mirror of
				https://github.com/tailscale/tailscale.git
				synced 2025-10-31 00:01:40 +01:00 
			
		
		
		
	Baby steps. This permits building without much of gvisor, but not all of it. Updates #17283 Change-Id: I8433146e259918cc901fe86b4ea29be22075b32c Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
		
			
				
	
	
		
			2082 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			2082 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright (c) Tailscale Inc & AUTHORS
 | ||
| // SPDX-License-Identifier: BSD-3-Clause
 | ||
| 
 | ||
| // Package netstack wires up gVisor's netstack into Tailscale.
 | ||
| package netstack
 | ||
| 
 | ||
| import (
 | ||
| 	"bytes"
 | ||
| 	"context"
 | ||
| 	"errors"
 | ||
| 	"expvar"
 | ||
| 	"fmt"
 | ||
| 	"io"
 | ||
| 	"math"
 | ||
| 	"net"
 | ||
| 	"net/netip"
 | ||
| 	"runtime"
 | ||
| 	"strconv"
 | ||
| 	"sync"
 | ||
| 	"sync/atomic"
 | ||
| 	"time"
 | ||
| 
 | ||
| 	"github.com/tailscale/wireguard-go/conn"
 | ||
| 	"gvisor.dev/gvisor/pkg/refs"
 | ||
| 	"gvisor.dev/gvisor/pkg/tcpip"
 | ||
| 	"gvisor.dev/gvisor/pkg/tcpip/adapters/gonet"
 | ||
| 	"gvisor.dev/gvisor/pkg/tcpip/header"
 | ||
| 	"gvisor.dev/gvisor/pkg/tcpip/network/ipv4"
 | ||
| 	"gvisor.dev/gvisor/pkg/tcpip/network/ipv6"
 | ||
| 	"gvisor.dev/gvisor/pkg/tcpip/stack"
 | ||
| 	"gvisor.dev/gvisor/pkg/tcpip/transport/icmp"
 | ||
| 	"gvisor.dev/gvisor/pkg/tcpip/transport/tcp"
 | ||
| 	"gvisor.dev/gvisor/pkg/tcpip/transport/udp"
 | ||
| 	"gvisor.dev/gvisor/pkg/waiter"
 | ||
| 	"tailscale.com/envknob"
 | ||
| 	"tailscale.com/feature/buildfeatures"
 | ||
| 	"tailscale.com/ipn/ipnlocal"
 | ||
| 	"tailscale.com/metrics"
 | ||
| 	"tailscale.com/net/dns"
 | ||
| 	"tailscale.com/net/ipset"
 | ||
| 	"tailscale.com/net/netaddr"
 | ||
| 	"tailscale.com/net/netx"
 | ||
| 	"tailscale.com/net/packet"
 | ||
| 	"tailscale.com/net/tsaddr"
 | ||
| 	"tailscale.com/net/tsdial"
 | ||
| 	"tailscale.com/net/tstun"
 | ||
| 	"tailscale.com/proxymap"
 | ||
| 	"tailscale.com/syncs"
 | ||
| 	"tailscale.com/tailcfg"
 | ||
| 	"tailscale.com/types/ipproto"
 | ||
| 	"tailscale.com/types/logger"
 | ||
| 	"tailscale.com/types/netmap"
 | ||
| 	"tailscale.com/types/nettype"
 | ||
| 	"tailscale.com/util/clientmetric"
 | ||
| 	"tailscale.com/util/set"
 | ||
| 	"tailscale.com/version"
 | ||
| 	"tailscale.com/wgengine"
 | ||
| 	"tailscale.com/wgengine/filter"
 | ||
| 	"tailscale.com/wgengine/magicsock"
 | ||
| 	"tailscale.com/wgengine/netstack/gro"
 | ||
| )
 | ||
| 
 | ||
| const debugPackets = false
 | ||
| 
 | ||
| // If non-zero, these override the values returned from the corresponding
 | ||
| // functions, below.
 | ||
| var (
 | ||
| 	maxInFlightConnectionAttemptsForTest          int
 | ||
| 	maxInFlightConnectionAttemptsPerClientForTest int
 | ||
| )
 | ||
| 
 | ||
| // maxInFlightConnectionAttempts returns the global number of in-flight
 | ||
| // connection attempts that we allow for a single netstack Impl. Any new
 | ||
| // forwarded TCP connections that are opened after the limit has been hit are
 | ||
| // rejected until the number of in-flight connections drops below the limit
 | ||
| // again.
 | ||
| //
 | ||
| // Each in-flight connection attempt is a new goroutine and an open TCP
 | ||
| // connection, so we want to ensure that we don't allow an unbounded number of
 | ||
| // connections.
 | ||
| func maxInFlightConnectionAttempts() int {
 | ||
| 	if n := maxInFlightConnectionAttemptsForTest; n > 0 {
 | ||
| 		return n
 | ||
| 	}
 | ||
| 
 | ||
| 	if version.IsMobile() {
 | ||
| 		return 1024 // previous global value
 | ||
| 	}
 | ||
| 	switch version.OS() {
 | ||
| 	case "linux":
 | ||
| 		// On the assumption that most subnet routers deployed in
 | ||
| 		// production are running on Linux, we return a higher value.
 | ||
| 		//
 | ||
| 		// TODO(andrew-d): tune this based on the amount of system
 | ||
| 		// memory instead of a fixed limit.
 | ||
| 		return 8192
 | ||
| 	default:
 | ||
| 		// On all other platforms, return a reasonably high value that
 | ||
| 		// most users won't hit.
 | ||
| 		return 2048
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // maxInFlightConnectionAttemptsPerClient is the same as
 | ||
| // maxInFlightConnectionAttempts, but applies on a per-client basis
 | ||
| // (i.e. keyed by the remote Tailscale IP).
 | ||
| func maxInFlightConnectionAttemptsPerClient() int {
 | ||
| 	if n := maxInFlightConnectionAttemptsPerClientForTest; n > 0 {
 | ||
| 		return n
 | ||
| 	}
 | ||
| 
 | ||
| 	// For now, allow each individual client at most 2/3rds of the global
 | ||
| 	// limit. On all platforms except mobile, this won't be a visible
 | ||
| 	// change for users since this limit was added at the same time as we
 | ||
| 	// bumped the global limit, above.
 | ||
| 	return maxInFlightConnectionAttempts() * 2 / 3
 | ||
| }
 | ||
| 
 | ||
| var debugNetstack = envknob.RegisterBool("TS_DEBUG_NETSTACK")
 | ||
| 
 | ||
| var (
 | ||
| 	serviceIP   = tsaddr.TailscaleServiceIP()
 | ||
| 	serviceIPv6 = tsaddr.TailscaleServiceIPv6()
 | ||
| )
 | ||
| 
 | ||
| func init() {
 | ||
| 	mode := envknob.String("TS_DEBUG_NETSTACK_LEAK_MODE")
 | ||
| 	if mode == "" {
 | ||
| 		return
 | ||
| 	}
 | ||
| 	var lm refs.LeakMode
 | ||
| 	if err := lm.Set(mode); err != nil {
 | ||
| 		panic(err)
 | ||
| 	}
 | ||
| 	refs.SetLeakMode(lm)
 | ||
| }
 | ||
| 
 | ||
| // Impl contains the state for the netstack implementation,
 | ||
| // and implements wgengine.FakeImpl to act as a userspace network
 | ||
| // stack when Tailscale is running in fake mode.
 | ||
| type Impl struct {
 | ||
| 	// GetTCPHandlerForFlow conditionally handles an incoming TCP flow for the
 | ||
| 	// provided (src/port, dst/port) 4-tuple.
 | ||
| 	//
 | ||
| 	// A nil value is equivalent to a func returning (nil, false).
 | ||
| 	//
 | ||
| 	// If func returns intercept=false, the default forwarding behavior (if
 | ||
| 	// ProcessLocalIPs and/or ProcesssSubnetIPs) takes place.
 | ||
| 	//
 | ||
| 	// When intercept=true, the behavior depends on whether the returned handler
 | ||
| 	// is non-nil: if nil, the connection is rejected. If non-nil, handler takes
 | ||
| 	// over the TCP conn.
 | ||
| 	GetTCPHandlerForFlow func(src, dst netip.AddrPort) (handler func(net.Conn), intercept bool)
 | ||
| 
 | ||
| 	// GetUDPHandlerForFlow conditionally handles an incoming UDP flow for the
 | ||
| 	// provided (src/port, dst/port) 4-tuple.
 | ||
| 	//
 | ||
| 	// A nil value is equivalent to a func returning (nil, false).
 | ||
| 	//
 | ||
| 	// If func returns intercept=false, the default forwarding behavior (if
 | ||
| 	// ProcessLocalIPs and/or ProcesssSubnetIPs) takes place.
 | ||
| 	//
 | ||
| 	// When intercept=true, the behavior depends on whether the returned handler
 | ||
| 	// is non-nil: if nil, the connection is rejected. If non-nil, handler takes
 | ||
| 	// over the UDP flow.
 | ||
| 	GetUDPHandlerForFlow func(src, dst netip.AddrPort) (handler func(nettype.ConnPacketConn), intercept bool)
 | ||
| 
 | ||
| 	// ProcessLocalIPs is whether netstack should handle incoming
 | ||
| 	// traffic directed at the Node.Addresses (local IPs).
 | ||
| 	// It can only be set before calling Start.
 | ||
| 	ProcessLocalIPs bool
 | ||
| 
 | ||
| 	// ProcessSubnets is whether netstack should handle incoming
 | ||
| 	// traffic destined to non-local IPs (i.e. whether it should
 | ||
| 	// be a subnet router).
 | ||
| 	// It can only be set before calling Start.
 | ||
| 	ProcessSubnets bool
 | ||
| 
 | ||
| 	ipstack   *stack.Stack
 | ||
| 	linkEP    *linkEndpoint
 | ||
| 	tundev    *tstun.Wrapper
 | ||
| 	e         wgengine.Engine
 | ||
| 	pm        *proxymap.Mapper
 | ||
| 	mc        *magicsock.Conn
 | ||
| 	logf      logger.Logf
 | ||
| 	dialer    *tsdial.Dialer
 | ||
| 	ctx       context.Context        // alive until Close
 | ||
| 	ctxCancel context.CancelFunc     // called on Close
 | ||
| 	lb        *ipnlocal.LocalBackend // or nil
 | ||
| 	dns       *dns.Manager
 | ||
| 
 | ||
| 	// loopbackPort, if non-nil, will enable Impl to loop back (dnat to
 | ||
| 	// <address-family-loopback>:loopbackPort) TCP & UDP flows originally
 | ||
| 	// destined to serviceIP{v6}:loopbackPort.
 | ||
| 	loopbackPort *int
 | ||
| 
 | ||
| 	peerapiPort4Atomic atomic.Uint32 // uint16 port number for IPv4 peerapi
 | ||
| 	peerapiPort6Atomic atomic.Uint32 // uint16 port number for IPv6 peerapi
 | ||
| 
 | ||
| 	// atomicIsLocalIPFunc holds a func that reports whether an IP
 | ||
| 	// is a local (non-subnet) Tailscale IP address of this
 | ||
| 	// machine. It's always a non-nil func. It's changed on netmap
 | ||
| 	// updates.
 | ||
| 	atomicIsLocalIPFunc syncs.AtomicValue[func(netip.Addr) bool]
 | ||
| 
 | ||
| 	atomicIsVIPServiceIPFunc syncs.AtomicValue[func(netip.Addr) bool]
 | ||
| 
 | ||
| 	// forwardDialFunc, if non-nil, is the net.Dialer.DialContext-style
 | ||
| 	// function that is used to make outgoing connections when forwarding a
 | ||
| 	// TCP connection to another host (e.g. in subnet router mode).
 | ||
| 	//
 | ||
| 	// This is currently only used in tests.
 | ||
| 	forwardDialFunc netx.DialFunc
 | ||
| 
 | ||
| 	// forwardInFlightPerClientDropped is a metric that tracks how many
 | ||
| 	// in-flight TCP forward requests were dropped due to the per-client
 | ||
| 	// limit.
 | ||
| 	forwardInFlightPerClientDropped expvar.Int
 | ||
| 
 | ||
| 	mu sync.Mutex
 | ||
| 	// connsOpenBySubnetIP keeps track of number of connections open
 | ||
| 	// for each subnet IP temporarily registered on netstack for active
 | ||
| 	// TCP connections, so they can be unregistered when connections are
 | ||
| 	// closed.
 | ||
| 	connsOpenBySubnetIP map[netip.Addr]int
 | ||
| 	// connsInFlightByClient keeps track of the number of in-flight
 | ||
| 	// connections by the client ("Tailscale") IP. This is used to apply a
 | ||
| 	// per-client limit on in-flight connections that's smaller than the
 | ||
| 	// global limit, preventing a misbehaving client from starving the
 | ||
| 	// global limit.
 | ||
| 	connsInFlightByClient map[netip.Addr]int
 | ||
| 	// packetsInFlight tracks whether we're already handling a packet by
 | ||
| 	// the given endpoint ID; clients can send repeated SYN packets while
 | ||
| 	// trying to establish a connection (and while we're dialing the
 | ||
| 	// upstream address). If we don't deduplicate based on the endpoint,
 | ||
| 	// each SYN retransmit results in us incrementing
 | ||
| 	// connsInFlightByClient, and not decrementing them because the
 | ||
| 	// underlying TCP forwarder returns 'true' to indicate that the packet
 | ||
| 	// is handled but never actually launches our acceptTCP function.
 | ||
| 	//
 | ||
| 	// This mimics the 'inFlight' map in the TCP forwarder; it's
 | ||
| 	// unfortunate that we have to track this all twice, but thankfully the
 | ||
| 	// map only holds pending (in-flight) packets, and it's reasonably cheap.
 | ||
| 	packetsInFlight map[stack.TransportEndpointID]struct{}
 | ||
| }
 | ||
| 
 | ||
| const nicID = 1
 | ||
| 
 | ||
| // maxUDPPacketSize is the maximum size of a UDP packet we copy in
 | ||
| // startPacketCopy when relaying UDP packets. The user can configure
 | ||
| // the tailscale MTU to anything up to this size so we can potentially
 | ||
| // have a UDP packet as big as the MTU.
 | ||
| const maxUDPPacketSize = tstun.MaxPacketSize
 | ||
| 
 | ||
| func setTCPBufSizes(ipstack *stack.Stack) error {
 | ||
| 	// tcpip.TCP{Receive,Send}BufferSizeRangeOption is gVisor's version of
 | ||
| 	// Linux's tcp_{r,w}mem. Application within gVisor differs as some Linux
 | ||
| 	// features are not (yet) implemented, and socket buffer memory is not
 | ||
| 	// controlled within gVisor, e.g. we allocate *stack.PacketBuffer's for the
 | ||
| 	// write path within Tailscale. Therefore, we loosen our understanding of
 | ||
| 	// the relationship between these Linux and gVisor tunables. The chosen
 | ||
| 	// values are biased towards higher throughput on high bandwidth-delay
 | ||
| 	// product paths, except on memory-constrained platforms.
 | ||
| 	tcpRXBufOpt := tcpip.TCPReceiveBufferSizeRangeOption{
 | ||
| 		// Min is unused by gVisor at the time of writing, but partially plumbed
 | ||
| 		// for application by the TCP_WINDOW_CLAMP socket option.
 | ||
| 		Min: tcpRXBufMinSize,
 | ||
| 		// Default is used by gVisor at socket creation.
 | ||
| 		Default: tcpRXBufDefSize,
 | ||
| 		// Max is used by gVisor to cap the advertised receive window post-read.
 | ||
| 		// (tcp_moderate_rcvbuf=true, the default).
 | ||
| 		Max: tcpRXBufMaxSize,
 | ||
| 	}
 | ||
| 	tcpipErr := ipstack.SetTransportProtocolOption(tcp.ProtocolNumber, &tcpRXBufOpt)
 | ||
| 	if tcpipErr != nil {
 | ||
| 		return fmt.Errorf("could not set TCP RX buf size: %v", tcpipErr)
 | ||
| 	}
 | ||
| 	tcpTXBufOpt := tcpip.TCPSendBufferSizeRangeOption{
 | ||
| 		// Min in unused by gVisor at the time of writing.
 | ||
| 		Min: tcpTXBufMinSize,
 | ||
| 		// Default is used by gVisor at socket creation.
 | ||
| 		Default: tcpTXBufDefSize,
 | ||
| 		// Max is used by gVisor to cap the send window.
 | ||
| 		Max: tcpTXBufMaxSize,
 | ||
| 	}
 | ||
| 	tcpipErr = ipstack.SetTransportProtocolOption(tcp.ProtocolNumber, &tcpTXBufOpt)
 | ||
| 	if tcpipErr != nil {
 | ||
| 		return fmt.Errorf("could not set TCP TX buf size: %v", tcpipErr)
 | ||
| 	}
 | ||
| 	return nil
 | ||
| }
 | ||
| 
 | ||
| // Create creates and populates a new Impl.
 | ||
| func Create(logf logger.Logf, tundev *tstun.Wrapper, e wgengine.Engine, mc *magicsock.Conn, dialer *tsdial.Dialer, dns *dns.Manager, pm *proxymap.Mapper) (*Impl, error) {
 | ||
| 	if mc == nil {
 | ||
| 		return nil, errors.New("nil magicsock.Conn")
 | ||
| 	}
 | ||
| 	if tundev == nil {
 | ||
| 		return nil, errors.New("nil tundev")
 | ||
| 	}
 | ||
| 	if logf == nil {
 | ||
| 		return nil, errors.New("nil logger")
 | ||
| 	}
 | ||
| 	if e == nil {
 | ||
| 		return nil, errors.New("nil Engine")
 | ||
| 	}
 | ||
| 	if pm == nil {
 | ||
| 		return nil, errors.New("nil proxymap.Mapper")
 | ||
| 	}
 | ||
| 	if dialer == nil {
 | ||
| 		return nil, errors.New("nil Dialer")
 | ||
| 	}
 | ||
| 	ipstack := stack.New(stack.Options{
 | ||
| 		NetworkProtocols:   []stack.NetworkProtocolFactory{ipv4.NewProtocol, ipv6.NewProtocol},
 | ||
| 		TransportProtocols: []stack.TransportProtocolFactory{tcp.NewProtocol, udp.NewProtocol, icmp.NewProtocol4, icmp.NewProtocol6},
 | ||
| 	})
 | ||
| 	sackEnabledOpt := tcpip.TCPSACKEnabled(true) // TCP SACK is disabled by default
 | ||
| 	tcpipErr := ipstack.SetTransportProtocolOption(tcp.ProtocolNumber, &sackEnabledOpt)
 | ||
| 	if tcpipErr != nil {
 | ||
| 		return nil, fmt.Errorf("could not enable TCP SACK: %v", tcpipErr)
 | ||
| 	}
 | ||
| 	// See https://github.com/tailscale/tailscale/issues/9707
 | ||
| 	// gVisor's RACK performs poorly. ACKs do not appear to be handled in a
 | ||
| 	// timely manner, leading to spurious retransmissions and a reduced
 | ||
| 	// congestion window.
 | ||
| 	tcpRecoveryOpt := tcpip.TCPRecovery(0)
 | ||
| 	tcpipErr = ipstack.SetTransportProtocolOption(tcp.ProtocolNumber, &tcpRecoveryOpt)
 | ||
| 	if tcpipErr != nil {
 | ||
| 		return nil, fmt.Errorf("could not disable TCP RACK: %v", tcpipErr)
 | ||
| 	}
 | ||
| 	// gVisor defaults to reno at the time of writing. We explicitly set reno
 | ||
| 	// congestion control in order to prevent unexpected changes. Netstack
 | ||
| 	// has an int overflow in sender congestion window arithmetic that is more
 | ||
| 	// prone to trigger with cubic congestion control.
 | ||
| 	// See https://github.com/google/gvisor/issues/11632
 | ||
| 	renoOpt := tcpip.CongestionControlOption("reno")
 | ||
| 	tcpipErr = ipstack.SetTransportProtocolOption(tcp.ProtocolNumber, &renoOpt)
 | ||
| 	if tcpipErr != nil {
 | ||
| 		return nil, fmt.Errorf("could not set reno congestion control: %v", tcpipErr)
 | ||
| 	}
 | ||
| 	err := setTCPBufSizes(ipstack)
 | ||
| 	if err != nil {
 | ||
| 		return nil, err
 | ||
| 	}
 | ||
| 	supportedGSOKind := stack.GSONotSupported
 | ||
| 	supportedGROKind := groNotSupported
 | ||
| 	if runtime.GOOS == "linux" && buildfeatures.HasGRO {
 | ||
| 		// TODO(jwhited): add Windows support https://github.com/tailscale/corp/issues/21874
 | ||
| 		supportedGROKind = tcpGROSupported
 | ||
| 		supportedGSOKind = stack.HostGSOSupported
 | ||
| 	}
 | ||
| 	linkEP := newLinkEndpoint(512, uint32(tstun.DefaultTUNMTU()), "", supportedGROKind)
 | ||
| 	linkEP.SupportedGSOKind = supportedGSOKind
 | ||
| 	if tcpipProblem := ipstack.CreateNIC(nicID, linkEP); tcpipProblem != nil {
 | ||
| 		return nil, fmt.Errorf("could not create netstack NIC: %v", tcpipProblem)
 | ||
| 	}
 | ||
| 	// By default the netstack NIC will only accept packets for the IPs
 | ||
| 	// registered to it. Since in some cases we dynamically register IPs
 | ||
| 	// based on the packets that arrive, the NIC needs to accept all
 | ||
| 	// incoming packets. The NIC won't receive anything it isn't meant to
 | ||
| 	// since WireGuard will only send us packets that are meant for us.
 | ||
| 	ipstack.SetPromiscuousMode(nicID, true)
 | ||
| 	// Add IPv4 and IPv6 default routes, so all incoming packets from the Tailscale side
 | ||
| 	// are handled by the one fake NIC we use.
 | ||
| 	ipv4Subnet, err := tcpip.NewSubnet(tcpip.AddrFromSlice(make([]byte, 4)), tcpip.MaskFromBytes(make([]byte, 4)))
 | ||
| 	if err != nil {
 | ||
| 		return nil, fmt.Errorf("could not create IPv4 subnet: %v", err)
 | ||
| 	}
 | ||
| 	ipv6Subnet, err := tcpip.NewSubnet(tcpip.AddrFromSlice(make([]byte, 16)), tcpip.MaskFromBytes(make([]byte, 16)))
 | ||
| 	if err != nil {
 | ||
| 		return nil, fmt.Errorf("could not create IPv6 subnet: %v", err)
 | ||
| 	}
 | ||
| 	ipstack.SetRouteTable([]tcpip.Route{
 | ||
| 		{
 | ||
| 			Destination: ipv4Subnet,
 | ||
| 			NIC:         nicID,
 | ||
| 		},
 | ||
| 		{
 | ||
| 			Destination: ipv6Subnet,
 | ||
| 			NIC:         nicID,
 | ||
| 		},
 | ||
| 	})
 | ||
| 	ns := &Impl{
 | ||
| 		logf:                  logf,
 | ||
| 		ipstack:               ipstack,
 | ||
| 		linkEP:                linkEP,
 | ||
| 		tundev:                tundev,
 | ||
| 		e:                     e,
 | ||
| 		pm:                    pm,
 | ||
| 		mc:                    mc,
 | ||
| 		dialer:                dialer,
 | ||
| 		connsOpenBySubnetIP:   make(map[netip.Addr]int),
 | ||
| 		connsInFlightByClient: make(map[netip.Addr]int),
 | ||
| 		packetsInFlight:       make(map[stack.TransportEndpointID]struct{}),
 | ||
| 		dns:                   dns,
 | ||
| 	}
 | ||
| 	loopbackPort, ok := envknob.LookupInt("TS_DEBUG_NETSTACK_LOOPBACK_PORT")
 | ||
| 	if ok && loopbackPort >= 0 && loopbackPort <= math.MaxUint16 {
 | ||
| 		ns.loopbackPort = &loopbackPort
 | ||
| 	}
 | ||
| 	ns.ctx, ns.ctxCancel = context.WithCancel(context.Background())
 | ||
| 	ns.atomicIsLocalIPFunc.Store(ipset.FalseContainsIPFunc())
 | ||
| 	ns.atomicIsVIPServiceIPFunc.Store(ipset.FalseContainsIPFunc())
 | ||
| 	ns.tundev.PostFilterPacketInboundFromWireGuard = ns.injectInbound
 | ||
| 	ns.tundev.PreFilterPacketOutboundToWireGuardNetstackIntercept = ns.handleLocalPackets
 | ||
| 	stacksForMetrics.Store(ns, struct{}{})
 | ||
| 	return ns, nil
 | ||
| }
 | ||
| 
 | ||
| func (ns *Impl) Close() error {
 | ||
| 	stacksForMetrics.Delete(ns)
 | ||
| 	ns.ctxCancel()
 | ||
| 	ns.ipstack.Close()
 | ||
| 	ns.ipstack.Wait()
 | ||
| 	return nil
 | ||
| }
 | ||
| 
 | ||
| // SetTransportProtocolOption forwards to the underlying
 | ||
| // [stack.Stack.SetTransportProtocolOption]. Callers are responsible for
 | ||
| // ensuring that the options are valid, compatible and appropriate for their use
 | ||
| // case. Compatibility may change at any version.
 | ||
| func (ns *Impl) SetTransportProtocolOption(transport tcpip.TransportProtocolNumber, option tcpip.SettableTransportProtocolOption) tcpip.Error {
 | ||
| 	return ns.ipstack.SetTransportProtocolOption(transport, option)
 | ||
| }
 | ||
| 
 | ||
| // A single process might have several netstacks running at the same time.
 | ||
| // Exported clientmetric counters will have a sum of counters of all of them.
 | ||
| var stacksForMetrics syncs.Map[*Impl, struct{}]
 | ||
| 
 | ||
| func init() {
 | ||
| 	// Please take care to avoid exporting clientmetrics with the same metric
 | ||
| 	// names as the ones used by Impl.ExpVar. Both get exposed via the same HTTP
 | ||
| 	// endpoint, and name collisions will result in Prometheus scraping errors.
 | ||
| 	clientmetric.NewCounterFunc("netstack_tcp_forward_dropped_attempts", func() int64 {
 | ||
| 		var total uint64
 | ||
| 		for ns := range stacksForMetrics.Keys() {
 | ||
| 			delta := ns.ipstack.Stats().TCP.ForwardMaxInFlightDrop.Value()
 | ||
| 			if total+delta > math.MaxInt64 {
 | ||
| 				total = math.MaxInt64
 | ||
| 				break
 | ||
| 			}
 | ||
| 			total += delta
 | ||
| 		}
 | ||
| 		return int64(total)
 | ||
| 	})
 | ||
| }
 | ||
| 
 | ||
| type protocolHandlerFunc func(stack.TransportEndpointID, *stack.PacketBuffer) bool
 | ||
| 
 | ||
| // wrapUDPProtocolHandler wraps the protocol handler we pass to netstack for UDP.
 | ||
| func (ns *Impl) wrapUDPProtocolHandler(h protocolHandlerFunc) protocolHandlerFunc {
 | ||
| 	return func(tei stack.TransportEndpointID, pb *stack.PacketBuffer) bool {
 | ||
| 		addr := tei.LocalAddress
 | ||
| 		ip, ok := netip.AddrFromSlice(addr.AsSlice())
 | ||
| 		if !ok {
 | ||
| 			ns.logf("netstack: could not parse local address for incoming connection")
 | ||
| 			return false
 | ||
| 		}
 | ||
| 
 | ||
| 		// Dynamically reconfigure ns's subnet addresses as needed for
 | ||
| 		// outbound traffic.
 | ||
| 		ip = ip.Unmap()
 | ||
| 		if !ns.isLocalIP(ip) {
 | ||
| 			ns.addSubnetAddress(ip)
 | ||
| 		}
 | ||
| 		return h(tei, pb)
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| var (
 | ||
| 	metricPerClientForwardLimit = clientmetric.NewCounter("netstack_tcp_forward_dropped_attempts_per_client")
 | ||
| )
 | ||
| 
 | ||
| // wrapTCPProtocolHandler wraps the protocol handler we pass to netstack for TCP.
 | ||
| func (ns *Impl) wrapTCPProtocolHandler(h protocolHandlerFunc) protocolHandlerFunc {
 | ||
| 	// 'handled' is whether the packet should be accepted by netstack; if
 | ||
| 	// true, then the TCP connection is accepted by the transport layer and
 | ||
| 	// passes through our acceptTCP handler/etc. If false, then the packet
 | ||
| 	// is dropped and the TCP connection is rejected (typically with an
 | ||
| 	// ICMP Port Unreachable or ICMP Protocol Unreachable message).
 | ||
| 	return func(tei stack.TransportEndpointID, pb *stack.PacketBuffer) (handled bool) {
 | ||
| 		localIP, ok := netip.AddrFromSlice(tei.LocalAddress.AsSlice())
 | ||
| 		if !ok {
 | ||
| 			ns.logf("netstack: could not parse local address for incoming connection")
 | ||
| 			return false
 | ||
| 		}
 | ||
| 		localIP = localIP.Unmap()
 | ||
| 
 | ||
| 		remoteIP, ok := netip.AddrFromSlice(tei.RemoteAddress.AsSlice())
 | ||
| 		if !ok {
 | ||
| 			ns.logf("netstack: could not parse remote address for incoming connection")
 | ||
| 			return false
 | ||
| 		}
 | ||
| 
 | ||
| 		// If we have too many in-flight connections for this client, abort
 | ||
| 		// early and don't open a new one.
 | ||
| 		//
 | ||
| 		// NOTE: the counter is decremented in
 | ||
| 		// decrementInFlightTCPForward, called from the acceptTCP
 | ||
| 		// function, below.
 | ||
| 
 | ||
| 		ns.mu.Lock()
 | ||
| 		if _, ok := ns.packetsInFlight[tei]; ok {
 | ||
| 			// We're already handling this packet; just bail early
 | ||
| 			// (this is also what would happen in the TCP
 | ||
| 			// forwarder).
 | ||
| 			ns.mu.Unlock()
 | ||
| 			return true
 | ||
| 		}
 | ||
| 
 | ||
| 		// Check the per-client limit.
 | ||
| 		inFlight := ns.connsInFlightByClient[remoteIP]
 | ||
| 		tooManyInFlight := inFlight >= maxInFlightConnectionAttemptsPerClient()
 | ||
| 		if !tooManyInFlight {
 | ||
| 			ns.connsInFlightByClient[remoteIP]++
 | ||
| 		}
 | ||
| 
 | ||
| 		// We're handling this packet now; see the comment on the
 | ||
| 		// packetsInFlight field for more details.
 | ||
| 		ns.packetsInFlight[tei] = struct{}{}
 | ||
| 		ns.mu.Unlock()
 | ||
| 
 | ||
| 		if debugNetstack() {
 | ||
| 			ns.logf("[v2] netstack: in-flight connections for client %v: %d", remoteIP, inFlight)
 | ||
| 		}
 | ||
| 		if tooManyInFlight {
 | ||
| 			ns.logf("netstack: ignoring a new TCP connection from %v to %v because the client already has %d in-flight connections", localIP, remoteIP, inFlight)
 | ||
| 			metricPerClientForwardLimit.Add(1)
 | ||
| 			ns.forwardInFlightPerClientDropped.Add(1)
 | ||
| 			return false // unhandled
 | ||
| 		}
 | ||
| 
 | ||
| 		// On return, if this packet isn't handled by the inner handler
 | ||
| 		// we're wrapping (`h`), we need to decrement the per-client
 | ||
| 		// in-flight count and remove the ID from our tracking map.
 | ||
| 		// This can happen if the underlying forwarder's limit has been
 | ||
| 		// reached, at which point it will return false to indicate
 | ||
| 		// that it's not handling the packet, and it will not run
 | ||
| 		// acceptTCP.  If we don't decrement here, then we would
 | ||
| 		// eventually increment the per-client counter up to the limit
 | ||
| 		// and never decrement because we'd never hit the codepath in
 | ||
| 		// acceptTCP, below, or just drop all packets from the same
 | ||
| 		// endpoint due to the packetsInFlight check.
 | ||
| 		defer func() {
 | ||
| 			if !handled {
 | ||
| 				ns.mu.Lock()
 | ||
| 				delete(ns.packetsInFlight, tei)
 | ||
| 				ns.connsInFlightByClient[remoteIP]--
 | ||
| 				new := ns.connsInFlightByClient[remoteIP]
 | ||
| 				ns.mu.Unlock()
 | ||
| 				ns.logf("netstack: decrementing connsInFlightByClient[%v] because the packet was not handled; new value is %d", remoteIP, new)
 | ||
| 			}
 | ||
| 		}()
 | ||
| 
 | ||
| 		// Dynamically reconfigure ns's subnet addresses as needed for
 | ||
| 		// outbound traffic.
 | ||
| 		if !ns.isLocalIP(localIP) && !ns.isVIPServiceIP(localIP) {
 | ||
| 			ns.addSubnetAddress(localIP)
 | ||
| 		}
 | ||
| 
 | ||
| 		return h(tei, pb)
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| func (ns *Impl) decrementInFlightTCPForward(tei stack.TransportEndpointID, remoteAddr netip.Addr) {
 | ||
| 	ns.mu.Lock()
 | ||
| 	defer ns.mu.Unlock()
 | ||
| 
 | ||
| 	// Remove this packet so future SYNs from this address will be handled.
 | ||
| 	delete(ns.packetsInFlight, tei)
 | ||
| 
 | ||
| 	was := ns.connsInFlightByClient[remoteAddr]
 | ||
| 	newVal := was - 1
 | ||
| 	if newVal == 0 {
 | ||
| 		delete(ns.connsInFlightByClient, remoteAddr) // free up space in the map
 | ||
| 	} else {
 | ||
| 		ns.connsInFlightByClient[remoteAddr] = newVal
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // LocalBackend is a fake name for *ipnlocal.LocalBackend to avoid an import cycle.
 | ||
| type LocalBackend = any
 | ||
| 
 | ||
| // Start sets up all the handlers so netstack can start working. Implements
 | ||
| // wgengine.FakeImpl.
 | ||
| func (ns *Impl) Start(b LocalBackend) error {
 | ||
| 	if b == nil {
 | ||
| 		panic("nil LocalBackend interface")
 | ||
| 	}
 | ||
| 	lb := b.(*ipnlocal.LocalBackend)
 | ||
| 	if lb == nil {
 | ||
| 		panic("nil LocalBackend")
 | ||
| 	}
 | ||
| 	ns.lb = lb
 | ||
| 	tcpFwd := tcp.NewForwarder(ns.ipstack, tcpRXBufDefSize, maxInFlightConnectionAttempts(), ns.acceptTCP)
 | ||
| 	udpFwd := udp.NewForwarder(ns.ipstack, ns.acceptUDP)
 | ||
| 	ns.ipstack.SetTransportProtocolHandler(tcp.ProtocolNumber, ns.wrapTCPProtocolHandler(tcpFwd.HandlePacket))
 | ||
| 	ns.ipstack.SetTransportProtocolHandler(udp.ProtocolNumber, ns.wrapUDPProtocolHandler(udpFwd.HandlePacket))
 | ||
| 	go ns.inject()
 | ||
| 	return nil
 | ||
| }
 | ||
| 
 | ||
| func (ns *Impl) addSubnetAddress(ip netip.Addr) {
 | ||
| 	ns.mu.Lock()
 | ||
| 	ns.connsOpenBySubnetIP[ip]++
 | ||
| 	needAdd := ns.connsOpenBySubnetIP[ip] == 1
 | ||
| 	ns.mu.Unlock()
 | ||
| 	// Only register address into netstack for first concurrent connection.
 | ||
| 	if needAdd {
 | ||
| 		pa := tcpip.ProtocolAddress{
 | ||
| 			AddressWithPrefix: tcpip.AddrFromSlice(ip.AsSlice()).WithPrefix(),
 | ||
| 		}
 | ||
| 		if ip.Is4() {
 | ||
| 			pa.Protocol = ipv4.ProtocolNumber
 | ||
| 		} else if ip.Is6() {
 | ||
| 			pa.Protocol = ipv6.ProtocolNumber
 | ||
| 		}
 | ||
| 		ns.ipstack.AddProtocolAddress(nicID, pa, stack.AddressProperties{
 | ||
| 			PEB:        stack.CanBePrimaryEndpoint, // zero value default
 | ||
| 			ConfigType: stack.AddressConfigStatic,  // zero value default
 | ||
| 		})
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| func (ns *Impl) removeSubnetAddress(ip netip.Addr) {
 | ||
| 	ns.mu.Lock()
 | ||
| 	defer ns.mu.Unlock()
 | ||
| 	ns.connsOpenBySubnetIP[ip]--
 | ||
| 	// Only unregister address from netstack after last concurrent connection.
 | ||
| 	if ns.connsOpenBySubnetIP[ip] == 0 {
 | ||
| 		ns.ipstack.RemoveAddress(nicID, tcpip.AddrFromSlice(ip.AsSlice()))
 | ||
| 		delete(ns.connsOpenBySubnetIP, ip)
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| func ipPrefixToAddressWithPrefix(ipp netip.Prefix) tcpip.AddressWithPrefix {
 | ||
| 	return tcpip.AddressWithPrefix{
 | ||
| 		Address:   tcpip.AddrFromSlice(ipp.Addr().AsSlice()),
 | ||
| 		PrefixLen: int(ipp.Bits()),
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| var v4broadcast = netaddr.IPv4(255, 255, 255, 255)
 | ||
| 
 | ||
| // UpdateNetstackIPs updates the set of local IPs that netstack should handle
 | ||
| // from nm.
 | ||
| //
 | ||
| // TODO(bradfitz): don't pass the whole netmap here; just pass the two
 | ||
| // address slice views.
 | ||
| func (ns *Impl) UpdateNetstackIPs(nm *netmap.NetworkMap) {
 | ||
| 	var selfNode tailcfg.NodeView
 | ||
| 	var serviceAddrSet set.Set[netip.Addr]
 | ||
| 	if nm != nil {
 | ||
| 		ns.atomicIsLocalIPFunc.Store(ipset.NewContainsIPFunc(nm.GetAddresses()))
 | ||
| 		if buildfeatures.HasServe {
 | ||
| 			vipServiceIPMap := nm.GetVIPServiceIPMap()
 | ||
| 			serviceAddrSet = make(set.Set[netip.Addr], len(vipServiceIPMap)*2)
 | ||
| 			for _, addrs := range vipServiceIPMap {
 | ||
| 				serviceAddrSet.AddSlice(addrs)
 | ||
| 			}
 | ||
| 			ns.atomicIsVIPServiceIPFunc.Store(serviceAddrSet.Contains)
 | ||
| 		}
 | ||
| 		selfNode = nm.SelfNode
 | ||
| 	} else {
 | ||
| 		ns.atomicIsLocalIPFunc.Store(ipset.FalseContainsIPFunc())
 | ||
| 		ns.atomicIsVIPServiceIPFunc.Store(ipset.FalseContainsIPFunc())
 | ||
| 	}
 | ||
| 
 | ||
| 	oldPfx := make(map[netip.Prefix]bool)
 | ||
| 	for _, protocolAddr := range ns.ipstack.AllAddresses()[nicID] {
 | ||
| 		ap := protocolAddr.AddressWithPrefix
 | ||
| 		ip := netaddrIPFromNetstackIP(ap.Address)
 | ||
| 		if ip == v4broadcast && ap.PrefixLen == 32 {
 | ||
| 			// Don't add 255.255.255.255/32 to oldIPs so we don't
 | ||
| 			// delete it later. We didn't install it, so it's not
 | ||
| 			// ours to delete.
 | ||
| 			continue
 | ||
| 		}
 | ||
| 		p := netip.PrefixFrom(ip, ap.PrefixLen)
 | ||
| 		oldPfx[p] = true
 | ||
| 	}
 | ||
| 	newPfx := make(map[netip.Prefix]bool)
 | ||
| 
 | ||
| 	if selfNode.Valid() {
 | ||
| 		for _, p := range selfNode.Addresses().All() {
 | ||
| 			newPfx[p] = true
 | ||
| 		}
 | ||
| 		if ns.ProcessSubnets {
 | ||
| 			for _, p := range selfNode.AllowedIPs().All() {
 | ||
| 				newPfx[p] = true
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	for addr := range serviceAddrSet {
 | ||
| 		p := netip.PrefixFrom(addr, addr.BitLen())
 | ||
| 		newPfx[p] = true
 | ||
| 	}
 | ||
| 
 | ||
| 	pfxToAdd := make(map[netip.Prefix]bool)
 | ||
| 	for p := range newPfx {
 | ||
| 		if !oldPfx[p] {
 | ||
| 			pfxToAdd[p] = true
 | ||
| 		}
 | ||
| 	}
 | ||
| 	pfxToRemove := make(map[netip.Prefix]bool)
 | ||
| 	for p := range oldPfx {
 | ||
| 		if !newPfx[p] {
 | ||
| 			pfxToRemove[p] = true
 | ||
| 		}
 | ||
| 	}
 | ||
| 	ns.mu.Lock()
 | ||
| 	for ip := range ns.connsOpenBySubnetIP {
 | ||
| 		// TODO(maisem): this looks like a bug, remove or document. It seems as
 | ||
| 		// though we might end up either leaking the address on the netstack
 | ||
| 		// NIC, or where we do accounting for connsOpenBySubnetIP from 1 to 0,
 | ||
| 		// we might end up removing the address from the netstack NIC that was
 | ||
| 		// still being advertised.
 | ||
| 		delete(pfxToRemove, netip.PrefixFrom(ip, ip.BitLen()))
 | ||
| 	}
 | ||
| 	ns.mu.Unlock()
 | ||
| 
 | ||
| 	for p := range pfxToRemove {
 | ||
| 		err := ns.ipstack.RemoveAddress(nicID, tcpip.AddrFromSlice(p.Addr().AsSlice()))
 | ||
| 		if err != nil {
 | ||
| 			ns.logf("netstack: could not deregister IP %s: %v", p, err)
 | ||
| 		} else {
 | ||
| 			ns.logf("[v2] netstack: deregistered IP %s", p)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	for p := range pfxToAdd {
 | ||
| 		if !p.IsValid() {
 | ||
| 			ns.logf("netstack: [unexpected] skipping invalid IP (%v/%v)", p.Addr(), p.Bits())
 | ||
| 			continue
 | ||
| 		}
 | ||
| 		tcpAddr := tcpip.ProtocolAddress{
 | ||
| 			AddressWithPrefix: ipPrefixToAddressWithPrefix(p),
 | ||
| 		}
 | ||
| 		if p.Addr().Is6() {
 | ||
| 			tcpAddr.Protocol = ipv6.ProtocolNumber
 | ||
| 		} else {
 | ||
| 			tcpAddr.Protocol = ipv4.ProtocolNumber
 | ||
| 		}
 | ||
| 		var tcpErr tcpip.Error // not error
 | ||
| 		tcpErr = ns.ipstack.AddProtocolAddress(nicID, tcpAddr, stack.AddressProperties{
 | ||
| 			PEB:        stack.CanBePrimaryEndpoint, // zero value default
 | ||
| 			ConfigType: stack.AddressConfigStatic,  // zero value default
 | ||
| 		})
 | ||
| 		if tcpErr != nil {
 | ||
| 			ns.logf("netstack: could not register IP %s: %v", p, tcpErr)
 | ||
| 		} else {
 | ||
| 			ns.logf("[v2] netstack: registered IP %s", p)
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| func (ns *Impl) isLoopbackPort(port uint16) bool {
 | ||
| 	if ns.loopbackPort != nil && int(port) == *ns.loopbackPort {
 | ||
| 		return true
 | ||
| 	}
 | ||
| 	return false
 | ||
| }
 | ||
| 
 | ||
| // handleLocalPackets is hooked into the tun datapath for packets leaving
 | ||
| // the host and arriving at tailscaled. This method returns filter.DropSilently
 | ||
| // to intercept a packet for handling, for instance traffic to quad-100.
 | ||
| func (ns *Impl) handleLocalPackets(p *packet.Parsed, t *tstun.Wrapper, gro *gro.GRO) (filter.Response, *gro.GRO) {
 | ||
| 	if ns.ctx.Err() != nil {
 | ||
| 		return filter.DropSilently, gro
 | ||
| 	}
 | ||
| 
 | ||
| 	// Determine if we care about this local packet.
 | ||
| 	dst := p.Dst.Addr()
 | ||
| 	switch {
 | ||
| 	case dst == serviceIP || dst == serviceIPv6:
 | ||
| 		// We want to intercept some traffic to the "service IP" (e.g.
 | ||
| 		// 100.100.100.100 for IPv4). However, of traffic to the
 | ||
| 		// service IP, we only care about UDP 53, and TCP on port 53,
 | ||
| 		// 80, and 8080.
 | ||
| 		switch p.IPProto {
 | ||
| 		case ipproto.TCP:
 | ||
| 			if port := p.Dst.Port(); port != 53 && port != 80 && port != 8080 && !ns.isLoopbackPort(port) {
 | ||
| 				return filter.Accept, gro
 | ||
| 			}
 | ||
| 		case ipproto.UDP:
 | ||
| 			if port := p.Dst.Port(); port != 53 && !ns.isLoopbackPort(port) {
 | ||
| 				return filter.Accept, gro
 | ||
| 			}
 | ||
| 		}
 | ||
| 	case viaRange.Contains(dst):
 | ||
| 		// We need to handle 4via6 packets leaving the host if the via
 | ||
| 		// route is for this host; otherwise the packet will be dropped
 | ||
| 		// because nothing will translate it.
 | ||
| 		var shouldHandle bool
 | ||
| 		if p.IPVersion == 6 && !ns.isLocalIP(dst) {
 | ||
| 			shouldHandle = ns.lb != nil && ns.lb.ShouldHandleViaIP(dst)
 | ||
| 		}
 | ||
| 		if !shouldHandle {
 | ||
| 			// Unhandled means that we let the regular processing
 | ||
| 			// occur without doing anything ourselves.
 | ||
| 			return filter.Accept, gro
 | ||
| 		}
 | ||
| 
 | ||
| 		if debugNetstack() {
 | ||
| 			ns.logf("netstack: handling local 4via6 packet: version=%d proto=%v dst=%v src=%v",
 | ||
| 				p.IPVersion, p.IPProto, p.Dst, p.Src)
 | ||
| 		}
 | ||
| 
 | ||
| 		// If this is a ping message, handle it and don't pass to
 | ||
| 		// netstack.
 | ||
| 		pingIP, handlePing := ns.shouldHandlePing(p)
 | ||
| 		if handlePing {
 | ||
| 			ns.logf("netstack: handling local 4via6 ping: dst=%v pingIP=%v", dst, pingIP)
 | ||
| 
 | ||
| 			var pong []byte // the reply to the ping, if our relayed ping works
 | ||
| 			if dst.Is4() {
 | ||
| 				h := p.ICMP4Header()
 | ||
| 				h.ToResponse()
 | ||
| 				pong = packet.Generate(&h, p.Payload())
 | ||
| 			} else if dst.Is6() {
 | ||
| 				h := p.ICMP6Header()
 | ||
| 				h.ToResponse()
 | ||
| 				pong = packet.Generate(&h, p.Payload())
 | ||
| 			}
 | ||
| 
 | ||
| 			go ns.userPing(pingIP, pong, userPingDirectionInbound)
 | ||
| 			return filter.DropSilently, gro
 | ||
| 		}
 | ||
| 
 | ||
| 		// Fall through to writing inbound so netstack handles the
 | ||
| 		// 4via6 via connection.
 | ||
| 
 | ||
| 	default:
 | ||
| 		// Not traffic to the service IP or a 4via6 IP, so we don't
 | ||
| 		// care about the packet; resume processing.
 | ||
| 		return filter.Accept, gro
 | ||
| 	}
 | ||
| 	if debugPackets {
 | ||
| 		ns.logf("[v2] service packet in (from %v): % x", p.Src, p.Buffer())
 | ||
| 	}
 | ||
| 
 | ||
| 	gro = ns.linkEP.gro(p, gro)
 | ||
| 	return filter.DropSilently, gro
 | ||
| }
 | ||
| 
 | ||
| func (ns *Impl) DialContextTCP(ctx context.Context, ipp netip.AddrPort) (*gonet.TCPConn, error) {
 | ||
| 	remoteAddress := tcpip.FullAddress{
 | ||
| 		NIC:  nicID,
 | ||
| 		Addr: tcpip.AddrFromSlice(ipp.Addr().AsSlice()),
 | ||
| 		Port: ipp.Port(),
 | ||
| 	}
 | ||
| 	var ipType tcpip.NetworkProtocolNumber
 | ||
| 	if ipp.Addr().Is4() {
 | ||
| 		ipType = ipv4.ProtocolNumber
 | ||
| 	} else {
 | ||
| 		ipType = ipv6.ProtocolNumber
 | ||
| 	}
 | ||
| 
 | ||
| 	return gonet.DialContextTCP(ctx, ns.ipstack, remoteAddress, ipType)
 | ||
| }
 | ||
| 
 | ||
| // DialContextTCPWithBind creates a new gonet.TCPConn connected to the specified
 | ||
| // remoteAddress with its local address bound to localAddr on an available port.
 | ||
| func (ns *Impl) DialContextTCPWithBind(ctx context.Context, localAddr netip.Addr, remoteAddr netip.AddrPort) (*gonet.TCPConn, error) {
 | ||
| 	remoteAddress := tcpip.FullAddress{
 | ||
| 		NIC:  nicID,
 | ||
| 		Addr: tcpip.AddrFromSlice(remoteAddr.Addr().AsSlice()),
 | ||
| 		Port: remoteAddr.Port(),
 | ||
| 	}
 | ||
| 	localAddress := tcpip.FullAddress{
 | ||
| 		NIC:  nicID,
 | ||
| 		Addr: tcpip.AddrFromSlice(localAddr.AsSlice()),
 | ||
| 	}
 | ||
| 	var ipType tcpip.NetworkProtocolNumber
 | ||
| 	if remoteAddr.Addr().Is4() {
 | ||
| 		ipType = ipv4.ProtocolNumber
 | ||
| 	} else {
 | ||
| 		ipType = ipv6.ProtocolNumber
 | ||
| 	}
 | ||
| 	return gonet.DialTCPWithBind(ctx, ns.ipstack, localAddress, remoteAddress, ipType)
 | ||
| }
 | ||
| 
 | ||
| func (ns *Impl) DialContextUDP(ctx context.Context, ipp netip.AddrPort) (*gonet.UDPConn, error) {
 | ||
| 	remoteAddress := &tcpip.FullAddress{
 | ||
| 		NIC:  nicID,
 | ||
| 		Addr: tcpip.AddrFromSlice(ipp.Addr().AsSlice()),
 | ||
| 		Port: ipp.Port(),
 | ||
| 	}
 | ||
| 	var ipType tcpip.NetworkProtocolNumber
 | ||
| 	if ipp.Addr().Is4() {
 | ||
| 		ipType = ipv4.ProtocolNumber
 | ||
| 	} else {
 | ||
| 		ipType = ipv6.ProtocolNumber
 | ||
| 	}
 | ||
| 
 | ||
| 	return gonet.DialUDP(ns.ipstack, nil, remoteAddress, ipType)
 | ||
| }
 | ||
| 
 | ||
| // DialContextUDPWithBind creates a new gonet.UDPConn. Connected to remoteAddr.
 | ||
| // With its local address bound to localAddr on an available port.
 | ||
| func (ns *Impl) DialContextUDPWithBind(ctx context.Context, localAddr netip.Addr, remoteAddr netip.AddrPort) (*gonet.UDPConn, error) {
 | ||
| 	remoteAddress := &tcpip.FullAddress{
 | ||
| 		NIC:  nicID,
 | ||
| 		Addr: tcpip.AddrFromSlice(remoteAddr.Addr().AsSlice()),
 | ||
| 		Port: remoteAddr.Port(),
 | ||
| 	}
 | ||
| 	localAddress := &tcpip.FullAddress{
 | ||
| 		NIC:  nicID,
 | ||
| 		Addr: tcpip.AddrFromSlice(localAddr.AsSlice()),
 | ||
| 	}
 | ||
| 	var ipType tcpip.NetworkProtocolNumber
 | ||
| 	if remoteAddr.Addr().Is4() {
 | ||
| 		ipType = ipv4.ProtocolNumber
 | ||
| 	} else {
 | ||
| 		ipType = ipv6.ProtocolNumber
 | ||
| 	}
 | ||
| 
 | ||
| 	return gonet.DialUDP(ns.ipstack, localAddress, remoteAddress, ipType)
 | ||
| }
 | ||
| 
 | ||
| // getInjectInboundBuffsSizes returns packet memory and a sizes slice for usage
 | ||
| // when calling tstun.Wrapper.InjectInboundPacketBuffer(). These are sized with
 | ||
| // consideration for MTU and GSO support on ns.linkEP. They should be recycled
 | ||
| // across subsequent inbound packet injection calls.
 | ||
| func (ns *Impl) getInjectInboundBuffsSizes() (buffs [][]byte, sizes []int) {
 | ||
| 	batchSize := 1
 | ||
| 	gsoEnabled := ns.linkEP.SupportedGSO() == stack.HostGSOSupported
 | ||
| 	if gsoEnabled {
 | ||
| 		batchSize = conn.IdealBatchSize
 | ||
| 	}
 | ||
| 	buffs = make([][]byte, batchSize)
 | ||
| 	sizes = make([]int, batchSize)
 | ||
| 	for i := 0; i < batchSize; i++ {
 | ||
| 		if i == 0 && gsoEnabled {
 | ||
| 			buffs[i] = make([]byte, tstun.PacketStartOffset+ns.linkEP.GSOMaxSize())
 | ||
| 		} else {
 | ||
| 			buffs[i] = make([]byte, tstun.PacketStartOffset+tstun.DefaultTUNMTU())
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return buffs, sizes
 | ||
| }
 | ||
| 
 | ||
| // The inject goroutine reads in packets that netstack generated, and delivers
 | ||
| // them to the correct path.
 | ||
| func (ns *Impl) inject() {
 | ||
| 	inboundBuffs, inboundBuffsSizes := ns.getInjectInboundBuffsSizes()
 | ||
| 	for {
 | ||
| 		pkt := ns.linkEP.ReadContext(ns.ctx)
 | ||
| 		if pkt == nil {
 | ||
| 			if ns.ctx.Err() != nil {
 | ||
| 				// Return without logging.
 | ||
| 				return
 | ||
| 			}
 | ||
| 			ns.logf("[v2] ReadContext-for-write = ok=false")
 | ||
| 			continue
 | ||
| 		}
 | ||
| 
 | ||
| 		if debugPackets {
 | ||
| 			ns.logf("[v2] packet Write out: % x", stack.PayloadSince(pkt.NetworkHeader()).AsSlice())
 | ||
| 		}
 | ||
| 
 | ||
| 		// In the normal case, netstack synthesizes the bytes for
 | ||
| 		// traffic which should transit back into WG and go to peers.
 | ||
| 		// However, some uses of netstack (presently, magic DNS)
 | ||
| 		// send traffic destined for the local device, hence must
 | ||
| 		// be injected 'inbound'.
 | ||
| 		sendToHost := ns.shouldSendToHost(pkt)
 | ||
| 
 | ||
| 		// pkt has a non-zero refcount, so injection methods takes
 | ||
| 		// ownership of one count and will decrement on completion.
 | ||
| 		if sendToHost {
 | ||
| 			if err := ns.tundev.InjectInboundPacketBuffer(pkt, inboundBuffs, inboundBuffsSizes); err != nil {
 | ||
| 				ns.logf("netstack inject inbound: %v", err)
 | ||
| 				return
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			if err := ns.tundev.InjectOutboundPacketBuffer(pkt); err != nil {
 | ||
| 				ns.logf("netstack inject outbound: %v", err)
 | ||
| 				return
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // shouldSendToHost determines if the provided packet should be sent to the
 | ||
| // host (i.e the current machine running Tailscale), in which case it will
 | ||
| // return true. It will return false if the packet should be sent outbound, for
 | ||
| // transit via WireGuard to another Tailscale node.
 | ||
| func (ns *Impl) shouldSendToHost(pkt *stack.PacketBuffer) bool {
 | ||
| 	// Determine if the packet is from a service IP (100.100.100.100 or the
 | ||
| 	// IPv6 variant), in which case it needs to go back into the machine's
 | ||
| 	// network (inbound) instead of out.
 | ||
| 	hdr := pkt.Network()
 | ||
| 	switch v := hdr.(type) {
 | ||
| 	case header.IPv4:
 | ||
| 		srcIP := netip.AddrFrom4(v.SourceAddress().As4())
 | ||
| 		if serviceIP == srcIP {
 | ||
| 			return true
 | ||
| 		}
 | ||
| 
 | ||
| 	case header.IPv6:
 | ||
| 		srcIP := netip.AddrFrom16(v.SourceAddress().As16())
 | ||
| 		if srcIP == serviceIPv6 {
 | ||
| 			return true
 | ||
| 		}
 | ||
| 
 | ||
| 		if viaRange.Contains(srcIP) {
 | ||
| 			// Only send to the host if this 4via6 route is
 | ||
| 			// something this node handles.
 | ||
| 			if ns.lb != nil && ns.lb.ShouldHandleViaIP(srcIP) {
 | ||
| 				dstIP := netip.AddrFrom16(v.DestinationAddress().As16())
 | ||
| 				// Also, only forward to the host if the packet
 | ||
| 				// is destined for a local IP; otherwise, we'd
 | ||
| 				// send traffic that's intended for another
 | ||
| 				// peer from the local 4via6 address to the
 | ||
| 				// host instead of outbound to WireGuard. See:
 | ||
| 				//     https://github.com/tailscale/tailscale/issues/12448
 | ||
| 				if ns.isLocalIP(dstIP) {
 | ||
| 					return true
 | ||
| 				}
 | ||
| 				if debugNetstack() {
 | ||
| 					ns.logf("netstack: sending 4via6 packet to host: src=%v dst=%v", srcIP, dstIP)
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 	default:
 | ||
| 		// unknown; don't forward to host
 | ||
| 		if debugNetstack() {
 | ||
| 			ns.logf("netstack: unexpected packet in shouldSendToHost: %T", v)
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return false
 | ||
| }
 | ||
| 
 | ||
| // isLocalIP reports whether ip is a Tailscale IP assigned to this
 | ||
| // node directly (but not a subnet-routed IP).
 | ||
| func (ns *Impl) isLocalIP(ip netip.Addr) bool {
 | ||
| 	return ns.atomicIsLocalIPFunc.Load()(ip)
 | ||
| }
 | ||
| 
 | ||
| // isVIPServiceIP reports whether ip is an IP address that's
 | ||
| // assigned to a VIP service.
 | ||
| func (ns *Impl) isVIPServiceIP(ip netip.Addr) bool {
 | ||
| 	if !buildfeatures.HasServe {
 | ||
| 		return false
 | ||
| 	}
 | ||
| 	return ns.atomicIsVIPServiceIPFunc.Load()(ip)
 | ||
| }
 | ||
| 
 | ||
| func (ns *Impl) peerAPIPortAtomic(ip netip.Addr) *atomic.Uint32 {
 | ||
| 	if ip.Is4() {
 | ||
| 		return &ns.peerapiPort4Atomic
 | ||
| 	} else {
 | ||
| 		return &ns.peerapiPort6Atomic
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| var viaRange = tsaddr.TailscaleViaRange()
 | ||
| 
 | ||
| // shouldProcessInbound reports whether an inbound packet (a packet from a
 | ||
| // WireGuard peer) should be handled by netstack.
 | ||
| func (ns *Impl) shouldProcessInbound(p *packet.Parsed, t *tstun.Wrapper) bool {
 | ||
| 	// Handle incoming peerapi connections in netstack.
 | ||
| 	dstIP := p.Dst.Addr()
 | ||
| 	isLocal := ns.isLocalIP(dstIP)
 | ||
| 	isService := ns.isVIPServiceIP(dstIP)
 | ||
| 
 | ||
| 	// Handle TCP connection to the Tailscale IP(s) in some cases:
 | ||
| 	if ns.lb != nil && p.IPProto == ipproto.TCP && isLocal {
 | ||
| 		var peerAPIPort uint16
 | ||
| 
 | ||
| 		if p.TCPFlags&packet.TCPSynAck == packet.TCPSyn {
 | ||
| 			if port, ok := ns.lb.GetPeerAPIPort(dstIP); ok {
 | ||
| 				peerAPIPort = port
 | ||
| 				ns.peerAPIPortAtomic(dstIP).Store(uint32(port))
 | ||
| 			}
 | ||
| 		} else {
 | ||
| 			peerAPIPort = uint16(ns.peerAPIPortAtomic(dstIP).Load())
 | ||
| 		}
 | ||
| 		dport := p.Dst.Port()
 | ||
| 		if dport == peerAPIPort {
 | ||
| 			return true
 | ||
| 		}
 | ||
| 		// Also handle SSH connections, webserver, etc, if enabled:
 | ||
| 		if ns.lb.ShouldInterceptTCPPort(dport) {
 | ||
| 			return true
 | ||
| 		}
 | ||
| 	}
 | ||
| 	if buildfeatures.HasServe && isService {
 | ||
| 		if p.IsEchoRequest() {
 | ||
| 			return true
 | ||
| 		}
 | ||
| 		if ns.lb != nil && p.IPProto == ipproto.TCP {
 | ||
| 			// An assumption holds for this to work: when tun mode is on for a service,
 | ||
| 			// its tcp and web are not set. This is enforced in b.setServeConfigLocked.
 | ||
| 			if ns.lb.ShouldInterceptVIPServiceTCPPort(p.Dst) {
 | ||
| 				return true
 | ||
| 			}
 | ||
| 		}
 | ||
| 		return false
 | ||
| 	}
 | ||
| 	if p.IPVersion == 6 && !isLocal && viaRange.Contains(dstIP) {
 | ||
| 		return ns.lb != nil && ns.lb.ShouldHandleViaIP(dstIP)
 | ||
| 	}
 | ||
| 	if ns.ProcessLocalIPs && isLocal {
 | ||
| 		return true
 | ||
| 	}
 | ||
| 	if ns.ProcessSubnets && !isLocal {
 | ||
| 		return true
 | ||
| 	}
 | ||
| 	return false
 | ||
| }
 | ||
| 
 | ||
| var userPingSem = syncs.NewSemaphore(20) // 20 child ping processes at once
 | ||
| 
 | ||
| type userPingDirection int
 | ||
| 
 | ||
| const (
 | ||
| 	// userPingDirectionOutbound is used when the pong packet is to be sent
 | ||
| 	// "outbound"–i.e. from this node to a peer via WireGuard.
 | ||
| 	userPingDirectionOutbound userPingDirection = iota
 | ||
| 	// userPingDirectionInbound is used when the pong packet is to be sent
 | ||
| 	// "inbound"–i.e. from Tailscale to another process on this host.
 | ||
| 	userPingDirectionInbound
 | ||
| )
 | ||
| 
 | ||
| // userPing tried to ping dstIP and if it succeeds, injects pingResPkt
 | ||
| // into the tundev.
 | ||
| //
 | ||
| // It's used in userspace/netstack mode when we don't have kernel
 | ||
| // support or raw socket access. As such, this does the dumbest thing
 | ||
| // that can work: runs the ping command. It's not super efficient, so
 | ||
| // it bounds the number of pings going on at once. The idea is that
 | ||
| // people only use ping occasionally to see if their internet's working
 | ||
| // so this doesn't need to be great.
 | ||
| // On Apple platforms, this function doesn't run the ping command. Instead,
 | ||
| // it sends a non-privileged ping.
 | ||
| //
 | ||
| // The 'direction' parameter is used to determine where the response "pong"
 | ||
| // packet should be written, if the ping succeeds. See the documentation on the
 | ||
| // constants for more details.
 | ||
| //
 | ||
| // TODO(bradfitz): when we're running on Windows as the system user, use
 | ||
| // raw socket APIs instead of ping child processes.
 | ||
| func (ns *Impl) userPing(dstIP netip.Addr, pingResPkt []byte, direction userPingDirection) {
 | ||
| 	if !userPingSem.TryAcquire() {
 | ||
| 		return
 | ||
| 	}
 | ||
| 	defer userPingSem.Release()
 | ||
| 
 | ||
| 	t0 := time.Now()
 | ||
| 	err := ns.sendOutboundUserPing(dstIP, 3*time.Second)
 | ||
| 	d := time.Since(t0)
 | ||
| 	if err != nil {
 | ||
| 		if d < time.Second/2 {
 | ||
| 			// If it failed quicker than the 3 second
 | ||
| 			// timeout we gave above (500 ms is a
 | ||
| 			// reasonable threshold), then assume the ping
 | ||
| 			// failed for problems finding/running
 | ||
| 			// ping. We don't want to log if the host is
 | ||
| 			// just down.
 | ||
| 			ns.logf("exec ping of %v failed in %v: %v", dstIP, d, err)
 | ||
| 		}
 | ||
| 		return
 | ||
| 	}
 | ||
| 	if debugNetstack() {
 | ||
| 		ns.logf("exec pinged %v in %v", dstIP, time.Since(t0))
 | ||
| 	}
 | ||
| 	if direction == userPingDirectionOutbound {
 | ||
| 		if err := ns.tundev.InjectOutbound(pingResPkt); err != nil {
 | ||
| 			ns.logf("InjectOutbound ping response: %v", err)
 | ||
| 		}
 | ||
| 	} else if direction == userPingDirectionInbound {
 | ||
| 		if err := ns.tundev.InjectInboundCopy(pingResPkt); err != nil {
 | ||
| 			ns.logf("InjectInboundCopy ping response: %v", err)
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // injectInbound is installed as a packet hook on the 'inbound' (from a
 | ||
| // WireGuard peer) path. Returning filter.Accept releases the packet to
 | ||
| // continue normally (typically being delivered to the host networking stack),
 | ||
| // whereas returning filter.DropSilently is done when netstack intercepts the
 | ||
| // packet and no further processing towards to host should be done.
 | ||
| func (ns *Impl) injectInbound(p *packet.Parsed, t *tstun.Wrapper, gro *gro.GRO) (filter.Response, *gro.GRO) {
 | ||
| 	if ns.ctx.Err() != nil {
 | ||
| 		return filter.DropSilently, gro
 | ||
| 	}
 | ||
| 
 | ||
| 	if !ns.shouldProcessInbound(p, t) {
 | ||
| 		// Let the host network stack (if any) deal with it.
 | ||
| 		return filter.Accept, gro
 | ||
| 	}
 | ||
| 
 | ||
| 	destIP := p.Dst.Addr()
 | ||
| 
 | ||
| 	// If this is an echo request and we're a subnet router, handle pings
 | ||
| 	// ourselves instead of forwarding the packet on.
 | ||
| 	pingIP, handlePing := ns.shouldHandlePing(p)
 | ||
| 	if handlePing {
 | ||
| 		var pong []byte // the reply to the ping, if our relayed ping works
 | ||
| 		if destIP.Is4() {
 | ||
| 			h := p.ICMP4Header()
 | ||
| 			h.ToResponse()
 | ||
| 			pong = packet.Generate(&h, p.Payload())
 | ||
| 		} else if destIP.Is6() {
 | ||
| 			h := p.ICMP6Header()
 | ||
| 			h.ToResponse()
 | ||
| 			pong = packet.Generate(&h, p.Payload())
 | ||
| 		}
 | ||
| 		go ns.userPing(pingIP, pong, userPingDirectionOutbound)
 | ||
| 		return filter.DropSilently, gro
 | ||
| 	}
 | ||
| 
 | ||
| 	if debugPackets {
 | ||
| 		ns.logf("[v2] packet in (from %v): % x", p.Src, p.Buffer())
 | ||
| 	}
 | ||
| 	gro = ns.linkEP.gro(p, gro)
 | ||
| 
 | ||
| 	// We've now delivered this to netstack, so we're done.
 | ||
| 	// Instead of returning a filter.Accept here (which would also
 | ||
| 	// potentially deliver it to the host OS), and instead of
 | ||
| 	// filter.Drop (which would log about rejected traffic),
 | ||
| 	// instead return filter.DropSilently which just quietly stops
 | ||
| 	// processing it in the tstun TUN wrapper.
 | ||
| 	return filter.DropSilently, gro
 | ||
| }
 | ||
| 
 | ||
| // shouldHandlePing returns whether or not netstack should handle an incoming
 | ||
| // ICMP echo request packet, and the IP address that should be pinged from this
 | ||
| // process. The IP address can be different from the destination in the packet
 | ||
| // if the destination is a 4via6 address.
 | ||
| func (ns *Impl) shouldHandlePing(p *packet.Parsed) (_ netip.Addr, ok bool) {
 | ||
| 	if !p.IsEchoRequest() {
 | ||
| 		return netip.Addr{}, false
 | ||
| 	}
 | ||
| 
 | ||
| 	destIP := p.Dst.Addr()
 | ||
| 
 | ||
| 	// We need to handle pings for all 4via6 addresses, even if this
 | ||
| 	// netstack instance normally isn't responsible for processing subnets.
 | ||
| 	//
 | ||
| 	// For example, on Linux, subnet router traffic could be handled via
 | ||
| 	// tun+iptables rules for most packets, but we still need to handle
 | ||
| 	// ICMP echo requests over 4via6 since the host networking stack
 | ||
| 	// doesn't know what to do with a 4via6 address.
 | ||
| 	//
 | ||
| 	// shouldProcessInbound returns 'true' to say that we should process
 | ||
| 	// all IPv6 packets with a destination address in the 'via' range, so
 | ||
| 	// check before we check the "ProcessSubnets" boolean below.
 | ||
| 	if viaRange.Contains(destIP) {
 | ||
| 		// The input echo request was to a 4via6 address, which we cannot
 | ||
| 		// simply ping as-is from this process. Translate the destination to an
 | ||
| 		// IPv4 address, so that our relayed ping (in userPing) is pinging the
 | ||
| 		// underlying destination IP.
 | ||
| 		//
 | ||
| 		// ICMPv4 and ICMPv6 are different protocols with different on-the-wire
 | ||
| 		// representations, so normally you can't send an ICMPv6 message over
 | ||
| 		// IPv4 and expect to get a useful result. However, in this specific
 | ||
| 		// case things are safe because the 'userPing' function doesn't make
 | ||
| 		// use of the input packet.
 | ||
| 		return tsaddr.UnmapVia(destIP), true
 | ||
| 	}
 | ||
| 
 | ||
| 	// If we get here, we don't do anything unless this netstack instance
 | ||
| 	// is responsible for processing subnet traffic.
 | ||
| 	if !ns.ProcessSubnets {
 | ||
| 		return netip.Addr{}, false
 | ||
| 	}
 | ||
| 
 | ||
| 	// For non-4via6 addresses, we don't handle pings if they're destined
 | ||
| 	// for a Tailscale IP.
 | ||
| 	if tsaddr.IsTailscaleIP(destIP) {
 | ||
| 		return netip.Addr{}, false
 | ||
| 	}
 | ||
| 
 | ||
| 	// This netstack instance is processing subnet traffic, so handle the
 | ||
| 	// ping ourselves.
 | ||
| 	return destIP, true
 | ||
| }
 | ||
| 
 | ||
| func netaddrIPFromNetstackIP(s tcpip.Address) netip.Addr {
 | ||
| 	switch s.Len() {
 | ||
| 	case 4:
 | ||
| 		return netip.AddrFrom4(s.As4())
 | ||
| 	case 16:
 | ||
| 		return netip.AddrFrom16(s.As16()).Unmap()
 | ||
| 	}
 | ||
| 	return netip.Addr{}
 | ||
| }
 | ||
| 
 | ||
| var (
 | ||
| 	ipv4Loopback = netip.MustParseAddr("127.0.0.1")
 | ||
| 	ipv6Loopback = netip.MustParseAddr("::1")
 | ||
| )
 | ||
| 
 | ||
| func (ns *Impl) acceptTCP(r *tcp.ForwarderRequest) {
 | ||
| 	reqDetails := r.ID()
 | ||
| 	if debugNetstack() {
 | ||
| 		ns.logf("[v2] TCP ForwarderRequest: %s", stringifyTEI(reqDetails))
 | ||
| 	}
 | ||
| 	clientRemoteIP := netaddrIPFromNetstackIP(reqDetails.RemoteAddress)
 | ||
| 	if !clientRemoteIP.IsValid() {
 | ||
| 		ns.logf("invalid RemoteAddress in TCP ForwarderRequest: %s", stringifyTEI(reqDetails))
 | ||
| 		r.Complete(true) // sends a RST
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	// After we've returned from this function or have otherwise reached a
 | ||
| 	// non-pending state, decrement the per-client in-flight count and
 | ||
| 	// remove this endpoint from our packet tracking map so future TCP
 | ||
| 	// connections aren't dropped.
 | ||
| 	inFlightCompleted := false
 | ||
| 	tei := r.ID()
 | ||
| 	defer func() {
 | ||
| 		if !inFlightCompleted {
 | ||
| 			ns.decrementInFlightTCPForward(tei, clientRemoteIP)
 | ||
| 		}
 | ||
| 	}()
 | ||
| 
 | ||
| 	clientRemotePort := reqDetails.RemotePort
 | ||
| 	clientRemoteAddrPort := netip.AddrPortFrom(clientRemoteIP, clientRemotePort)
 | ||
| 
 | ||
| 	dialIP := netaddrIPFromNetstackIP(reqDetails.LocalAddress)
 | ||
| 	isTailscaleIP := tsaddr.IsTailscaleIP(dialIP)
 | ||
| 
 | ||
| 	dstAddrPort := netip.AddrPortFrom(dialIP, reqDetails.LocalPort)
 | ||
| 
 | ||
| 	if viaRange.Contains(dialIP) {
 | ||
| 		isTailscaleIP = false
 | ||
| 		dialIP = tsaddr.UnmapVia(dialIP)
 | ||
| 	}
 | ||
| 
 | ||
| 	defer func() {
 | ||
| 		if !isTailscaleIP {
 | ||
| 			// if this is a subnet IP, we added this in before the TCP handshake
 | ||
| 			// so netstack is happy TCP-handshaking as a subnet IP
 | ||
| 			ns.removeSubnetAddress(dialIP)
 | ||
| 		}
 | ||
| 	}()
 | ||
| 
 | ||
| 	var wq waiter.Queue
 | ||
| 
 | ||
| 	// We can't actually create the endpoint or complete the inbound
 | ||
| 	// request until we're sure that the connection can be handled by this
 | ||
| 	// endpoint. This function sets up the TCP connection and should be
 | ||
| 	// called immediately before a connection is handled.
 | ||
| 	getConnOrReset := func(opts ...tcpip.SettableSocketOption) *gonet.TCPConn {
 | ||
| 		ep, err := r.CreateEndpoint(&wq)
 | ||
| 		if err != nil {
 | ||
| 			ns.logf("CreateEndpoint error for %s: %v", stringifyTEI(reqDetails), err)
 | ||
| 			r.Complete(true) // sends a RST
 | ||
| 			return nil
 | ||
| 		}
 | ||
| 		r.Complete(false)
 | ||
| 		for _, opt := range opts {
 | ||
| 			ep.SetSockOpt(opt)
 | ||
| 		}
 | ||
| 		// SetKeepAlive so that idle connections to peers that have forgotten about
 | ||
| 		// the connection or gone completely offline eventually time out.
 | ||
| 		// Applications might be setting this on a forwarded connection, but from
 | ||
| 		// userspace we can not see those, so the best we can do is to always
 | ||
| 		// perform them with conservative timing.
 | ||
| 		// TODO(tailscale/tailscale#4522): Netstack defaults match the Linux
 | ||
| 		// defaults, and results in a little over two hours before the socket would
 | ||
| 		// be closed due to keepalive. A shorter default might be better, or seeking
 | ||
| 		// a default from the host IP stack. This also might be a useful
 | ||
| 		// user-tunable, as in userspace mode this can have broad implications such
 | ||
| 		// as lingering connections to fork style daemons. On the other side of the
 | ||
| 		// fence, the long duration timers are low impact values for battery powered
 | ||
| 		// peers.
 | ||
| 		ep.SocketOptions().SetKeepAlive(true)
 | ||
| 
 | ||
| 		// This function is called when we're ready to use the
 | ||
| 		// underlying connection, and thus it's no longer in a
 | ||
| 		// "in-flight" state; decrement our per-client limit right now,
 | ||
| 		// and tell the defer in acceptTCP that it doesn't need to do
 | ||
| 		// so upon return.
 | ||
| 		ns.decrementInFlightTCPForward(tei, clientRemoteIP)
 | ||
| 		inFlightCompleted = true
 | ||
| 
 | ||
| 		// The ForwarderRequest.CreateEndpoint above asynchronously
 | ||
| 		// starts the TCP handshake. Note that the gonet.TCPConn
 | ||
| 		// methods c.RemoteAddr() and c.LocalAddr() will return nil
 | ||
| 		// until the handshake actually completes. But we have the
 | ||
| 		// remote address in reqDetails instead, so we don't use
 | ||
| 		// gonet.TCPConn.RemoteAddr. The byte copies in both
 | ||
| 		// directions to/from the gonet.TCPConn in forwardTCP will
 | ||
| 		// block until the TCP handshake is complete.
 | ||
| 		return gonet.NewTCPConn(&wq, ep)
 | ||
| 	}
 | ||
| 
 | ||
| 	// Local Services (DNS and WebDAV)
 | ||
| 	hittingServiceIP := dialIP == serviceIP || dialIP == serviceIPv6
 | ||
| 	hittingDNS := hittingServiceIP && reqDetails.LocalPort == 53
 | ||
| 	if hittingDNS {
 | ||
| 		c := getConnOrReset()
 | ||
| 		if c == nil {
 | ||
| 			return
 | ||
| 		}
 | ||
| 		addrPort := netip.AddrPortFrom(clientRemoteIP, reqDetails.RemotePort)
 | ||
| 		go ns.dns.HandleTCPConn(c, addrPort)
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	if ns.lb != nil {
 | ||
| 		handler, opts := ns.lb.TCPHandlerForDst(clientRemoteAddrPort, dstAddrPort)
 | ||
| 		if handler != nil {
 | ||
| 			c := getConnOrReset(opts...) // will send a RST if it fails
 | ||
| 			if c == nil {
 | ||
| 				return
 | ||
| 			}
 | ||
| 			handler(c)
 | ||
| 			return
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if ns.GetTCPHandlerForFlow != nil {
 | ||
| 		handler, ok := ns.GetTCPHandlerForFlow(clientRemoteAddrPort, dstAddrPort)
 | ||
| 		if ok {
 | ||
| 			if handler == nil {
 | ||
| 				r.Complete(true)
 | ||
| 				return
 | ||
| 			}
 | ||
| 			c := getConnOrReset() // will send a RST if it fails
 | ||
| 			if c == nil {
 | ||
| 				return
 | ||
| 			}
 | ||
| 			handler(c)
 | ||
| 			return
 | ||
| 		}
 | ||
| 	}
 | ||
| 	switch {
 | ||
| 	case hittingServiceIP && ns.isLoopbackPort(reqDetails.LocalPort):
 | ||
| 		if dialIP == serviceIPv6 {
 | ||
| 			dialIP = ipv6Loopback
 | ||
| 		} else {
 | ||
| 			dialIP = ipv4Loopback
 | ||
| 		}
 | ||
| 	case isTailscaleIP:
 | ||
| 		dialIP = ipv4Loopback
 | ||
| 	}
 | ||
| 	dialAddr := netip.AddrPortFrom(dialIP, uint16(reqDetails.LocalPort))
 | ||
| 
 | ||
| 	if !ns.forwardTCP(getConnOrReset, clientRemoteIP, &wq, dialAddr) {
 | ||
| 		r.Complete(true) // sends a RST
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // tcpCloser is an interface to abstract around various TCPConn types that
 | ||
| // allow closing of the read and write streams independently of each other.
 | ||
| type tcpCloser interface {
 | ||
| 	CloseRead() error
 | ||
| 	CloseWrite() error
 | ||
| }
 | ||
| 
 | ||
| func (ns *Impl) forwardTCP(getClient func(...tcpip.SettableSocketOption) *gonet.TCPConn, clientRemoteIP netip.Addr, wq *waiter.Queue, dialAddr netip.AddrPort) (handled bool) {
 | ||
| 	dialAddrStr := dialAddr.String()
 | ||
| 	if debugNetstack() {
 | ||
| 		ns.logf("[v2] netstack: forwarding incoming connection to %s", dialAddrStr)
 | ||
| 	}
 | ||
| 
 | ||
| 	ctx, cancel := context.WithCancel(context.Background())
 | ||
| 	defer cancel()
 | ||
| 
 | ||
| 	waitEntry, notifyCh := waiter.NewChannelEntry(waiter.EventHUp) // TODO(bradfitz): right EventMask?
 | ||
| 	wq.EventRegister(&waitEntry)
 | ||
| 	defer wq.EventUnregister(&waitEntry)
 | ||
| 	done := make(chan bool)
 | ||
| 	// netstack doesn't close the notification channel automatically if there was no
 | ||
| 	// hup signal, so we close done after we're done to not leak the goroutine below.
 | ||
| 	defer close(done)
 | ||
| 	go func() {
 | ||
| 		select {
 | ||
| 		case <-notifyCh:
 | ||
| 			if debugNetstack() {
 | ||
| 				ns.logf("[v2] netstack: forwardTCP notifyCh fired; canceling context for %s", dialAddrStr)
 | ||
| 			}
 | ||
| 		case <-done:
 | ||
| 		}
 | ||
| 		cancel()
 | ||
| 	}()
 | ||
| 
 | ||
| 	// Attempt to dial the outbound connection before we accept the inbound one.
 | ||
| 	var dialFunc netx.DialFunc
 | ||
| 	if ns.forwardDialFunc != nil {
 | ||
| 		dialFunc = ns.forwardDialFunc
 | ||
| 	} else {
 | ||
| 		var stdDialer net.Dialer
 | ||
| 		dialFunc = stdDialer.DialContext
 | ||
| 	}
 | ||
| 
 | ||
| 	// TODO: this is racy, dialing before we register our local address. See
 | ||
| 	// https://github.com/tailscale/tailscale/issues/1616.
 | ||
| 	backend, err := dialFunc(ctx, "tcp", dialAddrStr)
 | ||
| 	if err != nil {
 | ||
| 		ns.logf("netstack: could not connect to local backend server at %s: %v", dialAddr.String(), err)
 | ||
| 		return
 | ||
| 	}
 | ||
| 	defer backend.Close()
 | ||
| 
 | ||
| 	backendLocalAddr := backend.LocalAddr().(*net.TCPAddr)
 | ||
| 	backendLocalIPPort := netaddr.Unmap(backendLocalAddr.AddrPort())
 | ||
| 	if err := ns.pm.RegisterIPPortIdentity("tcp", backendLocalIPPort, clientRemoteIP); err != nil {
 | ||
| 		ns.logf("netstack: could not register TCP mapping %s: %v", backendLocalIPPort, err)
 | ||
| 		return
 | ||
| 	}
 | ||
| 	defer ns.pm.UnregisterIPPortIdentity("tcp", backendLocalIPPort)
 | ||
| 
 | ||
| 	// If we get here, either the getClient call below will succeed and
 | ||
| 	// return something we can Close, or it will fail and will properly
 | ||
| 	// respond to the client with a RST. Either way, the caller no longer
 | ||
| 	// needs to clean up the client connection.
 | ||
| 	handled = true
 | ||
| 
 | ||
| 	// We dialed the connection; we can complete the client's TCP handshake.
 | ||
| 	client := getClient()
 | ||
| 	if client == nil {
 | ||
| 		return
 | ||
| 	}
 | ||
| 	defer client.Close()
 | ||
| 
 | ||
| 	// As of 2025-07-03, backend is always either a net.TCPConn
 | ||
| 	// from stdDialer.DialContext (which has the requisite functions),
 | ||
| 	// or nil from hangDialer in tests (in which case we would have
 | ||
| 	// errored out by now), so this conversion should always succeed.
 | ||
| 	backendTCPCloser, backendIsTCPCloser := backend.(tcpCloser)
 | ||
| 	connClosed := make(chan error, 2)
 | ||
| 	go func() {
 | ||
| 		_, err := io.Copy(backend, client)
 | ||
| 		if err != nil {
 | ||
| 			err = fmt.Errorf("client -> backend: %w", err)
 | ||
| 		}
 | ||
| 		connClosed <- err
 | ||
| 		err = nil
 | ||
| 		if backendIsTCPCloser {
 | ||
| 			err = backendTCPCloser.CloseWrite()
 | ||
| 		}
 | ||
| 		err = errors.Join(err, client.CloseRead())
 | ||
| 		if err != nil {
 | ||
| 			ns.logf("client -> backend close connection: %v", err)
 | ||
| 		}
 | ||
| 	}()
 | ||
| 	go func() {
 | ||
| 		_, err := io.Copy(client, backend)
 | ||
| 		if err != nil {
 | ||
| 			err = fmt.Errorf("backend -> client: %w", err)
 | ||
| 		}
 | ||
| 		connClosed <- err
 | ||
| 		err = nil
 | ||
| 		if backendIsTCPCloser {
 | ||
| 			err = backendTCPCloser.CloseRead()
 | ||
| 		}
 | ||
| 		err = errors.Join(err, client.CloseWrite())
 | ||
| 		if err != nil {
 | ||
| 			ns.logf("backend -> client close connection: %v", err)
 | ||
| 		}
 | ||
| 	}()
 | ||
| 	// Wait for both ends of the connection to close.
 | ||
| 	for range 2 {
 | ||
| 		err = <-connClosed
 | ||
| 		if err != nil {
 | ||
| 			ns.logf("proxy connection closed with error: %v", err)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	ns.logf("[v2] netstack: forwarder connection to %s closed", dialAddrStr)
 | ||
| 	return
 | ||
| }
 | ||
| 
 | ||
| // ListenPacket listens for incoming packets for the given network and address.
 | ||
| // Address must be of the form "ip:port" or "[ip]:port".
 | ||
| //
 | ||
| // As of 2024-05-18, only udp4 and udp6 are supported.
 | ||
| func (ns *Impl) ListenPacket(network, address string) (net.PacketConn, error) {
 | ||
| 	ap, err := netip.ParseAddrPort(address)
 | ||
| 	if err != nil {
 | ||
| 		return nil, fmt.Errorf("netstack: ParseAddrPort(%q): %v", address, err)
 | ||
| 	}
 | ||
| 
 | ||
| 	var networkProto tcpip.NetworkProtocolNumber
 | ||
| 	switch network {
 | ||
| 	case "udp":
 | ||
| 		return nil, fmt.Errorf("netstack: udp not supported; use udp4 or udp6")
 | ||
| 	case "udp4":
 | ||
| 		networkProto = ipv4.ProtocolNumber
 | ||
| 		if !ap.Addr().Is4() {
 | ||
| 			return nil, fmt.Errorf("netstack: udp4 requires an IPv4 address")
 | ||
| 		}
 | ||
| 	case "udp6":
 | ||
| 		networkProto = ipv6.ProtocolNumber
 | ||
| 		if !ap.Addr().Is6() {
 | ||
| 			return nil, fmt.Errorf("netstack: udp6 requires an IPv6 address")
 | ||
| 		}
 | ||
| 	default:
 | ||
| 		return nil, fmt.Errorf("netstack: unsupported network %q", network)
 | ||
| 	}
 | ||
| 	var wq waiter.Queue
 | ||
| 	ep, nserr := ns.ipstack.NewEndpoint(udp.ProtocolNumber, networkProto, &wq)
 | ||
| 	if nserr != nil {
 | ||
| 		return nil, fmt.Errorf("netstack: NewEndpoint: %v", nserr)
 | ||
| 	}
 | ||
| 	localAddress := tcpip.FullAddress{
 | ||
| 		NIC:  nicID,
 | ||
| 		Addr: tcpip.AddrFromSlice(ap.Addr().AsSlice()),
 | ||
| 		Port: ap.Port(),
 | ||
| 	}
 | ||
| 	if err := ep.Bind(localAddress); err != nil {
 | ||
| 		ep.Close()
 | ||
| 		return nil, fmt.Errorf("netstack: Bind(%v): %v", localAddress, err)
 | ||
| 	}
 | ||
| 	return gonet.NewUDPConn(&wq, ep), nil
 | ||
| }
 | ||
| 
 | ||
| func (ns *Impl) acceptUDP(r *udp.ForwarderRequest) {
 | ||
| 	sess := r.ID()
 | ||
| 	if debugNetstack() {
 | ||
| 		ns.logf("[v2] UDP ForwarderRequest: %v", stringifyTEI(sess))
 | ||
| 	}
 | ||
| 	var wq waiter.Queue
 | ||
| 	ep, err := r.CreateEndpoint(&wq)
 | ||
| 	if err != nil {
 | ||
| 		ns.logf("acceptUDP: could not create endpoint: %v", err)
 | ||
| 		return
 | ||
| 	}
 | ||
| 	dstAddr, ok := ipPortOfNetstackAddr(sess.LocalAddress, sess.LocalPort)
 | ||
| 	if !ok {
 | ||
| 		ep.Close()
 | ||
| 		return
 | ||
| 	}
 | ||
| 	srcAddr, ok := ipPortOfNetstackAddr(sess.RemoteAddress, sess.RemotePort)
 | ||
| 	if !ok {
 | ||
| 		ep.Close()
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	// Handle magicDNS and loopback traffic (via UDP) here.
 | ||
| 	if dst := dstAddr.Addr(); dst == serviceIP || dst == serviceIPv6 {
 | ||
| 		switch {
 | ||
| 		case dstAddr.Port() == 53:
 | ||
| 			c := gonet.NewUDPConn(&wq, ep)
 | ||
| 			go ns.handleMagicDNSUDP(srcAddr, c)
 | ||
| 			return
 | ||
| 		case ns.isLoopbackPort(dstAddr.Port()):
 | ||
| 			if dst == serviceIPv6 {
 | ||
| 				dstAddr = netip.AddrPortFrom(ipv6Loopback, dstAddr.Port())
 | ||
| 			} else {
 | ||
| 				dstAddr = netip.AddrPortFrom(ipv4Loopback, dstAddr.Port())
 | ||
| 			}
 | ||
| 		default:
 | ||
| 			ep.Close()
 | ||
| 			return // Only MagicDNS and loopback traffic runs on the service IPs for now.
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if get := ns.GetUDPHandlerForFlow; get != nil {
 | ||
| 		h, intercept := get(srcAddr, dstAddr)
 | ||
| 		if intercept {
 | ||
| 			if h == nil {
 | ||
| 				ep.Close()
 | ||
| 				return
 | ||
| 			}
 | ||
| 			go h(gonet.NewUDPConn(&wq, ep))
 | ||
| 			return
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	c := gonet.NewUDPConn(&wq, ep)
 | ||
| 	go ns.forwardUDP(c, srcAddr, dstAddr)
 | ||
| }
 | ||
| 
 | ||
| // Buffer pool for forwarding UDP packets. Implementations are advised not to
 | ||
| // exceed 512 bytes per DNS request due to fragmenting but in reality can and do
 | ||
| // send much larger packets, so use the maximum possible UDP packet size.
 | ||
| var udpBufPool = &sync.Pool{
 | ||
| 	New: func() any {
 | ||
| 		b := make([]byte, maxUDPPacketSize)
 | ||
| 		return &b
 | ||
| 	},
 | ||
| }
 | ||
| 
 | ||
| func (ns *Impl) handleMagicDNSUDP(srcAddr netip.AddrPort, c *gonet.UDPConn) {
 | ||
| 	// Packets are being generated by the local host, so there should be
 | ||
| 	// very, very little latency. 150ms was chosen as something of an upper
 | ||
| 	// bound on resource usage, while hopefully still being long enough for
 | ||
| 	// a heavily loaded system.
 | ||
| 	const readDeadline = 150 * time.Millisecond
 | ||
| 
 | ||
| 	defer c.Close()
 | ||
| 
 | ||
| 	bufp := udpBufPool.Get().(*[]byte)
 | ||
| 	defer udpBufPool.Put(bufp)
 | ||
| 	q := *bufp
 | ||
| 
 | ||
| 	// libresolv from glibc is quite adamant that transmitting multiple DNS
 | ||
| 	// requests down the same UDP socket is valid. To support this, we read
 | ||
| 	// in a loop (with a tight deadline so we don't chew too many resources).
 | ||
| 	//
 | ||
| 	// See: https://github.com/bminor/glibc/blob/f7fbb99652eceb1b6b55e4be931649df5946497c/resolv/res_send.c#L995
 | ||
| 	for {
 | ||
| 		c.SetReadDeadline(time.Now().Add(readDeadline))
 | ||
| 		n, _, err := c.ReadFrom(q)
 | ||
| 		if err != nil {
 | ||
| 			if oe, ok := err.(*net.OpError); !(ok && oe.Timeout()) {
 | ||
| 				ns.logf("dns udp read: %v", err) // log non-timeout errors
 | ||
| 			}
 | ||
| 			return
 | ||
| 		}
 | ||
| 		resp, err := ns.dns.Query(context.Background(), q[:n], "udp", srcAddr)
 | ||
| 		if err != nil {
 | ||
| 			ns.logf("dns udp query: %v", err)
 | ||
| 			return
 | ||
| 		}
 | ||
| 		c.Write(resp)
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // forwardUDP proxies between client (with addr clientAddr) and dstAddr.
 | ||
| //
 | ||
| // dstAddr may be either a local Tailscale IP, in which we case we proxy to
 | ||
| // 127.0.0.1, or any other IP (from an advertised subnet), in which case we
 | ||
| // proxy to it directly.
 | ||
| func (ns *Impl) forwardUDP(client *gonet.UDPConn, clientAddr, dstAddr netip.AddrPort) {
 | ||
| 	port, srcPort := dstAddr.Port(), clientAddr.Port()
 | ||
| 	if debugNetstack() {
 | ||
| 		ns.logf("[v2] netstack: forwarding incoming UDP connection on port %v", port)
 | ||
| 	}
 | ||
| 
 | ||
| 	var backendListenAddr *net.UDPAddr
 | ||
| 	var backendRemoteAddr *net.UDPAddr
 | ||
| 	isLocal := ns.isLocalIP(dstAddr.Addr())
 | ||
| 	isLoopback := dstAddr.Addr() == ipv4Loopback || dstAddr.Addr() == ipv6Loopback
 | ||
| 	if isLocal {
 | ||
| 		backendRemoteAddr = &net.UDPAddr{IP: net.ParseIP("127.0.0.1"), Port: int(port)}
 | ||
| 		backendListenAddr = &net.UDPAddr{IP: net.ParseIP("127.0.0.1"), Port: int(srcPort)}
 | ||
| 	} else if isLoopback {
 | ||
| 		ip := net.IP(ipv4Loopback.AsSlice())
 | ||
| 		if dstAddr.Addr() == ipv6Loopback {
 | ||
| 			ip = ipv6Loopback.AsSlice()
 | ||
| 		}
 | ||
| 		backendRemoteAddr = &net.UDPAddr{IP: ip, Port: int(port)}
 | ||
| 		backendListenAddr = &net.UDPAddr{IP: ip, Port: int(srcPort)}
 | ||
| 	} else {
 | ||
| 		if dstIP := dstAddr.Addr(); viaRange.Contains(dstIP) {
 | ||
| 			dstAddr = netip.AddrPortFrom(tsaddr.UnmapVia(dstIP), dstAddr.Port())
 | ||
| 		}
 | ||
| 		backendRemoteAddr = net.UDPAddrFromAddrPort(dstAddr)
 | ||
| 		if dstAddr.Addr().Is4() {
 | ||
| 			backendListenAddr = &net.UDPAddr{IP: net.ParseIP("0.0.0.0"), Port: int(srcPort)}
 | ||
| 		} else {
 | ||
| 			backendListenAddr = &net.UDPAddr{IP: net.ParseIP("::"), Port: int(srcPort)}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	backendConn, err := net.ListenUDP("udp", backendListenAddr)
 | ||
| 	if err != nil {
 | ||
| 		ns.logf("netstack: could not bind local port %v: %v, trying again with random port", backendListenAddr.Port, err)
 | ||
| 		backendListenAddr.Port = 0
 | ||
| 		backendConn, err = net.ListenUDP("udp", backendListenAddr)
 | ||
| 		if err != nil {
 | ||
| 			ns.logf("netstack: could not create UDP socket, preventing forwarding to %v: %v", dstAddr, err)
 | ||
| 			return
 | ||
| 		}
 | ||
| 	}
 | ||
| 	backendLocalAddr := backendConn.LocalAddr().(*net.UDPAddr)
 | ||
| 
 | ||
| 	backendLocalIPPort := netip.AddrPortFrom(backendListenAddr.AddrPort().Addr().Unmap().WithZone(backendLocalAddr.Zone), backendLocalAddr.AddrPort().Port())
 | ||
| 	if !backendLocalIPPort.IsValid() {
 | ||
| 		ns.logf("could not get backend local IP:port from %v:%v", backendLocalAddr.IP, backendLocalAddr.Port)
 | ||
| 	}
 | ||
| 	if isLocal {
 | ||
| 		if err := ns.pm.RegisterIPPortIdentity("udp", backendLocalIPPort, clientAddr.Addr()); err != nil {
 | ||
| 			ns.logf("netstack: could not register UDP mapping %s: %v", backendLocalIPPort, err)
 | ||
| 			return
 | ||
| 		}
 | ||
| 	}
 | ||
| 	ctx, cancel := context.WithCancel(context.Background())
 | ||
| 
 | ||
| 	idleTimeout := 2 * time.Minute
 | ||
| 	if port == 53 {
 | ||
| 		// Make DNS packet copies time out much sooner.
 | ||
| 		//
 | ||
| 		// TODO(bradfitz): make DNS queries over UDP forwarding even
 | ||
| 		// cheaper by adding an additional idleTimeout post-DNS-reply.
 | ||
| 		// For instance, after the DNS response goes back out, then only
 | ||
| 		// wait a few seconds (or zero, really)
 | ||
| 		idleTimeout = 30 * time.Second
 | ||
| 	}
 | ||
| 	timer := time.AfterFunc(idleTimeout, func() {
 | ||
| 		if isLocal {
 | ||
| 			ns.pm.UnregisterIPPortIdentity("udp", backendLocalIPPort)
 | ||
| 		}
 | ||
| 		ns.logf("netstack: UDP session between %s and %s timed out", backendListenAddr, backendRemoteAddr)
 | ||
| 		cancel()
 | ||
| 		client.Close()
 | ||
| 		backendConn.Close()
 | ||
| 	})
 | ||
| 	extend := func() {
 | ||
| 		timer.Reset(idleTimeout)
 | ||
| 	}
 | ||
| 	startPacketCopy(ctx, cancel, client, net.UDPAddrFromAddrPort(clientAddr), backendConn, ns.logf, extend)
 | ||
| 	startPacketCopy(ctx, cancel, backendConn, backendRemoteAddr, client, ns.logf, extend)
 | ||
| 	if isLocal {
 | ||
| 		// Wait for the copies to be done before decrementing the
 | ||
| 		// subnet address count to potentially remove the route.
 | ||
| 		<-ctx.Done()
 | ||
| 		ns.removeSubnetAddress(dstAddr.Addr())
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| func startPacketCopy(ctx context.Context, cancel context.CancelFunc, dst net.PacketConn, dstAddr net.Addr, src net.PacketConn, logf logger.Logf, extend func()) {
 | ||
| 	if debugNetstack() {
 | ||
| 		logf("[v2] netstack: startPacketCopy to %v (%T) from %T", dstAddr, dst, src)
 | ||
| 	}
 | ||
| 	go func() {
 | ||
| 		defer cancel() // tear down the other direction's copy
 | ||
| 
 | ||
| 		bufp := udpBufPool.Get().(*[]byte)
 | ||
| 		defer udpBufPool.Put(bufp)
 | ||
| 		pkt := *bufp
 | ||
| 
 | ||
| 		for {
 | ||
| 			select {
 | ||
| 			case <-ctx.Done():
 | ||
| 				return
 | ||
| 			default:
 | ||
| 				n, srcAddr, err := src.ReadFrom(pkt)
 | ||
| 				if err != nil {
 | ||
| 					if ctx.Err() == nil {
 | ||
| 						logf("read packet from %s failed: %v", srcAddr, err)
 | ||
| 					}
 | ||
| 					return
 | ||
| 				}
 | ||
| 				_, err = dst.WriteTo(pkt[:n], dstAddr)
 | ||
| 				if err != nil {
 | ||
| 					if ctx.Err() == nil {
 | ||
| 						logf("write packet to %s failed: %v", dstAddr, err)
 | ||
| 					}
 | ||
| 					return
 | ||
| 				}
 | ||
| 				if debugNetstack() {
 | ||
| 					logf("[v2] wrote UDP packet %s -> %s", srcAddr, dstAddr)
 | ||
| 				}
 | ||
| 				extend()
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}()
 | ||
| }
 | ||
| 
 | ||
| func stringifyTEI(tei stack.TransportEndpointID) string {
 | ||
| 	localHostPort := net.JoinHostPort(tei.LocalAddress.String(), strconv.Itoa(int(tei.LocalPort)))
 | ||
| 	remoteHostPort := net.JoinHostPort(tei.RemoteAddress.String(), strconv.Itoa(int(tei.RemotePort)))
 | ||
| 	return fmt.Sprintf("%s -> %s", remoteHostPort, localHostPort)
 | ||
| }
 | ||
| 
 | ||
| func ipPortOfNetstackAddr(a tcpip.Address, port uint16) (ipp netip.AddrPort, ok bool) {
 | ||
| 	if addr, ok := netip.AddrFromSlice(a.AsSlice()); ok {
 | ||
| 		return netip.AddrPortFrom(addr, port), true
 | ||
| 	}
 | ||
| 	return netip.AddrPort{}, false
 | ||
| }
 | ||
| 
 | ||
| func readStatCounter(sc *tcpip.StatCounter) int64 {
 | ||
| 	vv := sc.Value()
 | ||
| 	if vv > math.MaxInt64 {
 | ||
| 		return int64(math.MaxInt64)
 | ||
| 	}
 | ||
| 	return int64(vv)
 | ||
| }
 | ||
| 
 | ||
| // ExpVar returns an expvar variable suitable for registering with expvar.Publish.
 | ||
| func (ns *Impl) ExpVar() expvar.Var {
 | ||
| 	m := new(metrics.Set)
 | ||
| 
 | ||
| 	// Global metrics
 | ||
| 	stats := ns.ipstack.Stats()
 | ||
| 	m.Set("counter_dropped_packets", expvar.Func(func() any {
 | ||
| 		return readStatCounter(stats.DroppedPackets)
 | ||
| 	}))
 | ||
| 
 | ||
| 	// IP statistics
 | ||
| 	ipStats := ns.ipstack.Stats().IP
 | ||
| 	ipMetrics := []struct {
 | ||
| 		name  string
 | ||
| 		field *tcpip.StatCounter
 | ||
| 	}{
 | ||
| 		{"packets_received", ipStats.PacketsReceived},
 | ||
| 		{"valid_packets_received", ipStats.ValidPacketsReceived},
 | ||
| 		{"disabled_packets_received", ipStats.DisabledPacketsReceived},
 | ||
| 		{"invalid_destination_addresses_received", ipStats.InvalidDestinationAddressesReceived},
 | ||
| 		{"invalid_source_addresses_received", ipStats.InvalidSourceAddressesReceived},
 | ||
| 		{"packets_delivered", ipStats.PacketsDelivered},
 | ||
| 		{"packets_sent", ipStats.PacketsSent},
 | ||
| 		{"outgoing_packet_errors", ipStats.OutgoingPacketErrors},
 | ||
| 		{"malformed_packets_received", ipStats.MalformedPacketsReceived},
 | ||
| 		{"malformed_fragments_received", ipStats.MalformedFragmentsReceived},
 | ||
| 		{"iptables_prerouting_dropped", ipStats.IPTablesPreroutingDropped},
 | ||
| 		{"iptables_input_dropped", ipStats.IPTablesInputDropped},
 | ||
| 		{"iptables_forward_dropped", ipStats.IPTablesForwardDropped},
 | ||
| 		{"iptables_output_dropped", ipStats.IPTablesOutputDropped},
 | ||
| 		{"iptables_postrouting_dropped", ipStats.IPTablesPostroutingDropped},
 | ||
| 		{"option_timestamp_received", ipStats.OptionTimestampReceived},
 | ||
| 		{"option_record_route_received", ipStats.OptionRecordRouteReceived},
 | ||
| 		{"option_router_alert_received", ipStats.OptionRouterAlertReceived},
 | ||
| 		{"option_unknown_received", ipStats.OptionUnknownReceived},
 | ||
| 	}
 | ||
| 	for _, metric := range ipMetrics {
 | ||
| 		m.Set("counter_ip_"+metric.name, expvar.Func(func() any {
 | ||
| 			return readStatCounter(metric.field)
 | ||
| 		}))
 | ||
| 	}
 | ||
| 
 | ||
| 	// IP forwarding statistics
 | ||
| 	fwdStats := ipStats.Forwarding
 | ||
| 	fwdMetrics := []struct {
 | ||
| 		name  string
 | ||
| 		field *tcpip.StatCounter
 | ||
| 	}{
 | ||
| 		{"unrouteable", fwdStats.Unrouteable},
 | ||
| 		{"exhausted_ttl", fwdStats.ExhaustedTTL},
 | ||
| 		{"initializing_source", fwdStats.InitializingSource},
 | ||
| 		{"link_local_source", fwdStats.LinkLocalSource},
 | ||
| 		{"link_local_destination", fwdStats.LinkLocalDestination},
 | ||
| 		{"packet_too_big", fwdStats.PacketTooBig},
 | ||
| 		{"host_unreachable", fwdStats.HostUnreachable},
 | ||
| 		{"extension_header_problem", fwdStats.ExtensionHeaderProblem},
 | ||
| 		{"unexpected_multicast_input_interface", fwdStats.UnexpectedMulticastInputInterface},
 | ||
| 		{"unknown_output_endpoint", fwdStats.UnknownOutputEndpoint},
 | ||
| 		{"no_multicast_pending_queue_buffer_space", fwdStats.NoMulticastPendingQueueBufferSpace},
 | ||
| 		{"outgoing_device_no_buffer_space", fwdStats.OutgoingDeviceNoBufferSpace},
 | ||
| 		{"errors", fwdStats.Errors},
 | ||
| 	}
 | ||
| 	for _, metric := range fwdMetrics {
 | ||
| 		m.Set("counter_ip_forward_"+metric.name, expvar.Func(func() any {
 | ||
| 			return readStatCounter(metric.field)
 | ||
| 		}))
 | ||
| 	}
 | ||
| 
 | ||
| 	// TCP metrics
 | ||
| 	tcpStats := ns.ipstack.Stats().TCP
 | ||
| 	tcpMetrics := []struct {
 | ||
| 		name  string
 | ||
| 		field *tcpip.StatCounter
 | ||
| 	}{
 | ||
| 		{"active_connection_openings", tcpStats.ActiveConnectionOpenings},
 | ||
| 		{"passive_connection_openings", tcpStats.PassiveConnectionOpenings},
 | ||
| 		{"established_resets", tcpStats.EstablishedResets},
 | ||
| 		{"established_closed", tcpStats.EstablishedClosed},
 | ||
| 		{"established_timeout", tcpStats.EstablishedTimedout},
 | ||
| 		{"listen_overflow_syn_drop", tcpStats.ListenOverflowSynDrop},
 | ||
| 		{"listen_overflow_ack_drop", tcpStats.ListenOverflowAckDrop},
 | ||
| 		{"listen_overflow_syn_cookie_sent", tcpStats.ListenOverflowSynCookieSent},
 | ||
| 		{"listen_overflow_syn_cookie_rcvd", tcpStats.ListenOverflowSynCookieRcvd},
 | ||
| 		{"listen_overflow_invalid_syn_cookie_rcvd", tcpStats.ListenOverflowInvalidSynCookieRcvd},
 | ||
| 		{"failed_connection_attempts", tcpStats.FailedConnectionAttempts},
 | ||
| 		{"valid_segments_received", tcpStats.ValidSegmentsReceived},
 | ||
| 		{"invalid_segments_received", tcpStats.InvalidSegmentsReceived},
 | ||
| 		{"segments_sent", tcpStats.SegmentsSent},
 | ||
| 		{"segment_send_errors", tcpStats.SegmentSendErrors},
 | ||
| 		{"resets_sent", tcpStats.ResetsSent},
 | ||
| 		{"resets_received", tcpStats.ResetsReceived},
 | ||
| 		{"retransmits", tcpStats.Retransmits},
 | ||
| 		{"fast_recovery", tcpStats.FastRecovery},
 | ||
| 		{"sack_recovery", tcpStats.SACKRecovery},
 | ||
| 		{"tlp_recovery", tcpStats.TLPRecovery},
 | ||
| 		{"slow_start_retransmits", tcpStats.SlowStartRetransmits},
 | ||
| 		{"fast_retransmit", tcpStats.FastRetransmit},
 | ||
| 		{"timeouts", tcpStats.Timeouts},
 | ||
| 		{"checksum_errors", tcpStats.ChecksumErrors},
 | ||
| 		{"failed_port_reservations", tcpStats.FailedPortReservations},
 | ||
| 		{"segments_acked_with_dsack", tcpStats.SegmentsAckedWithDSACK},
 | ||
| 		{"spurious_recovery", tcpStats.SpuriousRecovery},
 | ||
| 		{"spurious_rto_recovery", tcpStats.SpuriousRTORecovery},
 | ||
| 		{"forward_max_in_flight_drop", tcpStats.ForwardMaxInFlightDrop},
 | ||
| 	}
 | ||
| 	for _, metric := range tcpMetrics {
 | ||
| 		m.Set("counter_tcp_"+metric.name, expvar.Func(func() any {
 | ||
| 			return readStatCounter(metric.field)
 | ||
| 		}))
 | ||
| 	}
 | ||
| 	m.Set("gauge_tcp_current_established", expvar.Func(func() any {
 | ||
| 		return readStatCounter(tcpStats.CurrentEstablished)
 | ||
| 	}))
 | ||
| 	m.Set("gauge_tcp_current_connected", expvar.Func(func() any {
 | ||
| 		return readStatCounter(tcpStats.CurrentConnected)
 | ||
| 	}))
 | ||
| 
 | ||
| 	// UDP metrics
 | ||
| 	udpStats := ns.ipstack.Stats().UDP
 | ||
| 	udpMetrics := []struct {
 | ||
| 		name  string
 | ||
| 		field *tcpip.StatCounter
 | ||
| 	}{
 | ||
| 		{"packets_received", udpStats.PacketsReceived},
 | ||
| 		{"unknown_port_errors", udpStats.UnknownPortErrors},
 | ||
| 		{"receive_buffer_errors", udpStats.ReceiveBufferErrors},
 | ||
| 		{"malformed_packets_received", udpStats.MalformedPacketsReceived},
 | ||
| 		{"packets_sent", udpStats.PacketsSent},
 | ||
| 		{"packet_send_errors", udpStats.PacketSendErrors},
 | ||
| 		{"checksum_errors", udpStats.ChecksumErrors},
 | ||
| 	}
 | ||
| 	for _, metric := range udpMetrics {
 | ||
| 		m.Set("counter_udp_"+metric.name, expvar.Func(func() any {
 | ||
| 			return readStatCounter(metric.field)
 | ||
| 		}))
 | ||
| 	}
 | ||
| 
 | ||
| 	// Export gauges that show the current TCP forwarding limits.
 | ||
| 	m.Set("gauge_tcp_forward_in_flight_limit", expvar.Func(func() any {
 | ||
| 		return maxInFlightConnectionAttempts()
 | ||
| 	}))
 | ||
| 	m.Set("gauge_tcp_forward_in_flight_per_client_limit", expvar.Func(func() any {
 | ||
| 		return maxInFlightConnectionAttemptsPerClient()
 | ||
| 	}))
 | ||
| 
 | ||
| 	// This metric tracks the number of in-flight TCP forwarding
 | ||
| 	// connections that are "in-flight"–i.e. waiting to complete.
 | ||
| 	m.Set("gauge_tcp_forward_in_flight", expvar.Func(func() any {
 | ||
| 		ns.mu.Lock()
 | ||
| 		defer ns.mu.Unlock()
 | ||
| 
 | ||
| 		var sum int64
 | ||
| 		for _, n := range ns.connsInFlightByClient {
 | ||
| 			sum += int64(n)
 | ||
| 		}
 | ||
| 		return sum
 | ||
| 	}))
 | ||
| 
 | ||
| 	m.Set("counter_tcp_forward_max_in_flight_per_client_drop", &ns.forwardInFlightPerClientDropped)
 | ||
| 
 | ||
| 	// This metric tracks how many (if any) of the per-client limit on
 | ||
| 	// in-flight TCP forwarding requests have been reached.
 | ||
| 	m.Set("gauge_tcp_forward_in_flight_per_client_limit_reached", expvar.Func(func() any {
 | ||
| 		ns.mu.Lock()
 | ||
| 		defer ns.mu.Unlock()
 | ||
| 
 | ||
| 		limit := maxInFlightConnectionAttemptsPerClient()
 | ||
| 
 | ||
| 		var count int64
 | ||
| 		for _, n := range ns.connsInFlightByClient {
 | ||
| 			if n == limit {
 | ||
| 				count++
 | ||
| 			}
 | ||
| 		}
 | ||
| 		return count
 | ||
| 	}))
 | ||
| 
 | ||
| 	return m
 | ||
| }
 | ||
| 
 | ||
| // windowsPingOutputIsSuccess reports whether the ping.exe output b contains a
 | ||
| // success ping response for ip.
 | ||
| //
 | ||
| // See https://github.com/tailscale/tailscale/issues/13654
 | ||
| //
 | ||
| // TODO(bradfitz,nickkhyl): delete this and use the proper Windows APIs.
 | ||
| func windowsPingOutputIsSuccess(ip netip.Addr, b []byte) bool {
 | ||
| 	// Look for a line that contains " <ip>: " and then three equal signs.
 | ||
| 	// As a special case, the 2nd equal sign may be a '<' character
 | ||
| 	// for sub-millisecond pings.
 | ||
| 	// This heuristic seems to match the ping.exe output in any language.
 | ||
| 	sub := fmt.Appendf(nil, " %s: ", ip)
 | ||
| 
 | ||
| 	eqSigns := func(bb []byte) (n int) {
 | ||
| 		for _, b := range bb {
 | ||
| 			if b == '=' || (b == '<' && n == 1) {
 | ||
| 				n++
 | ||
| 			}
 | ||
| 		}
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	for len(b) > 0 {
 | ||
| 		var line []byte
 | ||
| 		line, b, _ = bytes.Cut(b, []byte("\n"))
 | ||
| 		if _, rest, ok := bytes.Cut(line, sub); ok && eqSigns(rest) == 3 {
 | ||
| 			return true
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return false
 | ||
| }
 |