tailscale/prober/prober_test.go
Will Norris 3ec5be3f51 all: remove AUTHORS file and references to it
This file was never truly necessary and has never actually been used in
the history of Tailscale's open source releases.

A Brief History of AUTHORS files
---

The AUTHORS file was a pattern developed at Google, originally for
Chromium, then adopted by Go and a bunch of other projects. The problem
was that Chromium originally had a copyright line only recognizing
Google as the copyright holder. Because Google (and most open source
projects) do not require copyright assignemnt for contributions, each
contributor maintains their copyright. Some large corporate contributors
then tried to add their own name to the copyright line in the LICENSE
file or in file headers. This quickly becomes unwieldy, and puts a
tremendous burden on anyone building on top of Chromium, since the
license requires that they keep all copyright lines intact.

The compromise was to create an AUTHORS file that would list all of the
copyright holders. The LICENSE file and source file headers would then
include that list by reference, listing the copyright holder as "The
Chromium Authors".

This also become cumbersome to simply keep the file up to date with a
high rate of new contributors. Plus it's not always obvious who the
copyright holder is. Sometimes it is the individual making the
contribution, but many times it may be their employer. There is no way
for the proejct maintainer to know.

Eventually, Google changed their policy to no longer recommend trying to
keep the AUTHORS file up to date proactively, and instead to only add to
it when requested: https://opensource.google/docs/releasing/authors.
They are also clear that:

> Adding contributors to the AUTHORS file is entirely within the
> project's discretion and has no implications for copyright ownership.

It was primarily added to appease a small number of large contributors
that insisted that they be recognized as copyright holders (which was
entirely their right to do). But it's not truly necessary, and not even
the most accurate way of identifying contributors and/or copyright
holders.

In practice, we've never added anyone to our AUTHORS file. It only lists
Tailscale, so it's not really serving any purpose. It also causes
confusion because Tailscalars put the "Tailscale Inc & AUTHORS" header
in other open source repos which don't actually have an AUTHORS file, so
it's ambiguous what that means.

Instead, we just acknowledge that the contributors to Tailscale (whoever
they are) are copyright holders for their individual contributions. We
also have the benefit of using the DCO (developercertificate.org) which
provides some additional certification of their right to make the
contribution.

The source file changes were purely mechanical with:

    git ls-files | xargs sed -i -e 's/\(Tailscale Inc &\) AUTHORS/\1 contributors/g'

Updates #cleanup

Change-Id: Ia101a4a3005adb9118051b3416f5a64a4a45987d
Signed-off-by: Will Norris <will@tailscale.com>
2026-01-23 15:49:45 -08:00

937 lines
27 KiB
Go

// Copyright (c) Tailscale Inc & contributors
// SPDX-License-Identifier: BSD-3-Clause
package prober
import (
"context"
"encoding/json"
"errors"
"fmt"
"io"
"net/http"
"net/http/httptest"
"net/url"
"regexp"
"strings"
"sync"
"sync/atomic"
"testing"
"time"
"github.com/google/go-cmp/cmp"
"github.com/google/go-cmp/cmp/cmpopts"
"github.com/prometheus/client_golang/prometheus/testutil"
"tailscale.com/tstest"
"tailscale.com/tsweb"
)
const (
probeInterval = 8 * time.Second // So expvars that are integer numbers of seconds change
halfProbeInterval = probeInterval / 2
quarterProbeInterval = probeInterval / 4
convergenceTimeout = time.Second
convergenceSleep = time.Millisecond
aFewMillis = 20 * time.Millisecond
)
var epoch = time.Unix(0, 0)
func TestProberTiming(t *testing.T) {
clk := newFakeTime()
p := newForTest(clk.Now, clk.NewTicker)
invoked := make(chan struct{}, 1)
notCalled := func() {
t.Helper()
select {
case <-invoked:
t.Fatal("probe was invoked earlier than expected")
default:
}
}
called := func() {
t.Helper()
select {
case <-invoked:
case <-time.After(2 * time.Second):
t.Fatal("probe wasn't invoked as expected")
}
}
p.Run("test-probe", probeInterval, nil, FuncProbe(func(context.Context) error {
invoked <- struct{}{}
return nil
}))
waitActiveProbes(t, p, clk, 1)
called()
notCalled()
clk.Advance(probeInterval + halfProbeInterval)
called()
notCalled()
clk.Advance(quarterProbeInterval)
notCalled()
clk.Advance(probeInterval)
called()
notCalled()
}
func TestProberTimingSpread(t *testing.T) {
clk := newFakeTime()
p := newForTest(clk.Now, clk.NewTicker).WithSpread(true)
invoked := make(chan struct{}, 1)
notCalled := func() {
t.Helper()
select {
case <-invoked:
t.Fatal("probe was invoked earlier than expected")
default:
}
}
called := func() {
t.Helper()
select {
case <-invoked:
case <-time.After(2 * time.Second):
t.Fatal("probe wasn't invoked as expected")
}
}
probe := p.Run("test-spread-probe", probeInterval, nil, FuncProbe(func(context.Context) error {
invoked <- struct{}{}
return nil
}))
waitActiveProbes(t, p, clk, 1)
notCalled()
// Name of the probe (test-spread-probe) has been chosen to ensure that
// the initial delay is smaller than half of the probe interval.
clk.Advance(halfProbeInterval)
called()
notCalled()
// We need to wait until the main (non-initial) ticker in Probe.loop is
// waiting, or we could race and advance the test clock between when
// the initial delay ticker completes and before the ticker for the
// main loop is created. In this race, we'd first advance the test
// clock, then the ticker would be registered, and the test would fail
// because that ticker would never be fired.
err := tstest.WaitFor(convergenceTimeout, func() error {
clk.Lock()
defer clk.Unlock()
for _, tick := range clk.tickers {
tick.Lock()
stopped, interval := tick.stopped, tick.interval
tick.Unlock()
if stopped {
continue
}
// Test for the main loop, not the initialDelay
if interval == probe.interval {
return nil
}
}
return fmt.Errorf("no ticker with interval %d found", probe.interval)
})
if err != nil {
t.Fatal(err)
}
clk.Advance(quarterProbeInterval)
notCalled()
clk.Advance(probeInterval)
called()
notCalled()
}
func TestProberTimeout(t *testing.T) {
clk := newFakeTime()
p := newForTest(clk.Now, clk.NewTicker)
var done sync.WaitGroup
done.Add(1)
pfunc := FuncProbe(func(ctx context.Context) error {
defer done.Done()
select {
case <-ctx.Done():
return ctx.Err()
}
})
pfunc.Timeout = time.Microsecond
probe := p.Run("foo", 30*time.Second, nil, pfunc)
waitActiveProbes(t, p, clk, 1)
done.Wait()
probe.mu.Lock()
info := probe.probeInfoLocked()
probe.mu.Unlock()
wantInfo := ProbeInfo{
Name: "foo",
Interval: 30 * time.Second,
Labels: map[string]string{"class": "", "name": "foo"},
Status: ProbeStatusFailed,
Error: "context deadline exceeded",
RecentResults: []bool{false},
RecentLatencies: nil,
}
if diff := cmp.Diff(wantInfo, info, cmpopts.IgnoreFields(ProbeInfo{}, "Start", "End", "Latency")); diff != "" {
t.Fatalf("unexpected ProbeInfo (-want +got):\n%s", diff)
}
if got := info.Latency; got > time.Second {
t.Errorf("info.Latency = %v, want at most 1s", got)
}
}
func TestProberConcurrency(t *testing.T) {
clk := newFakeTime()
p := newForTest(clk.Now, clk.NewTicker)
var ran atomic.Int64
stopProbe := make(chan struct{})
pfunc := FuncProbe(func(ctx context.Context) error {
ran.Add(1)
<-stopProbe
return nil
})
pfunc.Timeout = time.Hour
pfunc.Concurrency = 3
p.Run("foo", time.Second, nil, pfunc)
waitActiveProbes(t, p, clk, 1)
for range 50 {
clk.Advance(time.Second)
}
if err := tstest.WaitFor(convergenceTimeout, func() error {
if got, want := ran.Load(), int64(3); got != want {
return fmt.Errorf("expected %d probes to run concurrently, got %d", want, got)
}
return nil
}); err != nil {
t.Fatal(err)
}
close(stopProbe)
}
func TestProberRun(t *testing.T) {
clk := newFakeTime()
p := newForTest(clk.Now, clk.NewTicker)
var (
mu sync.Mutex
cnt int
)
const startingProbes = 100
var probes []*Probe
for i := range startingProbes {
probes = append(probes, p.Run(fmt.Sprintf("probe%d", i), probeInterval, nil, FuncProbe(func(context.Context) error {
mu.Lock()
defer mu.Unlock()
cnt++
return nil
})))
}
checkCnt := func(want int) {
t.Helper()
err := tstest.WaitFor(convergenceTimeout, func() error {
mu.Lock()
defer mu.Unlock()
if cnt == want {
cnt = 0
return nil
}
return fmt.Errorf("wrong number of probe counter increments, got %d want %d", cnt, want)
})
if err != nil {
t.Fatal(err)
}
}
waitActiveProbes(t, p, clk, startingProbes)
checkCnt(startingProbes)
clk.Advance(probeInterval + halfProbeInterval)
checkCnt(startingProbes)
if c, err := testutil.GatherAndCount(p.metrics, "prober_result"); c != startingProbes || err != nil {
t.Fatalf("expected %d prober_result metrics; got %d (error %s)", startingProbes, c, err)
}
keep := startingProbes / 2
for i := keep; i < startingProbes; i++ {
probes[i].Close()
}
waitActiveProbes(t, p, clk, keep)
clk.Advance(probeInterval)
checkCnt(keep)
if c, err := testutil.GatherAndCount(p.metrics, "prober_result"); c != keep || err != nil {
t.Fatalf("expected %d prober_result metrics; got %d (error %s)", keep, c, err)
}
}
func TestPrometheus(t *testing.T) {
clk := newFakeTime()
p := newForTest(clk.Now, clk.NewTicker).WithMetricNamespace("probe")
var succeed atomic.Bool
p.Run("testprobe", probeInterval, map[string]string{"label": "value"}, FuncProbe(func(context.Context) error {
clk.Advance(aFewMillis)
if succeed.Load() {
return nil
}
return errors.New("failing, as instructed by test")
}))
waitActiveProbes(t, p, clk, 1)
err := tstest.WaitFor(convergenceTimeout, func() error {
want := fmt.Sprintf(`
# HELP probe_interval_secs Probe interval in seconds
# TYPE probe_interval_secs gauge
probe_interval_secs{class="",label="value",name="testprobe"} %f
# HELP probe_start_secs Latest probe start time (seconds since epoch)
# TYPE probe_start_secs gauge
probe_start_secs{class="",label="value",name="testprobe"} %d
# HELP probe_end_secs Latest probe end time (seconds since epoch)
# TYPE probe_end_secs gauge
probe_end_secs{class="",label="value",name="testprobe"} %d
# HELP probe_result Latest probe result (1 = success, 0 = failure)
# TYPE probe_result gauge
probe_result{class="",label="value",name="testprobe"} 0
`, probeInterval.Seconds(), epoch.Unix(), epoch.Add(aFewMillis).Unix())
return testutil.GatherAndCompare(p.metrics, strings.NewReader(want),
"probe_interval_secs", "probe_start_secs", "probe_end_secs", "probe_result")
})
if err != nil {
t.Fatal(err)
}
succeed.Store(true)
clk.Advance(probeInterval + halfProbeInterval)
err = tstest.WaitFor(convergenceTimeout, func() error {
start := epoch.Add(probeInterval + halfProbeInterval)
end := start.Add(aFewMillis)
want := fmt.Sprintf(`
# HELP probe_interval_secs Probe interval in seconds
# TYPE probe_interval_secs gauge
probe_interval_secs{class="",label="value",name="testprobe"} %f
# HELP probe_start_secs Latest probe start time (seconds since epoch)
# TYPE probe_start_secs gauge
probe_start_secs{class="",label="value",name="testprobe"} %d
# HELP probe_end_secs Latest probe end time (seconds since epoch)
# TYPE probe_end_secs gauge
probe_end_secs{class="",label="value",name="testprobe"} %d
# HELP probe_latency_millis Latest probe latency (ms)
# TYPE probe_latency_millis gauge
probe_latency_millis{class="",label="value",name="testprobe"} %d
# HELP probe_result Latest probe result (1 = success, 0 = failure)
# TYPE probe_result gauge
probe_result{class="",label="value",name="testprobe"} 1
`, probeInterval.Seconds(), start.Unix(), end.Unix(), aFewMillis.Milliseconds())
return testutil.GatherAndCompare(p.metrics, strings.NewReader(want),
"probe_interval_secs", "probe_start_secs", "probe_end_secs", "probe_latency_millis", "probe_result")
})
if err != nil {
t.Fatal(err)
}
}
func TestOnceMode(t *testing.T) {
clk := newFakeTime()
p := newForTest(clk.Now, clk.NewTicker).WithOnce(true)
p.Run("probe1", probeInterval, nil, FuncProbe(func(context.Context) error { return nil }))
p.Run("probe2", probeInterval, nil, FuncProbe(func(context.Context) error { return fmt.Errorf("error2") }))
p.Run("probe3", probeInterval, nil, FuncProbe(func(context.Context) error {
p.Run("probe4", probeInterval, nil, FuncProbe(func(context.Context) error {
return fmt.Errorf("error4")
}))
return nil
}))
p.Wait()
wantCount := 4
for _, metric := range []string{"prober_result", "prober_end_secs"} {
if c, err := testutil.GatherAndCount(p.metrics, metric); c != wantCount || err != nil {
t.Fatalf("expected %d %s metrics; got %d (error %s)", wantCount, metric, c, err)
}
}
}
func TestProberProbeInfo(t *testing.T) {
clk := newFakeTime()
p := newForTest(clk.Now, clk.NewTicker).WithOnce(true)
p.Run("probe1", probeInterval, nil, FuncProbe(func(context.Context) error {
clk.Advance(500 * time.Millisecond)
return nil
}))
p.Run("probe2", probeInterval, nil, FuncProbe(func(context.Context) error { return fmt.Errorf("error2") }))
p.Wait()
info := p.ProbeInfo()
wantInfo := map[string]ProbeInfo{
"probe1": {
Name: "probe1",
Interval: probeInterval,
Labels: map[string]string{"class": "", "name": "probe1"},
Latency: 500 * time.Millisecond,
Status: ProbeStatusSucceeded,
RecentResults: []bool{true},
RecentLatencies: []time.Duration{500 * time.Millisecond},
},
"probe2": {
Name: "probe2",
Interval: probeInterval,
Labels: map[string]string{"class": "", "name": "probe2"},
Status: ProbeStatusFailed,
Error: "error2",
RecentResults: []bool{false},
RecentLatencies: nil, // no latency for failed probes
},
}
if diff := cmp.Diff(wantInfo, info, cmpopts.IgnoreFields(ProbeInfo{}, "Start", "End")); diff != "" {
t.Fatalf("unexpected ProbeInfo (-want +got):\n%s", diff)
}
}
func TestProbeInfoRecent(t *testing.T) {
type probeResult struct {
latency time.Duration
err error
}
tests := []struct {
name string
results []probeResult
wantProbeInfo ProbeInfo
wantRecentSuccessRatio float64
wantRecentMedianLatency time.Duration
}{
{
name: "no_runs",
wantProbeInfo: ProbeInfo{Status: ProbeStatusUnknown},
wantRecentSuccessRatio: 0,
wantRecentMedianLatency: 0,
},
{
name: "single_success",
results: []probeResult{{latency: 100 * time.Millisecond, err: nil}},
wantProbeInfo: ProbeInfo{
Latency: 100 * time.Millisecond,
Status: ProbeStatusSucceeded,
RecentResults: []bool{true},
RecentLatencies: []time.Duration{100 * time.Millisecond},
},
wantRecentSuccessRatio: 1,
wantRecentMedianLatency: 100 * time.Millisecond,
},
{
name: "single_failure",
results: []probeResult{{latency: 100 * time.Millisecond, err: errors.New("error123")}},
wantProbeInfo: ProbeInfo{
Status: ProbeStatusFailed,
RecentResults: []bool{false},
RecentLatencies: nil,
Error: "error123",
},
wantRecentSuccessRatio: 0,
wantRecentMedianLatency: 0,
},
{
name: "recent_mix",
results: []probeResult{
{latency: 10 * time.Millisecond, err: errors.New("error1")},
{latency: 20 * time.Millisecond, err: nil},
{latency: 30 * time.Millisecond, err: nil},
{latency: 40 * time.Millisecond, err: errors.New("error4")},
{latency: 50 * time.Millisecond, err: nil},
{latency: 60 * time.Millisecond, err: nil},
{latency: 70 * time.Millisecond, err: errors.New("error7")},
{latency: 80 * time.Millisecond, err: nil},
},
wantProbeInfo: ProbeInfo{
Status: ProbeStatusSucceeded,
Latency: 80 * time.Millisecond,
RecentResults: []bool{false, true, true, false, true, true, false, true},
RecentLatencies: []time.Duration{
20 * time.Millisecond,
30 * time.Millisecond,
50 * time.Millisecond,
60 * time.Millisecond,
80 * time.Millisecond,
},
},
wantRecentSuccessRatio: 0.625,
wantRecentMedianLatency: 50 * time.Millisecond,
},
{
name: "only_last_10",
results: []probeResult{
{latency: 10 * time.Millisecond, err: errors.New("old_error")},
{latency: 20 * time.Millisecond, err: nil},
{latency: 30 * time.Millisecond, err: nil},
{latency: 40 * time.Millisecond, err: nil},
{latency: 50 * time.Millisecond, err: nil},
{latency: 60 * time.Millisecond, err: nil},
{latency: 70 * time.Millisecond, err: nil},
{latency: 80 * time.Millisecond, err: nil},
{latency: 90 * time.Millisecond, err: nil},
{latency: 100 * time.Millisecond, err: nil},
{latency: 110 * time.Millisecond, err: nil},
},
wantProbeInfo: ProbeInfo{
Status: ProbeStatusSucceeded,
Latency: 110 * time.Millisecond,
RecentResults: []bool{true, true, true, true, true, true, true, true, true, true},
RecentLatencies: []time.Duration{
20 * time.Millisecond,
30 * time.Millisecond,
40 * time.Millisecond,
50 * time.Millisecond,
60 * time.Millisecond,
70 * time.Millisecond,
80 * time.Millisecond,
90 * time.Millisecond,
100 * time.Millisecond,
110 * time.Millisecond,
},
},
wantRecentSuccessRatio: 1,
wantRecentMedianLatency: 70 * time.Millisecond,
},
}
clk := newFakeTime()
p := newForTest(clk.Now, clk.NewTicker).WithOnce(true)
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
probe := newProbe(p, "", probeInterval, nil, FuncProbe(func(context.Context) error { return nil }))
for _, r := range tt.results {
probe.recordStart()
clk.Advance(r.latency)
probe.recordEndLocked(r.err)
}
probe.mu.Lock()
info := probe.probeInfoLocked()
probe.mu.Unlock()
if diff := cmp.Diff(tt.wantProbeInfo, info, cmpopts.IgnoreFields(ProbeInfo{}, "Start", "End", "Interval")); diff != "" {
t.Fatalf("unexpected ProbeInfo (-want +got):\n%s", diff)
}
if got := info.RecentSuccessRatio(); got != tt.wantRecentSuccessRatio {
t.Errorf("recentSuccessRatio() = %v, want %v", got, tt.wantRecentSuccessRatio)
}
if got := info.RecentMedianLatency(); got != tt.wantRecentMedianLatency {
t.Errorf("recentMedianLatency() = %v, want %v", got, tt.wantRecentMedianLatency)
}
})
}
}
func TestProberRunHandler(t *testing.T) {
clk := newFakeTime()
tests := []struct {
name string
probeFunc func(context.Context) error
wantResponseCode int
wantJSONResponse RunHandlerResponse
wantPlaintextResponse *regexp.Regexp
}{
{
name: "success",
probeFunc: func(context.Context) error { return nil },
wantResponseCode: 200,
wantJSONResponse: RunHandlerResponse{
ProbeInfo: ProbeInfo{
Name: "success",
Interval: probeInterval,
Status: ProbeStatusSucceeded,
RecentResults: []bool{true, true},
},
PreviousSuccessRatio: 1,
},
wantPlaintextResponse: regexp.MustCompile("(?s)Probe succeeded .*Last 2 probes.*success rate 100%"),
},
{
name: "failure",
probeFunc: func(context.Context) error { return fmt.Errorf("error123") },
wantResponseCode: 424,
wantJSONResponse: RunHandlerResponse{
ProbeInfo: ProbeInfo{
Name: "failure",
Interval: probeInterval,
Status: ProbeStatusFailed,
Error: "error123",
RecentResults: []bool{false, false},
},
},
wantPlaintextResponse: regexp.MustCompile("(?s)Probe failed: .*Last 2 probes.*success rate 0%"),
},
}
for _, tt := range tests {
for _, reqJSON := range []bool{true, false} {
t.Run(fmt.Sprintf("%s_json-%v", tt.name, reqJSON), func(t *testing.T) {
p := newForTest(clk.Now, clk.NewTicker).WithOnce(true)
probe := p.Run(tt.name, probeInterval, nil, FuncProbe(tt.probeFunc))
defer probe.Close()
<-probe.stopped // wait for the first run.
mux := http.NewServeMux()
server := httptest.NewServer(mux)
defer server.Close()
mux.Handle("/prober/run/", tsweb.StdHandler(tsweb.ReturnHandlerFunc(p.RunHandler), tsweb.HandlerOptions{}))
req, err := http.NewRequest("GET", server.URL+"/prober/run/?name="+tt.name, nil)
if err != nil {
t.Fatalf("failed to create request: %v", err)
}
if reqJSON {
req.Header.Set("Accept", "application/json")
}
resp, err := http.DefaultClient.Do(req)
if err != nil {
t.Fatalf("failed to make request: %v", err)
}
defer resp.Body.Close()
if resp.StatusCode != tt.wantResponseCode {
t.Errorf("unexpected response code: got %d, want %d", resp.StatusCode, tt.wantResponseCode)
}
if reqJSON {
if resp.Header.Get("Content-Type") != "application/json" {
t.Errorf("unexpected content type: got %q, want application/json", resp.Header.Get("Content-Type"))
}
var gotJSON RunHandlerResponse
body, err := io.ReadAll(resp.Body)
if err != nil {
t.Fatalf("failed to read response body: %v", err)
}
if err := json.Unmarshal(body, &gotJSON); err != nil {
t.Fatalf("failed to unmarshal JSON response: %v; body: %s", err, body)
}
if diff := cmp.Diff(tt.wantJSONResponse, gotJSON, cmpopts.IgnoreFields(ProbeInfo{}, "Start", "End", "Labels", "RecentLatencies")); diff != "" {
t.Errorf("unexpected JSON response (-want +got):\n%s", diff)
}
} else {
body, _ := io.ReadAll(resp.Body)
if !tt.wantPlaintextResponse.MatchString(string(body)) {
t.Errorf("unexpected response body: got %q, want to match %q", body, tt.wantPlaintextResponse)
}
}
})
}
}
}
func TestRunAllHandler(t *testing.T) {
clk := newFakeTime()
tests := []struct {
name string
probeFunc []func(context.Context) error
wantResponseCode int
wantJSONResponse RunHandlerAllResponse
wantPlaintextResponse string
}{
{
name: "successProbe",
probeFunc: []func(context.Context) error{func(context.Context) error { return nil }, func(context.Context) error { return nil }},
wantResponseCode: http.StatusOK,
wantJSONResponse: RunHandlerAllResponse{
Results: map[string]RunHandlerResponse{
"successProbe-0": {
ProbeInfo: ProbeInfo{
Name: "successProbe-0",
Interval: probeInterval,
Status: ProbeStatusSucceeded,
RecentResults: []bool{true, true},
},
PreviousSuccessRatio: 1,
},
"successProbe-1": {
ProbeInfo: ProbeInfo{
Name: "successProbe-1",
Interval: probeInterval,
Status: ProbeStatusSucceeded,
RecentResults: []bool{true, true},
},
PreviousSuccessRatio: 1,
},
},
},
wantPlaintextResponse: "Probe successProbe-0: succeeded\n\tLast run: 0s\n\tPrevious success rate: 100.0%\n\tPrevious median latency: 0s\nProbe successProbe-1: succeeded\n\tLast run: 0s\n\tPrevious success rate: 100.0%\n\tPrevious median latency: 0s\n\n",
},
{
name: "successAndFailureProbes",
probeFunc: []func(context.Context) error{func(context.Context) error { return nil }, func(context.Context) error { return fmt.Errorf("error2") }},
wantResponseCode: http.StatusFailedDependency,
wantJSONResponse: RunHandlerAllResponse{
Results: map[string]RunHandlerResponse{
"successAndFailureProbes-0": {
ProbeInfo: ProbeInfo{
Name: "successAndFailureProbes-0",
Interval: probeInterval,
Status: ProbeStatusSucceeded,
RecentResults: []bool{true, true},
},
PreviousSuccessRatio: 1,
},
"successAndFailureProbes-1": {
ProbeInfo: ProbeInfo{
Name: "successAndFailureProbes-1",
Interval: probeInterval,
Status: ProbeStatusFailed,
Error: "error2",
RecentResults: []bool{false, false},
},
},
},
},
wantPlaintextResponse: "Probe successAndFailureProbes-0: succeeded\n\tLast run: 0s\n\tPrevious success rate: 100.0%\n\tPrevious median latency: 0s\nProbe successAndFailureProbes-1: failed\n\tLast run: 0s\n\tPrevious success rate: 0.0%\n\tPrevious median latency: 0s\n\n\tLast error: error2\n\n",
},
}
for _, tc := range tests {
t.Run(tc.name, func(t *testing.T) {
p := newForTest(clk.Now, clk.NewTicker).WithOnce(true)
for i, pfunc := range tc.probeFunc {
probe := p.Run(fmt.Sprintf("%s-%d", tc.name, i), probeInterval, nil, FuncProbe(pfunc))
defer probe.Close()
<-probe.stopped // wait for the first run.
}
mux := http.NewServeMux()
server := httptest.NewServer(mux)
defer server.Close()
mux.Handle("/prober/runall/", tsweb.StdHandler(tsweb.ReturnHandlerFunc(p.RunAllHandler), tsweb.HandlerOptions{}))
req, err := http.NewRequest("GET", server.URL+"/prober/runall", nil)
if err != nil {
t.Fatalf("failed to create request: %v", err)
}
resp, err := http.DefaultClient.Do(req)
if err != nil {
t.Fatalf("failed to make request: %v", err)
}
if resp.StatusCode != tc.wantResponseCode {
t.Errorf("unexpected response code: got %d, want %d", resp.StatusCode, tc.wantResponseCode)
}
if resp.Header.Get("Content-Type") != "application/json" {
t.Errorf("unexpected content type: got %q, want application/json", resp.Header.Get("Content-Type"))
}
var gotJSON RunHandlerAllResponse
body, err := io.ReadAll(resp.Body)
if err != nil {
t.Fatalf("failed to read response body: %v", err)
}
if err := json.Unmarshal(body, &gotJSON); err != nil {
t.Fatalf("failed to unmarshal JSON response: %v; body: %s", err, body)
}
if diff := cmp.Diff(tc.wantJSONResponse, gotJSON, cmpopts.IgnoreFields(ProbeInfo{}, "Start", "End", "Labels", "RecentLatencies")); diff != "" {
t.Errorf("unexpected JSON response (-want +got):\n%s", diff)
}
})
}
}
func TestExcludeInRunAll(t *testing.T) {
clk := newFakeTime()
p := newForTest(clk.Now, clk.NewTicker).WithOnce(true)
wantJSONResponse := RunHandlerAllResponse{
Results: map[string]RunHandlerResponse{
"includedProbe": {
ProbeInfo: ProbeInfo{
Name: "includedProbe",
Interval: probeInterval,
Status: ProbeStatusSucceeded,
RecentResults: []bool{true, true},
},
PreviousSuccessRatio: 1,
},
},
}
p.Run("includedProbe", probeInterval, nil, FuncProbe(func(context.Context) error { return nil }))
p.Run("excludedProbe", probeInterval, nil, FuncProbe(func(context.Context) error { return nil }))
p.Run("excludedOtherProbe", probeInterval, nil, FuncProbe(func(context.Context) error { return nil }))
mux := http.NewServeMux()
server := httptest.NewServer(mux)
defer server.Close()
mux.Handle("/prober/runall", tsweb.StdHandler(tsweb.ReturnHandlerFunc(p.RunAllHandler), tsweb.HandlerOptions{}))
req, err := http.NewRequest("GET", server.URL+"/prober/runall", nil)
if err != nil {
t.Fatalf("failed to create request: %v", err)
}
// Exclude probes with "excluded" in their name
req.URL.RawQuery = url.Values{
"exclude": []string{"excludedProbe", "excludedOtherProbe"},
}.Encode()
resp, err := http.DefaultClient.Do(req)
if err != nil {
t.Fatalf("failed to make request: %v", err)
}
if resp.StatusCode != http.StatusOK {
t.Errorf("unexpected response code: got %d, want %d", resp.StatusCode, http.StatusOK)
}
var gotJSON RunHandlerAllResponse
body, err := io.ReadAll(resp.Body)
if err != nil {
t.Fatalf("failed to read response body: %v", err)
}
if err := json.Unmarshal(body, &gotJSON); err != nil {
t.Fatalf("failed to unmarshal JSON response: %v; body: %s", err, body)
}
if resp.Header.Get("Content-Type") != "application/json" {
t.Errorf("unexpected content type: got %q, want application/json", resp.Header.Get("Content-Type"))
}
if diff := cmp.Diff(wantJSONResponse, gotJSON, cmpopts.IgnoreFields(ProbeInfo{}, "Start", "End", "Labels", "RecentLatencies")); diff != "" {
t.Errorf("unexpected JSON response (-want +got):\n%s", diff)
}
}
type fakeTicker struct {
ch chan time.Time
interval time.Duration
sync.Mutex
next time.Time
stopped bool
}
func (t *fakeTicker) Chan() <-chan time.Time {
return t.ch
}
func (t *fakeTicker) Stop() {
t.Lock()
defer t.Unlock()
t.stopped = true
}
func (t *fakeTicker) fire(now time.Time) {
t.Lock()
defer t.Unlock()
// Slight deviation from the stdlib ticker: time.Ticker will
// adjust t.next to make up for missed ticks, whereas we tick on a
// fixed interval regardless of receiver behavior. In our case
// this is fine, since we're using the ticker as a wakeup
// mechanism and not a precise timekeeping system.
select {
case t.ch <- now:
default:
}
for now.After(t.next) {
t.next = t.next.Add(t.interval)
}
}
type fakeTime struct {
sync.Mutex
*sync.Cond
curTime time.Time
tickers []*fakeTicker
}
func newFakeTime() *fakeTime {
ret := &fakeTime{
curTime: epoch,
}
ret.Cond = &sync.Cond{L: &ret.Mutex}
return ret
}
func (t *fakeTime) Now() time.Time {
t.Lock()
defer t.Unlock()
ret := t.curTime
return ret
}
func (t *fakeTime) NewTicker(d time.Duration) ticker {
t.Lock()
defer t.Unlock()
ret := &fakeTicker{
ch: make(chan time.Time, 1),
interval: d,
next: t.curTime.Add(d),
}
t.tickers = append(t.tickers, ret)
t.Cond.Broadcast()
return ret
}
func (t *fakeTime) Advance(d time.Duration) {
t.Lock()
defer t.Unlock()
t.curTime = t.curTime.Add(d)
for _, tick := range t.tickers {
if t.curTime.After(tick.next) {
tick.fire(t.curTime)
}
}
}
func (t *fakeTime) activeTickers() (count int) {
t.Lock()
defer t.Unlock()
for _, tick := range t.tickers {
if !tick.stopped {
count += 1
}
}
return
}
func waitActiveProbes(t *testing.T, p *Prober, clk *fakeTime, want int) {
t.Helper()
err := tstest.WaitFor(convergenceTimeout, func() error {
if got := p.activeProbes(); got != want {
return fmt.Errorf("installed probe count is %d, want %d", got, want)
}
if got := clk.activeTickers(); got != want {
return fmt.Errorf("active ticker count is %d, want %d", got, want)
}
return nil
})
if err != nil {
t.Fatal(err)
}
}