSUSE provides an OS
snapshot/rollback feature based on BTRFS. To achieve this, the actual OS root
filesystem is located into a separate subvolume which is "default" but not
"top-level". That means that the /boot/dtb/ directory is also located inside
this default subvolume instead of top-level one.
However, the existing btrfs u-boot driver always uses the top-level subvolume
as the filesystem root. This behaviour 1) is inconsistent with
mount /dev/sda1 /target
command, which mount the default subvolume 2) leads to the issues when
/boot/dtb cannot be found properly (see the reference).
This patch uses the default subvolume as the filesystem root to overcome
mentioned issues.
Reference: https://bugzilla.suse.com/show_bug.cgi?id=1185656
Signed-off-by: Matwey V. Kornilov <matwey.kornilov@gmail.com>
Fixes: f06bfcf54d ("fs: btrfs: Crossport open_ctree_fs_info() from btrfs-progs")
Reviewed-by: Qu Wenruo <wqu@suse.com>
In SquashFS, the contents of a directory is stored by
squashfs_directory_entry structures which contain the file's name, inode
and position within the filesystem.
The inode number is not stored directly; instead each directory has one
or more headers which set a base inode number, and files store the
offset from that to the file's inode number.
In mksquashfs, each inode is allocated a number in the same order as
they are written to the directory table; thus the offset from the
header's base inode number to the file's inode number is usually
positive.
Hardlinks are simply stored with two directory entries referencing the
same file. This means the second entry will thus have an inode number
much lower than the surrounding files. Since the header's base inode
number comes from the first entry that uses the header, this delta will
usually be negative.
Previously, U-Boot's squashfs_directory_entry.inode_offset field was
declared as an unsigned value. Thus when a negative value was found, it
would either resolve to an invalid inode number or to that of an
unrelated file.
A squashfs image to test this can be created like so:
echo hi > sqfs_test_files/001-root-file
mkdir sqfs_test_files/002-subdir
touch sqfs_test_files/002-subdir/003-file
ln sqfs_test_files/{001-root-file,002-subdir/004-link}
mksquashfs sqfs_test_files/ test.sqfs -noappend
Note that squashfs sorts the files ASCIIbetacally, so we can use the
names to control the order they appear in. The ordering is important -
the first reference to the file must have a lower inode number than the
directory in which the second reference resides, and the second
reference cannot be the first file in the directory.
Listing this sample image in U-Boot results in:
=> sqfsls virtio 2 002-subdir
0 003-file
Inode not found.
0 004-link
Signed-off-by: Campbell Suter <campbell@snapit.group>
Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com>
It is a pain to have to specify the value 16 in each call. Add a new
hextoul() function and update the code to use it.
Add a proper comment to simple_strtoul() while we are here.
Signed-off-by: Simon Glass <sjg@chromium.org>
Since the ACPI-generation code makes use of UUIDs we typically need to
enabled UUID support for it to build. Add a new Kconfig condition.
Use it for BTRFS also.
Signed-off-by: Simon Glass <sjg@chromium.org>
When reading a directory in the UEFI file system we have to return file
attributes and timestamps. Copy this data to the directory entry structure.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
The fragmented files were not correctly read because of two issues:
- The squashfs_file_info struct has a field named 'comp', which tells if
the file's fragment is compressed or not. This field was always set to
'true' in sqfs_get_regfile_info and sqfs_get_lregfile_info. It should
actually take sqfs_frag_lookup's return value. This patch addresses
these two assignments.
- In sqfs_read, the fragments (compressed or not) were copied to the
output buffer through a for loop which was reading data at the wrong
offset. Replace these loops by equivalent calls to memcpy, with the
right parameters.
I tested this patch by comparing the MD5 checksum of a few fragmented
files with the respective md5sum output in sandbox, considering both
compressed and uncompressed fragments.
Signed-off-by: Joao Marcos Costa <jmcosta944@gmail.com>
Tested-by: Richard Genoud <richard.genoud@posteo.net>
Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com>
The superblock buffer must be cache aligned, since it might be used
in DMA context, allocate it using ALLOC_CACHE_ALIGN_BUFFER() just
like it was done in btrfs_read_superblock() and read_tree_node().
This fixes this output on boot and non-working btrfs on iMX53:
CACHE: Misaligned operation at range [ced299d0, ced2a9d0]
Signed-off-by: Marek Vasut <marex@denx.de>
Cc: Marek Behún <marek.behun@nic.cz>
Cc: Qu Wenruo <wqu@suse.com>
Reviewed-by: Marek Behún <marek.behun@nic.cz>
When reading directories the UEFI sub-system must supply file attributes
and timestamps. These fields will have to be added to struct fs_dirent.
SquashFS should not fill these fields with random data. Ensure that they
are zeroed out.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Reviewed-by: Miquel Raynal <miquel.raynal@bootlin.com>
There are some cases where decompressed sectors can have padding zeros.
In kernel code, we have lines to address such situation:
/*
* btrfs_getblock is doing a zero on the tail of the page too,
* but this will cover anything missing from the decompressed
* data.
*/
if (bytes < destlen)
memset(kaddr+bytes, 0, destlen-bytes);
kunmap_local(kaddr);
But not in U-boot code, thus we have some reports of U-boot failed to
read compressed files in btrfs.
Fix it by doing the same thing of the kernel, for both inline and
regular compressed extents.
Reported-by: Matwey Kornilov <matwey.kornilov@gmail.com>
Link: https://bugzilla.suse.com/show_bug.cgi?id=1183717
Fixes: a26a6bedaf ("fs: btrfs: Introduce btrfs_read_extent_inline() and btrfs_read_extent_reg()")
Signed-off-by: Qu Wenruo <wqu@suse.com>
Up to now file_fat_detectfs() did not detect some interface types like
EFI, HOST, VIRTIO.
Avoid duplicate code by calling blk_get_if_type_name().
The interface type now will be shown in lower case to match all other use
cases.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Reviewed-by: Simon Glass <sjg@chromium.org>
The function jffs2_1pass_read_inode() was discarding the summary
inodes and dirent because the value in datacrc flag wasn't
initialized in function jffs2_sum_process_sum_data().
This fix initializes the status of all summary records to indicate
that the CRC needs to be verified when they are loaded.
Before this fix, the behaviors produced by the undefined value of
datacrc was:
- Summary's registries were discarded when 'b->datacrc' is equal
as 'CRC_BAD'.
- Summary's registries were not checked when b->datacrc differs of
'CRC_BAD' and 'CRC_UNKNOWN'
So, almost all of the time the crc just isn't checked, and in some
cases the registries are discarded.
Signed-off-by: Wagner Popov dos Santos <wpopov@gmail.com>
Fixes address violation in functions read_nand_cached() and
read_onenand_cached(). This happens because these functions
try to read a fixed amount
of data even when the offset+length
is above the nand's limit.
Signed-off-by: Wagner Popov dos Santos <wpopov@gmail.com>
CBFS now supports compressed filed. Add support for reading this
information so that the correct decompression can be applied. The
decompression itself is not implemented in CBFS.
Signed-off-by: Simon Glass <sjg@chromium.org>
In file_cbfs_next_file() there is a lot of complicated code to move to
the next file. Use the ALIGN() macros to simplify this.
Signed-off-by: Simon Glass <sjg@chromium.org>
The file_cbfs_next_file() function is already fairly long. Before
expanding it further, move the core part into a separate function.
Signed-off-by: Simon Glass <sjg@chromium.org>
The file traversal functions currently use a single global CBFS. In some
cases we need to access multiple CBFSs to obtain different files. Add new
functions to support this.
Signed-off-by: Simon Glass <sjg@chromium.org>
In some cases CBFS does not start with a header but is just a collection
of files. It is possible to support this so long as the size of the CBFS
is provided.
Update the cbfs_init_mem() function to support this.
Signed-off-by: Simon Glass <sjg@chromium.org>
CBFS now supports attributes for things that cannot fit in the header as
originally conceived. Add the structures for these.
Also rename attributes_offset to something shorter, to ease code
readability.
Signed-off-by: Simon Glass <sjg@chromium.org>
Commit 401d1c4f5d ("common: Drop
asm/global_data.h from common header") broke compilation of squashfs
filesystem when CONFIG_CMD_SQUASHFS=y is enabled.
Compilation is failing on error:
aarch64-linux-gnu-ld.bfd: u-boot/fs/squashfs/sqfs_inode.c:121: undefined reference to `le32_to_cpu'
Fixes: 401d1c4f5d ("common: Drop asm/global_data.h from common header")
Suggested-by: Tom Rini <trini@konsulko.com>
Signed-off-by: Pali Rohár <pali@kernel.org>
Reviewed-by: Tom Rini <trini@konsulko.com>
When the btrfs_read_fs_root() function is searching a ROOT_ITEM with
location key offset other than -1, it currently fails via BUG_ON.
The offset can have other value than -1, though. This can happen for
example if a subvolume is renamed:
$ btrfs subvolume create X && sync
Create subvolume './X'
$ btrfs inspect-internal dump-tree /dev/root | grep -B 2 'name: X$
location key (270 ROOT_ITEM 18446744073709551615) type DIR
transid 283 data_len 0 name_len 1
name: X
$ mv X Y && sync
$ btrfs inspect-internal dump-tree /dev/root | grep -B 2 'name: Y$
location key (270 ROOT_ITEM 0) type DIR
transid 285 data_len 0 name_len 1
name: Y
As can be seen the offset changed from -1ULL to 0.
Do not fail in this case.
Signed-off-by: Marek Behún <marek.behun@nic.cz>
Cc: David Sterba <dsterba@suse.com>
Cc: Qu Wenruo <wqu@suse.com>
Cc: Tom Rini <trini@konsulko.com>