tailscale/tstime/tstime.go
Will Norris 3ec5be3f51 all: remove AUTHORS file and references to it
This file was never truly necessary and has never actually been used in
the history of Tailscale's open source releases.

A Brief History of AUTHORS files
---

The AUTHORS file was a pattern developed at Google, originally for
Chromium, then adopted by Go and a bunch of other projects. The problem
was that Chromium originally had a copyright line only recognizing
Google as the copyright holder. Because Google (and most open source
projects) do not require copyright assignemnt for contributions, each
contributor maintains their copyright. Some large corporate contributors
then tried to add their own name to the copyright line in the LICENSE
file or in file headers. This quickly becomes unwieldy, and puts a
tremendous burden on anyone building on top of Chromium, since the
license requires that they keep all copyright lines intact.

The compromise was to create an AUTHORS file that would list all of the
copyright holders. The LICENSE file and source file headers would then
include that list by reference, listing the copyright holder as "The
Chromium Authors".

This also become cumbersome to simply keep the file up to date with a
high rate of new contributors. Plus it's not always obvious who the
copyright holder is. Sometimes it is the individual making the
contribution, but many times it may be their employer. There is no way
for the proejct maintainer to know.

Eventually, Google changed their policy to no longer recommend trying to
keep the AUTHORS file up to date proactively, and instead to only add to
it when requested: https://opensource.google/docs/releasing/authors.
They are also clear that:

> Adding contributors to the AUTHORS file is entirely within the
> project's discretion and has no implications for copyright ownership.

It was primarily added to appease a small number of large contributors
that insisted that they be recognized as copyright holders (which was
entirely their right to do). But it's not truly necessary, and not even
the most accurate way of identifying contributors and/or copyright
holders.

In practice, we've never added anyone to our AUTHORS file. It only lists
Tailscale, so it's not really serving any purpose. It also causes
confusion because Tailscalars put the "Tailscale Inc & AUTHORS" header
in other open source repos which don't actually have an AUTHORS file, so
it's ambiguous what that means.

Instead, we just acknowledge that the contributors to Tailscale (whoever
they are) are copyright holders for their individual contributions. We
also have the benefit of using the DCO (developercertificate.org) which
provides some additional certification of their right to make the
contribution.

The source file changes were purely mechanical with:

    git ls-files | xargs sed -i -e 's/\(Tailscale Inc &\) AUTHORS/\1 contributors/g'

Updates #cleanup

Change-Id: Ia101a4a3005adb9118051b3416f5a64a4a45987d
Signed-off-by: Will Norris <will@tailscale.com>
2026-01-23 15:49:45 -08:00

224 lines
7.1 KiB
Go

// Copyright (c) Tailscale Inc & contributors
// SPDX-License-Identifier: BSD-3-Clause
// Package tstime defines Tailscale-specific time utilities.
package tstime
import (
"context"
"encoding"
"strconv"
"strings"
"time"
)
// Parse3339 is a wrapper around time.Parse(time.RFC3339, s).
func Parse3339(s string) (time.Time, error) {
return time.Parse(time.RFC3339, s)
}
// Parse3339B is Parse3339 but for byte slices.
func Parse3339B(b []byte) (time.Time, error) {
var t time.Time
if err := t.UnmarshalText(b); err != nil {
return Parse3339(string(b)) // reproduce same error message
}
return t, nil
}
// ParseDuration is more expressive than [time.ParseDuration],
// also accepting 'd' (days) and 'w' (weeks) literals.
func ParseDuration(s string) (time.Duration, error) {
for {
end := strings.IndexAny(s, "dw")
if end < 0 {
break
}
start := end - (len(s[:end]) - len(strings.TrimRight(s[:end], "0123456789")))
n, err := strconv.Atoi(s[start:end])
if err != nil {
return 0, err
}
hours := 24
if s[end] == 'w' {
hours *= 7
}
s = s[:start] + s[end+1:] + strconv.Itoa(n*hours) + "h"
}
return time.ParseDuration(s)
}
// Sleep is like [time.Sleep] but returns early upon context cancelation.
// It reports whether the full sleep duration was achieved.
func Sleep(ctx context.Context, d time.Duration) bool {
timer := time.NewTimer(d)
defer timer.Stop()
select {
case <-ctx.Done():
return false
case <-timer.C:
return true
}
}
// DefaultClock is a wrapper around a Clock.
// It uses StdClock by default if Clock is nil.
type DefaultClock struct{ Clock }
// TODO: We should make the methods of DefaultClock inlineable
// so that we can optimize for the common case where c.Clock == nil.
func (c DefaultClock) Now() time.Time {
if c.Clock == nil {
return time.Now()
}
return c.Clock.Now()
}
func (c DefaultClock) NewTimer(d time.Duration) (TimerController, <-chan time.Time) {
if c.Clock == nil {
t := time.NewTimer(d)
return t, t.C
}
return c.Clock.NewTimer(d)
}
func (c DefaultClock) NewTicker(d time.Duration) (TickerController, <-chan time.Time) {
if c.Clock == nil {
t := time.NewTicker(d)
return t, t.C
}
return c.Clock.NewTicker(d)
}
func (c DefaultClock) AfterFunc(d time.Duration, f func()) TimerController {
if c.Clock == nil {
return time.AfterFunc(d, f)
}
return c.Clock.AfterFunc(d, f)
}
func (c DefaultClock) Since(t time.Time) time.Duration {
if c.Clock == nil {
return time.Since(t)
}
return c.Clock.Since(t)
}
// Clock offers a subset of the functionality from the std/time package.
// Normally, applications will use the StdClock implementation that calls the
// appropriate std/time exported funcs. The advantage of using Clock is that
// tests can substitute a different implementation, allowing the test to control
// time precisely, something required for certain types of tests to be possible
// at all, speeds up execution by not needing to sleep, and can dramatically
// reduce the risk of flakes due to tests executing too slowly or quickly.
type Clock interface {
// Now returns the current time, as in time.Now.
Now() time.Time
// NewTimer returns a timer whose notion of the current time is controlled
// by this Clock. It follows the semantics of time.NewTimer as closely as
// possible but is adapted to return an interface, so the channel needs to
// be returned as well.
NewTimer(d time.Duration) (TimerController, <-chan time.Time)
// NewTicker returns a ticker whose notion of the current time is controlled
// by this Clock. It follows the semantics of time.NewTicker as closely as
// possible but is adapted to return an interface, so the channel needs to
// be returned as well.
NewTicker(d time.Duration) (TickerController, <-chan time.Time)
// AfterFunc returns a ticker whose notion of the current time is controlled
// by this Clock. When the ticker expires, it will call the provided func.
// It follows the semantics of time.AfterFunc.
AfterFunc(d time.Duration, f func()) TimerController
// Since returns the time elapsed since t.
// It follows the semantics of time.Since.
Since(t time.Time) time.Duration
}
// TickerController offers the receivers of a time.Ticker to ensure
// compatibility with standard timers, but allows for the option of substituting
// a standard timer with something else for testing purposes.
type TickerController interface {
// Reset follows the same semantics as with time.Ticker.Reset.
Reset(d time.Duration)
// Stop follows the same semantics as with time.Ticker.Stop.
Stop()
}
// TimerController offers the receivers of a time.Timer to ensure
// compatibility with standard timers, but allows for the option of substituting
// a standard timer with something else for testing purposes.
type TimerController interface {
// Reset follows the same semantics as with time.Timer.Reset.
Reset(d time.Duration) bool
// Stop follows the same semantics as with time.Timer.Stop.
Stop() bool
}
// StdClock is a simple implementation of Clock using the relevant funcs in the
// std/time package.
type StdClock struct{}
// Now calls time.Now.
func (StdClock) Now() time.Time {
return time.Now()
}
// NewTimer calls time.NewTimer. As an interface does not allow for struct
// members and other packages cannot add receivers to another package, the
// channel is also returned because it would be otherwise inaccessible.
func (StdClock) NewTimer(d time.Duration) (TimerController, <-chan time.Time) {
t := time.NewTimer(d)
return t, t.C
}
// NewTicker calls time.NewTicker. As an interface does not allow for struct
// members and other packages cannot add receivers to another package, the
// channel is also returned because it would be otherwise inaccessible.
func (StdClock) NewTicker(d time.Duration) (TickerController, <-chan time.Time) {
t := time.NewTicker(d)
return t, t.C
}
// AfterFunc calls time.AfterFunc.
func (StdClock) AfterFunc(d time.Duration, f func()) TimerController {
return time.AfterFunc(d, f)
}
// Since calls time.Since.
func (StdClock) Since(t time.Time) time.Duration {
return time.Since(t)
}
// GoDuration is a [time.Duration] but JSON serializes with [time.Duration.String].
//
// Note that this format is specific to Go and non-standard,
// but excels in being most humanly readable compared to alternatives.
// The wider industry still lacks consensus for the representation
// of a time duration in humanly-readable text.
// See https://go.dev/issue/71631 for more discussion.
//
// Regardless of how the industry evolves into the future,
// this type explicitly uses the Go format.
type GoDuration struct{ time.Duration }
var (
_ encoding.TextAppender = (*GoDuration)(nil)
_ encoding.TextMarshaler = (*GoDuration)(nil)
_ encoding.TextUnmarshaler = (*GoDuration)(nil)
)
func (d GoDuration) AppendText(b []byte) ([]byte, error) {
// The String method is inlineable (see https://go.dev/cl/520602),
// so this may not allocate since the string does not escape.
return append(b, d.String()...), nil
}
func (d GoDuration) MarshalText() ([]byte, error) {
return []byte(d.String()), nil
}
func (d *GoDuration) UnmarshalText(b []byte) error {
d2, err := time.ParseDuration(string(b))
if err != nil {
return err
}
d.Duration = d2
return nil
}