mtd: nand: raw: Remove unused octeontx_nand driver

As no platforms use this driver anymore let's go ahead and remove it.

Signed-off-by: Tom Rini <trini@konsulko.com>
This commit is contained in:
Tom Rini 2025-07-11 09:19:45 -06:00 committed by Michael Trimarchi
parent cb34f23bdb
commit 8877bbe67a
6 changed files with 0 additions and 2992 deletions

View File

@ -568,22 +568,6 @@ config NAND_ZYNQ_USE_BOOTLOADER1_TIMINGS
This flag prevent U-Boot reconfigure NAND flash controller and reuse This flag prevent U-Boot reconfigure NAND flash controller and reuse
the NAND timing from 1st stage bootloader. the NAND timing from 1st stage bootloader.
config NAND_OCTEONTX
bool "Support for OcteonTX NAND controller"
select SYS_NAND_SELF_INIT
imply CMD_NAND
help
This enables Nand flash controller hardware found on the OcteonTX
processors.
config NAND_OCTEONTX_HW_ECC
bool "Support Hardware ECC for OcteonTX NAND controller"
depends on NAND_OCTEONTX
default y
help
This enables Hardware BCH engine found on the OcteonTX processors to
support ECC for NAND flash controller.
config NAND_STM32_FMC2 config NAND_STM32_FMC2
bool "Support for NAND controller on STM32MP SoCs" bool "Support for NAND controller on STM32MP SoCs"
depends on ARCH_STM32MP depends on ARCH_STM32MP

View File

@ -66,8 +66,6 @@ obj-$(CONFIG_NAND_MESON) += meson_nand.o
obj-$(CONFIG_NAND_MXC) += mxc_nand.o obj-$(CONFIG_NAND_MXC) += mxc_nand.o
obj-$(CONFIG_NAND_MXS) += mxs_nand.o obj-$(CONFIG_NAND_MXS) += mxs_nand.o
obj-$(CONFIG_NAND_MXS_DT) += mxs_nand_dt.o obj-$(CONFIG_NAND_MXS_DT) += mxs_nand_dt.o
obj-$(CONFIG_NAND_OCTEONTX) += octeontx_nand.o
obj-$(CONFIG_NAND_OCTEONTX_HW_ECC) += octeontx_bch.o
obj-$(CONFIG_NAND_PXA3XX) += pxa3xx_nand.o obj-$(CONFIG_NAND_PXA3XX) += pxa3xx_nand.o
obj-$(CONFIG_TEGRA_NAND) += tegra_nand.o obj-$(CONFIG_TEGRA_NAND) += tegra_nand.o
obj-$(CONFIG_NAND_OMAP_GPMC) += omap_gpmc.o obj-$(CONFIG_NAND_OMAP_GPMC) += omap_gpmc.o

View File

@ -1,422 +0,0 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 Marvell International Ltd.
*/
#include <dm.h>
#include <dm/of_access.h>
#include <malloc.h>
#include <memalign.h>
#include <nand.h>
#include <pci.h>
#include <pci_ids.h>
#include <time.h>
#include <linux/bitfield.h>
#include <linux/ctype.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/ioport.h>
#include <linux/libfdt.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand_bch.h>
#include <linux/mtd/nand_ecc.h>
#include <asm/io.h>
#include <asm/types.h>
#include <asm/dma-mapping.h>
#include <asm/arch/clock.h>
#include "octeontx_bch.h"
static LIST_HEAD(octeontx_bch_devices);
static unsigned int num_vfs = BCH_NR_VF;
static void *bch_pf;
static void *bch_vf;
static void *token;
static bool bch_pf_initialized;
static bool bch_vf_initialized;
static int pci_enable_sriov(struct udevice *dev, int nr_virtfn)
{
int ret;
ret = pci_sriov_init(dev, nr_virtfn);
if (ret)
printf("%s(%s): pci_sriov_init returned %d\n", __func__,
dev->name, ret);
return ret;
}
void *octeontx_bch_getv(void)
{
if (!bch_vf)
return NULL;
if (bch_vf_initialized && bch_pf_initialized)
return bch_vf;
else
return NULL;
}
void octeontx_bch_putv(void *token)
{
bch_vf_initialized = !!token;
bch_vf = token;
}
void *octeontx_bch_getp(void)
{
return token;
}
void octeontx_bch_putp(void *token)
{
bch_pf = token;
bch_pf_initialized = !!token;
}
static int do_bch_init(struct bch_device *bch)
{
return 0;
}
static void bch_reset(struct bch_device *bch)
{
writeq(1, bch->reg_base + BCH_CTL);
mdelay(2);
}
static void bch_disable(struct bch_device *bch)
{
writeq(~0ull, bch->reg_base + BCH_ERR_INT_ENA_W1C);
writeq(~0ull, bch->reg_base + BCH_ERR_INT);
bch_reset(bch);
}
static u32 bch_check_bist_status(struct bch_device *bch)
{
return readq(bch->reg_base + BCH_BIST_RESULT);
}
static int bch_device_init(struct bch_device *bch)
{
u64 bist;
int rc;
debug("%s: Resetting...\n", __func__);
/* Reset the PF when probed first */
bch_reset(bch);
debug("%s: Checking BIST...\n", __func__);
/* Check BIST status */
bist = (u64)bch_check_bist_status(bch);
if (bist) {
dev_err(dev, "BCH BIST failed with code 0x%llx\n", bist);
return -ENODEV;
}
/* Get max VQs/VFs supported by the device */
bch->max_vfs = pci_sriov_get_totalvfs(bch->dev);
debug("%s: %d vfs\n", __func__, bch->max_vfs);
if (num_vfs > bch->max_vfs) {
dev_warn(dev, "Num of VFs to enable %d is greater than max available. Enabling %d VFs.\n",
num_vfs, bch->max_vfs);
num_vfs = bch->max_vfs;
}
bch->vfs_enabled = bch->max_vfs;
/* Get number of VQs/VFs to be enabled */
/* TODO: Get CLK frequency */
/* Reset device parameters */
debug("%s: Doing initialization\n", __func__);
rc = do_bch_init(bch);
return rc;
}
static int bch_sriov_configure(struct udevice *dev, int numvfs)
{
struct bch_device *bch = dev_get_priv(dev);
int ret = -EBUSY;
debug("%s(%s, %d), bch: %p, vfs_in_use: %d, enabled: %d\n", __func__,
dev->name, numvfs, bch, bch->vfs_in_use, bch->vfs_enabled);
if (bch->vfs_in_use)
goto exit;
ret = 0;
if (numvfs > 0) {
debug("%s: Enabling sriov\n", __func__);
ret = pci_enable_sriov(dev, numvfs);
if (ret == 0) {
bch->flags |= BCH_FLAG_SRIOV_ENABLED;
ret = numvfs;
bch->vfs_enabled = numvfs;
}
}
debug("VFs enabled: %d\n", ret);
exit:
debug("%s: Returning %d\n", __func__, ret);
return ret;
}
static int octeontx_pci_bchpf_probe(struct udevice *dev)
{
struct bch_device *bch;
int ret;
debug("%s(%s)\n", __func__, dev->name);
bch = dev_get_priv(dev);
if (!bch)
return -ENOMEM;
bch->reg_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0, 0,
PCI_REGION_TYPE, PCI_REGION_MEM);
bch->dev = dev;
debug("%s: base address: %p\n", __func__, bch->reg_base);
ret = bch_device_init(bch);
if (ret) {
printf("%s(%s): init returned %d\n", __func__, dev->name, ret);
return ret;
}
INIT_LIST_HEAD(&bch->list);
list_add(&bch->list, &octeontx_bch_devices);
token = (void *)dev;
debug("%s: Configuring SRIOV\n", __func__);
bch_sriov_configure(dev, num_vfs);
debug("%s: Done.\n", __func__);
octeontx_bch_putp(bch);
return 0;
}
static const struct pci_device_id octeontx_bchpf_pci_id_table[] = {
{ PCI_VDEVICE(CAVIUM, PCI_DEVICE_ID_CAVIUM_BCH) },
{},
};
static const struct pci_device_id octeontx_bchvf_pci_id_table[] = {
{ PCI_VDEVICE(CAVIUM, PCI_DEVICE_ID_CAVIUM_BCHVF)},
{},
};
/**
* Given a data block calculate the ecc data and fill in the response
*
* @param[in] block 8-byte aligned pointer to data block to calculate ECC
* @param block_size Size of block in bytes, must be a multiple of two.
* @param bch_level Number of errors that must be corrected. The number of
* parity bytes is equal to ((15 * bch_level) + 7) / 8.
* Must be 4, 8, 16, 24, 32, 40, 48, 56, 60 or 64.
* @param[out] ecc 8-byte aligned pointer to where ecc data should go
* @param[in] resp pointer to where responses will be written.
*
* Return: Zero on success, negative on failure.
*/
int octeontx_bch_encode(struct bch_vf *vf, dma_addr_t block, u16 block_size,
u8 bch_level, dma_addr_t ecc, dma_addr_t resp)
{
union bch_cmd cmd;
int rc;
memset(&cmd, 0, sizeof(cmd));
cmd.s.cword.ecc_gen = eg_gen;
cmd.s.cword.ecc_level = bch_level;
cmd.s.cword.size = block_size;
cmd.s.oword.ptr = ecc;
cmd.s.iword.ptr = block;
cmd.s.rword.ptr = resp;
rc = octeontx_cmd_queue_write(QID_BCH, 1,
sizeof(cmd) / sizeof(uint64_t), cmd.u);
if (rc)
return -1;
octeontx_bch_write_doorbell(1, vf);
return 0;
}
/**
* Given a data block and ecc data correct the data block
*
* @param[in] block_ecc_in 8-byte aligned pointer to data block with ECC
* data concatenated to the end to correct
* @param block_size Size of block in bytes, must be a multiple of
* two.
* @param bch_level Number of errors that must be corrected. The
* number of parity bytes is equal to
* ((15 * bch_level) + 7) / 8.
* Must be 4, 8, 16, 24, 32, 40, 48, 56, 60 or 64.
* @param[out] block_out 8-byte aligned pointer to corrected data buffer.
* This should not be the same as block_ecc_in.
* @param[in] resp pointer to where responses will be written.
*
* Return: Zero on success, negative on failure.
*/
int octeontx_bch_decode(struct bch_vf *vf, dma_addr_t block_ecc_in,
u16 block_size, u8 bch_level,
dma_addr_t block_out, dma_addr_t resp)
{
union bch_cmd cmd;
int rc;
memset(&cmd, 0, sizeof(cmd));
cmd.s.cword.ecc_gen = eg_correct;
cmd.s.cword.ecc_level = bch_level;
cmd.s.cword.size = block_size;
cmd.s.oword.ptr = block_out;
cmd.s.iword.ptr = block_ecc_in;
cmd.s.rword.ptr = resp;
rc = octeontx_cmd_queue_write(QID_BCH, 1,
sizeof(cmd) / sizeof(uint64_t), cmd.u);
if (rc)
return -1;
octeontx_bch_write_doorbell(1, vf);
return 0;
}
EXPORT_SYMBOL(octeontx_bch_decode);
int octeontx_bch_wait(struct bch_vf *vf, union bch_resp *resp,
dma_addr_t handle)
{
ulong start = get_timer(0);
__iormb(); /* HW is updating *resp */
while (!resp->s.done && get_timer(start) < 10)
__iormb(); /* HW is updating *resp */
if (resp->s.done)
return 0;
return -ETIMEDOUT;
}
struct bch_q octeontx_bch_q[QID_MAX];
static int octeontx_cmd_queue_initialize(struct udevice *dev, int queue_id,
int max_depth, int fpa_pool,
int pool_size)
{
/* some params are for later merge with CPT or cn83xx */
struct bch_q *q = &octeontx_bch_q[queue_id];
unsigned long paddr;
u64 *chunk_buffer;
int chunk = max_depth + 1;
int i, size;
if ((unsigned int)queue_id >= QID_MAX)
return -EINVAL;
if (max_depth & chunk) /* must be 2^N - 1 */
return -EINVAL;
size = NQS * chunk * sizeof(u64);
chunk_buffer = dma_alloc_coherent(size, &paddr);
if (!chunk_buffer)
return -ENOMEM;
q->base_paddr = paddr;
q->dev = dev;
q->index = 0;
q->max_depth = max_depth;
q->pool_size_m1 = pool_size;
q->base_vaddr = chunk_buffer;
for (i = 0; i < NQS; i++) {
u64 *ixp;
int inext = (i + 1) * chunk - 1;
int j = (i + 1) % NQS;
int jnext = j * chunk;
dma_addr_t jbase = q->base_paddr + jnext * sizeof(u64);
ixp = &chunk_buffer[inext];
*ixp = jbase;
}
return 0;
}
static int octeontx_pci_bchvf_probe(struct udevice *dev)
{
struct bch_vf *vf;
union bch_vqx_ctl ctl;
union bch_vqx_cmd_buf cbuf;
int err;
debug("%s(%s)\n", __func__, dev->name);
vf = dev_get_priv(dev);
if (!vf)
return -ENOMEM;
vf->dev = dev;
/* Map PF's configuration registers */
vf->reg_base = dm_pci_map_bar(dev, PCI_BASE_ADDRESS_0, 0, 0,
PCI_REGION_TYPE, PCI_REGION_MEM);
debug("%s: reg base: %p\n", __func__, vf->reg_base);
err = octeontx_cmd_queue_initialize(dev, QID_BCH, QDEPTH - 1, 0,
sizeof(union bch_cmd) * QDEPTH);
if (err) {
dev_err(dev, "octeontx_cmd_queue_initialize() failed\n");
goto release;
}
ctl.u = readq(vf->reg_base + BCH_VQX_CTL(0));
cbuf.u = 0;
cbuf.s.ldwb = 1;
cbuf.s.dfb = 1;
cbuf.s.size = QDEPTH;
writeq(cbuf.u, vf->reg_base + BCH_VQX_CMD_BUF(0));
writeq(ctl.u, vf->reg_base + BCH_VQX_CTL(0));
writeq(octeontx_bch_q[QID_BCH].base_paddr,
vf->reg_base + BCH_VQX_CMD_PTR(0));
octeontx_bch_putv(vf);
debug("%s: bch vf initialization complete\n", __func__);
if (octeontx_bch_getv())
return octeontx_pci_nand_deferred_probe();
return -1;
release:
return err;
}
static int octeontx_pci_bchpf_remove(struct udevice *dev)
{
struct bch_device *bch = dev_get_priv(dev);
bch_disable(bch);
return 0;
}
U_BOOT_DRIVER(octeontx_pci_bchpf) = {
.name = BCHPF_DRIVER_NAME,
.id = UCLASS_MISC,
.probe = octeontx_pci_bchpf_probe,
.remove = octeontx_pci_bchpf_remove,
.priv_auto = sizeof(struct bch_device),
.flags = DM_FLAG_OS_PREPARE,
};
U_BOOT_DRIVER(octeontx_pci_bchvf) = {
.name = BCHVF_DRIVER_NAME,
.id = UCLASS_MISC,
.probe = octeontx_pci_bchvf_probe,
.priv_auto = sizeof(struct bch_vf),
};
U_BOOT_PCI_DEVICE(octeontx_pci_bchpf, octeontx_bchpf_pci_id_table);
U_BOOT_PCI_DEVICE(octeontx_pci_bchvf, octeontx_bchvf_pci_id_table);

View File

@ -1,131 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright (C) 2018 Marvell International Ltd.
*/
#ifndef __OCTEONTX_BCH_H__
#define __OCTEONTX_BCH_H__
#include "octeontx_bch_regs.h"
/* flags to indicate the features supported */
#define BCH_FLAG_SRIOV_ENABLED BIT(1)
/*
* BCH Registers map for 81xx
*/
/* PF registers */
#define BCH_CTL 0x0ull
#define BCH_ERR_CFG 0x10ull
#define BCH_BIST_RESULT 0x80ull
#define BCH_ERR_INT 0x88ull
#define BCH_ERR_INT_W1S 0x90ull
#define BCH_ERR_INT_ENA_W1C 0xA0ull
#define BCH_ERR_INT_ENA_W1S 0xA8ull
/* VF registers */
#define BCH_VQX_CTL(z) 0x0ull
#define BCH_VQX_CMD_BUF(z) 0x8ull
#define BCH_VQX_CMD_PTR(z) 0x20ull
#define BCH_VQX_DOORBELL(z) 0x800ull
#define BCHPF_DRIVER_NAME "octeontx-bchpf"
#define BCHVF_DRIVER_NAME "octeontx-bchvf"
struct bch_device {
struct list_head list;
u8 max_vfs;
u8 vfs_enabled;
u8 vfs_in_use;
u32 flags;
void __iomem *reg_base;
struct udevice *dev;
};
struct bch_vf {
u16 flags;
u8 vfid;
u8 node;
u8 priority;
struct udevice *dev;
void __iomem *reg_base;
};
struct buf_ptr {
u8 *vptr;
dma_addr_t dma_addr;
u16 size;
};
void *octeontx_bch_getv(void);
void octeontx_bch_putv(void *token);
void *octeontx_bch_getp(void);
void octeontx_bch_putp(void *token);
int octeontx_bch_wait(struct bch_vf *vf, union bch_resp *resp,
dma_addr_t handle);
/**
* Given a data block calculate the ecc data and fill in the response
*
* @param[in] block 8-byte aligned pointer to data block to calculate ECC
* @param block_size Size of block in bytes, must be a multiple of two.
* @param bch_level Number of errors that must be corrected. The number of
* parity bytes is equal to ((15 * bch_level) + 7) / 8.
* Must be 4, 8, 16, 24, 32, 40, 48, 56, 60 or 64.
* @param[out] ecc 8-byte aligned pointer to where ecc data should go
* @param[in] resp pointer to where responses will be written.
*
* Return: Zero on success, negative on failure.
*/
int octeontx_bch_encode(struct bch_vf *vf, dma_addr_t block, u16 block_size,
u8 bch_level, dma_addr_t ecc, dma_addr_t resp);
/**
* Given a data block and ecc data correct the data block
*
* @param[in] block_ecc_in 8-byte aligned pointer to data block with ECC
* data concatenated to the end to correct
* @param block_size Size of block in bytes, must be a multiple of
* two.
* @param bch_level Number of errors that must be corrected. The
* number of parity bytes is equal to
* ((15 * bch_level) + 7) / 8.
* Must be 4, 8, 16, 24, 32, 40, 48, 56, 60 or 64.
* @param[out] block_out 8-byte aligned pointer to corrected data buffer.
* This should not be the same as block_ecc_in.
* @param[in] resp pointer to where responses will be written.
*
* Return: Zero on success, negative on failure.
*/
int octeontx_bch_decode(struct bch_vf *vf, dma_addr_t block_ecc_in,
u16 block_size, u8 bch_level,
dma_addr_t block_out, dma_addr_t resp);
/**
* Ring the BCH doorbell telling it that new commands are
* available.
*
* @param num_commands Number of new commands
* @param vf virtual function handle
*/
static inline void octeontx_bch_write_doorbell(u64 num_commands,
struct bch_vf *vf)
{
u64 num_words = num_commands * sizeof(union bch_cmd) / sizeof(uint64_t);
writeq(num_words, vf->reg_base + BCH_VQX_DOORBELL(0));
}
/**
* Since it's possible (and even likely) that the NAND device will be probed
* before the BCH device has been probed, we may need to defer the probing.
*
* In this case, the initial probe returns success but the actual probing
* is deferred until the BCH VF has been probed.
*
* Return: 0 for success, otherwise error
*/
int octeontx_pci_nand_deferred_probe(void);
#endif /* __OCTEONTX_BCH_H__ */

View File

@ -1,167 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright (C) 2018 Marvell International Ltd.
*/
#ifndef __OCTEONTX_BCH_REGS_H__
#define __OCTEONTX_BCH_REGS_H__
#define BCH_NR_VF 1
union bch_cmd {
u64 u[4];
struct fields {
struct {
u64 size:12;
u64 reserved_12_31:20;
u64 ecc_level:4;
u64 reserved_36_61:26;
u64 ecc_gen:2;
} cword;
struct {
u64 ptr:49;
u64 reserved_49_55:7;
u64 nc:1;
u64 fw:1;
u64 reserved_58_63:6;
} oword;
struct {
u64 ptr:49;
u64 reserved_49_55:7;
u64 nc:1;
u64 reserved_57_63:7;
} iword;
struct {
u64 ptr:49;
u64 reserved_49_63:15;
} rword;
} s;
};
enum ecc_gen {
eg_correct,
eg_copy,
eg_gen,
eg_copy3,
};
/** Response from BCH instruction */
union bch_resp {
u16 u16;
struct {
u16 num_errors:7; /** Number of errors in block */
u16 zero:6; /** Always zero, ignore */
u16 erased:1; /** Block is erased */
u16 uncorrectable:1;/** too many bits flipped */
u16 done:1; /** Block is done */
} s;
};
union bch_vqx_ctl {
u64 u;
struct {
u64 reserved_0:1;
u64 cmd_be:1;
u64 max_read:4;
u64 reserved_6_15:10;
u64 erase_disable:1;
u64 one_cmd:1;
u64 early_term:4;
u64 reserved_22_63:42;
} s;
};
union bch_vqx_cmd_buf {
u64 u;
struct {
u64 reserved_0_32:33;
u64 size:13;
u64 dfb:1;
u64 ldwb:1;
u64 reserved_48_63:16;
} s;
};
/* keep queue state indexed, even though just one supported here,
* for later generalization to similarly-shaped queues on other Cavium devices
*/
enum {
QID_BCH,
QID_MAX
};
struct bch_q {
struct udevice *dev;
int index;
u16 max_depth;
u16 pool_size_m1;
u64 *base_vaddr;
dma_addr_t base_paddr;
};
extern struct bch_q octeontx_bch_q[QID_MAX];
/* with one dma-mapped area, virt<->phys conversions by +/- (vaddr-paddr) */
static inline dma_addr_t qphys(int qid, void *v)
{
struct bch_q *q = &octeontx_bch_q[qid];
int off = (u8 *)v - (u8 *)q->base_vaddr;
return q->base_paddr + off;
}
#define octeontx_ptr_to_phys(v) qphys(QID_BCH, (v))
static inline void *qvirt(int qid, dma_addr_t p)
{
struct bch_q *q = &octeontx_bch_q[qid];
int off = p - q->base_paddr;
return q->base_vaddr + off;
}
#define octeontx_phys_to_ptr(p) qvirt(QID_BCH, (p))
/* plenty for interleaved r/w on two planes with 16k page, ecc_size 1k */
/* QDEPTH >= 16, as successive chunks must align on 128-byte boundaries */
#define QDEPTH 256 /* u64s in a command queue chunk, incl next-pointer */
#define NQS 1 /* linked chunks in the chain */
/**
* Write an arbitrary number of command words to a command queue.
* This is a generic function; the fixed number of command word
* functions yield higher performance.
*
* Could merge with crypto version for FPA use on cn83xx
*/
static inline int octeontx_cmd_queue_write(int queue_id, bool use_locking,
int cmd_count, const u64 *cmds)
{
int ret = 0;
u64 *cmd_ptr;
struct bch_q *qptr = &octeontx_bch_q[queue_id];
if (unlikely(cmd_count < 1 || cmd_count > 32))
return -EINVAL;
if (unlikely(!cmds))
return -EINVAL;
cmd_ptr = qptr->base_vaddr;
while (cmd_count > 0) {
int slot = qptr->index % (QDEPTH * NQS);
if (slot % QDEPTH != QDEPTH - 1) {
cmd_ptr[slot] = *cmds++;
cmd_count--;
}
qptr->index++;
}
__iowmb(); /* flush commands before ringing bell */
return ret;
}
#endif /* __OCTEONTX_BCH_REGS_H__ */

File diff suppressed because it is too large Load Diff