tailscale/util/reload/reload.go
Will Norris 3ec5be3f51 all: remove AUTHORS file and references to it
This file was never truly necessary and has never actually been used in
the history of Tailscale's open source releases.

A Brief History of AUTHORS files
---

The AUTHORS file was a pattern developed at Google, originally for
Chromium, then adopted by Go and a bunch of other projects. The problem
was that Chromium originally had a copyright line only recognizing
Google as the copyright holder. Because Google (and most open source
projects) do not require copyright assignemnt for contributions, each
contributor maintains their copyright. Some large corporate contributors
then tried to add their own name to the copyright line in the LICENSE
file or in file headers. This quickly becomes unwieldy, and puts a
tremendous burden on anyone building on top of Chromium, since the
license requires that they keep all copyright lines intact.

The compromise was to create an AUTHORS file that would list all of the
copyright holders. The LICENSE file and source file headers would then
include that list by reference, listing the copyright holder as "The
Chromium Authors".

This also become cumbersome to simply keep the file up to date with a
high rate of new contributors. Plus it's not always obvious who the
copyright holder is. Sometimes it is the individual making the
contribution, but many times it may be their employer. There is no way
for the proejct maintainer to know.

Eventually, Google changed their policy to no longer recommend trying to
keep the AUTHORS file up to date proactively, and instead to only add to
it when requested: https://opensource.google/docs/releasing/authors.
They are also clear that:

> Adding contributors to the AUTHORS file is entirely within the
> project's discretion and has no implications for copyright ownership.

It was primarily added to appease a small number of large contributors
that insisted that they be recognized as copyright holders (which was
entirely their right to do). But it's not truly necessary, and not even
the most accurate way of identifying contributors and/or copyright
holders.

In practice, we've never added anyone to our AUTHORS file. It only lists
Tailscale, so it's not really serving any purpose. It also causes
confusion because Tailscalars put the "Tailscale Inc & AUTHORS" header
in other open source repos which don't actually have an AUTHORS file, so
it's ambiguous what that means.

Instead, we just acknowledge that the contributors to Tailscale (whoever
they are) are copyright holders for their individual contributions. We
also have the benefit of using the DCO (developercertificate.org) which
provides some additional certification of their right to make the
contribution.

The source file changes were purely mechanical with:

    git ls-files | xargs sed -i -e 's/\(Tailscale Inc &\) AUTHORS/\1 contributors/g'

Updates #cleanup

Change-Id: Ia101a4a3005adb9118051b3416f5a64a4a45987d
Signed-off-by: Will Norris <will@tailscale.com>
2026-01-23 15:49:45 -08:00

190 lines
4.8 KiB
Go

// Copyright (c) Tailscale Inc & contributors
// SPDX-License-Identifier: BSD-3-Clause
// Package reload contains functions that allow periodically reloading a value
// (e.g. a config file) from various sources.
package reload
import (
"context"
"encoding/json"
"fmt"
"math/rand/v2"
"os"
"reflect"
"time"
"tailscale.com/syncs"
"tailscale.com/types/logger"
)
// DefaultInterval is the default value for ReloadOpts.Interval if none is
// provided.
const DefaultInterval = 5 * time.Minute
// ReloadOpts specifies options for reloading a value. Various helper functions
// in this package can be used to create one of these specialized for a given
// use-case.
type ReloadOpts[T any] struct {
// Read is called to obtain the data to be unmarshaled; e.g. by reading
// from a file, or making a network request, etc.
//
// An error from this function is fatal when calling New, but only a
// warning during reload.
//
// This value is required.
Read func(context.Context) ([]byte, error)
// Unmarshal is called with the data that the Read function returns and
// should return a parsed form of the given value, or an error.
//
// An error from this function is fatal when calling New, but only a
// warning during reload.
//
// This value is required.
Unmarshal func([]byte) (T, error)
// Logf is a logger used to print errors that occur on reload. If nil,
// no messages are printed.
Logf logger.Logf
// Interval is the interval at which to reload the given data from the
// source; if zero, DefaultInterval will be used.
Interval time.Duration
// IntervalJitter is the jitter to be added to the given Interval; if
// provided, a duration between 0 and this value will be added to each
// Interval when waiting.
IntervalJitter time.Duration
}
func (r *ReloadOpts[T]) logf(format string, args ...any) {
if r.Logf != nil {
r.Logf(format, args...)
}
}
func (r *ReloadOpts[T]) intervalWithJitter() time.Duration {
tt := r.Interval
if tt == 0 {
tt = DefaultInterval
}
if r.IntervalJitter == 0 {
return tt
}
jitter := rand.N(r.IntervalJitter)
return tt + jitter
}
// New creates and starts reloading the provided value as per opts. It returns
// a function that, when called, returns the current stored value, or an error
// that indicates something went wrong.
//
// The value will be present immediately upon return.
func New[T any](ctx context.Context, opts ReloadOpts[T]) (func() T, error) {
// Create our reloader, which hasn't started.
reloader, err := newUnstarted(ctx, opts)
if err != nil {
return nil, err
}
// Start it
go reloader.run()
// Return the load function now that we're all set up.
return reloader.store.Load, nil
}
type reloader[T any] struct {
ctx context.Context
store syncs.AtomicValue[T]
opts ReloadOpts[T]
}
// newUnstarted creates a reloader that hasn't yet been started.
func newUnstarted[T any](ctx context.Context, opts ReloadOpts[T]) (*reloader[T], error) {
if opts.Read == nil {
return nil, fmt.Errorf("the Read function is required")
}
if opts.Unmarshal == nil {
return nil, fmt.Errorf("the Unmarshal function is required")
}
// Start by reading and unmarshaling the value.
data, err := opts.Read(ctx)
if err != nil {
return nil, fmt.Errorf("reading initial value: %w", err)
}
initial, err := opts.Unmarshal(data)
if err != nil {
return nil, fmt.Errorf("unmarshaling initial value: %v", err)
}
reloader := &reloader[T]{
ctx: ctx,
opts: opts,
}
reloader.store.Store(initial)
return reloader, nil
}
func (r *reloader[T]) run() {
// Create a timer that we re-set each time we fire.
timer := time.NewTimer(r.opts.intervalWithJitter())
defer timer.Stop()
for {
select {
case <-r.ctx.Done():
r.opts.logf("run context is done")
return
case <-timer.C:
}
if err := r.updateOnce(); err != nil {
r.opts.logf("error refreshing data: %v", err)
}
// Re-arm the timer after we're done; this is safe
// since the only way this loop woke up was by reading
// from timer.C
timer.Reset(r.opts.intervalWithJitter())
}
}
func (r *reloader[T]) updateOnce() error {
data, err := r.opts.Read(r.ctx)
if err != nil {
return fmt.Errorf("reading data: %w", err)
}
next, err := r.opts.Unmarshal(data)
if err != nil {
return fmt.Errorf("unmarshaling data: %w", err)
}
oldValue := r.store.Swap(next)
if !reflect.DeepEqual(oldValue, next) {
r.opts.logf("stored new value: %+v", next)
}
return nil
}
// FromJSONFile creates a ReloadOpts describing reloading a value of type T
// from the given JSON file on-disk.
func FromJSONFile[T any](path string) ReloadOpts[T] {
return ReloadOpts[T]{
Read: func(_ context.Context) ([]byte, error) {
return os.ReadFile(path)
},
Unmarshal: func(b []byte) (T, error) {
var ret, zero T
if err := json.Unmarshal(b, &ret); err != nil {
return zero, err
}
return ret, nil
},
}
}