memory: Add STM32 Octo Memory Manager driver

Octo Memory Manager driver (OMM) manages:
  - the muxing between 2 OSPI busses and 2 output ports.
    There are 4 possible muxing configurations:
      - direct mode (no multiplexing): OSPI1 output is on port 1 and OSPI2
        output is on port 2
      - OSPI1 and OSPI2 are multiplexed over the same output port 1
      - swapped mode (no multiplexing), OSPI1 output is on port 2,
        OSPI2 output is on port 1
      - OSPI1 and OSPI2 are multiplexed over the same output port 2
  - the split of the memory area shared between the 2 OSPI instances.
  - chip select selection override.
  - the time between 2 transactions in multiplexed mode.
  - check firewall access.

Signed-off-by: Patrice Chotard <patrice.chotard@foss.st.com>
Reviewed-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
This commit is contained in:
Patrice Chotard 2025-09-11 08:59:41 +02:00
parent 08ccc1f56c
commit b7328e2f39
4 changed files with 440 additions and 0 deletions

View File

@ -709,6 +709,7 @@ F: drivers/gpio/stm32_gpio.c
F: drivers/hwspinlock/stm32_hwspinlock.c F: drivers/hwspinlock/stm32_hwspinlock.c
F: drivers/i2c/stm32f7_i2c.c F: drivers/i2c/stm32f7_i2c.c
F: drivers/mailbox/stm32-ipcc.c F: drivers/mailbox/stm32-ipcc.c
F: drivers/memory/stm32-omm.c
F: drivers/misc/stm32mp_fuse.c F: drivers/misc/stm32mp_fuse.c
F: drivers/misc/stm32_rcc.c F: drivers/misc/stm32_rcc.c
F: drivers/mmc/stm32_sdmmc2.c F: drivers/mmc/stm32_sdmmc2.c

View File

@ -37,6 +37,23 @@ config STM32_FMC2_EBI
devices (like SRAM, ethernet adapters, FPGAs, LCD displays, ...) on devices (like SRAM, ethernet adapters, FPGAs, LCD displays, ...) on
SOCs containing the FMC2 External Bus Interface. SOCs containing the FMC2 External Bus Interface.
config STM32_OMM
tristate "STM32 Octo Memory Manager"
depends on ARCH_STM32MP
help
This driver manages the muxing between the 2 OSPI busses and
the 2 output ports. There are 4 possible muxing configurations:
- direct mode (no multiplexing): OSPI1 output is on port 1 and OSPI2
output is on port 2
- OSPI1 and OSPI2 are multiplexed over the same output port 1
- swapped mode (no multiplexing), OSPI1 output is on port 2,
OSPI2 output is on port 1
- OSPI1 and OSPI2 are multiplexed over the same output port 2
It also manages :
- the split of the memory area shared between the 2 OSPI instances.
- chip select selection override.
- the time between 2 transactions in multiplexed mode.
config TI_AEMIF config TI_AEMIF
tristate "Texas Instruments AEMIF driver" tristate "Texas Instruments AEMIF driver"
depends on ARCH_KEYSTONE || ARCH_DAVINCI depends on ARCH_KEYSTONE || ARCH_DAVINCI

View File

@ -2,6 +2,7 @@
obj-$(CONFIG_MEMORY) += memory-uclass.o obj-$(CONFIG_MEMORY) += memory-uclass.o
obj-$(CONFIG_SANDBOX_MEMORY) += memory-sandbox.o obj-$(CONFIG_SANDBOX_MEMORY) += memory-sandbox.o
obj-$(CONFIG_STM32_FMC2_EBI) += stm32-fmc2-ebi.o obj-$(CONFIG_STM32_FMC2_EBI) += stm32-fmc2-ebi.o
obj-$(CONFIG_STM32_OMM) += stm32_omm.o
obj-$(CONFIG_ATMEL_EBI) += atmel_ebi.o obj-$(CONFIG_ATMEL_EBI) += atmel_ebi.o
obj-$(CONFIG_TI_AEMIF) += ti-aemif.o ti-aemif-cs.o obj-$(CONFIG_TI_AEMIF) += ti-aemif.o ti-aemif-cs.o
obj-$(CONFIG_TI_GPMC) += ti-gpmc.o obj-$(CONFIG_TI_GPMC) += ti-gpmc.o

421
drivers/memory/stm32_omm.c Normal file
View File

@ -0,0 +1,421 @@
// SPDX-License-Identifier: GPL-2.0-or-later OR BSD-3-Clause
/*
* Copyright (C) 2025, STMicroelectronics - All Rights Reserved
*/
#define LOG_CATEGORY UCLASS_NOP
#include <clk.h>
#include <dm.h>
#include <regmap.h>
#include <reset.h>
#include <syscon.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/of_addr.h>
#include <dm/of_access.h>
#include <linux/bitfield.h>
#include <linux/ioport.h>
#include <mach/rif.h>
/* OCTOSPI control register */
#define OCTOSPIM_CR 0
#define CR_MUXEN BIT(0)
#define CR_MUXENMODE_MASK GENMASK(1, 0)
#define CR_CSSEL_OVR_EN BIT(4)
#define CR_CSSEL_OVR_MASK GENMASK(6, 5)
#define CR_REQ2ACK_MASK GENMASK(23, 16)
#define OMM_CHILD_NB 2
#define OMM_CLK_NB 3
#define OMM_RESET_NB 3
#define NSEC_PER_SEC 1000000000L
struct stm32_omm_plat {
phys_addr_t regs_base;
struct regmap *syscfg_regmap;
struct clk clk[OMM_CLK_NB];
struct reset_ctl reset_ctl[OMM_RESET_NB];
resource_size_t mm_ospi2_size;
u32 mux;
u32 cssel_ovr;
u32 req2ack;
u32 amcr_base;
u32 amcr_mask;
unsigned long clk_rate_max;
u8 nb_child;
};
static int stm32_omm_set_amcr(struct udevice *dev, bool set)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
unsigned int amcr, read_amcr;
amcr = plat->mm_ospi2_size / SZ_64M;
if (set)
regmap_update_bits(plat->syscfg_regmap, plat->amcr_base,
plat->amcr_mask, amcr);
/* read AMCR and check coherency with memory-map areas defined in DT */
regmap_read(plat->syscfg_regmap, plat->amcr_base, &read_amcr);
read_amcr = read_amcr >> (ffs(plat->amcr_mask) - 1);
if (amcr != read_amcr) {
dev_err(dev, "AMCR value not coherent with DT memory-map areas\n");
return -EINVAL;
}
return 0;
}
static int stm32_omm_toggle_child_clock(struct udevice *dev, bool enable)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
int i, ret;
for (i = 0; i < plat->nb_child; i++) {
if (enable) {
ret = clk_enable(&plat->clk[i + 1]);
if (ret) {
dev_err(dev, "Can not enable clock\n");
goto clk_error;
}
} else {
clk_disable(&plat->clk[i + 1]);
}
}
return 0;
clk_error:
while (i--)
clk_disable(&plat->clk[i + 1]);
return ret;
}
static int stm32_omm_disable_child(struct udevice *dev)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
int ret;
u8 i;
ret = stm32_omm_toggle_child_clock(dev, true);
if (ret)
return ret;
for (i = 0; i < plat->nb_child; i++) {
/* reset OSPI to ensure CR_EN bit is set to 0 */
reset_assert(&plat->reset_ctl[i + 1]);
udelay(2);
reset_deassert(&plat->reset_ctl[i + 1]);
}
return stm32_omm_toggle_child_clock(dev, false);
}
static int stm32_omm_configure(struct udevice *dev)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
int ret;
u32 mux = 0;
u32 cssel_ovr = 0;
u32 req2ack = 0;
/* Ensure both OSPI instance are disabled before configuring OMM */
ret = stm32_omm_disable_child(dev);
if (ret)
return ret;
ret = clk_enable(&plat->clk[0]);
if (ret) {
dev_err(dev, "Failed to enable OMM clock (%d)\n", ret);
return ret;
}
reset_assert(&plat->reset_ctl[0]);
udelay(2);
reset_deassert(&plat->reset_ctl[0]);
if (plat->mux & CR_MUXEN) {
if (plat->req2ack) {
req2ack = DIV_ROUND_UP(plat->req2ack,
NSEC_PER_SEC / plat->clk_rate_max) - 1;
if (req2ack > 256)
req2ack = 256;
}
req2ack = FIELD_PREP(CR_REQ2ACK_MASK, req2ack);
clrsetbits_le32(plat->regs_base + OCTOSPIM_CR, CR_REQ2ACK_MASK,
req2ack);
/*
* If the mux is enabled, the 2 OSPI clocks have to be
* always enabled
*/
ret = stm32_omm_toggle_child_clock(dev, true);
if (ret)
return ret;
}
if (plat->cssel_ovr != 0xff) {
cssel_ovr = FIELD_PREP(CR_CSSEL_OVR_MASK, cssel_ovr);
cssel_ovr |= CR_CSSEL_OVR_EN;
clrsetbits_le32(plat->regs_base + OCTOSPIM_CR, CR_CSSEL_OVR_MASK,
cssel_ovr);
}
mux = FIELD_PREP(CR_MUXENMODE_MASK, plat->mux);
clrsetbits_le32(plat->regs_base + OCTOSPIM_CR, CR_MUXENMODE_MASK, mux);
clk_disable(&plat->clk[0]);
return stm32_omm_set_amcr(dev, true);
}
static void stm32_omm_release_childs(ofnode *child_list, u8 nb_child)
{
u8 i;
for (i = 0; i < nb_child; i++)
stm32_rifsc_release_access(child_list[i]);
}
static int stm32_omm_probe(struct udevice *dev)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
ofnode child_list[OMM_CHILD_NB];
ofnode child;
int ret;
u8 child_access_granted = 0;
bool child_access[OMM_CHILD_NB];
/* check child's access */
for (child = ofnode_first_subnode(dev_ofnode(dev));
ofnode_valid(child);
child = ofnode_next_subnode(child)) {
if (plat->nb_child > OMM_CHILD_NB) {
dev_err(dev, "Bad DT, found too much children\n");
return -E2BIG;
}
if (!ofnode_device_is_compatible(child, "st,stm32mp25-ospi"))
return -EINVAL;
ret = stm32_rifsc_grant_access(child);
if (ret < 0 && ret != -EACCES)
return ret;
child_access[plat->nb_child] = false;
if (!ret) {
child_access_granted++;
child_access[plat->nb_child] = true;
}
child_list[plat->nb_child] = child;
plat->nb_child++;
}
if (plat->nb_child != OMM_CHILD_NB)
return -EINVAL;
/* check if OMM's resource access is granted */
ret = stm32_rifsc_grant_access(dev_ofnode(dev));
if (ret < 0 && ret != -EACCES)
goto end;
/* All child's access are granted ? */
if (!ret && child_access_granted == plat->nb_child) {
ret = stm32_omm_configure(dev);
if (ret)
goto end;
} else {
dev_dbg(dev, "Octo Memory Manager resource's access not granted\n");
/*
* AMCR can't be set, so check if current value is coherent
* with memory-map areas defined in DT
*/
ret = stm32_omm_set_amcr(dev, false);
}
end:
stm32_omm_release_childs(child_list, plat->nb_child);
stm32_rifsc_release_access(dev_ofnode(dev));
return ret;
}
static int stm32_omm_of_to_plat(struct udevice *dev)
{
struct stm32_omm_plat *plat = dev_get_plat(dev);
static const char * const clocks_name[] = {"omm", "ospi1", "ospi2"};
static const char * const mm_name[] = { "ospi1", "ospi2" };
static const char * const resets_name[] = {"omm", "ospi1", "ospi2"};
struct resource res, res1, mm_res;
struct ofnode_phandle_args args;
struct udevice *child;
unsigned long clk_rate;
struct clk child_clk;
int ret, idx;
u8 i;
plat->regs_base = dev_read_addr(dev);
if (plat->regs_base == FDT_ADDR_T_NONE)
return -EINVAL;
ret = dev_read_resource_byname(dev, "memory_map", &mm_res);
if (ret) {
dev_err(dev, "can't get omm_mm mmap resource(ret = %d)!\n", ret);
return ret;
}
for (i = 0; i < OMM_CLK_NB; i++) {
ret = clk_get_by_name(dev, clocks_name[i], &plat->clk[i]);
if (ret < 0) {
dev_err(dev, "Can't find I/O manager clock %s\n", clocks_name[i]);
return ret;
}
ret = reset_get_by_name(dev, resets_name[i], &plat->reset_ctl[i]);
if (ret < 0) {
dev_err(dev, "Can't find I/O manager reset %s\n", resets_name[i]);
return ret;
}
}
/* parse children's clock */
plat->clk_rate_max = 0;
device_foreach_child(child, dev) {
ret = clk_get_by_index(child, 0, &child_clk);
if (ret) {
dev_err(dev, "Failed to get clock for %s\n",
dev_read_name(child));
return ret;
}
clk_rate = clk_get_rate(&child_clk);
if (!clk_rate) {
dev_err(dev, "Invalid clock rate\n");
return -EINVAL;
}
if (clk_rate > plat->clk_rate_max)
plat->clk_rate_max = clk_rate;
}
plat->mux = dev_read_u32_default(dev, "st,omm-mux", 0);
plat->req2ack = dev_read_u32_default(dev, "st,omm-req2ack-ns", 0);
plat->cssel_ovr = dev_read_u32_default(dev, "st,omm-cssel-ovr", 0xff);
plat->mm_ospi2_size = 0;
for (i = 0; i < 2; i++) {
idx = dev_read_stringlist_search(dev, "memory-region-names",
mm_name[i]);
if (idx < 0)
continue;
/* res1 only used on second loop iteration */
res1.start = res.start;
res1.end = res.end;
dev_read_phandle_with_args(dev, "memory-region", NULL, 0, idx,
&args);
ret = ofnode_read_resource(args.node, 0, &res);
if (ret) {
dev_err(dev, "unable to resolve memory region\n");
return ret;
}
/* check that memory region fits inside OMM memory map area */
if (!resource_contains(&mm_res, &res)) {
dev_err(dev, "%s doesn't fit inside OMM memory map area\n",
mm_name[i]);
dev_err(dev, "[0x%llx-0x%llx] doesn't fit inside [0x%llx-0x%llx]\n",
res.start, res.end,
mm_res.start, mm_res.end);
return -EFAULT;
}
if (i == 1) {
plat->mm_ospi2_size = resource_size(&res);
/* check that OMM memory region 1 doesn't overlap memory region 2 */
if (resource_overlaps(&res, &res1)) {
dev_err(dev, "OMM memory-region %s overlaps memory region %s\n",
mm_name[0], mm_name[1]);
dev_err(dev, "[0x%llx-0x%llx] overlaps [0x%llx-0x%llx]\n",
res1.start, res1.end, res.start, res.end);
return -EFAULT;
}
}
}
plat->syscfg_regmap = syscon_regmap_lookup_by_phandle(dev, "st,syscfg-amcr");
if (IS_ERR(plat->syscfg_regmap)) {
dev_err(dev, "Failed to get st,syscfg-amcr property\n");
ret = PTR_ERR(plat->syscfg_regmap);
return ret;
}
ret = dev_read_u32_index(dev, "st,syscfg-amcr", 1, &plat->amcr_base);
if (ret) {
dev_err(dev, "Failed to get st,syscfg-amcr base\n");
return ret;
}
ret = dev_read_u32_index(dev, "st,syscfg-amcr", 2, &plat->amcr_mask);
if (ret) {
dev_err(dev, "Failed to get st,syscfg-amcr mask\n");
return ret;
}
return 0;
};
static int stm32_omm_bind(struct udevice *dev)
{
int ret = 0, err = 0;
ofnode node;
for (node = ofnode_first_subnode(dev_ofnode(dev));
ofnode_valid(node);
node = ofnode_next_subnode(node)) {
const char *node_name = ofnode_get_name(node);
if (!ofnode_is_enabled(node) || stm32_rifsc_grant_access(node)) {
dev_dbg(dev, "%s failed to bind\n", node_name);
continue;
}
err = lists_bind_fdt(dev, node, NULL, NULL,
gd->flags & GD_FLG_RELOC ? false : true);
if (err && !ret) {
ret = err;
dev_dbg(dev, "%s: ret=%d\n", node_name, ret);
}
}
if (ret)
dev_dbg(dev, "Some drivers failed to bind\n");
return ret;
}
static const struct udevice_id stm32_omm_ids[] = {
{ .compatible = "st,stm32mp25-omm", },
{},
};
U_BOOT_DRIVER(stm32_omm) = {
.name = "stm32_omm",
.id = UCLASS_NOP,
.probe = stm32_omm_probe,
.of_match = stm32_omm_ids,
.of_to_plat = stm32_omm_of_to_plat,
.plat_auto = sizeof(struct stm32_omm_plat),
.bind = stm32_omm_bind,
};