tailscale/util/singleflight/singleflight.go
Will Norris 3ec5be3f51 all: remove AUTHORS file and references to it
This file was never truly necessary and has never actually been used in
the history of Tailscale's open source releases.

A Brief History of AUTHORS files
---

The AUTHORS file was a pattern developed at Google, originally for
Chromium, then adopted by Go and a bunch of other projects. The problem
was that Chromium originally had a copyright line only recognizing
Google as the copyright holder. Because Google (and most open source
projects) do not require copyright assignemnt for contributions, each
contributor maintains their copyright. Some large corporate contributors
then tried to add their own name to the copyright line in the LICENSE
file or in file headers. This quickly becomes unwieldy, and puts a
tremendous burden on anyone building on top of Chromium, since the
license requires that they keep all copyright lines intact.

The compromise was to create an AUTHORS file that would list all of the
copyright holders. The LICENSE file and source file headers would then
include that list by reference, listing the copyright holder as "The
Chromium Authors".

This also become cumbersome to simply keep the file up to date with a
high rate of new contributors. Plus it's not always obvious who the
copyright holder is. Sometimes it is the individual making the
contribution, but many times it may be their employer. There is no way
for the proejct maintainer to know.

Eventually, Google changed their policy to no longer recommend trying to
keep the AUTHORS file up to date proactively, and instead to only add to
it when requested: https://opensource.google/docs/releasing/authors.
They are also clear that:

> Adding contributors to the AUTHORS file is entirely within the
> project's discretion and has no implications for copyright ownership.

It was primarily added to appease a small number of large contributors
that insisted that they be recognized as copyright holders (which was
entirely their right to do). But it's not truly necessary, and not even
the most accurate way of identifying contributors and/or copyright
holders.

In practice, we've never added anyone to our AUTHORS file. It only lists
Tailscale, so it's not really serving any purpose. It also causes
confusion because Tailscalars put the "Tailscale Inc & AUTHORS" header
in other open source repos which don't actually have an AUTHORS file, so
it's ambiguous what that means.

Instead, we just acknowledge that the contributors to Tailscale (whoever
they are) are copyright holders for their individual contributions. We
also have the benefit of using the DCO (developercertificate.org) which
provides some additional certification of their right to make the
contribution.

The source file changes were purely mechanical with:

    git ls-files | xargs sed -i -e 's/\(Tailscale Inc &\) AUTHORS/\1 contributors/g'

Updates #cleanup

Change-Id: Ia101a4a3005adb9118051b3416f5a64a4a45987d
Signed-off-by: Will Norris <will@tailscale.com>
2026-01-23 15:49:45 -08:00

312 lines
8.8 KiB
Go

// Copyright (c) Tailscale Inc & contributors
// SPDX-License-Identifier: BSD-3-Clause
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package singleflight provides a duplicate function call suppression
// mechanism.
//
// This is a Tailscale fork of Go's singleflight package which has had several
// homes in the past:
//
// - https://github.com/golang/go/commit/61d3b2db6292581fc07a3767ec23ec94ad6100d1
// - https://github.com/golang/groupcache/tree/master/singleflight
// - https://pkg.go.dev/golang.org/x/sync/singleflight
//
// This fork adds generics.
package singleflight // import "tailscale.com/util/singleflight"
import (
"bytes"
"context"
"errors"
"fmt"
"runtime"
"runtime/debug"
"sync"
"sync/atomic"
)
// errGoexit indicates the runtime.Goexit was called in
// the user given function.
var errGoexit = errors.New("runtime.Goexit was called")
// A panicError is an arbitrary value recovered from a panic
// with the stack trace during the execution of given function.
type panicError struct {
value interface{}
stack []byte
}
// Error implements error interface.
func (p *panicError) Error() string {
return fmt.Sprintf("%v\n\n%s", p.value, p.stack)
}
func newPanicError(v interface{}) error {
stack := debug.Stack()
// The first line of the stack trace is of the form "goroutine N [status]:"
// but by the time the panic reaches Do the goroutine may no longer exist
// and its status will have changed. Trim out the misleading line.
if line := bytes.IndexByte(stack[:], '\n'); line >= 0 {
stack = stack[line+1:]
}
return &panicError{value: v, stack: stack}
}
// call is an in-flight or completed singleflight.Do call
type call[V any] struct {
wg sync.WaitGroup
// These fields are written once before the WaitGroup is done
// and are only read after the WaitGroup is done.
val V
err error
// These fields are read and written with the singleflight
// mutex held before the WaitGroup is done, and are read but
// not written after the WaitGroup is done.
dups int
chans []chan<- Result[V]
// These fields are only written when the call is being created, and
// only in the DoChanContext method.
cancel context.CancelFunc
ctxWaiters atomic.Int64
}
// Group represents a class of work and forms a namespace in
// which units of work can be executed with duplicate suppression.
type Group[K comparable, V any] struct {
mu sync.Mutex // protects m
m map[K]*call[V] // lazily initialized
}
// Result holds the results of Do, so they can be passed
// on a channel.
type Result[V any] struct {
Val V
Err error
Shared bool
}
// Do executes and returns the results of the given function, making
// sure that only one execution is in-flight for a given key at a
// time. If a duplicate comes in, the duplicate caller waits for the
// original to complete and receives the same results.
// The return value shared indicates whether v was given to multiple callers.
func (g *Group[K, V]) Do(key K, fn func() (V, error)) (v V, err error, shared bool) {
g.mu.Lock()
if g.m == nil {
g.m = make(map[K]*call[V])
}
if c, ok := g.m[key]; ok {
c.dups++
g.mu.Unlock()
c.wg.Wait()
if e, ok := c.err.(*panicError); ok {
panic(e)
} else if c.err == errGoexit {
runtime.Goexit()
}
return c.val, c.err, true
}
c := new(call[V])
c.wg.Add(1)
g.m[key] = c
g.mu.Unlock()
g.doCall(c, key, fn)
return c.val, c.err, c.dups > 0
}
// DoChan is like Do but returns a channel that will receive the
// results when they are ready.
//
// The returned channel will not be closed.
func (g *Group[K, V]) DoChan(key K, fn func() (V, error)) <-chan Result[V] {
ch := make(chan Result[V], 1)
g.mu.Lock()
if g.m == nil {
g.m = make(map[K]*call[V])
}
if c, ok := g.m[key]; ok {
c.dups++
c.chans = append(c.chans, ch)
g.mu.Unlock()
return ch
}
c := &call[V]{chans: []chan<- Result[V]{ch}}
c.wg.Add(1)
g.m[key] = c
g.mu.Unlock()
go g.doCall(c, key, fn)
return ch
}
// DoChanContext is like [Group.DoChan], but supports context cancelation. The
// context passed to the fn function is a context that is canceled only when
// there are no callers waiting on a result (i.e. all callers have canceled
// their contexts).
//
// The context that is passed to the fn function is not derived from any of the
// input contexts, so context values will not be propagated. If context values
// are needed, they must be propagated explicitly.
//
// The returned channel will not be closed. The Result.Err field is set to the
// context error if the context is canceled.
func (g *Group[K, V]) DoChanContext(ctx context.Context, key K, fn func(context.Context) (V, error)) <-chan Result[V] {
ch := make(chan Result[V], 1)
g.mu.Lock()
if g.m == nil {
g.m = make(map[K]*call[V])
}
c, ok := g.m[key]
if ok {
// Call already in progress; add to the waiters list and then
// release the mutex.
c.dups++
c.ctxWaiters.Add(1)
c.chans = append(c.chans, ch)
g.mu.Unlock()
} else {
// The call hasn't been started yet; we need to start it.
//
// Create a context that is not canceled when the parent context is,
// but otherwise propagates all values.
callCtx, callCancel := context.WithCancel(context.Background())
c = &call[V]{
chans: []chan<- Result[V]{ch},
cancel: callCancel,
}
c.wg.Add(1)
c.ctxWaiters.Add(1) // one caller waiting
g.m[key] = c
g.mu.Unlock()
// Wrap our function to provide the context.
go g.doCall(c, key, func() (V, error) {
return fn(callCtx)
})
}
// Instead of returning the channel directly, we need to track
// when the call finishes so we can handle context cancelation.
// Do so by creating an final channel that gets the
// result and hooking that up to the wait function.
final := make(chan Result[V], 1)
go g.waitCtx(ctx, c, ch, final)
return final
}
// waitCtx will wait on the provided call to finish, or the context to be done.
// If the context is done, and this is the last waiter, then the context
// provided to the underlying function will be canceled.
func (g *Group[K, V]) waitCtx(ctx context.Context, c *call[V], result <-chan Result[V], output chan<- Result[V]) {
var res Result[V]
select {
case <-ctx.Done():
case res = <-result:
}
// Decrement the caller count, and if we're the last one, cancel the
// context we created. Do this in all cases, error and otherwise, so we
// don't leak goroutines.
//
// Also wait on the call to finish, so we know that the call has
// finished executing after the last caller has returned.
if c.ctxWaiters.Add(-1) == 0 {
c.cancel()
c.wg.Wait()
}
// Ensure that context cancelation takes precedence over a value being
// available by checking ctx.Err() before sending the result to the
// caller. The select above will nondeterministically pick a case if a
// result is available and the ctx.Done channel is closed, so we check
// again here.
if err := ctx.Err(); err != nil {
res = Result[V]{Err: err}
}
output <- res
}
// doCall handles the single call for a key.
func (g *Group[K, V]) doCall(c *call[V], key K, fn func() (V, error)) {
normalReturn := false
recovered := false
// use double-defer to distinguish panic from runtime.Goexit,
// more details see https://golang.org/cl/134395
defer func() {
// the given function invoked runtime.Goexit
if !normalReturn && !recovered {
c.err = errGoexit
}
g.mu.Lock()
defer g.mu.Unlock()
c.wg.Done()
if g.m[key] == c {
delete(g.m, key)
}
if e, ok := c.err.(*panicError); ok {
// In order to prevent the waiting channels from being blocked forever,
// needs to ensure that this panic cannot be recovered.
if len(c.chans) > 0 {
go panic(e)
select {} // Keep this goroutine around so that it will appear in the crash dump.
} else {
panic(e)
}
} else if c.err == errGoexit {
// Already in the process of goexit, no need to call again
} else {
// Normal return
for _, ch := range c.chans {
ch <- Result[V]{c.val, c.err, c.dups > 0}
}
}
}()
func() {
defer func() {
if !normalReturn {
// Ideally, we would wait to take a stack trace until we've determined
// whether this is a panic or a runtime.Goexit.
//
// Unfortunately, the only way we can distinguish the two is to see
// whether the recover stopped the goroutine from terminating, and by
// the time we know that, the part of the stack trace relevant to the
// panic has been discarded.
if r := recover(); r != nil {
c.err = newPanicError(r)
}
}
}()
c.val, c.err = fn()
normalReturn = true
}()
if !normalReturn {
recovered = true
}
}
// Forget tells the singleflight to forget about a key. Future calls
// to Do for this key will call the function rather than waiting for
// an earlier call to complete.
func (g *Group[K, V]) Forget(key K) {
g.mu.Lock()
delete(g.m, key)
g.mu.Unlock()
}