mirror of
				https://github.com/tailscale/tailscale.git
				synced 2025-10-31 00:01:40 +01:00 
			
		
		
		
	Updates #11058 Change-Id: I35e7ef9b90e83cac04ca93fd964ad00ed5b48430 Signed-off-by: Brad Fitzpatrick <bradfitz@tailscale.com>
		
			
				
	
	
		
			733 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			733 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright (c) Tailscale Inc & AUTHORS
 | |
| // SPDX-License-Identifier: BSD-3-Clause
 | |
| 
 | |
| // Package deephash hashes a Go value recursively, in a predictable order,
 | |
| // without looping. The hash is only valid within the lifetime of a program.
 | |
| // Users should not store the hash on disk or send it over the network.
 | |
| // The hash is sufficiently strong and unique such that
 | |
| // Hash(&x) == Hash(&y) is an appropriate replacement for x == y.
 | |
| //
 | |
| // The definition of equality is identical to reflect.DeepEqual except:
 | |
| //   - Floating-point values are compared based on the raw bits,
 | |
| //     which means that NaNs (with the same bit pattern) are treated as equal.
 | |
| //   - time.Time are compared based on whether they are the same instant in time
 | |
| //     and also in the same zone offset. Monotonic measurements and zone names
 | |
| //     are ignored as part of the hash.
 | |
| //   - netip.Addr are compared based on a shallow comparison of the struct.
 | |
| //
 | |
| // WARNING: This package, like most of the tailscale.com Go module,
 | |
| // should be considered Tailscale-internal; we make no API promises.
 | |
| //
 | |
| // # Cycle detection
 | |
| //
 | |
| // This package correctly handles cycles in the value graph,
 | |
| // but in a way that is potentially pathological in some situations.
 | |
| //
 | |
| // The algorithm for cycle detection operates by
 | |
| // pushing a pointer onto a stack whenever deephash is visiting a pointer and
 | |
| // popping the pointer from the stack after deephash is leaving the pointer.
 | |
| // Before visiting a new pointer, deephash checks whether it has already been
 | |
| // visited on the pointer stack. If so, it hashes the index of the pointer
 | |
| // on the stack and avoids visiting the pointer.
 | |
| //
 | |
| // This algorithm is guaranteed to detect cycles, but may expand pointers
 | |
| // more often than a potential alternate algorithm that remembers all pointers
 | |
| // ever visited in a map. The current algorithm uses O(D) memory, where D
 | |
| // is the maximum depth of the recursion, while the alternate algorithm
 | |
| // would use O(P) memory where P is all pointers ever seen, which can be a lot,
 | |
| // and most of which may have nothing to do with cycles.
 | |
| // Also, the alternate algorithm has to deal with challenges of producing
 | |
| // deterministic results when pointers are visited in non-deterministic ways
 | |
| // such as when iterating through a Go map. The stack-based algorithm avoids
 | |
| // this challenge since the stack is always deterministic regardless of
 | |
| // non-deterministic iteration order of Go maps.
 | |
| //
 | |
| // To concretely see how this algorithm can be pathological,
 | |
| // consider the following data structure:
 | |
| //
 | |
| //	var big *Item = ... // some large data structure that is slow to hash
 | |
| //	var manyBig []*Item
 | |
| //	for i := range 1000 {
 | |
| //		manyBig = append(manyBig, &big)
 | |
| //	}
 | |
| //	deephash.Hash(manyBig)
 | |
| //
 | |
| // Here, the manyBig data structure is not even cyclic.
 | |
| // We have the same big *Item being stored multiple times in a []*Item.
 | |
| // When deephash hashes []*Item, it hashes each individual *Item
 | |
| // not realizing that it had just done the computation earlier.
 | |
| // To avoid the pathological situation, Item should implement [SelfHasher] and
 | |
| // memoize attempts to hash itself.
 | |
| package deephash
 | |
| 
 | |
| // TODO: Add option to teach deephash to memoize the Hash result of particular types?
 | |
| 
 | |
| import (
 | |
| 	"crypto/sha256"
 | |
| 	"encoding/binary"
 | |
| 	"encoding/hex"
 | |
| 	"fmt"
 | |
| 	"reflect"
 | |
| 	"sync"
 | |
| 	"time"
 | |
| 
 | |
| 	"tailscale.com/util/hashx"
 | |
| 	"tailscale.com/util/set"
 | |
| )
 | |
| 
 | |
| // There is much overlap between the theory of serialization and hashing.
 | |
| // A hash (useful for determining equality) can be produced by printing a value
 | |
| // and hashing the output. The format must:
 | |
| //	* be deterministic such that the same value hashes to the same output, and
 | |
| //	* be parsable such that the same value can be reproduced by the output.
 | |
| //
 | |
| // The logic below hashes a value by printing it to a hash.Hash.
 | |
| // To be parsable, it assumes that we know the Go type of each value:
 | |
| //	* scalar types (e.g., bool or int32) are directly printed as their
 | |
| //	  underlying memory representation.
 | |
| //	* list types (e.g., strings and slices) are prefixed by a
 | |
| //	  fixed-width length field, followed by the contents of the list.
 | |
| //	* slices, arrays, and structs print each element/field consecutively.
 | |
| //	* interfaces print with a 1-byte prefix indicating whether it is nil.
 | |
| //	  If non-nil, it is followed by a fixed-width field of the type index,
 | |
| //	  followed by the format of the underlying value.
 | |
| //	* pointers print with a 1-byte prefix indicating whether the pointer is
 | |
| //	  1) nil, 2) previously seen, or 3) newly seen. Previously seen pointers are
 | |
| //	  followed by a fixed-width field with the index of the previous pointer.
 | |
| //	  Newly seen pointers are followed by the format of the underlying value.
 | |
| //	* maps print with a 1-byte prefix indicating whether the map pointer is
 | |
| //	  1) nil, 2) previously seen, or 3) newly seen. Previously seen pointers
 | |
| //	  are followed by a fixed-width field of the index of the previous pointer.
 | |
| //	  Newly seen maps are printed with a fixed-width length field, followed by
 | |
| //	  a fixed-width field with the XOR of the hash of every map entry.
 | |
| //	  With a sufficiently strong hash, this value is theoretically "parsable"
 | |
| //	  by looking up the hash in a magical map that returns the set of entries
 | |
| //	  for that given hash.
 | |
| 
 | |
| // SelfHasher is implemented by types that can compute their own hash
 | |
| // by writing values through the provided [Hasher] parameter.
 | |
| // Implementations must not leak the provided [Hasher].
 | |
| //
 | |
| // If the implementation of SelfHasher recursively calls [deephash.Hash],
 | |
| // then infinite recursion is quite likely to occur.
 | |
| // To avoid this, use a type definition to drop methods before calling [deephash.Hash]:
 | |
| //
 | |
| //	func (v *MyType) Hash(h deephash.Hasher) {
 | |
| //		v.hashMu.Lock()
 | |
| //		defer v.hashMu.Unlock()
 | |
| //		if v.dirtyHash {
 | |
| //			type MyTypeWithoutMethods MyType // type define MyType to drop Hash method
 | |
| //			v.dirtyHash = false              // clear out dirty bit to avoid hashing over it
 | |
| //			v.hashSum = deephash.Sum{}       // clear out hashSum to avoid hashing over it
 | |
| //			v.hashSum = deephash.Hash((*MyTypeWithoutMethods)(v))
 | |
| //		}
 | |
| //		h.HashSum(v.hashSum)
 | |
| //	}
 | |
| //
 | |
| // In the above example, we acquire a lock since it is possible that deephash
 | |
| // is called in a concurrent manner, which implies that MyType.Hash may also
 | |
| // be called in a concurrent manner. Whether this lock is necessary is
 | |
| // application-dependent and left as an exercise to the reader.
 | |
| // Also, the example assumes that dirtyHash is set elsewhere by application
 | |
| // logic whenever a mutation is made to MyType that would alter the hash.
 | |
| type SelfHasher interface {
 | |
| 	Hash(Hasher)
 | |
| }
 | |
| 
 | |
| // Hasher is a value passed to [SelfHasher.Hash] that allow implementations
 | |
| // to hash themselves in a structured manner.
 | |
| type Hasher struct{ h *hashx.Block512 }
 | |
| 
 | |
| // HashBytes hashes a sequence of bytes b.
 | |
| // The length of b is not explicitly hashed.
 | |
| func (h Hasher) HashBytes(b []byte) { h.h.HashBytes(b) }
 | |
| 
 | |
| // HashString hashes the string data of s
 | |
| // The length of s is not explicitly hashed.
 | |
| func (h Hasher) HashString(s string) { h.h.HashString(s) }
 | |
| 
 | |
| // HashUint8 hashes a uint8.
 | |
| func (h Hasher) HashUint8(n uint8) { h.h.HashUint8(n) }
 | |
| 
 | |
| // HashUint16 hashes a uint16.
 | |
| func (h Hasher) HashUint16(n uint16) { h.h.HashUint16(n) }
 | |
| 
 | |
| // HashUint32 hashes a uint32.
 | |
| func (h Hasher) HashUint32(n uint32) { h.h.HashUint32(n) }
 | |
| 
 | |
| // HashUint64 hashes a uint64.
 | |
| func (h Hasher) HashUint64(n uint64) { h.h.HashUint64(n) }
 | |
| 
 | |
| // HashSum hashes a [Sum].
 | |
| func (h Hasher) HashSum(s Sum) {
 | |
| 	// NOTE: Avoid calling h.HashBytes since it escapes b,
 | |
| 	// which would force s to be heap allocated.
 | |
| 	h.h.HashUint64(binary.LittleEndian.Uint64(s.sum[0:8]))
 | |
| 	h.h.HashUint64(binary.LittleEndian.Uint64(s.sum[8:16]))
 | |
| 	h.h.HashUint64(binary.LittleEndian.Uint64(s.sum[16:24]))
 | |
| 	h.h.HashUint64(binary.LittleEndian.Uint64(s.sum[24:32]))
 | |
| }
 | |
| 
 | |
| // hasher is reusable state for hashing a value.
 | |
| // Get one via hasherPool.
 | |
| type hasher struct {
 | |
| 	hashx.Block512
 | |
| 	visitStack visitStack
 | |
| }
 | |
| 
 | |
| var hasherPool = &sync.Pool{
 | |
| 	New: func() any { return new(hasher) },
 | |
| }
 | |
| 
 | |
| func (h *hasher) reset() {
 | |
| 	if h.Block512.Hash == nil {
 | |
| 		h.Block512.Hash = sha256.New()
 | |
| 	}
 | |
| 	h.Block512.Reset()
 | |
| }
 | |
| 
 | |
| // hashType hashes a reflect.Type.
 | |
| // The hash is only consistent within the lifetime of a program.
 | |
| func (h *hasher) hashType(t reflect.Type) {
 | |
| 	// This approach relies on reflect.Type always being backed by a unique
 | |
| 	// *reflect.rtype pointer. A safer approach is to use a global sync.Map
 | |
| 	// that maps reflect.Type to some arbitrary and unique index.
 | |
| 	// While safer, it requires global state with memory that can never be GC'd.
 | |
| 	rtypeAddr := reflect.ValueOf(t).Pointer() // address of *reflect.rtype
 | |
| 	h.HashUint64(uint64(rtypeAddr))
 | |
| }
 | |
| 
 | |
| func (h *hasher) sum() (s Sum) {
 | |
| 	h.Sum(s.sum[:0])
 | |
| 	return s
 | |
| }
 | |
| 
 | |
| // Sum is an opaque checksum type that is comparable.
 | |
| type Sum struct {
 | |
| 	sum [sha256.Size]byte
 | |
| }
 | |
| 
 | |
| func (s1 *Sum) xor(s2 Sum) {
 | |
| 	for i := range sha256.Size {
 | |
| 		s1.sum[i] ^= s2.sum[i]
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (s Sum) String() string {
 | |
| 	// Note: if we change this, keep in sync with AppendTo
 | |
| 	return hex.EncodeToString(s.sum[:])
 | |
| }
 | |
| 
 | |
| // AppendTo appends the string encoding of this sum (as returned by the String
 | |
| // method) to the provided byte slice and returns the extended buffer.
 | |
| func (s Sum) AppendTo(b []byte) []byte {
 | |
| 	// TODO: switch to upstream implementation if accepted:
 | |
| 	// https://github.com/golang/go/issues/53693
 | |
| 	var lb [len(s.sum) * 2]byte
 | |
| 	hex.Encode(lb[:], s.sum[:])
 | |
| 	return append(b, lb[:]...)
 | |
| }
 | |
| 
 | |
| var (
 | |
| 	seedOnce sync.Once
 | |
| 	seed     uint64
 | |
| )
 | |
| 
 | |
| func initSeed() {
 | |
| 	seed = uint64(time.Now().UnixNano())
 | |
| }
 | |
| 
 | |
| // Hash returns the hash of v.
 | |
| func Hash[T any](v *T) Sum {
 | |
| 	h := hasherPool.Get().(*hasher)
 | |
| 	defer hasherPool.Put(h)
 | |
| 	h.reset()
 | |
| 	seedOnce.Do(initSeed)
 | |
| 	h.HashUint64(seed)
 | |
| 
 | |
| 	// Always treat the Hash input as if it were an interface by including
 | |
| 	// a hash of the type. This ensures that hashing of two different types
 | |
| 	// but with the same value structure produces different hashes.
 | |
| 	t := reflect.TypeFor[T]()
 | |
| 	h.hashType(t)
 | |
| 	if v == nil {
 | |
| 		h.HashUint8(0) // indicates nil
 | |
| 	} else {
 | |
| 		h.HashUint8(1) // indicates visiting pointer element
 | |
| 		p := pointerOf(reflect.ValueOf(v))
 | |
| 		hash := lookupTypeHasher(t)
 | |
| 		hash(h, p)
 | |
| 	}
 | |
| 	return h.sum()
 | |
| }
 | |
| 
 | |
| // Option is an optional argument to HasherForType.
 | |
| type Option interface {
 | |
| 	isOption()
 | |
| }
 | |
| 
 | |
| type fieldFilterOpt struct {
 | |
| 	t              reflect.Type
 | |
| 	fields         set.Set[string]
 | |
| 	includeOnMatch bool // true to include fields, false to exclude them
 | |
| }
 | |
| 
 | |
| func (fieldFilterOpt) isOption() {}
 | |
| 
 | |
| func (f fieldFilterOpt) filterStructField(sf reflect.StructField) (include bool) {
 | |
| 	if f.fields.Contains(sf.Name) {
 | |
| 		return f.includeOnMatch
 | |
| 	}
 | |
| 	return !f.includeOnMatch
 | |
| }
 | |
| 
 | |
| // IncludeFields returns an option that modifies the hashing for T to only
 | |
| // include the named struct fields.
 | |
| //
 | |
| // T must be a struct type, and must match the type of the value passed to
 | |
| // HasherForType.
 | |
| func IncludeFields[T any](fields ...string) Option {
 | |
| 	return newFieldFilter[T](true, fields)
 | |
| }
 | |
| 
 | |
| // ExcludeFields returns an option that modifies the hashing for T to include
 | |
| // all struct fields of T except those provided in fields.
 | |
| //
 | |
| // T must be a struct type, and must match the type of the value passed to
 | |
| // HasherForType.
 | |
| func ExcludeFields[T any](fields ...string) Option {
 | |
| 	return newFieldFilter[T](false, fields)
 | |
| }
 | |
| 
 | |
| func newFieldFilter[T any](include bool, fields []string) Option {
 | |
| 	t := reflect.TypeFor[T]()
 | |
| 	fieldSet := set.Set[string]{}
 | |
| 	for _, f := range fields {
 | |
| 		if _, ok := t.FieldByName(f); !ok {
 | |
| 			panic(fmt.Sprintf("unknown field %q for type %v", f, t))
 | |
| 		}
 | |
| 		fieldSet.Add(f)
 | |
| 	}
 | |
| 	return fieldFilterOpt{t, fieldSet, include}
 | |
| }
 | |
| 
 | |
| // HasherForType returns a hash that is specialized for the provided type.
 | |
| //
 | |
| // HasherForType panics if the opts are invalid for the provided type.
 | |
| //
 | |
| // Currently, at most one option can be provided (IncludeFields or
 | |
| // ExcludeFields) and its type must match the type of T. Those restrictions may
 | |
| // be removed in the future, along with documentation about their precedence
 | |
| // when combined.
 | |
| func HasherForType[T any](opts ...Option) func(*T) Sum {
 | |
| 	seedOnce.Do(initSeed)
 | |
| 	if len(opts) > 1 {
 | |
| 		panic("HasherForType only accepts one optional argument") // for now
 | |
| 	}
 | |
| 	t := reflect.TypeFor[T]()
 | |
| 	var hash typeHasherFunc
 | |
| 	for _, o := range opts {
 | |
| 		switch o := o.(type) {
 | |
| 		default:
 | |
| 			panic(fmt.Sprintf("unknown HasherOpt %T", o))
 | |
| 		case fieldFilterOpt:
 | |
| 			if t.Kind() != reflect.Struct {
 | |
| 				panic("HasherForStructTypeWithFieldFilter requires T of kind struct")
 | |
| 			}
 | |
| 			if t != o.t {
 | |
| 				panic(fmt.Sprintf("field filter for type %v does not match HasherForType type %v", o.t, t))
 | |
| 			}
 | |
| 			hash = makeStructHasher(t, o.filterStructField)
 | |
| 		}
 | |
| 	}
 | |
| 	if hash == nil {
 | |
| 		hash = lookupTypeHasher(t)
 | |
| 	}
 | |
| 	return func(v *T) (s Sum) {
 | |
| 		// This logic is identical to Hash, but pull out a few statements.
 | |
| 		h := hasherPool.Get().(*hasher)
 | |
| 		defer hasherPool.Put(h)
 | |
| 		h.reset()
 | |
| 		h.HashUint64(seed)
 | |
| 
 | |
| 		h.hashType(t)
 | |
| 		if v == nil {
 | |
| 			h.HashUint8(0) // indicates nil
 | |
| 		} else {
 | |
| 			h.HashUint8(1) // indicates visiting pointer element
 | |
| 			p := pointerOf(reflect.ValueOf(v))
 | |
| 			hash(h, p)
 | |
| 		}
 | |
| 		return h.sum()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Update sets last to the hash of v and reports whether its value changed.
 | |
| func Update[T any](last *Sum, v *T) (changed bool) {
 | |
| 	sum := Hash(v)
 | |
| 	changed = sum != *last
 | |
| 	if changed {
 | |
| 		*last = sum
 | |
| 	}
 | |
| 	return changed
 | |
| }
 | |
| 
 | |
| // typeHasherFunc hashes the value pointed at by p for a given type.
 | |
| // For example, if t is a bool, then p is a *bool.
 | |
| // The provided pointer must always be non-nil.
 | |
| type typeHasherFunc func(h *hasher, p pointer)
 | |
| 
 | |
| var typeHasherCache sync.Map // map[reflect.Type]typeHasherFunc
 | |
| 
 | |
| func lookupTypeHasher(t reflect.Type) typeHasherFunc {
 | |
| 	if v, ok := typeHasherCache.Load(t); ok {
 | |
| 		return v.(typeHasherFunc)
 | |
| 	}
 | |
| 	hash := makeTypeHasher(t)
 | |
| 	v, _ := typeHasherCache.LoadOrStore(t, hash)
 | |
| 	return v.(typeHasherFunc)
 | |
| }
 | |
| 
 | |
| func makeTypeHasher(t reflect.Type) typeHasherFunc {
 | |
| 	// Types with specific hashing.
 | |
| 	switch t {
 | |
| 	case timeTimeType:
 | |
| 		return hashTime
 | |
| 	case netipAddrType:
 | |
| 		return hashAddr
 | |
| 	}
 | |
| 
 | |
| 	// Types that implement their own hashing.
 | |
| 	if t.Kind() != reflect.Pointer && t.Kind() != reflect.Interface {
 | |
| 		// A method can be implemented on either the value receiver or pointer receiver.
 | |
| 		if t.Implements(selfHasherType) || reflect.PointerTo(t).Implements(selfHasherType) {
 | |
| 			return makeSelfHasher(t)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Types that can have their memory representation directly hashed.
 | |
| 	if typeIsMemHashable(t) {
 | |
| 		return makeMemHasher(t.Size())
 | |
| 	}
 | |
| 
 | |
| 	switch t.Kind() {
 | |
| 	case reflect.String:
 | |
| 		return hashString
 | |
| 	case reflect.Array:
 | |
| 		return makeArrayHasher(t)
 | |
| 	case reflect.Slice:
 | |
| 		return makeSliceHasher(t)
 | |
| 	case reflect.Struct:
 | |
| 		return makeStructHasher(t, keepAllStructFields)
 | |
| 	case reflect.Map:
 | |
| 		return makeMapHasher(t)
 | |
| 	case reflect.Pointer:
 | |
| 		return makePointerHasher(t)
 | |
| 	case reflect.Interface:
 | |
| 		return makeInterfaceHasher(t)
 | |
| 	default: // Func, Chan, UnsafePointer
 | |
| 		return func(*hasher, pointer) {}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func hashTime(h *hasher, p pointer) {
 | |
| 	// Include the zone offset (but not the name) to keep
 | |
| 	// Hash(t1) == Hash(t2) being semantically equivalent to
 | |
| 	// t1.Format(time.RFC3339Nano) == t2.Format(time.RFC3339Nano).
 | |
| 	t := *p.asTime()
 | |
| 	_, offset := t.Zone()
 | |
| 	h.HashUint64(uint64(t.Unix()))
 | |
| 	h.HashUint32(uint32(t.Nanosecond()))
 | |
| 	h.HashUint32(uint32(offset))
 | |
| }
 | |
| 
 | |
| func hashAddr(h *hasher, p pointer) {
 | |
| 	// The formatting of netip.Addr covers the
 | |
| 	// IP version, the address, and the optional zone name (for v6).
 | |
| 	// This is equivalent to a1.MarshalBinary() == a2.MarshalBinary().
 | |
| 	ip := *p.asAddr()
 | |
| 	switch {
 | |
| 	case !ip.IsValid():
 | |
| 		h.HashUint64(0)
 | |
| 	case ip.Is4():
 | |
| 		b := ip.As4()
 | |
| 		h.HashUint64(4)
 | |
| 		h.HashUint32(binary.LittleEndian.Uint32(b[:]))
 | |
| 	case ip.Is6():
 | |
| 		b := ip.As16()
 | |
| 		z := ip.Zone()
 | |
| 		h.HashUint64(16 + uint64(len(z)))
 | |
| 		h.HashUint64(binary.LittleEndian.Uint64(b[:8]))
 | |
| 		h.HashUint64(binary.LittleEndian.Uint64(b[8:]))
 | |
| 		h.HashString(z)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func makeSelfHasher(t reflect.Type) typeHasherFunc {
 | |
| 	return func(h *hasher, p pointer) {
 | |
| 		p.asValue(t).Interface().(SelfHasher).Hash(Hasher{&h.Block512})
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func hashString(h *hasher, p pointer) {
 | |
| 	s := *p.asString()
 | |
| 	h.HashUint64(uint64(len(s)))
 | |
| 	h.HashString(s)
 | |
| }
 | |
| 
 | |
| func makeMemHasher(n uintptr) typeHasherFunc {
 | |
| 	return func(h *hasher, p pointer) {
 | |
| 		h.HashBytes(p.asMemory(n))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func makeArrayHasher(t reflect.Type) typeHasherFunc {
 | |
| 	var once sync.Once
 | |
| 	var hashElem typeHasherFunc
 | |
| 	init := func() {
 | |
| 		hashElem = lookupTypeHasher(t.Elem())
 | |
| 	}
 | |
| 
 | |
| 	n := t.Len()          // number of array elements
 | |
| 	nb := t.Elem().Size() // byte size of each array element
 | |
| 	return func(h *hasher, p pointer) {
 | |
| 		once.Do(init)
 | |
| 		for i := range n {
 | |
| 			hashElem(h, p.arrayIndex(i, nb))
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func makeSliceHasher(t reflect.Type) typeHasherFunc {
 | |
| 	nb := t.Elem().Size() // byte size of each slice element
 | |
| 	if typeIsMemHashable(t.Elem()) {
 | |
| 		return func(h *hasher, p pointer) {
 | |
| 			pa := p.sliceArray()
 | |
| 			if pa.isNil() {
 | |
| 				h.HashUint8(0) // indicates nil
 | |
| 				return
 | |
| 			}
 | |
| 			h.HashUint8(1) // indicates visiting slice
 | |
| 			n := p.sliceLen()
 | |
| 			b := pa.asMemory(uintptr(n) * nb)
 | |
| 			h.HashUint64(uint64(n))
 | |
| 			h.HashBytes(b)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	var once sync.Once
 | |
| 	var hashElem typeHasherFunc
 | |
| 	init := func() {
 | |
| 		hashElem = lookupTypeHasher(t.Elem())
 | |
| 		if typeIsRecursive(t) {
 | |
| 			hashElemDefault := hashElem
 | |
| 			hashElem = func(h *hasher, p pointer) {
 | |
| 				if idx, ok := h.visitStack.seen(p.p); ok {
 | |
| 					h.HashUint8(2) // indicates cycle
 | |
| 					h.HashUint64(uint64(idx))
 | |
| 					return
 | |
| 				}
 | |
| 				h.HashUint8(1) // indicates visiting slice element
 | |
| 				h.visitStack.push(p.p)
 | |
| 				defer h.visitStack.pop(p.p)
 | |
| 				hashElemDefault(h, p)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return func(h *hasher, p pointer) {
 | |
| 		pa := p.sliceArray()
 | |
| 		if pa.isNil() {
 | |
| 			h.HashUint8(0) // indicates nil
 | |
| 			return
 | |
| 		}
 | |
| 		once.Do(init)
 | |
| 		h.HashUint8(1) // indicates visiting slice
 | |
| 		n := p.sliceLen()
 | |
| 		h.HashUint64(uint64(n))
 | |
| 		for i := range n {
 | |
| 			pe := pa.arrayIndex(i, nb)
 | |
| 			hashElem(h, pe)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func keepAllStructFields(keepField reflect.StructField) bool { return true }
 | |
| 
 | |
| func makeStructHasher(t reflect.Type, keepField func(reflect.StructField) bool) typeHasherFunc {
 | |
| 	type fieldHasher struct {
 | |
| 		idx    int // index of field for reflect.Type.Field(n); negative if memory is directly hashable
 | |
| 		keep   bool
 | |
| 		hash   typeHasherFunc // only valid if idx is not negative
 | |
| 		offset uintptr
 | |
| 		size   uintptr
 | |
| 	}
 | |
| 	var once sync.Once
 | |
| 	var fields []fieldHasher
 | |
| 	init := func() {
 | |
| 		for i, numField := 0, t.NumField(); i < numField; i++ {
 | |
| 			sf := t.Field(i)
 | |
| 			f := fieldHasher{i, keepField(sf), nil, sf.Offset, sf.Type.Size()}
 | |
| 			if f.keep && typeIsMemHashable(sf.Type) {
 | |
| 				f.idx = -1
 | |
| 			}
 | |
| 
 | |
| 			// Combine with previous field if both contiguous and mem-hashable.
 | |
| 			if f.idx < 0 && len(fields) > 0 {
 | |
| 				if last := &fields[len(fields)-1]; last.idx < 0 && last.offset+last.size == f.offset {
 | |
| 					last.size += f.size
 | |
| 					continue
 | |
| 				}
 | |
| 			}
 | |
| 			fields = append(fields, f)
 | |
| 		}
 | |
| 
 | |
| 		for i, f := range fields {
 | |
| 			if f.idx >= 0 {
 | |
| 				fields[i].hash = lookupTypeHasher(t.Field(f.idx).Type)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return func(h *hasher, p pointer) {
 | |
| 		once.Do(init)
 | |
| 		for _, field := range fields {
 | |
| 			if !field.keep {
 | |
| 				continue
 | |
| 			}
 | |
| 			pf := p.structField(field.idx, field.offset, field.size)
 | |
| 			if field.idx < 0 {
 | |
| 				h.HashBytes(pf.asMemory(field.size))
 | |
| 			} else {
 | |
| 				field.hash(h, pf)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func makeMapHasher(t reflect.Type) typeHasherFunc {
 | |
| 	var once sync.Once
 | |
| 	var hashKey, hashValue typeHasherFunc
 | |
| 	var isRecursive bool
 | |
| 	init := func() {
 | |
| 		hashKey = lookupTypeHasher(t.Key())
 | |
| 		hashValue = lookupTypeHasher(t.Elem())
 | |
| 		isRecursive = typeIsRecursive(t)
 | |
| 	}
 | |
| 
 | |
| 	return func(h *hasher, p pointer) {
 | |
| 		v := p.asValue(t).Elem() // reflect.Map kind
 | |
| 		if v.IsNil() {
 | |
| 			h.HashUint8(0) // indicates nil
 | |
| 			return
 | |
| 		}
 | |
| 		once.Do(init)
 | |
| 		if isRecursive {
 | |
| 			pm := v.UnsafePointer() // underlying pointer of map
 | |
| 			if idx, ok := h.visitStack.seen(pm); ok {
 | |
| 				h.HashUint8(2) // indicates cycle
 | |
| 				h.HashUint64(uint64(idx))
 | |
| 				return
 | |
| 			}
 | |
| 			h.visitStack.push(pm)
 | |
| 			defer h.visitStack.pop(pm)
 | |
| 		}
 | |
| 		h.HashUint8(1) // indicates visiting map entries
 | |
| 		h.HashUint64(uint64(v.Len()))
 | |
| 
 | |
| 		mh := mapHasherPool.Get().(*mapHasher)
 | |
| 		defer mapHasherPool.Put(mh)
 | |
| 
 | |
| 		// Hash a map in a sort-free manner.
 | |
| 		// It relies on a map being a an unordered set of KV entries.
 | |
| 		// So long as we hash each KV entry together, we can XOR all the
 | |
| 		// individual hashes to produce a unique hash for the entire map.
 | |
| 		k := mh.valKey.get(v.Type().Key())
 | |
| 		e := mh.valElem.get(v.Type().Elem())
 | |
| 		mh.sum = Sum{}
 | |
| 		mh.h.visitStack = h.visitStack // always use the parent's visit stack to avoid cycles
 | |
| 		for iter := v.MapRange(); iter.Next(); {
 | |
| 			k.SetIterKey(iter)
 | |
| 			e.SetIterValue(iter)
 | |
| 			mh.h.reset()
 | |
| 			hashKey(&mh.h, pointerOf(k.Addr()))
 | |
| 			hashValue(&mh.h, pointerOf(e.Addr()))
 | |
| 			mh.sum.xor(mh.h.sum())
 | |
| 		}
 | |
| 		h.HashBytes(mh.sum.sum[:])
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func makePointerHasher(t reflect.Type) typeHasherFunc {
 | |
| 	var once sync.Once
 | |
| 	var hashElem typeHasherFunc
 | |
| 	var isRecursive bool
 | |
| 	init := func() {
 | |
| 		hashElem = lookupTypeHasher(t.Elem())
 | |
| 		isRecursive = typeIsRecursive(t)
 | |
| 	}
 | |
| 	return func(h *hasher, p pointer) {
 | |
| 		pe := p.pointerElem()
 | |
| 		if pe.isNil() {
 | |
| 			h.HashUint8(0) // indicates nil
 | |
| 			return
 | |
| 		}
 | |
| 		once.Do(init)
 | |
| 		if isRecursive {
 | |
| 			if idx, ok := h.visitStack.seen(pe.p); ok {
 | |
| 				h.HashUint8(2) // indicates cycle
 | |
| 				h.HashUint64(uint64(idx))
 | |
| 				return
 | |
| 			}
 | |
| 			h.visitStack.push(pe.p)
 | |
| 			defer h.visitStack.pop(pe.p)
 | |
| 		}
 | |
| 		h.HashUint8(1) // indicates visiting a pointer element
 | |
| 		hashElem(h, pe)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func makeInterfaceHasher(t reflect.Type) typeHasherFunc {
 | |
| 	return func(h *hasher, p pointer) {
 | |
| 		v := p.asValue(t).Elem() // reflect.Interface kind
 | |
| 		if v.IsNil() {
 | |
| 			h.HashUint8(0) // indicates nil
 | |
| 			return
 | |
| 		}
 | |
| 		h.HashUint8(1) // indicates visiting an interface value
 | |
| 		v = v.Elem()
 | |
| 		t := v.Type()
 | |
| 		h.hashType(t)
 | |
| 		va := reflect.New(t).Elem()
 | |
| 		va.Set(v)
 | |
| 		hashElem := lookupTypeHasher(t)
 | |
| 		hashElem(h, pointerOf(va.Addr()))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| type mapHasher struct {
 | |
| 	h       hasher
 | |
| 	valKey  valueCache
 | |
| 	valElem valueCache
 | |
| 	sum     Sum
 | |
| }
 | |
| 
 | |
| var mapHasherPool = &sync.Pool{
 | |
| 	New: func() any { return new(mapHasher) },
 | |
| }
 | |
| 
 | |
| type valueCache map[reflect.Type]reflect.Value
 | |
| 
 | |
| // get returns an addressable reflect.Value for the given type.
 | |
| func (c *valueCache) get(t reflect.Type) reflect.Value {
 | |
| 	v, ok := (*c)[t]
 | |
| 	if !ok {
 | |
| 		v = reflect.New(t).Elem()
 | |
| 		if *c == nil {
 | |
| 			*c = make(valueCache)
 | |
| 		}
 | |
| 		(*c)[t] = v
 | |
| 	}
 | |
| 	return v
 | |
| }
 |