tailscale/util/topk/topk.go
Will Norris 3ec5be3f51 all: remove AUTHORS file and references to it
This file was never truly necessary and has never actually been used in
the history of Tailscale's open source releases.

A Brief History of AUTHORS files
---

The AUTHORS file was a pattern developed at Google, originally for
Chromium, then adopted by Go and a bunch of other projects. The problem
was that Chromium originally had a copyright line only recognizing
Google as the copyright holder. Because Google (and most open source
projects) do not require copyright assignemnt for contributions, each
contributor maintains their copyright. Some large corporate contributors
then tried to add their own name to the copyright line in the LICENSE
file or in file headers. This quickly becomes unwieldy, and puts a
tremendous burden on anyone building on top of Chromium, since the
license requires that they keep all copyright lines intact.

The compromise was to create an AUTHORS file that would list all of the
copyright holders. The LICENSE file and source file headers would then
include that list by reference, listing the copyright holder as "The
Chromium Authors".

This also become cumbersome to simply keep the file up to date with a
high rate of new contributors. Plus it's not always obvious who the
copyright holder is. Sometimes it is the individual making the
contribution, but many times it may be their employer. There is no way
for the proejct maintainer to know.

Eventually, Google changed their policy to no longer recommend trying to
keep the AUTHORS file up to date proactively, and instead to only add to
it when requested: https://opensource.google/docs/releasing/authors.
They are also clear that:

> Adding contributors to the AUTHORS file is entirely within the
> project's discretion and has no implications for copyright ownership.

It was primarily added to appease a small number of large contributors
that insisted that they be recognized as copyright holders (which was
entirely their right to do). But it's not truly necessary, and not even
the most accurate way of identifying contributors and/or copyright
holders.

In practice, we've never added anyone to our AUTHORS file. It only lists
Tailscale, so it's not really serving any purpose. It also causes
confusion because Tailscalars put the "Tailscale Inc & AUTHORS" header
in other open source repos which don't actually have an AUTHORS file, so
it's ambiguous what that means.

Instead, we just acknowledge that the contributors to Tailscale (whoever
they are) are copyright holders for their individual contributions. We
also have the benefit of using the DCO (developercertificate.org) which
provides some additional certification of their right to make the
contribution.

The source file changes were purely mechanical with:

    git ls-files | xargs sed -i -e 's/\(Tailscale Inc &\) AUTHORS/\1 contributors/g'

Updates #cleanup

Change-Id: Ia101a4a3005adb9118051b3416f5a64a4a45987d
Signed-off-by: Will Norris <will@tailscale.com>
2026-01-23 15:49:45 -08:00

262 lines
7.6 KiB
Go
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright (c) Tailscale Inc & contributors
// SPDX-License-Identifier: BSD-3-Clause
// Package topk defines a count-min sketch and a cheap probabilistic top-K data
// structure that uses the count-min sketch to track the top K items in
// constant memory and O(log(k)) time.
package topk
import (
"container/heap"
"hash/maphash"
"math"
"slices"
"sync"
)
// TopK is a probabilistic counter of the top K items, using a count-min sketch
// to keep track of item counts and a heap to track the top K of them.
type TopK[T any] struct {
heap minHeap[T]
k int
sf SerializeFunc[T]
cms CountMinSketch
}
// HashFunc is responsible for providing a []byte serialization of a value,
// appended to the provided byte slice. This is used for hashing the value when
// adding to a CountMinSketch.
type SerializeFunc[T any] func([]byte, T) []byte
// New creates a new TopK that stores k values. Parameters for the underlying
// count-min sketch are chosen for a 0.1% error rate and a 0.1% probability of
// error.
func New[T any](k int, sf SerializeFunc[T]) *TopK[T] {
hashes, buckets := PickParams(0.001, 0.001)
return NewWithParams(k, sf, hashes, buckets)
}
// NewWithParams creates a new TopK that stores k values, and additionally
// allows customizing the parameters for the underlying count-min sketch.
func NewWithParams[T any](k int, sf SerializeFunc[T], numHashes, numCols int) *TopK[T] {
ret := &TopK[T]{
heap: make(minHeap[T], 0, k),
k: k,
sf: sf,
}
ret.cms.init(numHashes, numCols)
return ret
}
// Add calls AddN(val, 1).
func (tk *TopK[T]) Add(val T) uint64 {
return tk.AddN(val, 1)
}
var hashPool = &sync.Pool{
New: func() any {
buf := make([]byte, 0, 128)
return &buf
},
}
// AddN adds the given item to the set with the provided count, returning the
// new estimated count.
func (tk *TopK[T]) AddN(val T, count uint64) uint64 {
buf := hashPool.Get().(*[]byte)
defer hashPool.Put(buf)
ser := tk.sf((*buf)[:0], val)
vcount := tk.cms.AddN(ser, count)
// If we don't have a full heap, just push it.
if len(tk.heap) < tk.k {
heap.Push(&tk.heap, mhValue[T]{
count: vcount,
val: val,
})
return vcount
}
// If this item's count surpasses the heap's minimum, update the heap.
if vcount > tk.heap[0].count {
tk.heap[0] = mhValue[T]{
count: vcount,
val: val,
}
heap.Fix(&tk.heap, 0)
}
return vcount
}
// Top returns the estimated top K items as stored by this TopK.
func (tk *TopK[T]) Top() []T {
ret := make([]T, 0, tk.k)
for _, item := range tk.heap {
ret = append(ret, item.val)
}
return ret
}
// AppendTop appends the estimated top K items as stored by this TopK to the
// provided slice, allocating only if the slice does not have enough capacity
// to store all items. The provided slice can be nil.
func (tk *TopK[T]) AppendTop(sl []T) []T {
sl = slices.Grow(sl, tk.k)
for _, item := range tk.heap {
sl = append(sl, item.val)
}
return sl
}
// CountMinSketch implements a count-min sketch, a probabilistic data structure
// that tracks the frequency of events in a stream of data.
//
// See: https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
type CountMinSketch struct {
hashes []maphash.Seed
nbuckets int
matrix []uint64
}
// NewCountMinSketch creates a new CountMinSketch with the provided number of
// hashes and buckets. Hashes and buckets are often called "depth" and "width",
// or "d" and "w", respectively.
func NewCountMinSketch(hashes, buckets int) *CountMinSketch {
ret := &CountMinSketch{}
ret.init(hashes, buckets)
return ret
}
// PickParams provides good parameters for 'hashes' and 'buckets' when
// constructing a CountMinSketch, given an estimated total number of counts
// (i.e. the sum of all counts ever stored), the error factor ϵ as a float
// (e.g. 1% is 0.001), and the probability factor δ.
//
// Parameters are chosen such that with a probability of 1δ, the error is at
// most ϵtotalCount. Or, in other words: if N is the true count of an event,
// E is the estimate given by a sketch and T the total count of items in the
// sketch, E ≤ N + T*ϵ with probability (1 - δ).
func PickParams(err, probability float64) (hashes, buckets int) {
d := math.Ceil(math.Log(1 / probability))
w := math.Ceil(math.E / err)
return int(d), int(w)
}
func (cms *CountMinSketch) init(hashes, buckets int) {
for range hashes {
cms.hashes = append(cms.hashes, maphash.MakeSeed())
}
// Need a matrix of hashes * buckets to store counts
cms.nbuckets = buckets
cms.matrix = make([]uint64, hashes*buckets)
}
// Add calls AddN(val, 1).
func (cms *CountMinSketch) Add(val []byte) uint64 {
return cms.AddN(val, 1)
}
// AddN increments the count for the given value by the provided count,
// returning the new count.
func (cms *CountMinSketch) AddN(val []byte, count uint64) uint64 {
var (
mh maphash.Hash
ret uint64 = math.MaxUint64
)
for i, seed := range cms.hashes {
mh.SetSeed(seed)
// Generate a hash for this value using Lemire's alternative to modular reduction:
// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
mh.Write(val)
hash := mh.Sum64()
hash = multiplyHigh64(hash, uint64(cms.nbuckets))
// The index in our matrix is (i * buckets) to move "down" i
// rows in our matrix to the row for this hash, plus 'hash' to
// move inside this row.
idx := (i * cms.nbuckets) + int(hash)
// Add to this row
cms.matrix[idx] += count
ret = min(ret, cms.matrix[idx])
}
return ret
}
// Get returns the count for the provided value.
func (cms *CountMinSketch) Get(val []byte) uint64 {
var (
mh maphash.Hash
ret uint64 = math.MaxUint64
)
for i, seed := range cms.hashes {
mh.SetSeed(seed)
// Generate a hash for this value using Lemire's alternative to modular reduction:
// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
mh.Write(val)
hash := mh.Sum64()
hash = multiplyHigh64(hash, uint64(cms.nbuckets))
// The index in our matrix is (i * buckets) to move "down" i
// rows in our matrix to the row for this hash, plus 'hash' to
// move inside this row.
idx := (i * cms.nbuckets) + int(hash)
// Select the minimal value among all rows
ret = min(ret, cms.matrix[idx])
}
return ret
}
// multiplyHigh64 implements (x * y) >> 64 "the long way" without access to a
// 128-bit type. This function is adapted from something similar in Tensorflow:
//
// https://github.com/tensorflow/tensorflow/commit/a47a300185026fe7829990def9113bf3a5109fed
//
// TODO(andrew-d): this could be replaced with a single "MULX" instruction on
// x86_64 platforms, which we can do if this ever turns out to be a performance
// bottleneck.
func multiplyHigh64(x, y uint64) uint64 {
x_lo := x & 0xffffffff
x_hi := x >> 32
buckets_lo := y & 0xffffffff
buckets_hi := y >> 32
prod_hi := x_hi * buckets_hi
prod_lo := x_lo * buckets_lo
prod_mid1 := x_hi * buckets_lo
prod_mid2 := x_lo * buckets_hi
carry := ((prod_mid1 & 0xffffffff) + (prod_mid2 & 0xffffffff) + (prod_lo >> 32)) >> 32
return prod_hi + (prod_mid1 >> 32) + (prod_mid2 >> 32) + carry
}
type mhValue[T any] struct {
count uint64
val T
}
// An minHeap is a min-heap of ints and associated values.
type minHeap[T any] []mhValue[T]
func (h minHeap[T]) Len() int { return len(h) }
func (h minHeap[T]) Less(i, j int) bool { return h[i].count < h[j].count }
func (h minHeap[T]) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *minHeap[T]) Push(x any) {
// Push and Pop use pointer receivers because they modify the slice's length,
// not just its contents.
*h = append(*h, x.(mhValue[T]))
}
func (h *minHeap[T]) Pop() any {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}