Will Norris 3ec5be3f51 all: remove AUTHORS file and references to it
This file was never truly necessary and has never actually been used in
the history of Tailscale's open source releases.

A Brief History of AUTHORS files
---

The AUTHORS file was a pattern developed at Google, originally for
Chromium, then adopted by Go and a bunch of other projects. The problem
was that Chromium originally had a copyright line only recognizing
Google as the copyright holder. Because Google (and most open source
projects) do not require copyright assignemnt for contributions, each
contributor maintains their copyright. Some large corporate contributors
then tried to add their own name to the copyright line in the LICENSE
file or in file headers. This quickly becomes unwieldy, and puts a
tremendous burden on anyone building on top of Chromium, since the
license requires that they keep all copyright lines intact.

The compromise was to create an AUTHORS file that would list all of the
copyright holders. The LICENSE file and source file headers would then
include that list by reference, listing the copyright holder as "The
Chromium Authors".

This also become cumbersome to simply keep the file up to date with a
high rate of new contributors. Plus it's not always obvious who the
copyright holder is. Sometimes it is the individual making the
contribution, but many times it may be their employer. There is no way
for the proejct maintainer to know.

Eventually, Google changed their policy to no longer recommend trying to
keep the AUTHORS file up to date proactively, and instead to only add to
it when requested: https://opensource.google/docs/releasing/authors.
They are also clear that:

> Adding contributors to the AUTHORS file is entirely within the
> project's discretion and has no implications for copyright ownership.

It was primarily added to appease a small number of large contributors
that insisted that they be recognized as copyright holders (which was
entirely their right to do). But it's not truly necessary, and not even
the most accurate way of identifying contributors and/or copyright
holders.

In practice, we've never added anyone to our AUTHORS file. It only lists
Tailscale, so it's not really serving any purpose. It also causes
confusion because Tailscalars put the "Tailscale Inc & AUTHORS" header
in other open source repos which don't actually have an AUTHORS file, so
it's ambiguous what that means.

Instead, we just acknowledge that the contributors to Tailscale (whoever
they are) are copyright holders for their individual contributions. We
also have the benefit of using the DCO (developercertificate.org) which
provides some additional certification of their right to make the
contribution.

The source file changes were purely mechanical with:

    git ls-files | xargs sed -i -e 's/\(Tailscale Inc &\) AUTHORS/\1 contributors/g'

Updates #cleanup

Change-Id: Ia101a4a3005adb9118051b3416f5a64a4a45987d
Signed-off-by: Will Norris <will@tailscale.com>
2026-01-23 15:49:45 -08:00

136 lines
4.5 KiB
Go

// Copyright (c) Tailscale Inc & contributors
// SPDX-License-Identifier: BSD-3-Clause
// ctxkey provides type-safe key-value pairs for use with [context.Context].
//
// Example usage:
//
// // Create a context key.
// var TimeoutKey = ctxkey.New("mapreduce.Timeout", 5*time.Second)
//
// // Store a context value.
// ctx = mapreduce.TimeoutKey.WithValue(ctx, 10*time.Second)
//
// // Load a context value.
// timeout := mapreduce.TimeoutKey.Value(ctx)
// ... // use timeout of type time.Duration
//
// This is inspired by https://go.dev/issue/49189.
package ctxkey
import (
"context"
"fmt"
"reflect"
)
// Key is a generic key type associated with a specific value type.
//
// A zero Key is valid where the Value type itself is used as the context key.
// This pattern should only be used with locally declared Go types,
// otherwise different packages risk producing key conflicts.
//
// Example usage:
//
// type peerInfo struct { ... } // peerInfo is a locally declared type
// var peerInfoKey ctxkey.Key[peerInfo]
// ctx = peerInfoKey.WithValue(ctx, info) // store a context value
// info = peerInfoKey.Value(ctx) // load a context value
type Key[Value any] struct {
name *stringer[string]
defVal *Value
}
// New constructs a new context key with an associated value type
// where the default value for an unpopulated value is the provided value.
//
// The provided name is an arbitrary name only used for human debugging.
// As a convention, it is recommended that the name be the dot-delimited
// combination of the package name of the caller with the variable name.
// If the name is not provided, then the name of the Value type is used.
// Every key is unique, even if provided the same name.
//
// Example usage:
//
// package mapreduce
// var NumWorkersKey = ctxkey.New("mapreduce.NumWorkers", runtime.NumCPU())
func New[Value any](name string, defaultValue Value) Key[Value] {
// Allocate a new stringer to ensure that every invocation of New
// creates a universally unique context key even for the same name
// since newly allocated pointers are globally unique within a process.
key := Key[Value]{name: new(stringer[string])}
if name == "" {
name = reflect.TypeFor[Value]().String()
}
key.name.v = name
if v := reflect.ValueOf(defaultValue); v.IsValid() && !v.IsZero() {
key.defVal = &defaultValue
}
return key
}
// contextKey returns the context key to use.
func (key Key[Value]) contextKey() any {
if key.name == nil {
// Use the reflect.Type of the Value (implies key not created by New).
return reflect.TypeFor[Value]()
} else {
// Use the name pointer directly (implies key created by New).
return key.name
}
}
// WithValue returns a copy of parent in which the value associated with key is val.
//
// It is a type-safe equivalent of [context.WithValue].
func (key Key[Value]) WithValue(parent context.Context, val Value) context.Context {
return context.WithValue(parent, key.contextKey(), stringer[Value]{val})
}
// ValueOk returns the value in the context associated with this key
// and also reports whether it was present.
// If the value is not present, it returns the default value.
func (key Key[Value]) ValueOk(ctx context.Context) (v Value, ok bool) {
vv, ok := ctx.Value(key.contextKey()).(stringer[Value])
if !ok && key.defVal != nil {
vv.v = *key.defVal
}
return vv.v, ok
}
// Value returns the value in the context associated with this key.
// If the value is not present, it returns the default value.
func (key Key[Value]) Value(ctx context.Context) (v Value) {
v, _ = key.ValueOk(ctx)
return v
}
// Has reports whether the context has a value for this key.
func (key Key[Value]) Has(ctx context.Context) (ok bool) {
_, ok = key.ValueOk(ctx)
return ok
}
// String returns the name of the key.
func (key Key[Value]) String() string {
if key.name == nil {
return reflect.TypeFor[Value]().String()
}
return key.name.String()
}
// stringer implements [fmt.Stringer] on a generic T.
//
// This assists in debugging such that printing a context prints key and value.
// Note that the [context] package lacks a dependency on [reflect],
// so it cannot print arbitrary values. By implementing [fmt.Stringer],
// we functionally teach a context how to print itself.
//
// Wrapping values within a struct has an added bonus that interface kinds
// are properly handled. Without wrapping, we would be unable to distinguish
// between a nil value that was explicitly set or not.
// However, the presence of a stringer indicates an explicit nil value.
type stringer[T any] struct{ v T }
func (v stringer[T]) String() string { return fmt.Sprint(v.v) }