mirror of
https://source.denx.de/u-boot/u-boot.git
synced 2025-08-09 16:56:58 +02:00
doc: Bring in FIT signature files
Bring these files into the documentation. Fix 'wtih' and 'it' typos and repeated 'could' while we are here. Signed-off-by: Simon Glass <sjg@chromium.org>
This commit is contained in:
parent
3c1e2c3261
commit
ad29e08b79
@ -1,607 +0,0 @@
|
|||||||
Verified Boot on the Beaglebone Black
|
|
||||||
=====================================
|
|
||||||
|
|
||||||
Introduction
|
|
||||||
------------
|
|
||||||
|
|
||||||
Before reading this, please read verified-boot.txt and signature.txt. These
|
|
||||||
instructions are for mainline U-Boot from v2014.07 onwards.
|
|
||||||
|
|
||||||
There is quite a bit of documentation in this directory describing how
|
|
||||||
verified boot works in U-Boot. There is also a test which runs through the
|
|
||||||
entire process of signing an image and running U-Boot (sandbox) to check it.
|
|
||||||
However, it might be useful to also have an example on a real board.
|
|
||||||
|
|
||||||
Beaglebone Black is a fairly common board so seems to be a reasonable choice
|
|
||||||
for an example of how to enable verified boot using U-Boot.
|
|
||||||
|
|
||||||
First a note that may to help avoid confusion. U-Boot and Linux both use
|
|
||||||
device tree. They may use the same device tree source, but it is seldom useful
|
|
||||||
for them to use the exact same binary from the same place. More typically,
|
|
||||||
U-Boot has its device tree packaged wtih it, and the kernel's device tree is
|
|
||||||
packaged with the kernel. In particular this is important with verified boot,
|
|
||||||
since U-Boot's device tree must be immutable. If it can be changed then the
|
|
||||||
public keys can be changed and verified boot is useless. An attacker can
|
|
||||||
simply generate a new key and put his public key into U-Boot so that
|
|
||||||
everything verifies. On the other hand the kernel's device tree typically
|
|
||||||
changes when the kernel changes, so it is useful to package an updated device
|
|
||||||
tree with the kernel binary. U-Boot supports the latter with its flexible FIT
|
|
||||||
format (Flat Image Tree).
|
|
||||||
|
|
||||||
|
|
||||||
Overview
|
|
||||||
--------
|
|
||||||
|
|
||||||
The steps are roughly as follows:
|
|
||||||
|
|
||||||
1. Build U-Boot for the board, with the verified boot options enabled.
|
|
||||||
|
|
||||||
2. Obtain a suitable Linux kernel
|
|
||||||
|
|
||||||
3. Create a Image Tree Source file (ITS) file describing how you want the
|
|
||||||
kernel to be packaged, compressed and signed.
|
|
||||||
|
|
||||||
4. Create a key pair
|
|
||||||
|
|
||||||
5. Sign the kernel
|
|
||||||
|
|
||||||
6. Put the public key into U-Boot's image
|
|
||||||
|
|
||||||
7. Put U-Boot and the kernel onto the board
|
|
||||||
|
|
||||||
8. Try it
|
|
||||||
|
|
||||||
|
|
||||||
Step 1: Build U-Boot
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
a. Set up the environment variable to point to your toolchain. You will need
|
|
||||||
this for U-Boot and also for the kernel if you build it. For example if you
|
|
||||||
installed a Linaro version manually it might be something like:
|
|
||||||
|
|
||||||
export CROSS_COMPILE=/opt/linaro/gcc-linaro-arm-linux-gnueabihf-4.8-2013.08_linux/bin/arm-linux-gnueabihf-
|
|
||||||
|
|
||||||
or if you just installed gcc-arm-linux-gnueabi then it might be
|
|
||||||
|
|
||||||
export CROSS_COMPILE=arm-linux-gnueabi-
|
|
||||||
|
|
||||||
b. Configure and build U-Boot with verified boot enabled:
|
|
||||||
|
|
||||||
export UBOOT=/path/to/u-boot
|
|
||||||
cd $UBOOT
|
|
||||||
# You can add -j10 if you have 10 CPUs to make it faster
|
|
||||||
make O=b/am335x_boneblack_vboot am335x_boneblack_vboot_config all
|
|
||||||
export UOUT=$UBOOT/b/am335x_boneblack_vboot
|
|
||||||
|
|
||||||
c. You will now have a U-Boot image:
|
|
||||||
|
|
||||||
file b/am335x_boneblack_vboot/u-boot-dtb.img
|
|
||||||
b/am335x_boneblack_vboot/u-boot-dtb.img: u-boot legacy uImage, U-Boot 2014.07-rc2-00065-g2f69f8, Firmware/ARM, Firmware Image (Not compressed), 395375 bytes, Sat May 31 16:19:04 2014, Load Address: 0x80800000, Entry Point: 0x00000000, Header CRC: 0x0ABD6ACA, Data CRC: 0x36DEF7E4
|
|
||||||
|
|
||||||
|
|
||||||
Step 2: Build Linux
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
a. Find the kernel image ('Image') and device tree (.dtb) file you plan to
|
|
||||||
use. In our case it is am335x-boneblack.dtb and it is built with the kernel.
|
|
||||||
At the time of writing an SD Boot image can be obtained from here:
|
|
||||||
|
|
||||||
http://www.elinux.org/Beagleboard:Updating_The_Software#Image_For_Booting_From_microSD
|
|
||||||
|
|
||||||
You can write this to an SD card and then mount it to extract the kernel and
|
|
||||||
device tree files.
|
|
||||||
|
|
||||||
You can also build a kernel. Instructions for this are are here:
|
|
||||||
|
|
||||||
http://elinux.org/Building_BBB_Kernel
|
|
||||||
|
|
||||||
or you can use your favourite search engine. Following these instructions
|
|
||||||
produces a kernel Image and device tree files. For the record the steps were:
|
|
||||||
|
|
||||||
export KERNEL=/path/to/kernel
|
|
||||||
cd $KERNEL
|
|
||||||
git clone git://github.com/beagleboard/kernel.git .
|
|
||||||
git checkout v3.14
|
|
||||||
./patch.sh
|
|
||||||
cp configs/beaglebone kernel/arch/arm/configs/beaglebone_defconfig
|
|
||||||
cd kernel
|
|
||||||
make beaglebone_defconfig
|
|
||||||
make uImage dtbs # -j10 if you have 10 CPUs
|
|
||||||
export OKERNEL=$KERNEL/kernel/arch/arm/boot
|
|
||||||
|
|
||||||
c. You now have the 'Image' and 'am335x-boneblack.dtb' files needed to boot.
|
|
||||||
|
|
||||||
|
|
||||||
Step 3: Create the ITS
|
|
||||||
----------------------
|
|
||||||
|
|
||||||
Set up a directory for your work.
|
|
||||||
|
|
||||||
export WORK=/path/to/dir
|
|
||||||
cd $WORK
|
|
||||||
|
|
||||||
Put this into a file in that directory called sign.its:
|
|
||||||
|
|
||||||
/dts-v1/;
|
|
||||||
|
|
||||||
/ {
|
|
||||||
description = "Beaglebone black";
|
|
||||||
#address-cells = <1>;
|
|
||||||
|
|
||||||
images {
|
|
||||||
kernel {
|
|
||||||
data = /incbin/("Image.lzo");
|
|
||||||
type = "kernel";
|
|
||||||
arch = "arm";
|
|
||||||
os = "linux";
|
|
||||||
compression = "lzo";
|
|
||||||
load = <0x80008000>;
|
|
||||||
entry = <0x80008000>;
|
|
||||||
hash-1 {
|
|
||||||
algo = "sha1";
|
|
||||||
};
|
|
||||||
};
|
|
||||||
fdt-1 {
|
|
||||||
description = "beaglebone-black";
|
|
||||||
data = /incbin/("am335x-boneblack.dtb");
|
|
||||||
type = "flat_dt";
|
|
||||||
arch = "arm";
|
|
||||||
compression = "none";
|
|
||||||
hash-1 {
|
|
||||||
algo = "sha1";
|
|
||||||
};
|
|
||||||
};
|
|
||||||
};
|
|
||||||
configurations {
|
|
||||||
default = "conf-1";
|
|
||||||
conf-1 {
|
|
||||||
kernel = "kernel";
|
|
||||||
fdt = "fdt-1";
|
|
||||||
signature-1 {
|
|
||||||
algo = "sha1,rsa2048";
|
|
||||||
key-name-hint = "dev";
|
|
||||||
sign-images = "fdt", "kernel";
|
|
||||||
};
|
|
||||||
};
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
The explanation for this is all in the documentation you have already read.
|
|
||||||
But briefly it packages a kernel and device tree, and provides a single
|
|
||||||
configuration to be signed with a key named 'dev'. The kernel is compressed
|
|
||||||
with LZO to make it smaller.
|
|
||||||
|
|
||||||
|
|
||||||
Step 4: Create a key pair
|
|
||||||
-------------------------
|
|
||||||
|
|
||||||
See signature.txt for details on this step.
|
|
||||||
|
|
||||||
cd $WORK
|
|
||||||
mkdir keys
|
|
||||||
openssl genrsa -F4 -out keys/dev.key 2048
|
|
||||||
openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt
|
|
||||||
|
|
||||||
Note: keys/dev.key contains your private key and is very secret. If anyone
|
|
||||||
gets access to that file they can sign kernels with it. Keep it secure.
|
|
||||||
|
|
||||||
|
|
||||||
Step 5: Sign the kernel
|
|
||||||
-----------------------
|
|
||||||
|
|
||||||
We need to use mkimage (which was built when you built U-Boot) to package the
|
|
||||||
Linux kernel into a FIT (Flat Image Tree, a flexible file format that U-Boot
|
|
||||||
can load) using the ITS file you just created.
|
|
||||||
|
|
||||||
At the same time we must put the public key into U-Boot device tree, with the
|
|
||||||
'required' property, which tells U-Boot that this key must be verified for the
|
|
||||||
image to be valid. You will make this key available to U-Boot for booting in
|
|
||||||
step 6.
|
|
||||||
|
|
||||||
ln -s $OKERNEL/dts/am335x-boneblack.dtb
|
|
||||||
ln -s $OKERNEL/Image
|
|
||||||
ln -s $UOUT/u-boot-dtb.img
|
|
||||||
cp $UOUT/arch/arm/dts/am335x-boneblack.dtb am335x-boneblack-pubkey.dtb
|
|
||||||
lzop Image
|
|
||||||
$UOUT/tools/mkimage -f sign.its -K am335x-boneblack-pubkey.dtb -k keys -r image.fit
|
|
||||||
|
|
||||||
You should see something like this:
|
|
||||||
|
|
||||||
FIT description: Beaglebone black
|
|
||||||
Created: Sun Jun 1 12:50:30 2014
|
|
||||||
Image 0 (kernel)
|
|
||||||
Description: unavailable
|
|
||||||
Created: Sun Jun 1 12:50:30 2014
|
|
||||||
Type: Kernel Image
|
|
||||||
Compression: lzo compressed
|
|
||||||
Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
|
|
||||||
Architecture: ARM
|
|
||||||
OS: Linux
|
|
||||||
Load Address: 0x80008000
|
|
||||||
Entry Point: 0x80008000
|
|
||||||
Hash algo: sha1
|
|
||||||
Hash value: c94364646427e10f423837e559898ef02c97b988
|
|
||||||
Image 1 (fdt-1)
|
|
||||||
Description: beaglebone-black
|
|
||||||
Created: Sun Jun 1 12:50:30 2014
|
|
||||||
Type: Flat Device Tree
|
|
||||||
Compression: uncompressed
|
|
||||||
Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
|
|
||||||
Architecture: ARM
|
|
||||||
Hash algo: sha1
|
|
||||||
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
|
||||||
Default Configuration: 'conf-1'
|
|
||||||
Configuration 0 (conf-1)
|
|
||||||
Description: unavailable
|
|
||||||
Kernel: kernel
|
|
||||||
FDT: fdt-1
|
|
||||||
|
|
||||||
|
|
||||||
Now am335x-boneblack-pubkey.dtb contains the public key and image.fit contains
|
|
||||||
the signed kernel. Jump to step 6 if you like, or continue reading to increase
|
|
||||||
your understanding.
|
|
||||||
|
|
||||||
You can also run fit_check_sign to check it:
|
|
||||||
|
|
||||||
$UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
|
|
||||||
|
|
||||||
which results in:
|
|
||||||
|
|
||||||
Verifying Hash Integrity ... sha1,rsa2048:dev+
|
|
||||||
## Loading kernel from FIT Image at 7fc6ee469000 ...
|
|
||||||
Using 'conf-1' configuration
|
|
||||||
Verifying Hash Integrity ...
|
|
||||||
sha1,rsa2048:dev+
|
|
||||||
OK
|
|
||||||
|
|
||||||
Trying 'kernel' kernel subimage
|
|
||||||
Description: unavailable
|
|
||||||
Created: Sun Jun 1 12:50:30 2014
|
|
||||||
Type: Kernel Image
|
|
||||||
Compression: lzo compressed
|
|
||||||
Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
|
|
||||||
Architecture: ARM
|
|
||||||
OS: Linux
|
|
||||||
Load Address: 0x80008000
|
|
||||||
Entry Point: 0x80008000
|
|
||||||
Hash algo: sha1
|
|
||||||
Hash value: c94364646427e10f423837e559898ef02c97b988
|
|
||||||
Verifying Hash Integrity ...
|
|
||||||
sha1+
|
|
||||||
OK
|
|
||||||
|
|
||||||
Unimplemented compression type 4
|
|
||||||
## Loading fdt from FIT Image at 7fc6ee469000 ...
|
|
||||||
Using 'conf-1' configuration
|
|
||||||
Trying 'fdt-1' fdt subimage
|
|
||||||
Description: beaglebone-black
|
|
||||||
Created: Sun Jun 1 12:50:30 2014
|
|
||||||
Type: Flat Device Tree
|
|
||||||
Compression: uncompressed
|
|
||||||
Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
|
|
||||||
Architecture: ARM
|
|
||||||
Hash algo: sha1
|
|
||||||
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
|
||||||
Verifying Hash Integrity ...
|
|
||||||
sha1+
|
|
||||||
OK
|
|
||||||
|
|
||||||
Loading Flat Device Tree ... OK
|
|
||||||
|
|
||||||
## Loading ramdisk from FIT Image at 7fc6ee469000 ...
|
|
||||||
Using 'conf-1' configuration
|
|
||||||
Could not find subimage node
|
|
||||||
|
|
||||||
Signature check OK
|
|
||||||
|
|
||||||
|
|
||||||
At the top, you see "sha1,rsa2048:dev+". This means that it checked an RSA key
|
|
||||||
of size 2048 bits using SHA1 as the hash algorithm. The key name checked was
|
|
||||||
'dev' and the '+' means that it verified. If it showed '-' that would be bad.
|
|
||||||
|
|
||||||
Once the configuration is verified it is then possible to rely on the hashes
|
|
||||||
in each image referenced by that configuration. So fit_check_sign goes on to
|
|
||||||
load each of the images. We have a kernel and an FDT but no ramkdisk. In each
|
|
||||||
case fit_check_sign checks the hash and prints sha1+ meaning that the SHA1
|
|
||||||
hash verified. This means that none of the images has been tampered with.
|
|
||||||
|
|
||||||
There is a test in test/vboot which uses U-Boot's sandbox build to verify that
|
|
||||||
the above flow works.
|
|
||||||
|
|
||||||
But it is fun to do this by hand, so you can load image.fit into a hex editor
|
|
||||||
like ghex, and change a byte in the kernel:
|
|
||||||
|
|
||||||
$UOUT/tools/fit_info -f image.fit -n /images/kernel -p data
|
|
||||||
NAME: kernel
|
|
||||||
LEN: 7790938
|
|
||||||
OFF: 168
|
|
||||||
|
|
||||||
This tells us that the kernel starts at byte offset 168 (decimal) in image.fit
|
|
||||||
and extends for about 7MB. Try changing a byte at 0x2000 (say) and run
|
|
||||||
fit_check_sign again. You should see something like:
|
|
||||||
|
|
||||||
Verifying Hash Integrity ... sha1,rsa2048:dev+
|
|
||||||
## Loading kernel from FIT Image at 7f5a39571000 ...
|
|
||||||
Using 'conf-1' configuration
|
|
||||||
Verifying Hash Integrity ...
|
|
||||||
sha1,rsa2048:dev+
|
|
||||||
OK
|
|
||||||
|
|
||||||
Trying 'kernel' kernel subimage
|
|
||||||
Description: unavailable
|
|
||||||
Created: Sun Jun 1 13:09:21 2014
|
|
||||||
Type: Kernel Image
|
|
||||||
Compression: lzo compressed
|
|
||||||
Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
|
|
||||||
Architecture: ARM
|
|
||||||
OS: Linux
|
|
||||||
Load Address: 0x80008000
|
|
||||||
Entry Point: 0x80008000
|
|
||||||
Hash algo: sha1
|
|
||||||
Hash value: c94364646427e10f423837e559898ef02c97b988
|
|
||||||
Verifying Hash Integrity ...
|
|
||||||
sha1 error
|
|
||||||
Bad hash value for 'hash-1' hash node in 'kernel' image node
|
|
||||||
Bad Data Hash
|
|
||||||
|
|
||||||
## Loading fdt from FIT Image at 7f5a39571000 ...
|
|
||||||
Using 'conf-1' configuration
|
|
||||||
Trying 'fdt-1' fdt subimage
|
|
||||||
Description: beaglebone-black
|
|
||||||
Created: Sun Jun 1 13:09:21 2014
|
|
||||||
Type: Flat Device Tree
|
|
||||||
Compression: uncompressed
|
|
||||||
Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
|
|
||||||
Architecture: ARM
|
|
||||||
Hash algo: sha1
|
|
||||||
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
|
||||||
Verifying Hash Integrity ...
|
|
||||||
sha1+
|
|
||||||
OK
|
|
||||||
|
|
||||||
Loading Flat Device Tree ... OK
|
|
||||||
|
|
||||||
## Loading ramdisk from FIT Image at 7f5a39571000 ...
|
|
||||||
Using 'conf-1' configuration
|
|
||||||
Could not find subimage node
|
|
||||||
|
|
||||||
Signature check Bad (error 1)
|
|
||||||
|
|
||||||
|
|
||||||
It has detected the change in the kernel.
|
|
||||||
|
|
||||||
You can also be sneaky and try to switch images, using the libfdt utilities
|
|
||||||
that come with dtc (package name is device-tree-compiler but you will need a
|
|
||||||
recent version like 1.4:
|
|
||||||
|
|
||||||
dtc -v
|
|
||||||
Version: DTC 1.4.0
|
|
||||||
|
|
||||||
First we can check which nodes are actually hashed by the configuration:
|
|
||||||
|
|
||||||
fdtget -l image.fit /
|
|
||||||
images
|
|
||||||
configurations
|
|
||||||
|
|
||||||
fdtget -l image.fit /configurations
|
|
||||||
conf-1
|
|
||||||
fdtget -l image.fit /configurations/conf-1
|
|
||||||
signature-1
|
|
||||||
|
|
||||||
fdtget -p image.fit /configurations/conf-1/signature-1
|
|
||||||
hashed-strings
|
|
||||||
hashed-nodes
|
|
||||||
timestamp
|
|
||||||
signer-version
|
|
||||||
signer-name
|
|
||||||
value
|
|
||||||
algo
|
|
||||||
key-name-hint
|
|
||||||
sign-images
|
|
||||||
|
|
||||||
fdtget image.fit /configurations/conf-1/signature-1 hashed-nodes
|
|
||||||
/ /configurations/conf-1 /images/fdt-1 /images/fdt-1/hash /images/kernel /images/kernel/hash-1
|
|
||||||
|
|
||||||
This gives us a bit of a look into the signature that mkimage added. Note you
|
|
||||||
can also use fdtdump to list the entire device tree.
|
|
||||||
|
|
||||||
Say we want to change the kernel that this configuration uses
|
|
||||||
(/images/kernel). We could just put a new kernel in the image, but we will
|
|
||||||
need to change the hash to match. Let's simulate that by changing a byte of
|
|
||||||
the hash:
|
|
||||||
|
|
||||||
fdtget -tx image.fit /images/kernel/hash-1 value
|
|
||||||
c9436464 6427e10f 423837e5 59898ef0 2c97b988
|
|
||||||
fdtput -tx image.fit /images/kernel/hash-1 value c9436464 6427e10f 423837e5 59898ef0 2c97b981
|
|
||||||
|
|
||||||
Now check it again:
|
|
||||||
|
|
||||||
$UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
|
|
||||||
Verifying Hash Integrity ... sha1,rsa2048:devrsa_verify_with_keynode: RSA failed to verify: -13
|
|
||||||
rsa_verify_with_keynode: RSA failed to verify: -13
|
|
||||||
-
|
|
||||||
Failed to verify required signature 'key-dev'
|
|
||||||
Signature check Bad (error 1)
|
|
||||||
|
|
||||||
This time we don't even get as far as checking the images, since the
|
|
||||||
configuration signature doesn't match. We can't change any hashes without the
|
|
||||||
signature check noticing. The configuration is essentially locked. U-Boot has
|
|
||||||
a public key for which it requires a match, and will not permit the use of any
|
|
||||||
configuration that does not match that public key. The only way the
|
|
||||||
configuration will match is if it was signed by the matching private key.
|
|
||||||
|
|
||||||
It would also be possible to add a new signature node that does match your new
|
|
||||||
configuration. But that won't work since you are not allowed to change the
|
|
||||||
configuration in any way. Try it with a fresh (valid) image if you like by
|
|
||||||
running the mkimage link again. Then:
|
|
||||||
|
|
||||||
fdtput -p image.fit /configurations/conf-1/signature-1 value fred
|
|
||||||
$UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
|
|
||||||
Verifying Hash Integrity ... -
|
|
||||||
sha1,rsa2048:devrsa_verify_with_keynode: RSA failed to verify: -13
|
|
||||||
rsa_verify_with_keynode: RSA failed to verify: -13
|
|
||||||
-
|
|
||||||
Failed to verify required signature 'key-dev'
|
|
||||||
Signature check Bad (error 1)
|
|
||||||
|
|
||||||
|
|
||||||
Of course it would be possible to add an entirely new configuration and boot
|
|
||||||
with that, but it still needs to be signed, so it won't help.
|
|
||||||
|
|
||||||
|
|
||||||
6. Put the public key into U-Boot's image
|
|
||||||
-----------------------------------------
|
|
||||||
|
|
||||||
Having confirmed that the signature is doing its job, let's try it out in
|
|
||||||
U-Boot on the board. U-Boot needs access to the public key corresponding to
|
|
||||||
the private key that you signed with so that it can verify any kernels that
|
|
||||||
you sign.
|
|
||||||
|
|
||||||
cd $UBOOT
|
|
||||||
make O=b/am335x_boneblack_vboot EXT_DTB=${WORK}/am335x-boneblack-pubkey.dtb
|
|
||||||
|
|
||||||
Here we are overriding the normal device tree file with our one, which
|
|
||||||
contains the public key.
|
|
||||||
|
|
||||||
Now you have a special U-Boot image with the public key. It can verify can
|
|
||||||
kernel that you sign with the private key as in step 5.
|
|
||||||
|
|
||||||
If you like you can take a look at the public key information that mkimage
|
|
||||||
added to U-Boot's device tree:
|
|
||||||
|
|
||||||
fdtget -p am335x-boneblack-pubkey.dtb /signature/key-dev
|
|
||||||
required
|
|
||||||
algo
|
|
||||||
rsa,r-squared
|
|
||||||
rsa,modulus
|
|
||||||
rsa,n0-inverse
|
|
||||||
rsa,num-bits
|
|
||||||
key-name-hint
|
|
||||||
|
|
||||||
This has information about the key and some pre-processed values which U-Boot
|
|
||||||
can use to verify against it. These values are obtained from the public key
|
|
||||||
certificate by mkimage, but require quite a bit of code to generate. To save
|
|
||||||
code space in U-Boot, the information is extracted and written in raw form for
|
|
||||||
U-Boot to easily use. The same mechanism is used in Google's Chrome OS.
|
|
||||||
|
|
||||||
Notice the 'required' property. This marks the key as required - U-Boot will
|
|
||||||
not boot any image that does not verify against this key.
|
|
||||||
|
|
||||||
|
|
||||||
7. Put U-Boot and the kernel onto the board
|
|
||||||
-------------------------------------------
|
|
||||||
|
|
||||||
The method here varies depending on how you are booting. For this example we
|
|
||||||
are booting from an micro-SD card with two partitions, one for U-Boot and one
|
|
||||||
for Linux. Put it into your machine and write U-Boot and the kernel to it.
|
|
||||||
Here the card is /dev/sde:
|
|
||||||
|
|
||||||
cd $WORK
|
|
||||||
export UDEV=/dev/sde1 # Change thes two lines to the correct device
|
|
||||||
export KDEV=/dev/sde2
|
|
||||||
sudo mount $UDEV /mnt/tmp && sudo cp $UOUT/u-boot-dtb.img /mnt/tmp/u-boot.img && sleep 1 && sudo umount $UDEV
|
|
||||||
sudo mount $KDEV /mnt/tmp && sudo cp $WORK/image.fit /mnt/tmp/boot/image.fit && sleep 1 && sudo umount $KDEV
|
|
||||||
|
|
||||||
|
|
||||||
8. Try it
|
|
||||||
---------
|
|
||||||
|
|
||||||
Boot the board using the commands below:
|
|
||||||
|
|
||||||
setenv bootargs console=ttyO0,115200n8 quiet root=/dev/mmcblk0p2 ro rootfstype=ext4 rootwait
|
|
||||||
ext2load mmc 0:2 82000000 /boot/image.fit
|
|
||||||
bootm 82000000
|
|
||||||
|
|
||||||
You should then see something like this:
|
|
||||||
|
|
||||||
U-Boot# setenv bootargs console=ttyO0,115200n8 quiet root=/dev/mmcblk0p2 ro rootfstype=ext4 rootwait
|
|
||||||
U-Boot# ext2load mmc 0:2 82000000 /boot/image.fit
|
|
||||||
7824930 bytes read in 589 ms (12.7 MiB/s)
|
|
||||||
U-Boot# bootm 82000000
|
|
||||||
## Loading kernel from FIT Image at 82000000 ...
|
|
||||||
Using 'conf-1' configuration
|
|
||||||
Verifying Hash Integrity ... sha1,rsa2048:dev+ OK
|
|
||||||
Trying 'kernel' kernel subimage
|
|
||||||
Description: unavailable
|
|
||||||
Created: 2014-06-01 19:32:54 UTC
|
|
||||||
Type: Kernel Image
|
|
||||||
Compression: lzo compressed
|
|
||||||
Data Start: 0x820000a8
|
|
||||||
Data Size: 7790938 Bytes = 7.4 MiB
|
|
||||||
Architecture: ARM
|
|
||||||
OS: Linux
|
|
||||||
Load Address: 0x80008000
|
|
||||||
Entry Point: 0x80008000
|
|
||||||
Hash algo: sha1
|
|
||||||
Hash value: c94364646427e10f423837e559898ef02c97b988
|
|
||||||
Verifying Hash Integrity ... sha1+ OK
|
|
||||||
## Loading fdt from FIT Image at 82000000 ...
|
|
||||||
Using 'conf-1' configuration
|
|
||||||
Trying 'fdt-1' fdt subimage
|
|
||||||
Description: beaglebone-black
|
|
||||||
Created: 2014-06-01 19:32:54 UTC
|
|
||||||
Type: Flat Device Tree
|
|
||||||
Compression: uncompressed
|
|
||||||
Data Start: 0x8276e2ec
|
|
||||||
Data Size: 31547 Bytes = 30.8 KiB
|
|
||||||
Architecture: ARM
|
|
||||||
Hash algo: sha1
|
|
||||||
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
|
||||||
Verifying Hash Integrity ... sha1+ OK
|
|
||||||
Booting using the fdt blob at 0x8276e2ec
|
|
||||||
Uncompressing Kernel Image ... OK
|
|
||||||
Loading Device Tree to 8fff5000, end 8ffffb3a ... OK
|
|
||||||
|
|
||||||
Starting kernel ...
|
|
||||||
|
|
||||||
[ 0.582377] omap_init_mbox: hwmod doesn't have valid attrs
|
|
||||||
[ 2.589651] musb-hdrc musb-hdrc.0.auto: Failed to request rx1.
|
|
||||||
[ 2.595830] musb-hdrc musb-hdrc.0.auto: musb_init_controller failed with status -517
|
|
||||||
[ 2.606470] musb-hdrc musb-hdrc.1.auto: Failed to request rx1.
|
|
||||||
[ 2.612723] musb-hdrc musb-hdrc.1.auto: musb_init_controller failed with status -517
|
|
||||||
[ 2.940808] drivers/rtc/hctosys.c: unable to open rtc device (rtc0)
|
|
||||||
[ 7.248889] libphy: PHY 4a101000.mdio:01 not found
|
|
||||||
[ 7.253995] net eth0: phy 4a101000.mdio:01 not found on slave 1
|
|
||||||
systemd-fsck[83]: Angstrom: clean, 50607/218160 files, 306348/872448 blocks
|
|
||||||
|
|
||||||
.---O---.
|
|
||||||
| | .-. o o
|
|
||||||
| | |-----.-----.-----.| | .----..-----.-----.
|
|
||||||
| | | __ | ---'| '--.| .-'| | |
|
|
||||||
| | | | | |--- || --'| | | ' | | | |
|
|
||||||
'---'---'--'--'--. |-----''----''--' '-----'-'-'-'
|
|
||||||
-' |
|
|
||||||
'---'
|
|
||||||
|
|
||||||
The Angstrom Distribution beaglebone ttyO0
|
|
||||||
|
|
||||||
Angstrom v2012.12 - Kernel 3.14.1+
|
|
||||||
|
|
||||||
beaglebone login:
|
|
||||||
|
|
||||||
At this point your kernel has been verified and you can be sure that it is one
|
|
||||||
that you signed. As an exercise, try changing image.fit as in step 5 and see
|
|
||||||
what happens.
|
|
||||||
|
|
||||||
|
|
||||||
Further Improvements
|
|
||||||
--------------------
|
|
||||||
|
|
||||||
Several of the steps here can be easily automated. In particular it would be
|
|
||||||
capital if signing and packaging a kernel were easy, perhaps a simple make
|
|
||||||
target in the kernel.
|
|
||||||
|
|
||||||
Some mention of how to use multiple .dtb files in a FIT might be useful.
|
|
||||||
|
|
||||||
U-Boot's verified boot mechanism has not had a robust and independent security
|
|
||||||
review. Such a review should look at the implementation and its resistance to
|
|
||||||
attacks.
|
|
||||||
|
|
||||||
Perhaps the verified boot feature could could be integrated into the Amstrom
|
|
||||||
distribution.
|
|
||||||
|
|
||||||
|
|
||||||
Simon Glass
|
|
||||||
sjg@chromium.org
|
|
||||||
2-June-14
|
|
@ -1,707 +0,0 @@
|
|||||||
U-Boot FIT Signature Verification
|
|
||||||
=================================
|
|
||||||
|
|
||||||
Introduction
|
|
||||||
------------
|
|
||||||
FIT supports hashing of images so that these hashes can be checked on
|
|
||||||
loading. This protects against corruption of the image. However it does not
|
|
||||||
prevent the substitution of one image for another.
|
|
||||||
|
|
||||||
The signature feature allows the hash to be signed with a private key such
|
|
||||||
that it can be verified using a public key later. Provided that the private
|
|
||||||
key is kept secret and the public key is stored in a non-volatile place,
|
|
||||||
any image can be verified in this way.
|
|
||||||
|
|
||||||
See verified-boot.txt for more general information on verified boot.
|
|
||||||
|
|
||||||
|
|
||||||
Concepts
|
|
||||||
--------
|
|
||||||
Some familiarity with public key cryptography is assumed in this section.
|
|
||||||
|
|
||||||
The procedure for signing is as follows:
|
|
||||||
|
|
||||||
- hash an image in the FIT
|
|
||||||
- sign the hash with a private key to produce a signature
|
|
||||||
- store the resulting signature in the FIT
|
|
||||||
|
|
||||||
The procedure for verification is:
|
|
||||||
|
|
||||||
- read the FIT
|
|
||||||
- obtain the public key
|
|
||||||
- extract the signature from the FIT
|
|
||||||
- hash the image from the FIT
|
|
||||||
- verify (with the public key) that the extracted signature matches the
|
|
||||||
hash
|
|
||||||
|
|
||||||
The signing is generally performed by mkimage, as part of making a firmware
|
|
||||||
image for the device. The verification is normally done in U-Boot on the
|
|
||||||
device.
|
|
||||||
|
|
||||||
|
|
||||||
Algorithms
|
|
||||||
----------
|
|
||||||
In principle any suitable algorithm can be used to sign and verify a hash.
|
|
||||||
U-Boot supports a few hashing and verification algorithms. See below for
|
|
||||||
details.
|
|
||||||
|
|
||||||
While it is acceptable to bring in large cryptographic libraries such as
|
|
||||||
openssl on the host side (e.g. mkimage), it is not desirable for U-Boot.
|
|
||||||
For the run-time verification side, it is important to keep code and data
|
|
||||||
size as small as possible.
|
|
||||||
|
|
||||||
For this reason the RSA image verification uses pre-processed public keys
|
|
||||||
which can be used with a very small amount of code - just some extraction
|
|
||||||
of data from the FDT and exponentiation mod n. Code size impact is a little
|
|
||||||
under 5KB on Tegra Seaboard, for example.
|
|
||||||
|
|
||||||
It is relatively straightforward to add new algorithms if required. If
|
|
||||||
another RSA variant is needed, then it can be added with the
|
|
||||||
U_BOOT_CRYPTO_ALGO() macro. If another algorithm is needed (such as DSA) then
|
|
||||||
it can be placed in a directory alongside lib/rsa/, and its functions added
|
|
||||||
using U_BOOT_CRYPTO_ALGO().
|
|
||||||
|
|
||||||
|
|
||||||
Creating an RSA key pair and certificate
|
|
||||||
----------------------------------------
|
|
||||||
To create a new public/private key pair, size 2048 bits:
|
|
||||||
|
|
||||||
$ openssl genpkey -algorithm RSA -out keys/dev.key \
|
|
||||||
-pkeyopt rsa_keygen_bits:2048 -pkeyopt rsa_keygen_pubexp:65537
|
|
||||||
|
|
||||||
To create a certificate for this containing the public key:
|
|
||||||
|
|
||||||
$ openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt
|
|
||||||
|
|
||||||
If you like you can look at the public key also:
|
|
||||||
|
|
||||||
$ openssl rsa -in keys/dev.key -pubout
|
|
||||||
|
|
||||||
|
|
||||||
Device Tree Bindings
|
|
||||||
--------------------
|
|
||||||
The following properties are required in the FIT's signature node(s) to
|
|
||||||
allow the signer to operate. These should be added to the .its file.
|
|
||||||
Signature nodes sit at the same level as hash nodes and are called
|
|
||||||
signature-1, signature-2, etc.
|
|
||||||
|
|
||||||
- algo: Algorithm name (e.g. "sha1,rsa2048")
|
|
||||||
|
|
||||||
- key-name-hint: Name of key to use for signing. The keys will normally be in
|
|
||||||
a single directory (parameter -k to mkimage). For a given key <name>, its
|
|
||||||
private key is stored in <name>.key and the certificate is stored in
|
|
||||||
<name>.crt.
|
|
||||||
|
|
||||||
When the image is signed, the following properties are added (mandatory):
|
|
||||||
|
|
||||||
- value: The signature data (e.g. 256 bytes for 2048-bit RSA)
|
|
||||||
|
|
||||||
When the image is signed, the following properties are optional:
|
|
||||||
|
|
||||||
- timestamp: Time when image was signed (standard Unix time_t format)
|
|
||||||
|
|
||||||
- signer-name: Name of the signer (e.g. "mkimage")
|
|
||||||
|
|
||||||
- signer-version: Version string of the signer (e.g. "2013.01")
|
|
||||||
|
|
||||||
- comment: Additional information about the signer or image
|
|
||||||
|
|
||||||
- padding: The padding algorithm, it may be pkcs-1.5 or pss,
|
|
||||||
if no value is provided we assume pkcs-1.5
|
|
||||||
|
|
||||||
For config bindings (see Signed Configurations below), the following
|
|
||||||
additional properties are optional:
|
|
||||||
|
|
||||||
- sign-images: A list of images to sign, each being a property of the conf
|
|
||||||
node that contains then. The default is "kernel,fdt" which means that these
|
|
||||||
two images will be looked up in the config and signed if present.
|
|
||||||
|
|
||||||
For config bindings, these properties are added by the signer:
|
|
||||||
|
|
||||||
- hashed-nodes: A list of nodes which were hashed by the signer. Each is
|
|
||||||
a string - the full path to node. A typical value might be:
|
|
||||||
|
|
||||||
hashed-nodes = "/", "/configurations/conf-1", "/images/kernel",
|
|
||||||
"/images/kernel/hash-1", "/images/fdt-1",
|
|
||||||
"/images/fdt-1/hash-1";
|
|
||||||
|
|
||||||
- hashed-strings: The start and size of the string region of the FIT that
|
|
||||||
was hashed
|
|
||||||
|
|
||||||
Example: See sign-images.its for an example image tree source file and
|
|
||||||
sign-configs.its for config signing.
|
|
||||||
|
|
||||||
|
|
||||||
Public Key Storage
|
|
||||||
------------------
|
|
||||||
In order to verify an image that has been signed with a public key we need to
|
|
||||||
have a trusted public key. This cannot be stored in the signed image, since
|
|
||||||
it would be easy to alter. For this implementation we choose to store the
|
|
||||||
public key in U-Boot's control FDT (using CONFIG_OF_CONTROL).
|
|
||||||
|
|
||||||
Public keys should be stored as sub-nodes in a /signature node. Required
|
|
||||||
properties are:
|
|
||||||
|
|
||||||
- algo: Algorithm name (e.g. "sha1,rsa2048" or "sha256,ecdsa256")
|
|
||||||
|
|
||||||
Optional properties are:
|
|
||||||
|
|
||||||
- key-name-hint: Name of key used for signing. This is only a hint since it
|
|
||||||
is possible for the name to be changed. Verification can proceed by checking
|
|
||||||
all available signing keys until one matches.
|
|
||||||
|
|
||||||
- required: If present this indicates that the key must be verified for the
|
|
||||||
image / configuration to be considered valid. Only required keys are
|
|
||||||
normally verified by the FIT image booting algorithm. Valid values are
|
|
||||||
"image" to force verification of all images, and "conf" to force verification
|
|
||||||
of the selected configuration (which then relies on hashes in the images to
|
|
||||||
verify those).
|
|
||||||
|
|
||||||
Each signing algorithm has its own additional properties.
|
|
||||||
|
|
||||||
For RSA the following are mandatory:
|
|
||||||
|
|
||||||
- rsa,num-bits: Number of key bits (e.g. 2048)
|
|
||||||
- rsa,modulus: Modulus (N) as a big-endian multi-word integer
|
|
||||||
- rsa,exponent: Public exponent (E) as a 64 bit unsigned integer
|
|
||||||
- rsa,r-squared: (2^num-bits)^2 as a big-endian multi-word integer
|
|
||||||
- rsa,n0-inverse: -1 / modulus[0] mod 2^32
|
|
||||||
|
|
||||||
For ECDSA the following are mandatory:
|
|
||||||
- ecdsa,curve: Name of ECDSA curve (e.g. "prime256v1")
|
|
||||||
- ecdsa,x-point: Public key X coordinate as a big-endian multi-word integer
|
|
||||||
- ecdsa,y-point: Public key Y coordinate as a big-endian multi-word integer
|
|
||||||
|
|
||||||
These parameters can be added to a binary device tree using parameter -K of the
|
|
||||||
mkimage command::
|
|
||||||
|
|
||||||
tools/mkimage -f fit.its -K control.dtb -k keys -r image.fit
|
|
||||||
|
|
||||||
Here is an example of a generated device tree node::
|
|
||||||
|
|
||||||
signature {
|
|
||||||
key-dev {
|
|
||||||
required = "conf";
|
|
||||||
algo = "sha256,rsa2048";
|
|
||||||
rsa,r-squared = <0xb76d1acf 0xa1763ca5 0xeb2f126
|
|
||||||
0x742edc80 0xd3f42177 0x9741d9d9
|
|
||||||
0x35bb476e 0xff41c718 0xd3801430
|
|
||||||
0xf22537cb 0xa7e79960 0xae32a043
|
|
||||||
0x7da1427a 0x341d6492 0x3c2762f5
|
|
||||||
0xaac04726 0x5b262d96 0xf984e86d
|
|
||||||
0xb99443c7 0x17080c33 0x940f6892
|
|
||||||
0xd57a95d1 0x6ea7b691 0xc5038fa8
|
|
||||||
0x6bb48a6e 0x73f1b1ea 0x37160841
|
|
||||||
0xe05715ce 0xa7c45bbd 0x690d82d5
|
|
||||||
0x99c2454c 0x6ff117b3 0xd830683b
|
|
||||||
0x3f81c9cf 0x1ca38a91 0x0c3392e4
|
|
||||||
0xd817c625 0x7b8e9a24 0x175b89ea
|
|
||||||
0xad79f3dc 0x4d50d7b4 0x9d4e90f8
|
|
||||||
0xad9e2939 0xc165d6a4 0x0ada7e1b
|
|
||||||
0xfb1bf495 0xfc3131c2 0xb8c6e604
|
|
||||||
0xc2761124 0xf63de4a6 0x0e9565f9
|
|
||||||
0xc8e53761 0x7e7a37a5 0xe99dcdae
|
|
||||||
0x9aff7e1e 0xbd44b13d 0x6b0e6aa4
|
|
||||||
0x038907e4 0x8e0d6850 0xef51bc20
|
|
||||||
0xf73c94af 0x88bea7b1 0xcbbb1b30
|
|
||||||
0xd024b7f3>;
|
|
||||||
rsa,modulus = <0xc0711d6cb 0x9e86db7f 0x45986dbe
|
|
||||||
0x023f1e8c9 0xe1a4c4d0 0x8a0dfdc9
|
|
||||||
0x023ba0c48 0x06815f6a 0x5caa0654
|
|
||||||
0x07078c4b7 0x3d154853 0x40729023
|
|
||||||
0x0b007c8fe 0x5a3647e5 0x23b41e20
|
|
||||||
0x024720591 0x66915305 0x0e0b29b0
|
|
||||||
0x0de2ad30d 0x8589430f 0xb1590325
|
|
||||||
0x0fb9f5d5e 0x9eba752a 0xd88e6de9
|
|
||||||
0x056b3dcc6 0x9a6b8e61 0x6784f61f
|
|
||||||
0x000f39c21 0x5eec6b33 0xd78e4f78
|
|
||||||
0x0921a305f 0xaa2cc27e 0x1ca917af
|
|
||||||
0x06e1134f4 0xd48cac77 0x4e914d07
|
|
||||||
0x0f707aa5a 0x0d141f41 0x84677f1d
|
|
||||||
0x0ad47a049 0x028aedb6 0xd5536fcf
|
|
||||||
0x03fef1e4f 0x133a03d2 0xfd7a750a
|
|
||||||
0x0f9159732 0xd207812e 0x6a807375
|
|
||||||
0x06434230d 0xc8e22dad 0x9f29b3d6
|
|
||||||
0x07c44ac2b 0xfa2aad88 0xe2429504
|
|
||||||
0x041febd41 0x85d0d142 0x7b194d65
|
|
||||||
0x06e5d55ea 0x41116961 0xf3181dde
|
|
||||||
0x068bf5fbc 0x3dd82047 0x00ee647e
|
|
||||||
0x0d7a44ab3>;
|
|
||||||
rsa,exponent = <0x00 0x10001>;
|
|
||||||
rsa,n0-inverse = <0xb3928b85>;
|
|
||||||
rsa,num-bits = <0x800>;
|
|
||||||
key-name-hint = "dev";
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
Signed Configurations
|
|
||||||
---------------------
|
|
||||||
While signing images is useful, it does not provide complete protection
|
|
||||||
against several types of attack. For example, it it possible to create a
|
|
||||||
FIT with the same signed images, but with the configuration changed such
|
|
||||||
that a different one is selected (mix and match attack). It is also possible
|
|
||||||
to substitute a signed image from an older FIT version into a newer FIT
|
|
||||||
(roll-back attack).
|
|
||||||
|
|
||||||
As an example, consider this FIT:
|
|
||||||
|
|
||||||
/ {
|
|
||||||
images {
|
|
||||||
kernel-1 {
|
|
||||||
data = <data for kernel1>
|
|
||||||
signature-1 {
|
|
||||||
algo = "sha1,rsa2048";
|
|
||||||
value = <...kernel signature 1...>
|
|
||||||
};
|
|
||||||
};
|
|
||||||
kernel-2 {
|
|
||||||
data = <data for kernel2>
|
|
||||||
signature-1 {
|
|
||||||
algo = "sha1,rsa2048";
|
|
||||||
value = <...kernel signature 2...>
|
|
||||||
};
|
|
||||||
};
|
|
||||||
fdt-1 {
|
|
||||||
data = <data for fdt1>;
|
|
||||||
signature-1 {
|
|
||||||
algo = "sha1,rsa2048";
|
|
||||||
value = <...fdt signature 1...>
|
|
||||||
};
|
|
||||||
};
|
|
||||||
fdt-2 {
|
|
||||||
data = <data for fdt2>;
|
|
||||||
signature-1 {
|
|
||||||
algo = "sha1,rsa2048";
|
|
||||||
value = <...fdt signature 2...>
|
|
||||||
};
|
|
||||||
};
|
|
||||||
};
|
|
||||||
configurations {
|
|
||||||
default = "conf-1";
|
|
||||||
conf-1 {
|
|
||||||
kernel = "kernel-1";
|
|
||||||
fdt = "fdt-1";
|
|
||||||
};
|
|
||||||
conf-2 {
|
|
||||||
kernel = "kernel-2";
|
|
||||||
fdt = "fdt-2";
|
|
||||||
};
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
Since both kernels are signed it is easy for an attacker to add a new
|
|
||||||
configuration 3 with kernel 1 and fdt 2:
|
|
||||||
|
|
||||||
configurations {
|
|
||||||
default = "conf-1";
|
|
||||||
conf-1 {
|
|
||||||
kernel = "kernel-1";
|
|
||||||
fdt = "fdt-1";
|
|
||||||
};
|
|
||||||
conf-2 {
|
|
||||||
kernel = "kernel-2";
|
|
||||||
fdt = "fdt-2";
|
|
||||||
};
|
|
||||||
conf-3 {
|
|
||||||
kernel = "kernel-1";
|
|
||||||
fdt = "fdt-2";
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
With signed images, nothing protects against this. Whether it gains an
|
|
||||||
advantage for the attacker is debatable, but it is not secure.
|
|
||||||
|
|
||||||
To solve this problem, we support signed configurations. In this case it
|
|
||||||
is the configurations that are signed, not the image. Each image has its
|
|
||||||
own hash, and we include the hash in the configuration signature.
|
|
||||||
|
|
||||||
So the above example is adjusted to look like this:
|
|
||||||
|
|
||||||
/ {
|
|
||||||
images {
|
|
||||||
kernel-1 {
|
|
||||||
data = <data for kernel1>
|
|
||||||
hash-1 {
|
|
||||||
algo = "sha1";
|
|
||||||
value = <...kernel hash 1...>
|
|
||||||
};
|
|
||||||
};
|
|
||||||
kernel-2 {
|
|
||||||
data = <data for kernel2>
|
|
||||||
hash-1 {
|
|
||||||
algo = "sha1";
|
|
||||||
value = <...kernel hash 2...>
|
|
||||||
};
|
|
||||||
};
|
|
||||||
fdt-1 {
|
|
||||||
data = <data for fdt1>;
|
|
||||||
hash-1 {
|
|
||||||
algo = "sha1";
|
|
||||||
value = <...fdt hash 1...>
|
|
||||||
};
|
|
||||||
};
|
|
||||||
fdt-2 {
|
|
||||||
data = <data for fdt2>;
|
|
||||||
hash-1 {
|
|
||||||
algo = "sha1";
|
|
||||||
value = <...fdt hash 2...>
|
|
||||||
};
|
|
||||||
};
|
|
||||||
};
|
|
||||||
configurations {
|
|
||||||
default = "conf-1";
|
|
||||||
conf-1 {
|
|
||||||
kernel = "kernel-1";
|
|
||||||
fdt = "fdt-1";
|
|
||||||
signature-1 {
|
|
||||||
algo = "sha1,rsa2048";
|
|
||||||
value = <...conf 1 signature...>;
|
|
||||||
};
|
|
||||||
};
|
|
||||||
conf-2 {
|
|
||||||
kernel = "kernel-2";
|
|
||||||
fdt = "fdt-2";
|
|
||||||
signature-1 {
|
|
||||||
algo = "sha1,rsa2048";
|
|
||||||
value = <...conf 1 signature...>;
|
|
||||||
};
|
|
||||||
};
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
You can see that we have added hashes for all images (since they are no
|
|
||||||
longer signed), and a signature to each configuration. In the above example,
|
|
||||||
mkimage will sign configurations/conf-1, the kernel and fdt that are
|
|
||||||
pointed to by the configuration (/images/kernel-1, /images/kernel-1/hash-1,
|
|
||||||
/images/fdt-1, /images/fdt-1/hash-1) and the root structure of the image
|
|
||||||
(so that it isn't possible to add or remove root nodes). The signature is
|
|
||||||
written into /configurations/conf-1/signature-1/value. It can easily be
|
|
||||||
verified later even if the FIT has been signed with other keys in the
|
|
||||||
meantime.
|
|
||||||
|
|
||||||
|
|
||||||
Details
|
|
||||||
-------
|
|
||||||
The signature node contains a property ('hashed-nodes') which lists all the
|
|
||||||
nodes that the signature was made over. The image is walked in order and each
|
|
||||||
tag processed as follows:
|
|
||||||
- DTB_BEGIN_NODE: The tag and the following name are included in the signature
|
|
||||||
if the node or its parent are present in 'hashed-nodes'
|
|
||||||
- DTB_END_NODE: The tag is included in the signature if the node or its parent
|
|
||||||
are present in 'hashed-nodes'
|
|
||||||
- DTB_PROPERTY: The tag, the length word, the offset in the string table, and
|
|
||||||
the data are all included if the current node is present in 'hashed-nodes'
|
|
||||||
and the property name is not 'data'.
|
|
||||||
- DTB_END: The tag is always included in the signature.
|
|
||||||
- DTB_NOP: The tag is included in the signature if the current node is present
|
|
||||||
in 'hashed-nodes'
|
|
||||||
|
|
||||||
In addition, the signature contains a property 'hashed-strings' which contains
|
|
||||||
the offset and length in the string table of the strings that are to be
|
|
||||||
included in the signature (this is done last).
|
|
||||||
|
|
||||||
IMPORTANT: To verify the signature outside u-boot, it is vital to not only
|
|
||||||
calculate the hash of the image and verify the signature with that, but also to
|
|
||||||
calculate the hashes of the kernel, fdt, and ramdisk images and check those
|
|
||||||
match the hash values in the corresponding 'hash*' subnodes.
|
|
||||||
|
|
||||||
|
|
||||||
Verification
|
|
||||||
------------
|
|
||||||
FITs are verified when loaded. After the configuration is selected a list
|
|
||||||
of required images is produced. If there are 'required' public keys, then
|
|
||||||
each image must be verified against those keys. This means that every image
|
|
||||||
that might be used by the target needs to be signed with 'required' keys.
|
|
||||||
|
|
||||||
This happens automatically as part of a bootm command when FITs are used.
|
|
||||||
|
|
||||||
For Signed Configurations, the default verification behavior can be changed by
|
|
||||||
the following optional property in /signature node in U-Boot's control FDT.
|
|
||||||
|
|
||||||
- required-mode: Valid values are "any" to allow verified boot to succeed if
|
|
||||||
the selected configuration is signed by any of the 'required' keys, and "all"
|
|
||||||
to allow verified boot to succeed if the selected configuration is signed by
|
|
||||||
all of the 'required' keys.
|
|
||||||
|
|
||||||
This property can be added to a binary device tree using fdtput as shown in
|
|
||||||
below examples::
|
|
||||||
|
|
||||||
fdtput -t s control.dtb /signature required-mode any
|
|
||||||
fdtput -t s control.dtb /signature required-mode all
|
|
||||||
|
|
||||||
|
|
||||||
Enabling FIT Verification
|
|
||||||
-------------------------
|
|
||||||
In addition to the options to enable FIT itself, the following CONFIGs must
|
|
||||||
be enabled:
|
|
||||||
|
|
||||||
CONFIG_FIT_SIGNATURE - enable signing and verification in FITs
|
|
||||||
CONFIG_RSA - enable RSA algorithm for signing
|
|
||||||
CONFIG_ECDSA - enable ECDSA algorithm for signing
|
|
||||||
|
|
||||||
WARNING: When relying on signed FIT images with required signature check
|
|
||||||
the legacy image format is default disabled by not defining
|
|
||||||
CONFIG_LEGACY_IMAGE_FORMAT
|
|
||||||
|
|
||||||
|
|
||||||
Testing
|
|
||||||
-------
|
|
||||||
An easy way to test signing and verification is to use the test script
|
|
||||||
provided in test/vboot/vboot_test.sh. This uses sandbox (a special version
|
|
||||||
of U-Boot which runs under Linux) to show the operation of a 'bootm'
|
|
||||||
command loading and verifying images.
|
|
||||||
|
|
||||||
A sample run is show below:
|
|
||||||
|
|
||||||
$ make O=sandbox sandbox_config
|
|
||||||
$ make O=sandbox
|
|
||||||
$ O=sandbox ./test/vboot/vboot_test.sh
|
|
||||||
|
|
||||||
|
|
||||||
Simple Verified Boot Test
|
|
||||||
=========================
|
|
||||||
|
|
||||||
Please see doc/uImage.FIT/verified-boot.txt for more information
|
|
||||||
|
|
||||||
/home/hs/ids/u-boot/sandbox/tools/mkimage -D -I dts -O dtb -p 2000
|
|
||||||
Build keys
|
|
||||||
do sha1 test
|
|
||||||
Build FIT with signed images
|
|
||||||
Test Verified Boot Run: unsigned signatures:: OK
|
|
||||||
Sign images
|
|
||||||
Test Verified Boot Run: signed images: OK
|
|
||||||
Build FIT with signed configuration
|
|
||||||
Test Verified Boot Run: unsigned config: OK
|
|
||||||
Sign images
|
|
||||||
Test Verified Boot Run: signed config: OK
|
|
||||||
check signed config on the host
|
|
||||||
Signature check OK
|
|
||||||
OK
|
|
||||||
Test Verified Boot Run: signed config: OK
|
|
||||||
Test Verified Boot Run: signed config with bad hash: OK
|
|
||||||
do sha256 test
|
|
||||||
Build FIT with signed images
|
|
||||||
Test Verified Boot Run: unsigned signatures:: OK
|
|
||||||
Sign images
|
|
||||||
Test Verified Boot Run: signed images: OK
|
|
||||||
Build FIT with signed configuration
|
|
||||||
Test Verified Boot Run: unsigned config: OK
|
|
||||||
Sign images
|
|
||||||
Test Verified Boot Run: signed config: OK
|
|
||||||
check signed config on the host
|
|
||||||
Signature check OK
|
|
||||||
OK
|
|
||||||
Test Verified Boot Run: signed config: OK
|
|
||||||
Test Verified Boot Run: signed config with bad hash: OK
|
|
||||||
|
|
||||||
Test passed
|
|
||||||
|
|
||||||
|
|
||||||
Software signing: keydir vs keyfile
|
|
||||||
-----------------------------------
|
|
||||||
|
|
||||||
In the simplest case, signing is done by giving mkimage the 'keyfile'. This is
|
|
||||||
the path to a file containing the signing key.
|
|
||||||
|
|
||||||
The alternative is to pass the 'keydir' argument. In this case the filename of
|
|
||||||
the key is derived from the 'keydir' and the "key-name-hint" property in the
|
|
||||||
FIT. In this case the "key-name-hint" property is mandatory, and the key must
|
|
||||||
exist in "<keydir>/<key-name-hint>.<ext>" Here the extension "ext" is
|
|
||||||
specific to the signing algorithm.
|
|
||||||
|
|
||||||
|
|
||||||
Hardware Signing with PKCS#11 or with HSM
|
|
||||||
-----------------------------------------
|
|
||||||
|
|
||||||
Securely managing private signing keys can challenging, especially when the
|
|
||||||
keys are stored on the file system of a computer that is connected to the
|
|
||||||
Internet. If an attacker is able to steal the key, they can sign malicious FIT
|
|
||||||
images which will appear genuine to your devices.
|
|
||||||
|
|
||||||
An alternative solution is to keep your signing key securely stored on hardware
|
|
||||||
device like a smartcard, USB token or Hardware Security Module (HSM) and have
|
|
||||||
them perform the signing. PKCS#11 is standard for interfacing with these crypto
|
|
||||||
device.
|
|
||||||
|
|
||||||
Requirements:
|
|
||||||
Smartcard/USB token/HSM which can work with some openssl engine
|
|
||||||
openssl
|
|
||||||
|
|
||||||
For pkcs11 engine usage:
|
|
||||||
libp11 (provides pkcs11 engine)
|
|
||||||
p11-kit (recommended to simplify setup)
|
|
||||||
opensc (for smartcards and smartcard like USB devices)
|
|
||||||
gnutls (recommended for key generation, p11tool)
|
|
||||||
|
|
||||||
For generic HSMs respective openssl engine must be installed and locateable by
|
|
||||||
openssl. This may require setting up LD_LIBRARY_PATH if engine is not installed
|
|
||||||
to openssl's default search paths.
|
|
||||||
|
|
||||||
PKCS11 engine support forms "key id" based on "keydir" and with
|
|
||||||
"key-name-hint". "key-name-hint" is used as "object" name (if not defined in
|
|
||||||
keydir). "keydir" (if defined) is used to define (prefix for) which PKCS11 source
|
|
||||||
is being used for lookup up for the key.
|
|
||||||
|
|
||||||
PKCS11 engine key ids:
|
|
||||||
"pkcs11:<keydir>;object=<key-name-hint>;type=<public|private>"
|
|
||||||
or, if keydir contains "object="
|
|
||||||
"pkcs11:<keydir>;type=<public|private>"
|
|
||||||
or
|
|
||||||
"pkcs11:object=<key-name-hint>;type=<public|private>",
|
|
||||||
|
|
||||||
Generic HSM engine support forms "key id" based on "keydir" and with
|
|
||||||
"key-name-hint". If "keydir" is specified for mkimage it is used as a prefix in
|
|
||||||
"key id" and is appended with "key-name-hint".
|
|
||||||
|
|
||||||
Generic engine key ids:
|
|
||||||
"<keydir><key-name-hint>"
|
|
||||||
or
|
|
||||||
"<key-name-hint>"
|
|
||||||
|
|
||||||
In order to set the pin in the HSM, an environment variable "MKIMAGE_SIGN_PIN"
|
|
||||||
can be specified.
|
|
||||||
|
|
||||||
The following examples use the Nitrokey Pro using pkcs11 engine. Instructions
|
|
||||||
for other devices may vary.
|
|
||||||
|
|
||||||
Notes on pkcs11 engine setup:
|
|
||||||
|
|
||||||
Make sure p11-kit, opensc are installed and that p11-kit is setup to use opensc.
|
|
||||||
/usr/share/p11-kit/modules/opensc.module should be present on your system.
|
|
||||||
|
|
||||||
|
|
||||||
Generating Keys On the Nitrokey:
|
|
||||||
|
|
||||||
$ gpg --card-edit
|
|
||||||
|
|
||||||
Reader ...........: Nitrokey Nitrokey Pro (xxxxxxxx0000000000000000) 00 00
|
|
||||||
Application ID ...: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|
||||||
Version ..........: 2.1
|
|
||||||
Manufacturer .....: ZeitControl
|
|
||||||
Serial number ....: xxxxxxxx
|
|
||||||
Name of cardholder: [not set]
|
|
||||||
Language prefs ...: de
|
|
||||||
Sex ..............: unspecified
|
|
||||||
URL of public key : [not set]
|
|
||||||
Login data .......: [not set]
|
|
||||||
Signature PIN ....: forced
|
|
||||||
Key attributes ...: rsa2048 rsa2048 rsa2048
|
|
||||||
Max. PIN lengths .: 32 32 32
|
|
||||||
PIN retry counter : 3 0 3
|
|
||||||
Signature counter : 0
|
|
||||||
Signature key ....: [none]
|
|
||||||
Encryption key....: [none]
|
|
||||||
Authentication key: [none]
|
|
||||||
General key info..: [none]
|
|
||||||
|
|
||||||
gpg/card> generate
|
|
||||||
Make off-card backup of encryption key? (Y/n) n
|
|
||||||
|
|
||||||
Please note that the factory settings of the PINs are
|
|
||||||
PIN = '123456' Admin PIN = '12345678'
|
|
||||||
You should change them using the command --change-pin
|
|
||||||
|
|
||||||
What keysize do you want for the Signature key? (2048) 4096
|
|
||||||
The card will now be re-configured to generate a key of 4096 bits
|
|
||||||
Note: There is no guarantee that the card supports the requested size.
|
|
||||||
If the key generation does not succeed, please check the
|
|
||||||
documentation of your card to see what sizes are allowed.
|
|
||||||
What keysize do you want for the Encryption key? (2048) 4096
|
|
||||||
The card will now be re-configured to generate a key of 4096 bits
|
|
||||||
What keysize do you want for the Authentication key? (2048) 4096
|
|
||||||
The card will now be re-configured to generate a key of 4096 bits
|
|
||||||
Please specify how long the key should be valid.
|
|
||||||
0 = key does not expire
|
|
||||||
<n> = key expires in n days
|
|
||||||
<n>w = key expires in n weeks
|
|
||||||
<n>m = key expires in n months
|
|
||||||
<n>y = key expires in n years
|
|
||||||
Key is valid for? (0)
|
|
||||||
Key does not expire at all
|
|
||||||
Is this correct? (y/N) y
|
|
||||||
|
|
||||||
GnuPG needs to construct a user ID to identify your key.
|
|
||||||
|
|
||||||
Real name: John Doe
|
|
||||||
Email address: john.doe@email.com
|
|
||||||
Comment:
|
|
||||||
You selected this USER-ID:
|
|
||||||
"John Doe <john.doe@email.com>"
|
|
||||||
|
|
||||||
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
|
|
||||||
|
|
||||||
|
|
||||||
Using p11tool to get the token URL:
|
|
||||||
|
|
||||||
Depending on system configuration, gpg-agent may need to be killed first.
|
|
||||||
|
|
||||||
$ p11tool --provider /usr/lib/opensc-pkcs11.so --list-tokens
|
|
||||||
Token 0:
|
|
||||||
URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29
|
|
||||||
Label: OpenPGP card (User PIN (sig))
|
|
||||||
Type: Hardware token
|
|
||||||
Manufacturer: ZeitControl
|
|
||||||
Model: PKCS#15 emulated
|
|
||||||
Serial: 000xxxxxxxxx
|
|
||||||
Module: (null)
|
|
||||||
|
|
||||||
|
|
||||||
Token 1:
|
|
||||||
URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%29
|
|
||||||
Label: OpenPGP card (User PIN)
|
|
||||||
Type: Hardware token
|
|
||||||
Manufacturer: ZeitControl
|
|
||||||
Model: PKCS#15 emulated
|
|
||||||
Serial: 000xxxxxxxxx
|
|
||||||
Module: (null)
|
|
||||||
|
|
||||||
Use the portion of the signature token URL after "pkcs11:" as the keydir argument (-k) to mkimage below.
|
|
||||||
|
|
||||||
|
|
||||||
Use the URL of the token to list the private keys:
|
|
||||||
|
|
||||||
$ p11tool --login --provider /usr/lib/opensc-pkcs11.so --list-privkeys \
|
|
||||||
"pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29"
|
|
||||||
Token 'OpenPGP card (User PIN (sig))' with URL 'pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29' requires user PIN
|
|
||||||
Enter PIN:
|
|
||||||
Object 0:
|
|
||||||
URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29;id=%01;object=Signature%20key;type=private
|
|
||||||
Type: Private key
|
|
||||||
Label: Signature key
|
|
||||||
Flags: CKA_PRIVATE; CKA_NEVER_EXTRACTABLE; CKA_SENSITIVE;
|
|
||||||
ID: 01
|
|
||||||
|
|
||||||
Use the label, in this case "Signature key" as the key-name-hint in your FIT.
|
|
||||||
|
|
||||||
Create the fitImage:
|
|
||||||
$ ./tools/mkimage -f fit-image.its fitImage
|
|
||||||
|
|
||||||
|
|
||||||
Sign the fitImage with the hardware key:
|
|
||||||
|
|
||||||
$ ./tools/mkimage -F -k \
|
|
||||||
"model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29" \
|
|
||||||
-K u-boot.dtb -N pkcs11 -r fitImage
|
|
||||||
|
|
||||||
|
|
||||||
Future Work
|
|
||||||
-----------
|
|
||||||
- Roll-back protection using a TPM is done using the tpm command. This can
|
|
||||||
be scripted, but we might consider a default way of doing this, built into
|
|
||||||
bootm.
|
|
||||||
|
|
||||||
|
|
||||||
Possible Future Work
|
|
||||||
--------------------
|
|
||||||
- More sandbox tests for failure modes
|
|
||||||
- Passwords for keys/certificates
|
|
||||||
- Perhaps implement OAEP
|
|
||||||
- Enhance bootm to permit scripted signature verification (so that a script
|
|
||||||
can verify an image but not actually boot it)
|
|
||||||
|
|
||||||
|
|
||||||
Simon Glass
|
|
||||||
sjg@chromium.org
|
|
||||||
1-1-13
|
|
@ -22,7 +22,7 @@ Two formats for script files exist:
|
|||||||
* Flat Image Tree (FIT)
|
* Flat Image Tree (FIT)
|
||||||
|
|
||||||
The benefit of the FIT images is that they can be signed and verifed as
|
The benefit of the FIT images is that they can be signed and verifed as
|
||||||
decribed in :download:`signature.txt <../../uImage.FIT/signature.txt>`.
|
described in :doc:`../fit/signature`.
|
||||||
|
|
||||||
Both formats can be created with the mkimage tool.
|
Both formats can be created with the mkimage tool.
|
||||||
|
|
||||||
|
612
doc/usage/fit/beaglebone_vboot.rst
Normal file
612
doc/usage/fit/beaglebone_vboot.rst
Normal file
@ -0,0 +1,612 @@
|
|||||||
|
.. SPDX-License-Identifier: GPL-2.0+
|
||||||
|
|
||||||
|
Verified Boot on the Beaglebone Black
|
||||||
|
=====================================
|
||||||
|
|
||||||
|
Introduction
|
||||||
|
------------
|
||||||
|
|
||||||
|
Before reading this, please read :doc:`verified-boot` and :doc:`signature`.
|
||||||
|
These instructions are for mainline U-Boot from v2014.07 onwards.
|
||||||
|
|
||||||
|
There is quite a bit of documentation in this directory describing how
|
||||||
|
verified boot works in U-Boot. There is also a test which runs through the
|
||||||
|
entire process of signing an image and running U-Boot (sandbox) to check it.
|
||||||
|
However, it might be useful to also have an example on a real board.
|
||||||
|
|
||||||
|
Beaglebone Black is a fairly common board so seems to be a reasonable choice
|
||||||
|
for an example of how to enable verified boot using U-Boot.
|
||||||
|
|
||||||
|
First a note that may to help avoid confusion. U-Boot and Linux both use
|
||||||
|
device tree. They may use the same device tree source, but it is seldom useful
|
||||||
|
for them to use the exact same binary from the same place. More typically,
|
||||||
|
U-Boot has its device tree packaged with it, and the kernel's device tree is
|
||||||
|
packaged with the kernel. In particular this is important with verified boot,
|
||||||
|
since U-Boot's device tree must be immutable. If it can be changed then the
|
||||||
|
public keys can be changed and verified boot is useless. An attacker can
|
||||||
|
simply generate a new key and put his public key into U-Boot so that
|
||||||
|
everything verifies. On the other hand the kernel's device tree typically
|
||||||
|
changes when the kernel changes, so it is useful to package an updated device
|
||||||
|
tree with the kernel binary. U-Boot supports the latter with its flexible FIT
|
||||||
|
format (Flat Image Tree).
|
||||||
|
|
||||||
|
|
||||||
|
Overview
|
||||||
|
--------
|
||||||
|
|
||||||
|
The steps are roughly as follows:
|
||||||
|
|
||||||
|
#. Build U-Boot for the board, with the verified boot options enabled.
|
||||||
|
|
||||||
|
#. Obtain a suitable Linux kernel
|
||||||
|
|
||||||
|
#. Create a Image Tree Source file (ITS) file describing how you want the
|
||||||
|
kernel to be packaged, compressed and signed.
|
||||||
|
|
||||||
|
#. Create a key pair
|
||||||
|
|
||||||
|
#. Sign the kernel
|
||||||
|
|
||||||
|
#. Put the public key into U-Boot's image
|
||||||
|
|
||||||
|
#. Put U-Boot and the kernel onto the board
|
||||||
|
|
||||||
|
#. Try it
|
||||||
|
|
||||||
|
|
||||||
|
Step 1: Build U-Boot
|
||||||
|
--------------------
|
||||||
|
|
||||||
|
a. Set up the environment variable to point to your toolchain. You will need
|
||||||
|
this for U-Boot and also for the kernel if you build it. For example if you
|
||||||
|
installed a Linaro version manually it might be something like::
|
||||||
|
|
||||||
|
export CROSS_COMPILE=/opt/linaro/gcc-linaro-arm-linux-gnueabihf-4.8-2013.08_linux/bin/arm-linux-gnueabihf-
|
||||||
|
|
||||||
|
or if you just installed gcc-arm-linux-gnueabi then it might be::
|
||||||
|
|
||||||
|
export CROSS_COMPILE=arm-linux-gnueabi-
|
||||||
|
|
||||||
|
b. Configure and build U-Boot with verified boot enabled::
|
||||||
|
|
||||||
|
export UBOOT=/path/to/u-boot
|
||||||
|
cd $UBOOT
|
||||||
|
# You can add -j10 if you have 10 CPUs to make it faster
|
||||||
|
make O=b/am335x_boneblack_vboot am335x_boneblack_vboot_config all
|
||||||
|
export UOUT=$UBOOT/b/am335x_boneblack_vboot
|
||||||
|
|
||||||
|
c. You will now have a U-Boot image::
|
||||||
|
|
||||||
|
file b/am335x_boneblack_vboot/u-boot-dtb.img
|
||||||
|
b/am335x_boneblack_vboot/u-boot-dtb.img: u-boot legacy uImage,
|
||||||
|
U-Boot 2014.07-rc2-00065-g2f69f8, Firmware/ARM, Firmware Image
|
||||||
|
(Not compressed), 395375 bytes, Sat May 31 16:19:04 2014,
|
||||||
|
Load Address: 0x80800000, Entry Point: 0x00000000,
|
||||||
|
Header CRC: 0x0ABD6ACA, Data CRC: 0x36DEF7E4
|
||||||
|
|
||||||
|
|
||||||
|
Step 2: Build Linux
|
||||||
|
--------------------
|
||||||
|
|
||||||
|
a. Find the kernel image ('Image') and device tree (.dtb) file you plan to
|
||||||
|
use. In our case it is am335x-boneblack.dtb and it is built with the kernel.
|
||||||
|
At the time of writing an SD Boot image can be obtained from here::
|
||||||
|
|
||||||
|
http://www.elinux.org/Beagleboard:Updating_The_Software#Image_For_Booting_From_microSD
|
||||||
|
|
||||||
|
You can write this to an SD card and then mount it to extract the kernel and
|
||||||
|
device tree files.
|
||||||
|
|
||||||
|
You can also build a kernel. Instructions for this are are here::
|
||||||
|
|
||||||
|
http://elinux.org/Building_BBB_Kernel
|
||||||
|
|
||||||
|
or you can use your favourite search engine. Following these instructions
|
||||||
|
produces a kernel Image and device tree files. For the record the steps
|
||||||
|
were::
|
||||||
|
|
||||||
|
export KERNEL=/path/to/kernel
|
||||||
|
cd $KERNEL
|
||||||
|
git clone git://github.com/beagleboard/kernel.git .
|
||||||
|
git checkout v3.14
|
||||||
|
./patch.sh
|
||||||
|
cp configs/beaglebone kernel/arch/arm/configs/beaglebone_defconfig
|
||||||
|
cd kernel
|
||||||
|
make beaglebone_defconfig
|
||||||
|
make uImage dtbs # -j10 if you have 10 CPUs
|
||||||
|
export OKERNEL=$KERNEL/kernel/arch/arm/boot
|
||||||
|
|
||||||
|
b. You now have the 'Image' and 'am335x-boneblack.dtb' files needed to boot.
|
||||||
|
|
||||||
|
|
||||||
|
Step 3: Create the ITS
|
||||||
|
----------------------
|
||||||
|
|
||||||
|
Set up a directory for your work::
|
||||||
|
|
||||||
|
export WORK=/path/to/dir
|
||||||
|
cd $WORK
|
||||||
|
|
||||||
|
Put this into a file in that directory called sign.its::
|
||||||
|
|
||||||
|
/dts-v1/;
|
||||||
|
|
||||||
|
/ {
|
||||||
|
description = "Beaglebone black";
|
||||||
|
#address-cells = <1>;
|
||||||
|
|
||||||
|
images {
|
||||||
|
kernel {
|
||||||
|
data = /incbin/("Image.lzo");
|
||||||
|
type = "kernel";
|
||||||
|
arch = "arm";
|
||||||
|
os = "linux";
|
||||||
|
compression = "lzo";
|
||||||
|
load = <0x80008000>;
|
||||||
|
entry = <0x80008000>;
|
||||||
|
hash-1 {
|
||||||
|
algo = "sha1";
|
||||||
|
};
|
||||||
|
};
|
||||||
|
fdt-1 {
|
||||||
|
description = "beaglebone-black";
|
||||||
|
data = /incbin/("am335x-boneblack.dtb");
|
||||||
|
type = "flat_dt";
|
||||||
|
arch = "arm";
|
||||||
|
compression = "none";
|
||||||
|
hash-1 {
|
||||||
|
algo = "sha1";
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
configurations {
|
||||||
|
default = "conf-1";
|
||||||
|
conf-1 {
|
||||||
|
kernel = "kernel";
|
||||||
|
fdt = "fdt-1";
|
||||||
|
signature-1 {
|
||||||
|
algo = "sha1,rsa2048";
|
||||||
|
key-name-hint = "dev";
|
||||||
|
sign-images = "fdt", "kernel";
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
The explanation for this is all in the documentation you have already read.
|
||||||
|
But briefly it packages a kernel and device tree, and provides a single
|
||||||
|
configuration to be signed with a key named 'dev'. The kernel is compressed
|
||||||
|
with LZO to make it smaller.
|
||||||
|
|
||||||
|
|
||||||
|
Step 4: Create a key pair
|
||||||
|
-------------------------
|
||||||
|
|
||||||
|
See :doc:`signature` for details on this step::
|
||||||
|
|
||||||
|
cd $WORK
|
||||||
|
mkdir keys
|
||||||
|
openssl genrsa -F4 -out keys/dev.key 2048
|
||||||
|
openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt
|
||||||
|
|
||||||
|
Note: keys/dev.key contains your private key and is very secret. If anyone
|
||||||
|
gets access to that file they can sign kernels with it. Keep it secure.
|
||||||
|
|
||||||
|
|
||||||
|
Step 5: Sign the kernel
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
We need to use mkimage (which was built when you built U-Boot) to package the
|
||||||
|
Linux kernel into a FIT (Flat Image Tree, a flexible file format that U-Boot
|
||||||
|
can load) using the ITS file you just created.
|
||||||
|
|
||||||
|
At the same time we must put the public key into U-Boot device tree, with the
|
||||||
|
'required' property, which tells U-Boot that this key must be verified for the
|
||||||
|
image to be valid. You will make this key available to U-Boot for booting in
|
||||||
|
step 6::
|
||||||
|
|
||||||
|
ln -s $OKERNEL/dts/am335x-boneblack.dtb
|
||||||
|
ln -s $OKERNEL/Image
|
||||||
|
ln -s $UOUT/u-boot-dtb.img
|
||||||
|
cp $UOUT/arch/arm/dts/am335x-boneblack.dtb am335x-boneblack-pubkey.dtb
|
||||||
|
lzop Image
|
||||||
|
$UOUT/tools/mkimage -f sign.its -K am335x-boneblack-pubkey.dtb -k keys -r image.fit
|
||||||
|
|
||||||
|
You should see something like this::
|
||||||
|
|
||||||
|
FIT description: Beaglebone black
|
||||||
|
Created: Sun Jun 1 12:50:30 2014
|
||||||
|
Image 0 (kernel)
|
||||||
|
Description: unavailable
|
||||||
|
Created: Sun Jun 1 12:50:30 2014
|
||||||
|
Type: Kernel Image
|
||||||
|
Compression: lzo compressed
|
||||||
|
Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
|
||||||
|
Architecture: ARM
|
||||||
|
OS: Linux
|
||||||
|
Load Address: 0x80008000
|
||||||
|
Entry Point: 0x80008000
|
||||||
|
Hash algo: sha1
|
||||||
|
Hash value: c94364646427e10f423837e559898ef02c97b988
|
||||||
|
Image 1 (fdt-1)
|
||||||
|
Description: beaglebone-black
|
||||||
|
Created: Sun Jun 1 12:50:30 2014
|
||||||
|
Type: Flat Device Tree
|
||||||
|
Compression: uncompressed
|
||||||
|
Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
|
||||||
|
Architecture: ARM
|
||||||
|
Hash algo: sha1
|
||||||
|
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
||||||
|
Default Configuration: 'conf-1'
|
||||||
|
Configuration 0 (conf-1)
|
||||||
|
Description: unavailable
|
||||||
|
Kernel: kernel
|
||||||
|
FDT: fdt-1
|
||||||
|
|
||||||
|
|
||||||
|
Now am335x-boneblack-pubkey.dtb contains the public key and image.fit contains
|
||||||
|
the signed kernel. Jump to step 6 if you like, or continue reading to increase
|
||||||
|
your understanding.
|
||||||
|
|
||||||
|
You can also run fit_check_sign to check it::
|
||||||
|
|
||||||
|
$UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
|
||||||
|
|
||||||
|
which results in::
|
||||||
|
|
||||||
|
Verifying Hash Integrity ... sha1,rsa2048:dev+
|
||||||
|
## Loading kernel from FIT Image at 7fc6ee469000 ...
|
||||||
|
Using 'conf-1' configuration
|
||||||
|
Verifying Hash Integrity ...
|
||||||
|
sha1,rsa2048:dev+
|
||||||
|
OK
|
||||||
|
|
||||||
|
Trying 'kernel' kernel subimage
|
||||||
|
Description: unavailable
|
||||||
|
Created: Sun Jun 1 12:50:30 2014
|
||||||
|
Type: Kernel Image
|
||||||
|
Compression: lzo compressed
|
||||||
|
Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
|
||||||
|
Architecture: ARM
|
||||||
|
OS: Linux
|
||||||
|
Load Address: 0x80008000
|
||||||
|
Entry Point: 0x80008000
|
||||||
|
Hash algo: sha1
|
||||||
|
Hash value: c94364646427e10f423837e559898ef02c97b988
|
||||||
|
Verifying Hash Integrity ...
|
||||||
|
sha1+
|
||||||
|
OK
|
||||||
|
|
||||||
|
Unimplemented compression type 4
|
||||||
|
## Loading fdt from FIT Image at 7fc6ee469000 ...
|
||||||
|
Using 'conf-1' configuration
|
||||||
|
Trying 'fdt-1' fdt subimage
|
||||||
|
Description: beaglebone-black
|
||||||
|
Created: Sun Jun 1 12:50:30 2014
|
||||||
|
Type: Flat Device Tree
|
||||||
|
Compression: uncompressed
|
||||||
|
Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
|
||||||
|
Architecture: ARM
|
||||||
|
Hash algo: sha1
|
||||||
|
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
||||||
|
Verifying Hash Integrity ...
|
||||||
|
sha1+
|
||||||
|
OK
|
||||||
|
|
||||||
|
Loading Flat Device Tree ... OK
|
||||||
|
|
||||||
|
## Loading ramdisk from FIT Image at 7fc6ee469000 ...
|
||||||
|
Using 'conf-1' configuration
|
||||||
|
Could not find subimage node
|
||||||
|
|
||||||
|
Signature check OK
|
||||||
|
|
||||||
|
|
||||||
|
At the top, you see "sha1,rsa2048:dev+". This means that it checked an RSA key
|
||||||
|
of size 2048 bits using SHA1 as the hash algorithm. The key name checked was
|
||||||
|
'dev' and the '+' means that it verified. If it showed '-' that would be bad.
|
||||||
|
|
||||||
|
Once the configuration is verified it is then possible to rely on the hashes
|
||||||
|
in each image referenced by that configuration. So fit_check_sign goes on to
|
||||||
|
load each of the images. We have a kernel and an FDT but no ramkdisk. In each
|
||||||
|
case fit_check_sign checks the hash and prints sha1+ meaning that the SHA1
|
||||||
|
hash verified. This means that none of the images has been tampered with.
|
||||||
|
|
||||||
|
There is a test in test/vboot which uses U-Boot's sandbox build to verify that
|
||||||
|
the above flow works.
|
||||||
|
|
||||||
|
But it is fun to do this by hand, so you can load image.fit into a hex editor
|
||||||
|
like ghex, and change a byte in the kernel::
|
||||||
|
|
||||||
|
$UOUT/tools/fit_info -f image.fit -n /images/kernel -p data
|
||||||
|
NAME: kernel
|
||||||
|
LEN: 7790938
|
||||||
|
OFF: 168
|
||||||
|
|
||||||
|
This tells us that the kernel starts at byte offset 168 (decimal) in image.fit
|
||||||
|
and extends for about 7MB. Try changing a byte at 0x2000 (say) and run
|
||||||
|
fit_check_sign again. You should see something like::
|
||||||
|
|
||||||
|
Verifying Hash Integrity ... sha1,rsa2048:dev+
|
||||||
|
## Loading kernel from FIT Image at 7f5a39571000 ...
|
||||||
|
Using 'conf-1' configuration
|
||||||
|
Verifying Hash Integrity ...
|
||||||
|
sha1,rsa2048:dev+
|
||||||
|
OK
|
||||||
|
|
||||||
|
Trying 'kernel' kernel subimage
|
||||||
|
Description: unavailable
|
||||||
|
Created: Sun Jun 1 13:09:21 2014
|
||||||
|
Type: Kernel Image
|
||||||
|
Compression: lzo compressed
|
||||||
|
Data Size: 7790938 Bytes = 7608.34 kB = 7.43 MB
|
||||||
|
Architecture: ARM
|
||||||
|
OS: Linux
|
||||||
|
Load Address: 0x80008000
|
||||||
|
Entry Point: 0x80008000
|
||||||
|
Hash algo: sha1
|
||||||
|
Hash value: c94364646427e10f423837e559898ef02c97b988
|
||||||
|
Verifying Hash Integrity ...
|
||||||
|
sha1 error
|
||||||
|
Bad hash value for 'hash-1' hash node in 'kernel' image node
|
||||||
|
Bad Data Hash
|
||||||
|
|
||||||
|
## Loading fdt from FIT Image at 7f5a39571000 ...
|
||||||
|
Using 'conf-1' configuration
|
||||||
|
Trying 'fdt-1' fdt subimage
|
||||||
|
Description: beaglebone-black
|
||||||
|
Created: Sun Jun 1 13:09:21 2014
|
||||||
|
Type: Flat Device Tree
|
||||||
|
Compression: uncompressed
|
||||||
|
Data Size: 31547 Bytes = 30.81 kB = 0.03 MB
|
||||||
|
Architecture: ARM
|
||||||
|
Hash algo: sha1
|
||||||
|
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
||||||
|
Verifying Hash Integrity ...
|
||||||
|
sha1+
|
||||||
|
OK
|
||||||
|
|
||||||
|
Loading Flat Device Tree ... OK
|
||||||
|
|
||||||
|
## Loading ramdisk from FIT Image at 7f5a39571000 ...
|
||||||
|
Using 'conf-1' configuration
|
||||||
|
Could not find subimage node
|
||||||
|
|
||||||
|
Signature check Bad (error 1)
|
||||||
|
|
||||||
|
|
||||||
|
It has detected the change in the kernel.
|
||||||
|
|
||||||
|
You can also be sneaky and try to switch images, using the libfdt utilities
|
||||||
|
that come with dtc (package name is device-tree-compiler but you will need a
|
||||||
|
recent version like 1.4::
|
||||||
|
|
||||||
|
dtc -v
|
||||||
|
Version: DTC 1.4.0
|
||||||
|
|
||||||
|
First we can check which nodes are actually hashed by the configuration::
|
||||||
|
|
||||||
|
$ fdtget -l image.fit /
|
||||||
|
images
|
||||||
|
configurations
|
||||||
|
|
||||||
|
$ fdtget -l image.fit /configurations
|
||||||
|
conf-1
|
||||||
|
fdtget -l image.fit /configurations/conf-1
|
||||||
|
signature-1
|
||||||
|
|
||||||
|
$ fdtget -p image.fit /configurations/conf-1/signature-1
|
||||||
|
hashed-strings
|
||||||
|
hashed-nodes
|
||||||
|
timestamp
|
||||||
|
signer-version
|
||||||
|
signer-name
|
||||||
|
value
|
||||||
|
algo
|
||||||
|
key-name-hint
|
||||||
|
sign-images
|
||||||
|
|
||||||
|
$ fdtget image.fit /configurations/conf-1/signature-1 hashed-nodes
|
||||||
|
/ /configurations/conf-1 /images/fdt-1 /images/fdt-1/hash /images/kernel /images/kernel/hash-1
|
||||||
|
|
||||||
|
This gives us a bit of a look into the signature that mkimage added. Note you
|
||||||
|
can also use fdtdump to list the entire device tree.
|
||||||
|
|
||||||
|
Say we want to change the kernel that this configuration uses
|
||||||
|
(/images/kernel). We could just put a new kernel in the image, but we will
|
||||||
|
need to change the hash to match. Let's simulate that by changing a byte of
|
||||||
|
the hash::
|
||||||
|
|
||||||
|
fdtget -tx image.fit /images/kernel/hash-1 value
|
||||||
|
c9436464 6427e10f 423837e5 59898ef0 2c97b988
|
||||||
|
fdtput -tx image.fit /images/kernel/hash-1 value c9436464 6427e10f 423837e5 59898ef0 2c97b981
|
||||||
|
|
||||||
|
Now check it again::
|
||||||
|
|
||||||
|
$UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
|
||||||
|
Verifying Hash Integrity ... sha1,rsa2048:devrsa_verify_with_keynode: RSA failed to verify: -13
|
||||||
|
rsa_verify_with_keynode: RSA failed to verify: -13
|
||||||
|
-
|
||||||
|
Failed to verify required signature 'key-dev'
|
||||||
|
Signature check Bad (error 1)
|
||||||
|
|
||||||
|
This time we don't even get as far as checking the images, since the
|
||||||
|
configuration signature doesn't match. We can't change any hashes without the
|
||||||
|
signature check noticing. The configuration is essentially locked. U-Boot has
|
||||||
|
a public key for which it requires a match, and will not permit the use of any
|
||||||
|
configuration that does not match that public key. The only way the
|
||||||
|
configuration will match is if it was signed by the matching private key.
|
||||||
|
|
||||||
|
It would also be possible to add a new signature node that does match your new
|
||||||
|
configuration. But that won't work since you are not allowed to change the
|
||||||
|
configuration in any way. Try it with a fresh (valid) image if you like by
|
||||||
|
running the mkimage link again. Then::
|
||||||
|
|
||||||
|
fdtput -p image.fit /configurations/conf-1/signature-1 value fred
|
||||||
|
$UOUT/tools/fit_check_sign -f image.fit -k am335x-boneblack-pubkey.dtb
|
||||||
|
Verifying Hash Integrity ... -
|
||||||
|
sha1,rsa2048:devrsa_verify_with_keynode: RSA failed to verify: -13
|
||||||
|
rsa_verify_with_keynode: RSA failed to verify: -13
|
||||||
|
-
|
||||||
|
Failed to verify required signature 'key-dev'
|
||||||
|
Signature check Bad (error 1)
|
||||||
|
|
||||||
|
|
||||||
|
Of course it would be possible to add an entirely new configuration and boot
|
||||||
|
with that, but it still needs to be signed, so it won't help.
|
||||||
|
|
||||||
|
|
||||||
|
6. Put the public key into U-Boot's image
|
||||||
|
-----------------------------------------
|
||||||
|
|
||||||
|
Having confirmed that the signature is doing its job, let's try it out in
|
||||||
|
U-Boot on the board. U-Boot needs access to the public key corresponding to
|
||||||
|
the private key that you signed with so that it can verify any kernels that
|
||||||
|
you sign::
|
||||||
|
|
||||||
|
cd $UBOOT
|
||||||
|
make O=b/am335x_boneblack_vboot EXT_DTB=${WORK}/am335x-boneblack-pubkey.dtb
|
||||||
|
|
||||||
|
Here we are overriding the normal device tree file with our one, which
|
||||||
|
contains the public key.
|
||||||
|
|
||||||
|
Now you have a special U-Boot image with the public key. It can verify can
|
||||||
|
kernel that you sign with the private key as in step 5.
|
||||||
|
|
||||||
|
If you like you can take a look at the public key information that mkimage
|
||||||
|
added to U-Boot's device tree::
|
||||||
|
|
||||||
|
fdtget -p am335x-boneblack-pubkey.dtb /signature/key-dev
|
||||||
|
required
|
||||||
|
algo
|
||||||
|
rsa,r-squared
|
||||||
|
rsa,modulus
|
||||||
|
rsa,n0-inverse
|
||||||
|
rsa,num-bits
|
||||||
|
key-name-hint
|
||||||
|
|
||||||
|
This has information about the key and some pre-processed values which U-Boot
|
||||||
|
can use to verify against it. These values are obtained from the public key
|
||||||
|
certificate by mkimage, but require quite a bit of code to generate. To save
|
||||||
|
code space in U-Boot, the information is extracted and written in raw form for
|
||||||
|
U-Boot to easily use. The same mechanism is used in Google's Chrome OS.
|
||||||
|
|
||||||
|
Notice the 'required' property. This marks the key as required - U-Boot will
|
||||||
|
not boot any image that does not verify against this key.
|
||||||
|
|
||||||
|
|
||||||
|
7. Put U-Boot and the kernel onto the board
|
||||||
|
-------------------------------------------
|
||||||
|
|
||||||
|
The method here varies depending on how you are booting. For this example we
|
||||||
|
are booting from an micro-SD card with two partitions, one for U-Boot and one
|
||||||
|
for Linux. Put it into your machine and write U-Boot and the kernel to it.
|
||||||
|
Here the card is /dev/sde::
|
||||||
|
|
||||||
|
cd $WORK
|
||||||
|
export UDEV=/dev/sde1 # Change thes two lines to the correct device
|
||||||
|
export KDEV=/dev/sde2
|
||||||
|
sudo mount $UDEV /mnt/tmp && sudo cp $UOUT/u-boot-dtb.img /mnt/tmp/u-boot.img && sleep 1 && sudo umount $UDEV
|
||||||
|
sudo mount $KDEV /mnt/tmp && sudo cp $WORK/image.fit /mnt/tmp/boot/image.fit && sleep 1 && sudo umount $KDEV
|
||||||
|
|
||||||
|
|
||||||
|
8. Try it
|
||||||
|
---------
|
||||||
|
|
||||||
|
Boot the board using the commands below::
|
||||||
|
|
||||||
|
setenv bootargs console=ttyO0,115200n8 quiet root=/dev/mmcblk0p2 ro rootfstype=ext4 rootwait
|
||||||
|
ext2load mmc 0:2 82000000 /boot/image.fit
|
||||||
|
bootm 82000000
|
||||||
|
|
||||||
|
You should then see something like this::
|
||||||
|
|
||||||
|
U-Boot# setenv bootargs console=ttyO0,115200n8 quiet root=/dev/mmcblk0p2 ro rootfstype=ext4 rootwait
|
||||||
|
U-Boot# ext2load mmc 0:2 82000000 /boot/image.fit
|
||||||
|
7824930 bytes read in 589 ms (12.7 MiB/s)
|
||||||
|
U-Boot# bootm 82000000
|
||||||
|
## Loading kernel from FIT Image at 82000000 ...
|
||||||
|
Using 'conf-1' configuration
|
||||||
|
Verifying Hash Integrity ... sha1,rsa2048:dev+ OK
|
||||||
|
Trying 'kernel' kernel subimage
|
||||||
|
Description: unavailable
|
||||||
|
Created: 2014-06-01 19:32:54 UTC
|
||||||
|
Type: Kernel Image
|
||||||
|
Compression: lzo compressed
|
||||||
|
Data Start: 0x820000a8
|
||||||
|
Data Size: 7790938 Bytes = 7.4 MiB
|
||||||
|
Architecture: ARM
|
||||||
|
OS: Linux
|
||||||
|
Load Address: 0x80008000
|
||||||
|
Entry Point: 0x80008000
|
||||||
|
Hash algo: sha1
|
||||||
|
Hash value: c94364646427e10f423837e559898ef02c97b988
|
||||||
|
Verifying Hash Integrity ... sha1+ OK
|
||||||
|
## Loading fdt from FIT Image at 82000000 ...
|
||||||
|
Using 'conf-1' configuration
|
||||||
|
Trying 'fdt-1' fdt subimage
|
||||||
|
Description: beaglebone-black
|
||||||
|
Created: 2014-06-01 19:32:54 UTC
|
||||||
|
Type: Flat Device Tree
|
||||||
|
Compression: uncompressed
|
||||||
|
Data Start: 0x8276e2ec
|
||||||
|
Data Size: 31547 Bytes = 30.8 KiB
|
||||||
|
Architecture: ARM
|
||||||
|
Hash algo: sha1
|
||||||
|
Hash value: cb09202f889d824f23b8e4404b781be5ad38a68d
|
||||||
|
Verifying Hash Integrity ... sha1+ OK
|
||||||
|
Booting using the fdt blob at 0x8276e2ec
|
||||||
|
Uncompressing Kernel Image ... OK
|
||||||
|
Loading Device Tree to 8fff5000, end 8ffffb3a ... OK
|
||||||
|
|
||||||
|
Starting kernel ...
|
||||||
|
|
||||||
|
[ 0.582377] omap_init_mbox: hwmod doesn't have valid attrs
|
||||||
|
[ 2.589651] musb-hdrc musb-hdrc.0.auto: Failed to request rx1.
|
||||||
|
[ 2.595830] musb-hdrc musb-hdrc.0.auto: musb_init_controller failed with status -517
|
||||||
|
[ 2.606470] musb-hdrc musb-hdrc.1.auto: Failed to request rx1.
|
||||||
|
[ 2.612723] musb-hdrc musb-hdrc.1.auto: musb_init_controller failed with status -517
|
||||||
|
[ 2.940808] drivers/rtc/hctosys.c: unable to open rtc device (rtc0)
|
||||||
|
[ 7.248889] libphy: PHY 4a101000.mdio:01 not found
|
||||||
|
[ 7.253995] net eth0: phy 4a101000.mdio:01 not found on slave 1
|
||||||
|
systemd-fsck[83]: Angstrom: clean, 50607/218160 files, 306348/872448 blocks
|
||||||
|
|
||||||
|
.---O---.
|
||||||
|
| | .-. o o
|
||||||
|
| | |-----.-----.-----.| | .----..-----.-----.
|
||||||
|
| | | __ | ---'| '--.| .-'| | |
|
||||||
|
| | | | | |--- || --'| | | ' | | | |
|
||||||
|
'---'---'--'--'--. |-----''----''--' '-----'-'-'-'
|
||||||
|
-' |
|
||||||
|
'---'
|
||||||
|
|
||||||
|
The Angstrom Distribution beaglebone ttyO0
|
||||||
|
|
||||||
|
Angstrom v2012.12 - Kernel 3.14.1+
|
||||||
|
|
||||||
|
beaglebone login:
|
||||||
|
|
||||||
|
At this point your kernel has been verified and you can be sure that it is one
|
||||||
|
that you signed. As an exercise, try changing image.fit as in step 5 and see
|
||||||
|
what happens.
|
||||||
|
|
||||||
|
|
||||||
|
Further Improvements
|
||||||
|
--------------------
|
||||||
|
|
||||||
|
Several of the steps here can be easily automated. In particular it would be
|
||||||
|
capital if signing and packaging a kernel were easy, perhaps a simple make
|
||||||
|
target in the kernel.
|
||||||
|
|
||||||
|
Some mention of how to use multiple .dtb files in a FIT might be useful.
|
||||||
|
|
||||||
|
U-Boot's verified boot mechanism has not had a robust and independent security
|
||||||
|
review. Such a review should look at the implementation and its resistance to
|
||||||
|
attacks.
|
||||||
|
|
||||||
|
Perhaps the verified boot feature could be integrated into the Amstrom
|
||||||
|
distribution.
|
||||||
|
|
||||||
|
|
||||||
|
.. sectionauthor:: Simon Glass <sjg@chromium.org>, 2-June-14
|
@ -12,3 +12,6 @@ doc/uImage.FIT
|
|||||||
|
|
||||||
source_file_format
|
source_file_format
|
||||||
x86-fit-boot
|
x86-fit-boot
|
||||||
|
signature
|
||||||
|
verified-boot
|
||||||
|
beaglebone_vboot
|
||||||
|
760
doc/usage/fit/signature.rst
Normal file
760
doc/usage/fit/signature.rst
Normal file
@ -0,0 +1,760 @@
|
|||||||
|
.. SPDX-License-Identifier: GPL-2.0+
|
||||||
|
|
||||||
|
U-Boot FIT Signature Verification
|
||||||
|
=================================
|
||||||
|
|
||||||
|
Introduction
|
||||||
|
------------
|
||||||
|
|
||||||
|
FIT supports hashing of images so that these hashes can be checked on
|
||||||
|
loading. This protects against corruption of the image. However it does not
|
||||||
|
prevent the substitution of one image for another.
|
||||||
|
|
||||||
|
The signature feature allows the hash to be signed with a private key such
|
||||||
|
that it can be verified using a public key later. Provided that the private
|
||||||
|
key is kept secret and the public key is stored in a non-volatile place,
|
||||||
|
any image can be verified in this way.
|
||||||
|
|
||||||
|
See verified-boot.txt for more general information on verified boot.
|
||||||
|
|
||||||
|
|
||||||
|
Concepts
|
||||||
|
--------
|
||||||
|
|
||||||
|
Some familiarity with public key cryptography is assumed in this section.
|
||||||
|
|
||||||
|
The procedure for signing is as follows:
|
||||||
|
|
||||||
|
- hash an image in the FIT
|
||||||
|
- sign the hash with a private key to produce a signature
|
||||||
|
- store the resulting signature in the FIT
|
||||||
|
|
||||||
|
The procedure for verification is:
|
||||||
|
|
||||||
|
- read the FIT
|
||||||
|
- obtain the public key
|
||||||
|
- extract the signature from the FIT
|
||||||
|
- hash the image from the FIT
|
||||||
|
- verify (with the public key) that the extracted signature matches the
|
||||||
|
hash
|
||||||
|
|
||||||
|
The signing is generally performed by mkimage, as part of making a firmware
|
||||||
|
image for the device. The verification is normally done in U-Boot on the
|
||||||
|
device.
|
||||||
|
|
||||||
|
|
||||||
|
Algorithms
|
||||||
|
----------
|
||||||
|
In principle any suitable algorithm can be used to sign and verify a hash.
|
||||||
|
U-Boot supports a few hashing and verification algorithms. See below for
|
||||||
|
details.
|
||||||
|
|
||||||
|
While it is acceptable to bring in large cryptographic libraries such as
|
||||||
|
openssl on the host side (e.g. mkimage), it is not desirable for U-Boot.
|
||||||
|
For the run-time verification side, it is important to keep code and data
|
||||||
|
size as small as possible.
|
||||||
|
|
||||||
|
For this reason the RSA image verification uses pre-processed public keys
|
||||||
|
which can be used with a very small amount of code - just some extraction
|
||||||
|
of data from the FDT and exponentiation mod n. Code size impact is a little
|
||||||
|
under 5KB on Tegra Seaboard, for example.
|
||||||
|
|
||||||
|
It is relatively straightforward to add new algorithms if required. If
|
||||||
|
another RSA variant is needed, then it can be added with the
|
||||||
|
U_BOOT_CRYPTO_ALGO() macro. If another algorithm is needed (such as DSA) then
|
||||||
|
it can be placed in a directory alongside lib/rsa/, and its functions added
|
||||||
|
using U_BOOT_CRYPTO_ALGO().
|
||||||
|
|
||||||
|
|
||||||
|
Creating an RSA key pair and certificate
|
||||||
|
----------------------------------------
|
||||||
|
To create a new public/private key pair, size 2048 bits::
|
||||||
|
|
||||||
|
$ openssl genpkey -algorithm RSA -out keys/dev.key \
|
||||||
|
-pkeyopt rsa_keygen_bits:2048 -pkeyopt rsa_keygen_pubexp:65537
|
||||||
|
|
||||||
|
To create a certificate for this containing the public key::
|
||||||
|
|
||||||
|
$ openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt
|
||||||
|
|
||||||
|
If you like you can look at the public key also::
|
||||||
|
|
||||||
|
$ openssl rsa -in keys/dev.key -pubout
|
||||||
|
|
||||||
|
|
||||||
|
Device Tree Bindings
|
||||||
|
--------------------
|
||||||
|
The following properties are required in the FIT's signature node(s) to
|
||||||
|
allow the signer to operate. These should be added to the .its file.
|
||||||
|
Signature nodes sit at the same level as hash nodes and are called
|
||||||
|
signature-1, signature-2, etc.
|
||||||
|
|
||||||
|
algo
|
||||||
|
Algorithm name (e.g. "sha1,rsa2048")
|
||||||
|
|
||||||
|
key-name-hint
|
||||||
|
Name of key to use for signing. The keys will normally be in
|
||||||
|
a single directory (parameter -k to mkimage). For a given key <name>, its
|
||||||
|
private key is stored in <name>.key and the certificate is stored in
|
||||||
|
<name>.crt.
|
||||||
|
|
||||||
|
When the image is signed, the following properties are added (mandatory):
|
||||||
|
|
||||||
|
value
|
||||||
|
The signature data (e.g. 256 bytes for 2048-bit RSA)
|
||||||
|
|
||||||
|
When the image is signed, the following properties are optional:
|
||||||
|
|
||||||
|
timestamp
|
||||||
|
Time when image was signed (standard Unix time_t format)
|
||||||
|
|
||||||
|
signer-name
|
||||||
|
Name of the signer (e.g. "mkimage")
|
||||||
|
|
||||||
|
signer-version
|
||||||
|
Version string of the signer (e.g. "2013.01")
|
||||||
|
|
||||||
|
comment
|
||||||
|
Additional information about the signer or image
|
||||||
|
|
||||||
|
padding
|
||||||
|
The padding algorithm, it may be pkcs-1.5 or pss,
|
||||||
|
if no value is provided we assume pkcs-1.5
|
||||||
|
|
||||||
|
For config bindings (see Signed Configurations below), the following
|
||||||
|
additional properties are optional:
|
||||||
|
|
||||||
|
sign-images
|
||||||
|
A list of images to sign, each being a property of the conf
|
||||||
|
node that contains then. The default is "kernel,fdt" which means that these
|
||||||
|
two images will be looked up in the config and signed if present.
|
||||||
|
|
||||||
|
For config bindings, these properties are added by the signer:
|
||||||
|
|
||||||
|
hashed-nodes
|
||||||
|
A list of nodes which were hashed by the signer. Each is
|
||||||
|
a string - the full path to node. A typical value might be::
|
||||||
|
|
||||||
|
hashed-nodes = "/", "/configurations/conf-1", "/images/kernel",
|
||||||
|
"/images/kernel/hash-1", "/images/fdt-1",
|
||||||
|
"/images/fdt-1/hash-1";
|
||||||
|
|
||||||
|
hashed-strings
|
||||||
|
The start and size of the string region of the FIT that was hashed
|
||||||
|
|
||||||
|
Example: See :doc:`sign-images` for an example image tree source file and
|
||||||
|
sign-configs.its for config signing.
|
||||||
|
|
||||||
|
|
||||||
|
Public Key Storage
|
||||||
|
------------------
|
||||||
|
In order to verify an image that has been signed with a public key we need to
|
||||||
|
have a trusted public key. This cannot be stored in the signed image, since
|
||||||
|
it would be easy to alter. For this implementation we choose to store the
|
||||||
|
public key in U-Boot's control FDT (using CONFIG_OF_CONTROL).
|
||||||
|
|
||||||
|
Public keys should be stored as sub-nodes in a /signature node. Required
|
||||||
|
properties are:
|
||||||
|
|
||||||
|
algo
|
||||||
|
Algorithm name (e.g. "sha1,rsa2048" or "sha256,ecdsa256")
|
||||||
|
|
||||||
|
Optional properties are:
|
||||||
|
|
||||||
|
key-name-hint
|
||||||
|
Name of key used for signing. This is only a hint since it
|
||||||
|
is possible for the name to be changed. Verification can proceed by checking
|
||||||
|
all available signing keys until one matches.
|
||||||
|
|
||||||
|
required
|
||||||
|
If present this indicates that the key must be verified for the
|
||||||
|
image / configuration to be considered valid. Only required keys are
|
||||||
|
normally verified by the FIT image booting algorithm. Valid values are
|
||||||
|
"image" to force verification of all images, and "conf" to force verification
|
||||||
|
of the selected configuration (which then relies on hashes in the images to
|
||||||
|
verify those).
|
||||||
|
|
||||||
|
Each signing algorithm has its own additional properties.
|
||||||
|
|
||||||
|
For RSA the following are mandatory:
|
||||||
|
|
||||||
|
rsa,num-bits
|
||||||
|
Number of key bits (e.g. 2048)
|
||||||
|
|
||||||
|
rsa,modulus
|
||||||
|
Modulus (N) as a big-endian multi-word integer
|
||||||
|
|
||||||
|
rsa,exponent
|
||||||
|
Public exponent (E) as a 64 bit unsigned integer
|
||||||
|
|
||||||
|
rsa,r-squared
|
||||||
|
(2^num-bits)^2 as a big-endian multi-word integer
|
||||||
|
|
||||||
|
rsa,n0-inverse
|
||||||
|
-1 / modulus[0] mod 2^32
|
||||||
|
|
||||||
|
For ECDSA the following are mandatory:
|
||||||
|
|
||||||
|
ecdsa,curve
|
||||||
|
Name of ECDSA curve (e.g. "prime256v1")
|
||||||
|
|
||||||
|
ecdsa,x-point
|
||||||
|
Public key X coordinate as a big-endian multi-word integer
|
||||||
|
|
||||||
|
ecdsa,y-point
|
||||||
|
Public key Y coordinate as a big-endian multi-word integer
|
||||||
|
|
||||||
|
These parameters can be added to a binary device tree using parameter -K of the
|
||||||
|
mkimage command::
|
||||||
|
|
||||||
|
tools/mkimage -f fit.its -K control.dtb -k keys -r image.fit
|
||||||
|
|
||||||
|
Here is an example of a generated device tree node::
|
||||||
|
|
||||||
|
signature {
|
||||||
|
key-dev {
|
||||||
|
required = "conf";
|
||||||
|
algo = "sha256,rsa2048";
|
||||||
|
rsa,r-squared = <0xb76d1acf 0xa1763ca5 0xeb2f126
|
||||||
|
0x742edc80 0xd3f42177 0x9741d9d9
|
||||||
|
0x35bb476e 0xff41c718 0xd3801430
|
||||||
|
0xf22537cb 0xa7e79960 0xae32a043
|
||||||
|
0x7da1427a 0x341d6492 0x3c2762f5
|
||||||
|
0xaac04726 0x5b262d96 0xf984e86d
|
||||||
|
0xb99443c7 0x17080c33 0x940f6892
|
||||||
|
0xd57a95d1 0x6ea7b691 0xc5038fa8
|
||||||
|
0x6bb48a6e 0x73f1b1ea 0x37160841
|
||||||
|
0xe05715ce 0xa7c45bbd 0x690d82d5
|
||||||
|
0x99c2454c 0x6ff117b3 0xd830683b
|
||||||
|
0x3f81c9cf 0x1ca38a91 0x0c3392e4
|
||||||
|
0xd817c625 0x7b8e9a24 0x175b89ea
|
||||||
|
0xad79f3dc 0x4d50d7b4 0x9d4e90f8
|
||||||
|
0xad9e2939 0xc165d6a4 0x0ada7e1b
|
||||||
|
0xfb1bf495 0xfc3131c2 0xb8c6e604
|
||||||
|
0xc2761124 0xf63de4a6 0x0e9565f9
|
||||||
|
0xc8e53761 0x7e7a37a5 0xe99dcdae
|
||||||
|
0x9aff7e1e 0xbd44b13d 0x6b0e6aa4
|
||||||
|
0x038907e4 0x8e0d6850 0xef51bc20
|
||||||
|
0xf73c94af 0x88bea7b1 0xcbbb1b30
|
||||||
|
0xd024b7f3>;
|
||||||
|
rsa,modulus = <0xc0711d6cb 0x9e86db7f 0x45986dbe
|
||||||
|
0x023f1e8c9 0xe1a4c4d0 0x8a0dfdc9
|
||||||
|
0x023ba0c48 0x06815f6a 0x5caa0654
|
||||||
|
0x07078c4b7 0x3d154853 0x40729023
|
||||||
|
0x0b007c8fe 0x5a3647e5 0x23b41e20
|
||||||
|
0x024720591 0x66915305 0x0e0b29b0
|
||||||
|
0x0de2ad30d 0x8589430f 0xb1590325
|
||||||
|
0x0fb9f5d5e 0x9eba752a 0xd88e6de9
|
||||||
|
0x056b3dcc6 0x9a6b8e61 0x6784f61f
|
||||||
|
0x000f39c21 0x5eec6b33 0xd78e4f78
|
||||||
|
0x0921a305f 0xaa2cc27e 0x1ca917af
|
||||||
|
0x06e1134f4 0xd48cac77 0x4e914d07
|
||||||
|
0x0f707aa5a 0x0d141f41 0x84677f1d
|
||||||
|
0x0ad47a049 0x028aedb6 0xd5536fcf
|
||||||
|
0x03fef1e4f 0x133a03d2 0xfd7a750a
|
||||||
|
0x0f9159732 0xd207812e 0x6a807375
|
||||||
|
0x06434230d 0xc8e22dad 0x9f29b3d6
|
||||||
|
0x07c44ac2b 0xfa2aad88 0xe2429504
|
||||||
|
0x041febd41 0x85d0d142 0x7b194d65
|
||||||
|
0x06e5d55ea 0x41116961 0xf3181dde
|
||||||
|
0x068bf5fbc 0x3dd82047 0x00ee647e
|
||||||
|
0x0d7a44ab3>;
|
||||||
|
rsa,exponent = <0x00 0x10001>;
|
||||||
|
rsa,n0-inverse = <0xb3928b85>;
|
||||||
|
rsa,num-bits = <0x800>;
|
||||||
|
key-name-hint = "dev";
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
Signed Configurations
|
||||||
|
---------------------
|
||||||
|
While signing images is useful, it does not provide complete protection
|
||||||
|
against several types of attack. For example, it is possible to create a
|
||||||
|
FIT with the same signed images, but with the configuration changed such
|
||||||
|
that a different one is selected (mix and match attack). It is also possible
|
||||||
|
to substitute a signed image from an older FIT version into a newer FIT
|
||||||
|
(roll-back attack).
|
||||||
|
|
||||||
|
As an example, consider this FIT::
|
||||||
|
|
||||||
|
/ {
|
||||||
|
images {
|
||||||
|
kernel-1 {
|
||||||
|
data = <data for kernel1>
|
||||||
|
signature-1 {
|
||||||
|
algo = "sha1,rsa2048";
|
||||||
|
value = <...kernel signature 1...>
|
||||||
|
};
|
||||||
|
};
|
||||||
|
kernel-2 {
|
||||||
|
data = <data for kernel2>
|
||||||
|
signature-1 {
|
||||||
|
algo = "sha1,rsa2048";
|
||||||
|
value = <...kernel signature 2...>
|
||||||
|
};
|
||||||
|
};
|
||||||
|
fdt-1 {
|
||||||
|
data = <data for fdt1>;
|
||||||
|
signature-1 {
|
||||||
|
algo = "sha1,rsa2048";
|
||||||
|
value = <...fdt signature 1...>
|
||||||
|
};
|
||||||
|
};
|
||||||
|
fdt-2 {
|
||||||
|
data = <data for fdt2>;
|
||||||
|
signature-1 {
|
||||||
|
algo = "sha1,rsa2048";
|
||||||
|
value = <...fdt signature 2...>
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
configurations {
|
||||||
|
default = "conf-1";
|
||||||
|
conf-1 {
|
||||||
|
kernel = "kernel-1";
|
||||||
|
fdt = "fdt-1";
|
||||||
|
};
|
||||||
|
conf-2 {
|
||||||
|
kernel = "kernel-2";
|
||||||
|
fdt = "fdt-2";
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
Since both kernels are signed it is easy for an attacker to add a new
|
||||||
|
configuration 3 with kernel 1 and fdt 2::
|
||||||
|
|
||||||
|
configurations {
|
||||||
|
default = "conf-1";
|
||||||
|
conf-1 {
|
||||||
|
kernel = "kernel-1";
|
||||||
|
fdt = "fdt-1";
|
||||||
|
};
|
||||||
|
conf-2 {
|
||||||
|
kernel = "kernel-2";
|
||||||
|
fdt = "fdt-2";
|
||||||
|
};
|
||||||
|
conf-3 {
|
||||||
|
kernel = "kernel-1";
|
||||||
|
fdt = "fdt-2";
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
With signed images, nothing protects against this. Whether it gains an
|
||||||
|
advantage for the attacker is debatable, but it is not secure.
|
||||||
|
|
||||||
|
To solve this problem, we support signed configurations. In this case it
|
||||||
|
is the configurations that are signed, not the image. Each image has its
|
||||||
|
own hash, and we include the hash in the configuration signature.
|
||||||
|
|
||||||
|
So the above example is adjusted to look like this::
|
||||||
|
|
||||||
|
/ {
|
||||||
|
images {
|
||||||
|
kernel-1 {
|
||||||
|
data = <data for kernel1>
|
||||||
|
hash-1 {
|
||||||
|
algo = "sha1";
|
||||||
|
value = <...kernel hash 1...>
|
||||||
|
};
|
||||||
|
};
|
||||||
|
kernel-2 {
|
||||||
|
data = <data for kernel2>
|
||||||
|
hash-1 {
|
||||||
|
algo = "sha1";
|
||||||
|
value = <...kernel hash 2...>
|
||||||
|
};
|
||||||
|
};
|
||||||
|
fdt-1 {
|
||||||
|
data = <data for fdt1>;
|
||||||
|
hash-1 {
|
||||||
|
algo = "sha1";
|
||||||
|
value = <...fdt hash 1...>
|
||||||
|
};
|
||||||
|
};
|
||||||
|
fdt-2 {
|
||||||
|
data = <data for fdt2>;
|
||||||
|
hash-1 {
|
||||||
|
algo = "sha1";
|
||||||
|
value = <...fdt hash 2...>
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
configurations {
|
||||||
|
default = "conf-1";
|
||||||
|
conf-1 {
|
||||||
|
kernel = "kernel-1";
|
||||||
|
fdt = "fdt-1";
|
||||||
|
signature-1 {
|
||||||
|
algo = "sha1,rsa2048";
|
||||||
|
value = <...conf 1 signature...>;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
conf-2 {
|
||||||
|
kernel = "kernel-2";
|
||||||
|
fdt = "fdt-2";
|
||||||
|
signature-1 {
|
||||||
|
algo = "sha1,rsa2048";
|
||||||
|
value = <...conf 1 signature...>;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
You can see that we have added hashes for all images (since they are no
|
||||||
|
longer signed), and a signature to each configuration. In the above example,
|
||||||
|
mkimage will sign configurations/conf-1, the kernel and fdt that are
|
||||||
|
pointed to by the configuration (/images/kernel-1, /images/kernel-1/hash-1,
|
||||||
|
/images/fdt-1, /images/fdt-1/hash-1) and the root structure of the image
|
||||||
|
(so that it isn't possible to add or remove root nodes). The signature is
|
||||||
|
written into /configurations/conf-1/signature-1/value. It can easily be
|
||||||
|
verified later even if the FIT has been signed with other keys in the
|
||||||
|
meantime.
|
||||||
|
|
||||||
|
|
||||||
|
Details
|
||||||
|
-------
|
||||||
|
The signature node contains a property ('hashed-nodes') which lists all the
|
||||||
|
nodes that the signature was made over. The image is walked in order and each
|
||||||
|
tag processed as follows:
|
||||||
|
|
||||||
|
DTB_BEGIN_NODE
|
||||||
|
The tag and the following name are included in the signature
|
||||||
|
if the node or its parent are present in 'hashed-nodes'
|
||||||
|
|
||||||
|
DTB_END_NODE
|
||||||
|
The tag is included in the signature if the node or its parent
|
||||||
|
are present in 'hashed-nodes'
|
||||||
|
|
||||||
|
DTB_PROPERTY
|
||||||
|
The tag, the length word, the offset in the string table, and
|
||||||
|
the data are all included if the current node is present in 'hashed-nodes'
|
||||||
|
and the property name is not 'data'.
|
||||||
|
|
||||||
|
DTB_END
|
||||||
|
The tag is always included in the signature.
|
||||||
|
|
||||||
|
DTB_NOP
|
||||||
|
The tag is included in the signature if the current node is present
|
||||||
|
in 'hashed-nodes'
|
||||||
|
|
||||||
|
In addition, the signature contains a property 'hashed-strings' which contains
|
||||||
|
the offset and length in the string table of the strings that are to be
|
||||||
|
included in the signature (this is done last).
|
||||||
|
|
||||||
|
IMPORTANT: To verify the signature outside u-boot, it is vital to not only
|
||||||
|
calculate the hash of the image and verify the signature with that, but also to
|
||||||
|
calculate the hashes of the kernel, fdt, and ramdisk images and check those
|
||||||
|
match the hash values in the corresponding 'hash*' subnodes.
|
||||||
|
|
||||||
|
|
||||||
|
Verification
|
||||||
|
------------
|
||||||
|
FITs are verified when loaded. After the configuration is selected a list
|
||||||
|
of required images is produced. If there are 'required' public keys, then
|
||||||
|
each image must be verified against those keys. This means that every image
|
||||||
|
that might be used by the target needs to be signed with 'required' keys.
|
||||||
|
|
||||||
|
This happens automatically as part of a bootm command when FITs are used.
|
||||||
|
|
||||||
|
For Signed Configurations, the default verification behavior can be changed by
|
||||||
|
the following optional property in /signature node in U-Boot's control FDT.
|
||||||
|
|
||||||
|
required-mode
|
||||||
|
Valid values are "any" to allow verified boot to succeed if
|
||||||
|
the selected configuration is signed by any of the 'required' keys, and "all"
|
||||||
|
to allow verified boot to succeed if the selected configuration is signed by
|
||||||
|
all of the 'required' keys.
|
||||||
|
|
||||||
|
This property can be added to a binary device tree using fdtput as shown in
|
||||||
|
below examples::
|
||||||
|
|
||||||
|
fdtput -t s control.dtb /signature required-mode any
|
||||||
|
fdtput -t s control.dtb /signature required-mode all
|
||||||
|
|
||||||
|
|
||||||
|
Enabling FIT Verification
|
||||||
|
-------------------------
|
||||||
|
In addition to the options to enable FIT itself, the following CONFIGs must
|
||||||
|
be enabled:
|
||||||
|
|
||||||
|
CONFIG_FIT_SIGNATURE
|
||||||
|
enable signing and verification in FITs
|
||||||
|
|
||||||
|
CONFIG_RSA
|
||||||
|
enable RSA algorithm for signing
|
||||||
|
|
||||||
|
CONFIG_ECDSA
|
||||||
|
enable ECDSA algorithm for signing
|
||||||
|
|
||||||
|
WARNING: When relying on signed FIT images with required signature check
|
||||||
|
the legacy image format is default disabled by not defining
|
||||||
|
CONFIG_LEGACY_IMAGE_FORMAT
|
||||||
|
|
||||||
|
|
||||||
|
Testing
|
||||||
|
-------
|
||||||
|
|
||||||
|
An easy way to test signing and verification is to use the test script
|
||||||
|
provided in test/vboot/vboot_test.sh. This uses sandbox (a special version
|
||||||
|
of U-Boot which runs under Linux) to show the operation of a 'bootm'
|
||||||
|
command loading and verifying images.
|
||||||
|
|
||||||
|
A sample run is show below::
|
||||||
|
|
||||||
|
$ make O=sandbox sandbox_config
|
||||||
|
$ make O=sandbox
|
||||||
|
$ O=sandbox ./test/vboot/vboot_test.sh
|
||||||
|
|
||||||
|
|
||||||
|
Simple Verified Boot Test
|
||||||
|
-------------------------
|
||||||
|
|
||||||
|
Please see :doc:`verified-boot` for more information::
|
||||||
|
|
||||||
|
/home/hs/ids/u-boot/sandbox/tools/mkimage -D -I dts -O dtb -p 2000
|
||||||
|
Build keys
|
||||||
|
do sha1 test
|
||||||
|
Build FIT with signed images
|
||||||
|
Test Verified Boot Run: unsigned signatures:: OK
|
||||||
|
Sign images
|
||||||
|
Test Verified Boot Run: signed images: OK
|
||||||
|
Build FIT with signed configuration
|
||||||
|
Test Verified Boot Run: unsigned config: OK
|
||||||
|
Sign images
|
||||||
|
Test Verified Boot Run: signed config: OK
|
||||||
|
check signed config on the host
|
||||||
|
Signature check OK
|
||||||
|
OK
|
||||||
|
Test Verified Boot Run: signed config: OK
|
||||||
|
Test Verified Boot Run: signed config with bad hash: OK
|
||||||
|
do sha256 test
|
||||||
|
Build FIT with signed images
|
||||||
|
Test Verified Boot Run: unsigned signatures:: OK
|
||||||
|
Sign images
|
||||||
|
Test Verified Boot Run: signed images: OK
|
||||||
|
Build FIT with signed configuration
|
||||||
|
Test Verified Boot Run: unsigned config: OK
|
||||||
|
Sign images
|
||||||
|
Test Verified Boot Run: signed config: OK
|
||||||
|
check signed config on the host
|
||||||
|
Signature check OK
|
||||||
|
OK
|
||||||
|
Test Verified Boot Run: signed config: OK
|
||||||
|
Test Verified Boot Run: signed config with bad hash: OK
|
||||||
|
|
||||||
|
Test passed
|
||||||
|
|
||||||
|
|
||||||
|
Software signing: keydir vs keyfile
|
||||||
|
-----------------------------------
|
||||||
|
|
||||||
|
In the simplest case, signing is done by giving mkimage the 'keyfile'. This is
|
||||||
|
the path to a file containing the signing key.
|
||||||
|
|
||||||
|
The alternative is to pass the 'keydir' argument. In this case the filename of
|
||||||
|
the key is derived from the 'keydir' and the "key-name-hint" property in the
|
||||||
|
FIT. In this case the "key-name-hint" property is mandatory, and the key must
|
||||||
|
exist in "<keydir>/<key-name-hint>.<ext>" Here the extension "ext" is
|
||||||
|
specific to the signing algorithm.
|
||||||
|
|
||||||
|
|
||||||
|
Hardware Signing with PKCS#11 or with HSM
|
||||||
|
-----------------------------------------
|
||||||
|
|
||||||
|
Securely managing private signing keys can challenging, especially when the
|
||||||
|
keys are stored on the file system of a computer that is connected to the
|
||||||
|
Internet. If an attacker is able to steal the key, they can sign malicious FIT
|
||||||
|
images which will appear genuine to your devices.
|
||||||
|
|
||||||
|
An alternative solution is to keep your signing key securely stored on hardware
|
||||||
|
device like a smartcard, USB token or Hardware Security Module (HSM) and have
|
||||||
|
them perform the signing. PKCS#11 is standard for interfacing with these crypto
|
||||||
|
device.
|
||||||
|
|
||||||
|
Requirements:
|
||||||
|
- Smartcard/USB token/HSM which can work with some openssl engine
|
||||||
|
- openssl
|
||||||
|
|
||||||
|
For pkcs11 engine usage:
|
||||||
|
- libp11 (provides pkcs11 engine)
|
||||||
|
- p11-kit (recommended to simplify setup)
|
||||||
|
- opensc (for smartcards and smartcard like USB devices)
|
||||||
|
- gnutls (recommended for key generation, p11tool)
|
||||||
|
|
||||||
|
For generic HSMs respective openssl engine must be installed and locateable by
|
||||||
|
openssl. This may require setting up LD_LIBRARY_PATH if engine is not installed
|
||||||
|
to openssl's default search paths.
|
||||||
|
|
||||||
|
PKCS11 engine support forms "key id" based on "keydir" and with
|
||||||
|
"key-name-hint". "key-name-hint" is used as "object" name (if not defined in
|
||||||
|
keydir). "keydir" (if defined) is used to define (prefix for) which PKCS11 source
|
||||||
|
is being used for lookup up for the key.
|
||||||
|
|
||||||
|
PKCS11 engine key ids
|
||||||
|
"pkcs11:<keydir>;object=<key-name-hint>;type=<public|private>"
|
||||||
|
|
||||||
|
or, if keydir contains "object="
|
||||||
|
"pkcs11:<keydir>;type=<public|private>"
|
||||||
|
|
||||||
|
or
|
||||||
|
"pkcs11:object=<key-name-hint>;type=<public|private>",
|
||||||
|
|
||||||
|
Generic HSM engine support forms "key id" based on "keydir" and with
|
||||||
|
"key-name-hint". If "keydir" is specified for mkimage it is used as a prefix in
|
||||||
|
"key id" and is appended with "key-name-hint".
|
||||||
|
|
||||||
|
Generic engine key ids:
|
||||||
|
"<keydir><key-name-hint>"
|
||||||
|
|
||||||
|
or
|
||||||
|
"< key-name-hint>"
|
||||||
|
|
||||||
|
In order to set the pin in the HSM, an environment variable "MKIMAGE_SIGN_PIN"
|
||||||
|
can be specified.
|
||||||
|
|
||||||
|
The following examples use the Nitrokey Pro using pkcs11 engine. Instructions
|
||||||
|
for other devices may vary.
|
||||||
|
|
||||||
|
Notes on pkcs11 engine setup:
|
||||||
|
|
||||||
|
Make sure p11-kit, opensc are installed and that p11-kit is setup to use opensc.
|
||||||
|
/usr/share/p11-kit/modules/opensc.module should be present on your system.
|
||||||
|
|
||||||
|
|
||||||
|
Generating Keys On the Nitrokey::
|
||||||
|
|
||||||
|
$ gpg --card-edit
|
||||||
|
|
||||||
|
Reader ...........: Nitrokey Nitrokey Pro (xxxxxxxx0000000000000000) 00 00
|
||||||
|
Application ID ...: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
||||||
|
Version ..........: 2.1
|
||||||
|
Manufacturer .....: ZeitControl
|
||||||
|
Serial number ....: xxxxxxxx
|
||||||
|
Name of cardholder: [not set]
|
||||||
|
Language prefs ...: de
|
||||||
|
Sex ..............: unspecified
|
||||||
|
URL of public key : [not set]
|
||||||
|
Login data .......: [not set]
|
||||||
|
Signature PIN ....: forced
|
||||||
|
Key attributes ...: rsa2048 rsa2048 rsa2048
|
||||||
|
Max. PIN lengths .: 32 32 32
|
||||||
|
PIN retry counter : 3 0 3
|
||||||
|
Signature counter : 0
|
||||||
|
Signature key ....: [none]
|
||||||
|
Encryption key....: [none]
|
||||||
|
Authentication key: [none]
|
||||||
|
General key info..: [none]
|
||||||
|
|
||||||
|
gpg/card> generate
|
||||||
|
Make off-card backup of encryption key? (Y/n) n
|
||||||
|
|
||||||
|
Please note that the factory settings of the PINs are
|
||||||
|
PIN = '123456' Admin PIN = '12345678'
|
||||||
|
You should change them using the command --change-pin
|
||||||
|
|
||||||
|
What keysize do you want for the Signature key? (2048) 4096
|
||||||
|
The card will now be re-configured to generate a key of 4096 bits
|
||||||
|
Note: There is no guarantee that the card supports the requested size.
|
||||||
|
If the key generation does not succeed, please check the
|
||||||
|
documentation of your card to see what sizes are allowed.
|
||||||
|
What keysize do you want for the Encryption key? (2048) 4096
|
||||||
|
The card will now be re-configured to generate a key of 4096 bits
|
||||||
|
What keysize do you want for the Authentication key? (2048) 4096
|
||||||
|
The card will now be re-configured to generate a key of 4096 bits
|
||||||
|
Please specify how long the key should be valid.
|
||||||
|
0 = key does not expire
|
||||||
|
<n> = key expires in n days
|
||||||
|
<n>w = key expires in n weeks
|
||||||
|
<n>m = key expires in n months
|
||||||
|
<n>y = key expires in n years
|
||||||
|
Key is valid for? (0)
|
||||||
|
Key does not expire at all
|
||||||
|
Is this correct? (y/N) y
|
||||||
|
|
||||||
|
GnuPG needs to construct a user ID to identify your key.
|
||||||
|
|
||||||
|
Real name: John Doe
|
||||||
|
Email address: john.doe@email.com
|
||||||
|
Comment:
|
||||||
|
You selected this USER-ID:
|
||||||
|
"John Doe <john.doe@email.com>"
|
||||||
|
|
||||||
|
Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
|
||||||
|
|
||||||
|
|
||||||
|
Using p11tool to get the token URL:
|
||||||
|
|
||||||
|
Depending on system configuration, gpg-agent may need to be killed first::
|
||||||
|
|
||||||
|
$ p11tool --provider /usr/lib/opensc-pkcs11.so --list-tokens
|
||||||
|
Token 0:
|
||||||
|
URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29
|
||||||
|
Label: OpenPGP card (User PIN (sig))
|
||||||
|
Type: Hardware token
|
||||||
|
Manufacturer: ZeitControl
|
||||||
|
Model: PKCS#15 emulated
|
||||||
|
Serial: 000xxxxxxxxx
|
||||||
|
Module: (null)
|
||||||
|
|
||||||
|
|
||||||
|
Token 1:
|
||||||
|
URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%29
|
||||||
|
Label: OpenPGP card (User PIN)
|
||||||
|
Type: Hardware token
|
||||||
|
Manufacturer: ZeitControl
|
||||||
|
Model: PKCS#15 emulated
|
||||||
|
Serial: 000xxxxxxxxx
|
||||||
|
Module: (null)
|
||||||
|
|
||||||
|
Use the portion of the signature token URL after "pkcs11:" as the keydir argument (-k) to mkimage below.
|
||||||
|
|
||||||
|
|
||||||
|
Use the URL of the token to list the private keys::
|
||||||
|
|
||||||
|
$ p11tool --login --provider /usr/lib/opensc-pkcs11.so --list-privkeys \
|
||||||
|
"pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29"
|
||||||
|
Token 'OpenPGP card (User PIN (sig))' with URL 'pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29' requires user PIN
|
||||||
|
Enter PIN:
|
||||||
|
Object 0:
|
||||||
|
URL: pkcs11:model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29;id=%01;object=Signature%20key;type=private
|
||||||
|
Type: Private key
|
||||||
|
Label: Signature key
|
||||||
|
Flags: CKA_PRIVATE; CKA_NEVER_EXTRACTABLE; CKA_SENSITIVE;
|
||||||
|
ID: 01
|
||||||
|
|
||||||
|
Use the label, in this case "Signature key" as the key-name-hint in your FIT.
|
||||||
|
|
||||||
|
Create the fitImage::
|
||||||
|
|
||||||
|
$ ./tools/mkimage -f fit-image.its fitImage
|
||||||
|
|
||||||
|
|
||||||
|
Sign the fitImage with the hardware key::
|
||||||
|
|
||||||
|
$ ./tools/mkimage -F -k \
|
||||||
|
"model=PKCS%2315%20emulated;manufacturer=ZeitControl;serial=000xxxxxxxxx;token=OpenPGP%20card%20%28User%20PIN%20%28sig%29%29" \
|
||||||
|
-K u-boot.dtb -N pkcs11 -r fitImage
|
||||||
|
|
||||||
|
|
||||||
|
Future Work
|
||||||
|
-----------
|
||||||
|
|
||||||
|
- Roll-back protection using a TPM is done using the tpm command. This can
|
||||||
|
be scripted, but we might consider a default way of doing this, built into
|
||||||
|
bootm.
|
||||||
|
|
||||||
|
|
||||||
|
Possible Future Work
|
||||||
|
--------------------
|
||||||
|
|
||||||
|
- More sandbox tests for failure modes
|
||||||
|
- Passwords for keys/certificates
|
||||||
|
- Perhaps implement OAEP
|
||||||
|
- Enhance bootm to permit scripted signature verification (so that a script
|
||||||
|
can verify an image but not actually boot it)
|
||||||
|
|
||||||
|
|
||||||
|
.. sectionauthor:: Simon Glass <sjg@chromium.org>, 1-1-13
|
@ -1,8 +1,11 @@
|
|||||||
|
.. SPDX-License-Identifier: GPL-2.0+
|
||||||
|
|
||||||
U-Boot Verified Boot
|
U-Boot Verified Boot
|
||||||
====================
|
====================
|
||||||
|
|
||||||
Introduction
|
Introduction
|
||||||
------------
|
------------
|
||||||
|
|
||||||
Verified boot here means the verification of all software loaded into a
|
Verified boot here means the verification of all software loaded into a
|
||||||
machine during the boot process to ensure that it is authorised and correct
|
machine during the boot process to ensure that it is authorised and correct
|
||||||
for that machine.
|
for that machine.
|
||||||
@ -21,6 +24,7 @@ memory, so that firmware can easily be upgraded in a secure manner.
|
|||||||
|
|
||||||
Signing
|
Signing
|
||||||
-------
|
-------
|
||||||
|
|
||||||
Verified boot uses cryptographic algorithms to 'sign' software images.
|
Verified boot uses cryptographic algorithms to 'sign' software images.
|
||||||
Images are signed using a private key known only to the signer, but can
|
Images are signed using a private key known only to the signer, but can
|
||||||
be verified using a public key. As its name suggests the public key can be
|
be verified using a public key. As its name suggests the public key can be
|
||||||
@ -28,31 +32,31 @@ made available without risk to the verification process. The private and
|
|||||||
public keys are mathematically related. For more information on how this
|
public keys are mathematically related. For more information on how this
|
||||||
works look up "public key cryptography" and "RSA" (a particular algorithm).
|
works look up "public key cryptography" and "RSA" (a particular algorithm).
|
||||||
|
|
||||||
The signing and verification process looks something like this:
|
The signing and verification process looks something like this::
|
||||||
|
|
||||||
|
|
||||||
Signing Verification
|
Signing Verification
|
||||||
======= ============
|
======= ============
|
||||||
|
|
||||||
+--------------+ *
|
+--------------+ *
|
||||||
| RSA key pair | * +---------------+
|
| RSA key pair | * +---------------+
|
||||||
| .key .crt | * | Public key in |
|
| .key .crt | * | Public key in |
|
||||||
+--------------+ +------> public key ----->| trusted place |
|
+--------------+ +------> public key ----->| trusted place |
|
||||||
| | * +---------------+
|
| | * +---------------+
|
||||||
| | * |
|
| | * |
|
||||||
v | * v
|
v | * v
|
||||||
+---------+ | * +--------------+
|
+---------+ | * +--------------+
|
||||||
| |----------+ * | |
|
| |---------+ * | |
|
||||||
| signer | * | U-Boot |
|
| signer | * | U-Boot |
|
||||||
| |----------+ * | signature |--> yes/no
|
| |---------+ * | signature |--> yes/no
|
||||||
+---------+ | * | verification |
|
+---------+ | * | verification |
|
||||||
^ | * | |
|
^ | * | |
|
||||||
| | * +--------------+
|
| | * +--------------+
|
||||||
| | * ^
|
| | * ^
|
||||||
+----------+ | * |
|
+----------+ | * |
|
||||||
| Software | +----> signed image -------------+
|
| Software | +----> signed image -------------+
|
||||||
| image | *
|
| image | *
|
||||||
+----------+ *
|
+----------+ *
|
||||||
|
|
||||||
|
|
||||||
The signature algorithm relies only on the public key to do its work. Using
|
The signature algorithm relies only on the public key to do its work. Using
|
||||||
@ -70,23 +74,25 @@ the verification is worthless.
|
|||||||
|
|
||||||
Chaining Images
|
Chaining Images
|
||||||
---------------
|
---------------
|
||||||
|
|
||||||
The above method works for a signer providing images to a run-time U-Boot.
|
The above method works for a signer providing images to a run-time U-Boot.
|
||||||
It is also possible to extend this scheme to a second level, like this:
|
It is also possible to extend this scheme to a second level, like this:
|
||||||
|
|
||||||
1. Master private key is used by the signer to sign a first-stage image.
|
#. Master private key is used by the signer to sign a first-stage image.
|
||||||
2. Master public key is placed in read-only memory.
|
#. Master public key is placed in read-only memory.
|
||||||
2. Secondary private key is created and used to sign second-stage images.
|
#. Secondary private key is created and used to sign second-stage images.
|
||||||
3. Secondary public key is placed in first stage images
|
#. Secondary public key is placed in first stage images
|
||||||
4. We use the master public key to verify the first-stage image. We then
|
#. We use the master public key to verify the first-stage image. We then
|
||||||
use the secondary public key in the first-stage image to verify the second-
|
use the secondary public key in the first-stage image to verify the second-
|
||||||
state image.
|
state image.
|
||||||
5. This chaining process can go on indefinitely. It is recommended to use a
|
#. This chaining process can go on indefinitely. It is recommended to use a
|
||||||
different key at each stage, so that a compromise in one place will not
|
different key at each stage, so that a compromise in one place will not
|
||||||
affect the whole change.
|
affect the whole change.
|
||||||
|
|
||||||
|
|
||||||
Flattened Image Tree (FIT)
|
Flattened Image Tree (FIT)
|
||||||
--------------------------
|
--------------------------
|
||||||
|
|
||||||
The FIT format is already widely used in U-Boot. It is a flattened device
|
The FIT format is already widely used in U-Boot. It is a flattened device
|
||||||
tree (FDT) in a particular format, with images contained within. FITs
|
tree (FDT) in a particular format, with images contained within. FITs
|
||||||
include hashes to verify images, so it is relatively straightforward to
|
include hashes to verify images, so it is relatively straightforward to
|
||||||
@ -96,9 +102,6 @@ The public key can be stored in U-Boot's CONFIG_OF_CONTROL device tree in
|
|||||||
a standard place. Then when a FIT is loaded it can be verified using that
|
a standard place. Then when a FIT is loaded it can be verified using that
|
||||||
public key. Multiple keys and multiple signatures are supported.
|
public key. Multiple keys and multiple signatures are supported.
|
||||||
|
|
||||||
See signature.txt for more information.
|
See :doc:`signature` for more information.
|
||||||
|
|
||||||
|
.. sectionauthor:: Simon Glass <sjg@chromium.org> 1-1-13
|
||||||
Simon Glass
|
|
||||||
sjg@chromium.org
|
|
||||||
1-1-13
|
|
Loading…
Reference in New Issue
Block a user