--- title: "NVIDIA GPU" description: "In this guide we'll follow the procedure to support NVIDIA GPU on Talos." aliases: - ../../guides/nvidia-gpu --- > Enabling NVIDIA GPU support on Talos is bound by [NVIDIA EULA](https://www.nvidia.com/en-us/drivers/nvidia-license/) > Talos GPU support is an **alpha** feature. These are the steps to enabling NVIDIA support in Talos. - Talos pre-installed on a node with NVIDIA GPU installed. - Building a custom Talos installer image with NVIDIA modules - Building NVIDIA container toolkit system extension which allows to register a custom runtime with containerd - Upgrading Talos with the custom installer and enabling NVIDIA modules and the system extension Both these components require that the user build and maintain their own Talos installer image and the NVIDIA container toolkit [Talos System Extension]({{< relref "system-extensions" >}}). ## Prerequisites This guide assumes the user has access to a container registry with `push` permissions, docker installed on the build machine and the Talos host has `pull` access to the container registry. Set the local registry and username environment variables: ```bash export USERNAME= export REGISTRY= ``` For eg: ```bash export USERNAME=talos-user export REGISTRY=ghcr.io ``` > The examples below will use the sample variables set above. Modify accordingly for your environment. ## Building the installer image Start by cloning the [pkgs](https://github.com/siderolabs/pkgs) repository. Now run the following command to build and push custom Talos kernel image and the NVIDIA image with the NVIDIA kernel modules signed by the kernel built along with it. ```bash make kernel nonfree-kmod-nvidia PLATFORM=linux/amd64 PUSH=true ``` > Replace the platform with `linux/arm64` if building for ARM64 Now we need to create a custom Talos installer image. Start by creating a `Dockerfile` with the following content: ```Dockerfile FROM scratch as customization COPY --from=ghcr.io/talos-user/nonfree-kmod-nvidia:{{< release >}}-nvidia /lib/modules /lib/modules FROM ghcr.io/siderolabs/installer:{{< release >}} COPY --from=ghcr.io/talos-user/kernel:{{< release >}}-nvidia /boot/vmlinuz /usr/install/${TARGETARCH}/vmlinuz ``` Now build the image and push it to the registry. ```bash DOCKER_BUILDKIT=0 docker build --squash --build-arg RM="/lib/modules" -t ghcr.io/talos-user/installer:{{< release >}}-nvidia . docker push ghcr.io/talos-user/installer:{{< release >}}-nvidia ``` > Note: buildkit has a bug [#816](https://github.com/moby/buildkit/issues/816), to disable it use DOCKER_BUILDKIT=0 ## Building the system extension Start by cloning the [extensions](https://github.com/siderolabs/extensions) repository. Now run the following command to build and push the system extension. ```bash make nvidia-container-toolkit PLATFORM=linux/amd64 PUSH=true TAG=510.60.02-v1.9.0 ``` > Replace the platform with `linux/arm64` if building for ARM64 ## Upgrading Talos and enabling the NVIDIA modules and the system extension > Make sure to use `talosctl` version {{< release >}} or later First create a patch yaml `gpu-worker-patch.yaml` to update the machine config similar to below: ```yaml - op: add path: /machine/install/extensions value: - image: ghcr.io/talos-user/nvidia-container-toolkit:510.60.02-v1.9.0 - op: add path: /machine/kernel value: modules: - name: nvidia - name: nvidia_uvm - name: nvidia_drm - name: nvidia_modeset - op: add path: /machine/sysctls value: net.core.bpf_jit_harden: 1 ``` Now apply the patch to all Talos nodes in the cluster having NVIDIA GPU's installed: ```bash talosctl patch mc --patch @gpu-worker-patch.yaml ``` Now we can proceed to upgrading Talos with the installer built previously: ```bash talosctl upgrade --image=ghcr.io/talos-user/installer:{{< release >}}-nvidia ``` Once the node reboots, the NVIDIA modules should be loaded and the system extension should be installed. This can be confirmed by running: ```bash talosctl read /proc/modules ``` which should produce an output similar to below: ```text nvidia_uvm 1146880 - - Live 0xffffffffc2733000 (PO) nvidia_drm 69632 - - Live 0xffffffffc2721000 (PO) nvidia_modeset 1142784 - - Live 0xffffffffc25ea000 (PO) nvidia 39047168 - - Live 0xffffffffc00ac000 (PO) ``` ```bash talosctl get extensions ``` which should produce an output similar to below: ```text NODE NAMESPACE TYPE ID VERSION NAME VERSION 172.31.41.27 runtime ExtensionStatus 000.ghcr.io-frezbo-nvidia-container-toolkit-510.60.02-v1.9.0 1 nvidia-container-toolkit 510.60.02-v1.9.0 ``` ```bash talosctl read /proc/driver/nvidia/version ``` which should produce an output similar to below: ```text NVRM version: NVIDIA UNIX x86_64 Kernel Module 510.60.02 Wed Mar 16 11:24:05 UTC 2022 GCC version: gcc version 11.2.0 (GCC) ``` ## Deploying NVIDIA device plugin First we need to create the `RuntimeClass` Apply the following manifest to create a runtime class that uses the extension: ```yaml --- apiVersion: node.k8s.io/v1 kind: RuntimeClass metadata: name: nvidia handler: nvidia ``` Install the NVIDIA device plugin: ```bash helm repo add nvdp https://nvidia.github.io/k8s-device-plugin helm repo update helm install nvidia-device-plugin nvdp/nvidia-device-plugin --version=0.11.0 --set=runtimeClassName=nvidia ``` Apply the following manifest to run CUDA pod via nvidia runtime: ```bash cat <