tailscale/util/eventbus/subscribe.go
M. J. Fromberger 0a33aae823
util/eventbus: run subscriber functions in a goroutine (#17510)
With a channel subscriber, the subscription processing always occurs on another
goroutine. The SubscriberFunc (prior to this commit) runs its callbacks on the
client's own goroutine. This changes the semantics, though: In addition to more
directly pushing back on the publisher, a publisher and subscriber can deadlock
in a SubscriberFunc but succeed on a Subscriber. They should behave
equivalently regardless which interface they use.

Arguably the caller should deal with this by creating its own goroutine if it
needs to. However, that loses much of the benefit of the SubscriberFunc API, as
it will need to manage the lifecycle of that goroutine. So, for practical
ergonomics, let's make the SubscriberFunc do this management on the user's
behalf. (We discussed doing this in #17432, but decided not to do it yet).  We
can optimize this approach further, if we need to, without changing the API.

Updates #17487

Change-Id: I19ea9e8f246f7b406711f5a16518ef7ff21a1ac9
Signed-off-by: M. J. Fromberger <fromberger@tailscale.com>
2025-10-10 09:03:38 -07:00

312 lines
8.1 KiB
Go

// Copyright (c) Tailscale Inc & AUTHORS
// SPDX-License-Identifier: BSD-3-Clause
package eventbus
import (
"context"
"fmt"
"reflect"
"sync"
)
type DeliveredEvent struct {
Event any
From *Client
To *Client
}
// subscriber is a uniformly typed wrapper around Subscriber[T], so
// that debugging facilities can look at active subscribers.
type subscriber interface {
subscribeType() reflect.Type
// dispatch is a function that dispatches the head value in vals to
// a subscriber, while also handling stop and incoming queue write
// events.
//
// dispatch exists because of the strongly typed Subscriber[T]
// wrapper around subscriptions: within the bus events are boxed in an
// 'any', and need to be unpacked to their full type before delivery
// to the subscriber. This involves writing to a strongly-typed
// channel, so subscribeState cannot handle that dispatch by itself -
// but if that strongly typed send blocks, we also need to keep
// processing other potential sources of wakeups, which is how we end
// up at this awkward type signature and sharing of internal state
// through dispatch.
dispatch(ctx context.Context, vals *queue[DeliveredEvent], acceptCh func() chan DeliveredEvent, snapshot chan chan []DeliveredEvent) bool
Close()
}
// subscribeState handles dispatching of events received from a Bus.
type subscribeState struct {
client *Client
dispatcher *worker
write chan DeliveredEvent
snapshot chan chan []DeliveredEvent
debug hook[DeliveredEvent]
outputsMu sync.Mutex
outputs map[reflect.Type]subscriber
}
func newSubscribeState(c *Client) *subscribeState {
ret := &subscribeState{
client: c,
write: make(chan DeliveredEvent),
snapshot: make(chan chan []DeliveredEvent),
outputs: map[reflect.Type]subscriber{},
}
ret.dispatcher = runWorker(ret.pump)
return ret
}
func (s *subscribeState) pump(ctx context.Context) {
var vals queue[DeliveredEvent]
acceptCh := func() chan DeliveredEvent {
if vals.Full() {
return nil
}
return s.write
}
for {
if !vals.Empty() {
val := vals.Peek()
sub := s.subscriberFor(val.Event)
if sub == nil {
// Raced with unsubscribe.
vals.Drop()
continue
}
if !sub.dispatch(ctx, &vals, acceptCh, s.snapshot) {
return
}
if s.debug.active() {
s.debug.run(DeliveredEvent{
Event: val.Event,
From: val.From,
To: s.client,
})
}
} else {
// Keep the cases in this select in sync with
// Subscriber.dispatch and SubscriberFunc.dispatch below.
// The only difference should be that this select doesn't deliver
// queued values to anyone, and unconditionally accepts new values.
select {
case val := <-s.write:
vals.Add(val)
case <-ctx.Done():
return
case ch := <-s.snapshot:
ch <- vals.Snapshot()
}
}
}
}
func (s *subscribeState) snapshotQueue() []DeliveredEvent {
if s == nil {
return nil
}
resp := make(chan []DeliveredEvent)
select {
case s.snapshot <- resp:
return <-resp
case <-s.dispatcher.Done():
return nil
}
}
func (s *subscribeState) subscribeTypes() []reflect.Type {
if s == nil {
return nil
}
s.outputsMu.Lock()
defer s.outputsMu.Unlock()
ret := make([]reflect.Type, 0, len(s.outputs))
for t := range s.outputs {
ret = append(ret, t)
}
return ret
}
func (s *subscribeState) addSubscriber(sub subscriber) {
s.outputsMu.Lock()
defer s.outputsMu.Unlock()
t := sub.subscribeType()
if s.outputs[t] != nil {
panic(fmt.Errorf("double subscription for event %s", t))
}
s.outputs[t] = sub
s.client.addSubscriber(t, s)
}
func (s *subscribeState) deleteSubscriber(t reflect.Type) {
s.outputsMu.Lock()
defer s.outputsMu.Unlock()
delete(s.outputs, t)
s.client.deleteSubscriber(t, s)
}
func (s *subscribeState) subscriberFor(val any) subscriber {
s.outputsMu.Lock()
defer s.outputsMu.Unlock()
return s.outputs[reflect.TypeOf(val)]
}
// Close closes the subscribeState. It implicitly closes all Subscribers
// linked to this state, and any pending events are discarded.
func (s *subscribeState) close() {
s.dispatcher.StopAndWait()
var subs map[reflect.Type]subscriber
s.outputsMu.Lock()
subs, s.outputs = s.outputs, nil
s.outputsMu.Unlock()
for _, sub := range subs {
sub.Close()
}
}
func (s *subscribeState) closed() <-chan struct{} {
return s.dispatcher.Done()
}
// A Subscriber delivers one type of event from a [Client].
// Events are sent to the [Subscriber.Events] channel.
type Subscriber[T any] struct {
stop stopFlag
read chan T
unregister func()
}
func newSubscriber[T any](r *subscribeState) *Subscriber[T] {
return &Subscriber[T]{
read: make(chan T),
unregister: func() { r.deleteSubscriber(reflect.TypeFor[T]()) },
}
}
func newMonitor[T any](attach func(fn func(T)) (cancel func())) *Subscriber[T] {
ret := &Subscriber[T]{
read: make(chan T, 100), // arbitrary, large
}
ret.unregister = attach(ret.monitor)
return ret
}
func (s *Subscriber[T]) subscribeType() reflect.Type {
return reflect.TypeFor[T]()
}
func (s *Subscriber[T]) monitor(debugEvent T) {
select {
case s.read <- debugEvent:
case <-s.stop.Done():
}
}
func (s *Subscriber[T]) dispatch(ctx context.Context, vals *queue[DeliveredEvent], acceptCh func() chan DeliveredEvent, snapshot chan chan []DeliveredEvent) bool {
t := vals.Peek().Event.(T)
for {
// Keep the cases in this select in sync with subscribeState.pump
// above. The only difference should be that this select
// delivers a value on s.read.
select {
case s.read <- t:
vals.Drop()
return true
case val := <-acceptCh():
vals.Add(val)
case <-ctx.Done():
return false
case ch := <-snapshot:
ch <- vals.Snapshot()
}
}
}
// Events returns a channel on which the subscriber's events are
// delivered.
func (s *Subscriber[T]) Events() <-chan T {
return s.read
}
// Done returns a channel that is closed when the subscriber is
// closed.
func (s *Subscriber[T]) Done() <-chan struct{} {
return s.stop.Done()
}
// Close closes the Subscriber, indicating the caller no longer wishes
// to receive this event type. After Close, receives on
// [Subscriber.Events] block for ever.
//
// If the Bus from which the Subscriber was created is closed,
// the Subscriber is implicitly closed and does not need to be closed
// separately.
func (s *Subscriber[T]) Close() {
s.stop.Stop() // unblock receivers
s.unregister()
}
// A SubscriberFunc delivers one type of event from a [Client].
// Events are forwarded synchronously to a function provided at construction.
type SubscriberFunc[T any] struct {
stop stopFlag
read func(T)
unregister func()
}
func newSubscriberFunc[T any](r *subscribeState, f func(T)) *SubscriberFunc[T] {
return &SubscriberFunc[T]{
read: f,
unregister: func() { r.deleteSubscriber(reflect.TypeFor[T]()) },
}
}
// Close closes the SubscriberFunc, indicating the caller no longer wishes to
// receive this event type. After Close, no further events will be passed to
// the callback.
//
// If the [Bus] from which s was created is closed, s is implicitly closed and
// does not need to be closed separately.
func (s *SubscriberFunc[T]) Close() { s.stop.Stop(); s.unregister() }
// subscribeType implements part of the subscriber interface.
func (s *SubscriberFunc[T]) subscribeType() reflect.Type { return reflect.TypeFor[T]() }
// dispatch implements part of the subscriber interface.
func (s *SubscriberFunc[T]) dispatch(ctx context.Context, vals *queue[DeliveredEvent], acceptCh func() chan DeliveredEvent, snapshot chan chan []DeliveredEvent) bool {
t := vals.Peek().Event.(T)
callDone := make(chan struct{})
go s.runCallback(t, callDone)
// Keep the cases in this select in sync with subscribeState.pump
// above. The only difference should be that this select
// delivers a value by calling s.read.
for {
select {
case <-callDone:
vals.Drop()
return true
case val := <-acceptCh():
vals.Add(val)
case <-ctx.Done():
return false
case ch := <-snapshot:
ch <- vals.Snapshot()
}
}
}
// runCallback invokes the callback on v and closes ch when it returns.
// This should be run in a goroutine.
func (s *SubscriberFunc[T]) runCallback(v T, ch chan struct{}) {
defer close(ch)
s.read(v)
}