mirror of
				https://github.com/tailscale/tailscale.git
				synced 2025-11-04 10:11:18 +01:00 
			
		
		
		
	The current structure meant that we were embedding netstack in the tailscale CLI and in the GUIs. This removes that by isolating the checksum munging to a different pkg which is only called from `net/tstun`. Fixes #9756 Signed-off-by: Maisem Ali <maisem@tailscale.com>
		
			
				
	
	
		
			517 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			517 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright (c) Tailscale Inc & AUTHORS
 | 
						|
// SPDX-License-Identifier: BSD-3-Clause
 | 
						|
 | 
						|
package packet
 | 
						|
 | 
						|
import (
 | 
						|
	"encoding/binary"
 | 
						|
	"fmt"
 | 
						|
	"net"
 | 
						|
	"net/netip"
 | 
						|
	"strings"
 | 
						|
 | 
						|
	"tailscale.com/net/netaddr"
 | 
						|
	"tailscale.com/types/ipproto"
 | 
						|
)
 | 
						|
 | 
						|
const unknown = ipproto.Unknown
 | 
						|
 | 
						|
// RFC1858: prevent overlapping fragment attacks.
 | 
						|
const minFragBlks = (60 + 20) / 8 // max IPv4 header + basic TCP header in fragment blocks (8 bytes each)
 | 
						|
 | 
						|
type TCPFlag uint8
 | 
						|
 | 
						|
const (
 | 
						|
	TCPFin     TCPFlag = 0x01
 | 
						|
	TCPSyn     TCPFlag = 0x02
 | 
						|
	TCPRst     TCPFlag = 0x04
 | 
						|
	TCPPsh     TCPFlag = 0x08
 | 
						|
	TCPAck     TCPFlag = 0x10
 | 
						|
	TCPUrg     TCPFlag = 0x20
 | 
						|
	TCPECNEcho TCPFlag = 0x40
 | 
						|
	TCPCWR     TCPFlag = 0x80
 | 
						|
	TCPSynAck  TCPFlag = TCPSyn | TCPAck
 | 
						|
	TCPECNBits TCPFlag = TCPECNEcho | TCPCWR
 | 
						|
)
 | 
						|
 | 
						|
// CaptureMeta contains metadata that is used when debugging.
 | 
						|
type CaptureMeta struct {
 | 
						|
	DidSNAT     bool           // SNAT was performed & the address was updated.
 | 
						|
	OriginalSrc netip.AddrPort // The source address before SNAT was performed.
 | 
						|
	DidDNAT     bool           // DNAT was performed & the address was updated.
 | 
						|
	OriginalDst netip.AddrPort // The destination address before DNAT was performed.
 | 
						|
}
 | 
						|
 | 
						|
// Parsed is a minimal decoding of a packet suitable for use in filters.
 | 
						|
type Parsed struct {
 | 
						|
	// b is the byte buffer that this decodes.
 | 
						|
	b []byte
 | 
						|
	// subofs is the offset of IP subprotocol.
 | 
						|
	subofs int
 | 
						|
	// dataofs is the offset of IP subprotocol payload.
 | 
						|
	dataofs int
 | 
						|
	// length is the total length of the packet.
 | 
						|
	// This is not the same as len(b) because b can have trailing zeros.
 | 
						|
	length int
 | 
						|
 | 
						|
	// IPVersion is the IP protocol version of the packet (4 or
 | 
						|
	// 6), or 0 if the packet doesn't look like IPv4 or IPv6.
 | 
						|
	IPVersion uint8
 | 
						|
	// IPProto is the IP subprotocol (UDP, TCP, etc.). Valid iff IPVersion != 0.
 | 
						|
	IPProto ipproto.Proto
 | 
						|
	// SrcIP4 is the source address. Family matches IPVersion. Port is
 | 
						|
	// valid iff IPProto == TCP || IPProto == UDP.
 | 
						|
	Src netip.AddrPort
 | 
						|
	// DstIP4 is the destination address. Family matches IPVersion.
 | 
						|
	Dst netip.AddrPort
 | 
						|
	// TCPFlags is the packet's TCP flag bits. Valid iff IPProto == TCP.
 | 
						|
	TCPFlags TCPFlag
 | 
						|
 | 
						|
	// CaptureMeta contains metadata that is used when debugging.
 | 
						|
	CaptureMeta CaptureMeta
 | 
						|
}
 | 
						|
 | 
						|
func (p *Parsed) String() string {
 | 
						|
	if p.IPVersion != 4 && p.IPVersion != 6 {
 | 
						|
		return "Unknown{???}"
 | 
						|
	}
 | 
						|
 | 
						|
	// max is the maximum reasonable length of the string we are constructing.
 | 
						|
	// It's OK to overshoot, as the temp buffer is allocated on the stack.
 | 
						|
	const max = len("ICMPv6{[ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff%enp5s0]:65535 > [ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff%enp5s0]:65535}")
 | 
						|
	b := make([]byte, 0, max)
 | 
						|
	b = append(b, p.IPProto.String()...)
 | 
						|
	b = append(b, '{')
 | 
						|
	b = p.Src.AppendTo(b)
 | 
						|
	b = append(b, ' ', '>', ' ')
 | 
						|
	b = p.Dst.AppendTo(b)
 | 
						|
	b = append(b, '}')
 | 
						|
	return string(b)
 | 
						|
}
 | 
						|
 | 
						|
// Decode extracts data from the packet in b into q.
 | 
						|
// It performs extremely simple packet decoding for basic IPv4 and IPv6 packet types.
 | 
						|
// It extracts only the subprotocol id, IP addresses, and (if any) ports,
 | 
						|
// and shouldn't need any memory allocation.
 | 
						|
func (q *Parsed) Decode(b []byte) {
 | 
						|
	q.b = b
 | 
						|
	q.CaptureMeta = CaptureMeta{} // Clear any capture metadata if it exists.
 | 
						|
 | 
						|
	if len(b) < 1 {
 | 
						|
		q.IPVersion = 0
 | 
						|
		q.IPProto = unknown
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	q.IPVersion = b[0] >> 4
 | 
						|
	switch q.IPVersion {
 | 
						|
	case 4:
 | 
						|
		q.decode4(b)
 | 
						|
	case 6:
 | 
						|
		q.decode6(b)
 | 
						|
	default:
 | 
						|
		q.IPVersion = 0
 | 
						|
		q.IPProto = unknown
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// StuffForTesting makes Parsed contain a len-bytes buffer. Used in
 | 
						|
// tests to build up a synthetic parse result with a non-zero buffer.
 | 
						|
func (q *Parsed) StuffForTesting(len int) {
 | 
						|
	q.b = make([]byte, len)
 | 
						|
}
 | 
						|
 | 
						|
func (q *Parsed) decode4(b []byte) {
 | 
						|
	if len(b) < ip4HeaderLength {
 | 
						|
		q.IPVersion = 0
 | 
						|
		q.IPProto = unknown
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	// Check that it's IPv4.
 | 
						|
	q.IPProto = ipproto.Proto(b[9])
 | 
						|
	q.length = int(binary.BigEndian.Uint16(b[2:4]))
 | 
						|
	if len(b) < q.length {
 | 
						|
		// Packet was cut off before full IPv4 length.
 | 
						|
		q.IPProto = unknown
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	// If it's valid IPv4, then the IP addresses are valid
 | 
						|
	q.Src = withIP(q.Src, netaddr.IPv4(b[12], b[13], b[14], b[15]))
 | 
						|
	q.Dst = withIP(q.Dst, netaddr.IPv4(b[16], b[17], b[18], b[19]))
 | 
						|
 | 
						|
	q.subofs = int((b[0] & 0x0F) << 2)
 | 
						|
	if q.subofs > q.length {
 | 
						|
		// next-proto starts beyond end of packet.
 | 
						|
		q.IPProto = unknown
 | 
						|
		return
 | 
						|
	}
 | 
						|
	sub := b[q.subofs:]
 | 
						|
	sub = sub[:len(sub):len(sub)] // help the compiler do bounds check elimination
 | 
						|
 | 
						|
	// We don't care much about IP fragmentation, except insofar as it's
 | 
						|
	// used for firewall bypass attacks. The trick is make the first
 | 
						|
	// fragment of a TCP or UDP packet so short that it doesn't fit
 | 
						|
	// the TCP or UDP header, so we can't read the port, in hope that
 | 
						|
	// it'll sneak past. Then subsequent fragments fill it in, but we're
 | 
						|
	// missing the first part of the header, so we can't read that either.
 | 
						|
	//
 | 
						|
	// A "perfectly correct" implementation would have to reassemble
 | 
						|
	// fragments before deciding what to do. But the truth is there's
 | 
						|
	// zero reason to send such a short first fragment, so we can treat
 | 
						|
	// it as Unknown. We can also treat any subsequent fragment that starts
 | 
						|
	// at such a low offset as Unknown.
 | 
						|
	fragFlags := binary.BigEndian.Uint16(b[6:8])
 | 
						|
	moreFrags := (fragFlags & 0x2000) != 0
 | 
						|
	fragOfs := fragFlags & 0x1FFF
 | 
						|
 | 
						|
	if fragOfs == 0 {
 | 
						|
		// This is the first fragment
 | 
						|
		if moreFrags && len(sub) < minFragBlks {
 | 
						|
			// Suspiciously short first fragment, dump it.
 | 
						|
			q.IPProto = unknown
 | 
						|
			return
 | 
						|
		}
 | 
						|
		// otherwise, this is either non-fragmented (the usual case)
 | 
						|
		// or a big enough initial fragment that we can read the
 | 
						|
		// whole subprotocol header.
 | 
						|
		switch q.IPProto {
 | 
						|
		case ipproto.ICMPv4:
 | 
						|
			if len(sub) < icmp4HeaderLength {
 | 
						|
				q.IPProto = unknown
 | 
						|
				return
 | 
						|
			}
 | 
						|
			q.Src = withPort(q.Src, 0)
 | 
						|
			q.Dst = withPort(q.Dst, 0)
 | 
						|
			q.dataofs = q.subofs + icmp4HeaderLength
 | 
						|
			return
 | 
						|
		case ipproto.IGMP:
 | 
						|
			// Keep IPProto, but don't parse anything else
 | 
						|
			// out.
 | 
						|
			return
 | 
						|
		case ipproto.TCP:
 | 
						|
			if len(sub) < tcpHeaderLength {
 | 
						|
				q.IPProto = unknown
 | 
						|
				return
 | 
						|
			}
 | 
						|
			q.Src = withPort(q.Src, binary.BigEndian.Uint16(sub[0:2]))
 | 
						|
			q.Dst = withPort(q.Dst, binary.BigEndian.Uint16(sub[2:4]))
 | 
						|
			q.TCPFlags = TCPFlag(sub[13])
 | 
						|
			headerLength := (sub[12] & 0xF0) >> 2
 | 
						|
			q.dataofs = q.subofs + int(headerLength)
 | 
						|
			return
 | 
						|
		case ipproto.UDP:
 | 
						|
			if len(sub) < udpHeaderLength {
 | 
						|
				q.IPProto = unknown
 | 
						|
				return
 | 
						|
			}
 | 
						|
			q.Src = withPort(q.Src, binary.BigEndian.Uint16(sub[0:2]))
 | 
						|
			q.Dst = withPort(q.Dst, binary.BigEndian.Uint16(sub[2:4]))
 | 
						|
			q.dataofs = q.subofs + udpHeaderLength
 | 
						|
			return
 | 
						|
		case ipproto.SCTP:
 | 
						|
			if len(sub) < sctpHeaderLength {
 | 
						|
				q.IPProto = unknown
 | 
						|
				return
 | 
						|
			}
 | 
						|
			q.Src = withPort(q.Src, binary.BigEndian.Uint16(sub[0:2]))
 | 
						|
			q.Dst = withPort(q.Dst, binary.BigEndian.Uint16(sub[2:4]))
 | 
						|
			return
 | 
						|
		case ipproto.TSMP:
 | 
						|
			// Inter-tailscale messages.
 | 
						|
			q.dataofs = q.subofs
 | 
						|
			return
 | 
						|
		case ipproto.Fragment:
 | 
						|
			// An IPProto value of 0xff (our Fragment constant for internal use)
 | 
						|
			// should never actually be used in the wild; if we see it,
 | 
						|
			// something's suspicious and we map it back to zero (unknown).
 | 
						|
			q.IPProto = unknown
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		// This is a fragment other than the first one.
 | 
						|
		if fragOfs < minFragBlks {
 | 
						|
			// First frag was suspiciously short, so we can't
 | 
						|
			// trust the followup either.
 | 
						|
			q.IPProto = unknown
 | 
						|
			return
 | 
						|
		}
 | 
						|
		// otherwise, we have to permit the fragment to slide through.
 | 
						|
		// Second and later fragments don't have sub-headers.
 | 
						|
		// Ideally, we would drop fragments that we can't identify,
 | 
						|
		// but that would require statefulness. Anyway, receivers'
 | 
						|
		// kernels know to drop fragments where the initial fragment
 | 
						|
		// doesn't arrive.
 | 
						|
		q.IPProto = ipproto.Fragment
 | 
						|
		return
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (q *Parsed) decode6(b []byte) {
 | 
						|
	if len(b) < ip6HeaderLength {
 | 
						|
		q.IPVersion = 0
 | 
						|
		q.IPProto = unknown
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	q.IPProto = ipproto.Proto(b[6])
 | 
						|
	q.length = int(binary.BigEndian.Uint16(b[4:6])) + ip6HeaderLength
 | 
						|
	if len(b) < q.length {
 | 
						|
		// Packet was cut off before the full IPv6 length.
 | 
						|
		q.IPProto = unknown
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	// okay to ignore `ok` here, because IPs pulled from packets are
 | 
						|
	// always well-formed stdlib IPs.
 | 
						|
	srcIP, _ := netip.AddrFromSlice(net.IP(b[8:24]))
 | 
						|
	dstIP, _ := netip.AddrFromSlice(net.IP(b[24:40]))
 | 
						|
	q.Src = withIP(q.Src, srcIP)
 | 
						|
	q.Dst = withIP(q.Dst, dstIP)
 | 
						|
 | 
						|
	// We don't support any IPv6 extension headers. Don't try to
 | 
						|
	// be clever. Therefore, the IP subprotocol always starts at
 | 
						|
	// byte 40.
 | 
						|
	//
 | 
						|
	// Note that this means we don't support fragmentation in
 | 
						|
	// IPv6. This is fine, because IPv6 strongly mandates that you
 | 
						|
	// should not fragment, which makes fragmentation on the open
 | 
						|
	// internet extremely uncommon.
 | 
						|
	//
 | 
						|
	// This also means we don't support IPSec headers (AH/ESP), or
 | 
						|
	// IPv6 jumbo frames. Those will get marked Unknown and
 | 
						|
	// dropped.
 | 
						|
	q.subofs = 40
 | 
						|
	sub := b[q.subofs:]
 | 
						|
	sub = sub[:len(sub):len(sub)] // help the compiler do bounds check elimination
 | 
						|
 | 
						|
	switch q.IPProto {
 | 
						|
	case ipproto.ICMPv6:
 | 
						|
		if len(sub) < icmp6HeaderLength {
 | 
						|
			q.IPProto = unknown
 | 
						|
			return
 | 
						|
		}
 | 
						|
		q.Src = withPort(q.Src, 0)
 | 
						|
		q.Dst = withPort(q.Dst, 0)
 | 
						|
		q.dataofs = q.subofs + icmp6HeaderLength
 | 
						|
	case ipproto.TCP:
 | 
						|
		if len(sub) < tcpHeaderLength {
 | 
						|
			q.IPProto = unknown
 | 
						|
			return
 | 
						|
		}
 | 
						|
		q.Src = withPort(q.Src, binary.BigEndian.Uint16(sub[0:2]))
 | 
						|
		q.Dst = withPort(q.Dst, binary.BigEndian.Uint16(sub[2:4]))
 | 
						|
		q.TCPFlags = TCPFlag(sub[13])
 | 
						|
		headerLength := (sub[12] & 0xF0) >> 2
 | 
						|
		q.dataofs = q.subofs + int(headerLength)
 | 
						|
		return
 | 
						|
	case ipproto.UDP:
 | 
						|
		if len(sub) < udpHeaderLength {
 | 
						|
			q.IPProto = unknown
 | 
						|
			return
 | 
						|
		}
 | 
						|
		q.Src = withPort(q.Src, binary.BigEndian.Uint16(sub[0:2]))
 | 
						|
		q.Dst = withPort(q.Dst, binary.BigEndian.Uint16(sub[2:4]))
 | 
						|
		q.dataofs = q.subofs + udpHeaderLength
 | 
						|
	case ipproto.SCTP:
 | 
						|
		if len(sub) < sctpHeaderLength {
 | 
						|
			q.IPProto = unknown
 | 
						|
			return
 | 
						|
		}
 | 
						|
		q.Src = withPort(q.Src, binary.BigEndian.Uint16(sub[0:2]))
 | 
						|
		q.Dst = withPort(q.Dst, binary.BigEndian.Uint16(sub[2:4]))
 | 
						|
		return
 | 
						|
	case ipproto.TSMP:
 | 
						|
		// Inter-tailscale messages.
 | 
						|
		q.dataofs = q.subofs
 | 
						|
		return
 | 
						|
	case ipproto.Fragment:
 | 
						|
		// An IPProto value of 0xff (our Fragment constant for internal use)
 | 
						|
		// should never actually be used in the wild; if we see it,
 | 
						|
		// something's suspicious and we map it back to zero (unknown).
 | 
						|
		q.IPProto = unknown
 | 
						|
		return
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (q *Parsed) IP4Header() IP4Header {
 | 
						|
	if q.IPVersion != 4 {
 | 
						|
		panic("IP4Header called on non-IPv4 Parsed")
 | 
						|
	}
 | 
						|
	ipid := binary.BigEndian.Uint16(q.b[4:6])
 | 
						|
	return IP4Header{
 | 
						|
		IPID:    ipid,
 | 
						|
		IPProto: q.IPProto,
 | 
						|
		Src:     q.Src.Addr(),
 | 
						|
		Dst:     q.Dst.Addr(),
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (q *Parsed) IP6Header() IP6Header {
 | 
						|
	if q.IPVersion != 6 {
 | 
						|
		panic("IP6Header called on non-IPv6 Parsed")
 | 
						|
	}
 | 
						|
	ipid := (binary.BigEndian.Uint32(q.b[:4]) << 12) >> 12
 | 
						|
	return IP6Header{
 | 
						|
		IPID:    ipid,
 | 
						|
		IPProto: q.IPProto,
 | 
						|
		Src:     q.Src.Addr(),
 | 
						|
		Dst:     q.Dst.Addr(),
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (q *Parsed) ICMP4Header() ICMP4Header {
 | 
						|
	return ICMP4Header{
 | 
						|
		IP4Header: q.IP4Header(),
 | 
						|
		Type:      ICMP4Type(q.b[q.subofs+0]),
 | 
						|
		Code:      ICMP4Code(q.b[q.subofs+1]),
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (q *Parsed) ICMP6Header() ICMP6Header {
 | 
						|
	return ICMP6Header{
 | 
						|
		IP6Header: q.IP6Header(),
 | 
						|
		Type:      ICMP6Type(q.b[q.subofs+0]),
 | 
						|
		Code:      ICMP6Code(q.b[q.subofs+1]),
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (q *Parsed) UDP4Header() UDP4Header {
 | 
						|
	return UDP4Header{
 | 
						|
		IP4Header: q.IP4Header(),
 | 
						|
		SrcPort:   q.Src.Port(),
 | 
						|
		DstPort:   q.Dst.Port(),
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Buffer returns the entire packet buffer.
 | 
						|
// This is a read-only view; that is, q retains the ownership of the buffer.
 | 
						|
func (q *Parsed) Buffer() []byte {
 | 
						|
	return q.b
 | 
						|
}
 | 
						|
 | 
						|
// Payload returns the payload of the IP subprotocol section.
 | 
						|
// This is a read-only view; that is, q retains the ownership of the buffer.
 | 
						|
func (q *Parsed) Payload() []byte {
 | 
						|
	return q.b[q.dataofs:q.length]
 | 
						|
}
 | 
						|
 | 
						|
// Transport returns the transport header and payload (IP subprotocol, such as TCP or UDP).
 | 
						|
// This is a read-only view; that is, p retains the ownership of the buffer.
 | 
						|
func (p *Parsed) Transport() []byte {
 | 
						|
	return p.b[p.subofs:]
 | 
						|
}
 | 
						|
 | 
						|
// IsTCPSyn reports whether q is a TCP SYN packet,
 | 
						|
// without ACK set. (i.e. the first packet in a new connection)
 | 
						|
func (q *Parsed) IsTCPSyn() bool {
 | 
						|
	return (q.TCPFlags & TCPSynAck) == TCPSyn
 | 
						|
}
 | 
						|
 | 
						|
// IsError reports whether q is an ICMP "Error" packet.
 | 
						|
func (q *Parsed) IsError() bool {
 | 
						|
	switch q.IPProto {
 | 
						|
	case ipproto.ICMPv4:
 | 
						|
		if len(q.b) < q.subofs+8 {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
		t := ICMP4Type(q.b[q.subofs])
 | 
						|
		return t == ICMP4Unreachable || t == ICMP4TimeExceeded
 | 
						|
	case ipproto.ICMPv6:
 | 
						|
		if len(q.b) < q.subofs+8 {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
		t := ICMP6Type(q.b[q.subofs])
 | 
						|
		return t == ICMP6Unreachable || t == ICMP6TimeExceeded
 | 
						|
	default:
 | 
						|
		return false
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// IsEchoRequest reports whether q is an ICMP Echo Request.
 | 
						|
func (q *Parsed) IsEchoRequest() bool {
 | 
						|
	switch q.IPProto {
 | 
						|
	case ipproto.ICMPv4:
 | 
						|
		return len(q.b) >= q.subofs+8 && ICMP4Type(q.b[q.subofs]) == ICMP4EchoRequest && ICMP4Code(q.b[q.subofs+1]) == ICMP4NoCode
 | 
						|
	case ipproto.ICMPv6:
 | 
						|
		return len(q.b) >= q.subofs+8 && ICMP6Type(q.b[q.subofs]) == ICMP6EchoRequest && ICMP6Code(q.b[q.subofs+1]) == ICMP6NoCode
 | 
						|
	default:
 | 
						|
		return false
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// IsEchoResponse reports whether q is an IPv4 ICMP Echo Response.
 | 
						|
func (q *Parsed) IsEchoResponse() bool {
 | 
						|
	switch q.IPProto {
 | 
						|
	case ipproto.ICMPv4:
 | 
						|
		return len(q.b) >= q.subofs+8 && ICMP4Type(q.b[q.subofs]) == ICMP4EchoReply && ICMP4Code(q.b[q.subofs+1]) == ICMP4NoCode
 | 
						|
	case ipproto.ICMPv6:
 | 
						|
		return len(q.b) >= q.subofs+8 && ICMP6Type(q.b[q.subofs]) == ICMP6EchoReply && ICMP6Code(q.b[q.subofs+1]) == ICMP6NoCode
 | 
						|
	default:
 | 
						|
		return false
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// EchoIDSeq extracts the identifier/sequence bytes from an ICMP Echo response,
 | 
						|
// and returns them as a uint32, used to lookup internally routed ICMP echo
 | 
						|
// responses. This function is intentionally lightweight as it is called on
 | 
						|
// every incoming ICMP packet.
 | 
						|
func (q *Parsed) EchoIDSeq() uint32 {
 | 
						|
	switch q.IPProto {
 | 
						|
	case ipproto.ICMPv4:
 | 
						|
		offset := ip4HeaderLength + icmp4HeaderLength
 | 
						|
		if len(q.b) < offset+4 {
 | 
						|
			return 0
 | 
						|
		}
 | 
						|
		return binary.LittleEndian.Uint32(q.b[offset:])
 | 
						|
	case ipproto.ICMPv6:
 | 
						|
		offset := ip6HeaderLength + icmp6HeaderLength
 | 
						|
		if len(q.b) < offset+4 {
 | 
						|
			return 0
 | 
						|
		}
 | 
						|
		return binary.LittleEndian.Uint32(q.b[offset:])
 | 
						|
	default:
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func Hexdump(b []byte) string {
 | 
						|
	out := new(strings.Builder)
 | 
						|
	for i := 0; i < len(b); i += 16 {
 | 
						|
		if i > 0 {
 | 
						|
			fmt.Fprintf(out, "\n")
 | 
						|
		}
 | 
						|
		fmt.Fprintf(out, "  %04x  ", i)
 | 
						|
		j := 0
 | 
						|
		for ; j < 16 && i+j < len(b); j++ {
 | 
						|
			if j == 8 {
 | 
						|
				fmt.Fprintf(out, " ")
 | 
						|
			}
 | 
						|
			fmt.Fprintf(out, "%02x ", b[i+j])
 | 
						|
		}
 | 
						|
		for ; j < 16; j++ {
 | 
						|
			if j == 8 {
 | 
						|
				fmt.Fprintf(out, " ")
 | 
						|
			}
 | 
						|
			fmt.Fprintf(out, "   ")
 | 
						|
		}
 | 
						|
		fmt.Fprintf(out, " ")
 | 
						|
		for j = 0; j < 16 && i+j < len(b); j++ {
 | 
						|
			if b[i+j] >= 32 && b[i+j] < 128 {
 | 
						|
				fmt.Fprintf(out, "%c", b[i+j])
 | 
						|
			} else {
 | 
						|
				fmt.Fprintf(out, ".")
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return out.String()
 | 
						|
}
 | 
						|
 | 
						|
func withIP(ap netip.AddrPort, ip netip.Addr) netip.AddrPort {
 | 
						|
	return netip.AddrPortFrom(ip, ap.Port())
 | 
						|
}
 | 
						|
 | 
						|
func withPort(ap netip.AddrPort, port uint16) netip.AddrPort {
 | 
						|
	return netip.AddrPortFrom(ap.Addr(), port)
 | 
						|
}
 |