tailscale/net/ping/ping_test.go
Will Norris 3ec5be3f51 all: remove AUTHORS file and references to it
This file was never truly necessary and has never actually been used in
the history of Tailscale's open source releases.

A Brief History of AUTHORS files
---

The AUTHORS file was a pattern developed at Google, originally for
Chromium, then adopted by Go and a bunch of other projects. The problem
was that Chromium originally had a copyright line only recognizing
Google as the copyright holder. Because Google (and most open source
projects) do not require copyright assignemnt for contributions, each
contributor maintains their copyright. Some large corporate contributors
then tried to add their own name to the copyright line in the LICENSE
file or in file headers. This quickly becomes unwieldy, and puts a
tremendous burden on anyone building on top of Chromium, since the
license requires that they keep all copyright lines intact.

The compromise was to create an AUTHORS file that would list all of the
copyright holders. The LICENSE file and source file headers would then
include that list by reference, listing the copyright holder as "The
Chromium Authors".

This also become cumbersome to simply keep the file up to date with a
high rate of new contributors. Plus it's not always obvious who the
copyright holder is. Sometimes it is the individual making the
contribution, but many times it may be their employer. There is no way
for the proejct maintainer to know.

Eventually, Google changed their policy to no longer recommend trying to
keep the AUTHORS file up to date proactively, and instead to only add to
it when requested: https://opensource.google/docs/releasing/authors.
They are also clear that:

> Adding contributors to the AUTHORS file is entirely within the
> project's discretion and has no implications for copyright ownership.

It was primarily added to appease a small number of large contributors
that insisted that they be recognized as copyright holders (which was
entirely their right to do). But it's not truly necessary, and not even
the most accurate way of identifying contributors and/or copyright
holders.

In practice, we've never added anyone to our AUTHORS file. It only lists
Tailscale, so it's not really serving any purpose. It also causes
confusion because Tailscalars put the "Tailscale Inc & AUTHORS" header
in other open source repos which don't actually have an AUTHORS file, so
it's ambiguous what that means.

Instead, we just acknowledge that the contributors to Tailscale (whoever
they are) are copyright holders for their individual contributions. We
also have the benefit of using the DCO (developercertificate.org) which
provides some additional certification of their right to make the
contribution.

The source file changes were purely mechanical with:

    git ls-files | xargs sed -i -e 's/\(Tailscale Inc &\) AUTHORS/\1 contributors/g'

Updates #cleanup

Change-Id: Ia101a4a3005adb9118051b3416f5a64a4a45987d
Signed-off-by: Will Norris <will@tailscale.com>
2026-01-23 15:49:45 -08:00

351 lines
7.4 KiB
Go

// Copyright (c) Tailscale Inc & contributors
// SPDX-License-Identifier: BSD-3-Clause
package ping
import (
"context"
"errors"
"fmt"
"net"
"testing"
"time"
"golang.org/x/net/icmp"
"golang.org/x/net/ipv4"
"golang.org/x/net/ipv6"
"tailscale.com/tstest"
"tailscale.com/util/mak"
)
var (
localhost = &net.IPAddr{IP: net.IPv4(127, 0, 0, 1)}
)
func TestPinger(t *testing.T) {
clock := &tstest.Clock{}
ctx := context.Background()
ctx, cancel := context.WithTimeout(ctx, 5*time.Second)
defer cancel()
p, closeP := mockPinger(t, clock)
defer closeP()
bodyData := []byte("data goes here")
// Start a ping in the background
r := make(chan time.Duration, 1)
go func() {
dur, err := p.Send(ctx, localhost, bodyData)
if err != nil {
t.Errorf("p.Send: %v", err)
r <- 0
} else {
r <- dur
}
}()
p.waitOutstanding(t, ctx, 1)
// Fake a response from ourself
fakeResponse := mustMarshal(t, &icmp.Message{
Type: ipv4.ICMPTypeEchoReply,
Code: ipv4.ICMPTypeEchoReply.Protocol(),
Body: &icmp.Echo{
ID: 1234,
Seq: 1,
Data: bodyData,
},
})
const fakeDuration = 100 * time.Millisecond
p.handleResponse(fakeResponse, clock.Now().Add(fakeDuration), v4Type)
select {
case dur := <-r:
want := fakeDuration
if dur != want {
t.Errorf("wanted ping response time = %d; got %d", want, dur)
}
case <-ctx.Done():
t.Fatal("did not get response by timeout")
}
}
func TestV6Pinger(t *testing.T) {
if c, err := net.ListenPacket("udp6", "::1"); err != nil {
// skip test if we can't use IPv6.
t.Skipf("IPv6 not supported: %s", err)
} else {
c.Close()
}
clock := &tstest.Clock{}
ctx := context.Background()
ctx, cancel := context.WithTimeout(ctx, 5*time.Second)
defer cancel()
p, closeP := mockPinger(t, clock)
defer closeP()
bodyData := []byte("data goes here")
// Start a ping in the background
r := make(chan time.Duration, 1)
go func() {
dur, err := p.Send(ctx, &net.IPAddr{IP: net.ParseIP("::")}, bodyData)
if err != nil {
t.Errorf("p.Send: %v", err)
r <- 0
} else {
r <- dur
}
}()
p.waitOutstanding(t, ctx, 1)
// Fake a response from ourself
fakeResponse := mustMarshal(t, &icmp.Message{
Type: ipv6.ICMPTypeEchoReply,
Code: ipv6.ICMPTypeEchoReply.Protocol(),
Body: &icmp.Echo{
ID: 1234,
Seq: 1,
Data: bodyData,
},
})
const fakeDuration = 100 * time.Millisecond
p.handleResponse(fakeResponse, clock.Now().Add(fakeDuration), v6Type)
select {
case dur := <-r:
want := fakeDuration
if dur != want {
t.Errorf("wanted ping response time = %d; got %d", want, dur)
}
case <-ctx.Done():
t.Fatal("did not get response by timeout")
}
}
func TestPingerTimeout(t *testing.T) {
ctx := context.Background()
ctx, cancel := context.WithTimeout(ctx, 5*time.Second)
defer cancel()
clock := &tstest.Clock{}
p, closeP := mockPinger(t, clock)
defer closeP()
// Send a ping in the background
r := make(chan error, 1)
go func() {
_, err := p.Send(ctx, localhost, []byte("data goes here"))
r <- err
}()
// Wait until we're blocking
p.waitOutstanding(t, ctx, 1)
// Close everything down
p.cleanupOutstanding()
// Should have got an error from the ping
err := <-r
if !errors.Is(err, net.ErrClosed) {
t.Errorf("wanted errors.Is(err, net.ErrClosed); got=%v", err)
}
}
func TestPingerMismatch(t *testing.T) {
clock := &tstest.Clock{}
ctx := context.Background()
ctx, cancel := context.WithTimeout(ctx, 1*time.Second) // intentionally short
defer cancel()
p, closeP := mockPinger(t, clock)
defer closeP()
bodyData := []byte("data goes here")
// Start a ping in the background
r := make(chan time.Duration, 1)
go func() {
dur, err := p.Send(ctx, localhost, bodyData)
if err != nil && !errors.Is(err, context.DeadlineExceeded) {
t.Errorf("p.Send: %v", err)
r <- 0
} else {
r <- dur
}
}()
p.waitOutstanding(t, ctx, 1)
// "Receive" a bunch of intentionally malformed packets that should not
// result in the Send call above returning
badPackets := []struct {
name string
pkt *icmp.Message
}{
{
name: "wrong type",
pkt: &icmp.Message{
Type: ipv4.ICMPTypeDestinationUnreachable,
Code: 0,
Body: &icmp.DstUnreach{},
},
},
{
name: "wrong id",
pkt: &icmp.Message{
Type: ipv4.ICMPTypeEchoReply,
Code: 0,
Body: &icmp.Echo{
ID: 9999,
Seq: 1,
Data: bodyData,
},
},
},
{
name: "wrong seq",
pkt: &icmp.Message{
Type: ipv4.ICMPTypeEchoReply,
Code: 0,
Body: &icmp.Echo{
ID: 1234,
Seq: 5,
Data: bodyData,
},
},
},
{
name: "bad body",
pkt: &icmp.Message{
Type: ipv4.ICMPTypeEchoReply,
Code: 0,
Body: &icmp.Echo{
ID: 1234,
Seq: 1,
// Intentionally missing first byte
Data: bodyData[1:],
},
},
},
}
const fakeDuration = 100 * time.Millisecond
tm := clock.Now().Add(fakeDuration)
for _, tt := range badPackets {
fakeResponse := mustMarshal(t, tt.pkt)
p.handleResponse(fakeResponse, tm, v4Type)
}
// Also "receive" a packet that does not unmarshal as an ICMP packet
p.handleResponse([]byte("foo"), tm, v4Type)
select {
case <-r:
t.Fatal("wanted timeout")
case <-ctx.Done():
t.Logf("test correctly timed out")
}
}
// udpingPacketConn will convert potentially ICMP destination addrs to UDP
// destination addrs in WriteTo so that a test that is intending to send ICMP
// traffic will instead send UDP traffic, without the higher level Pinger being
// aware of this difference.
type udpingPacketConn struct {
net.PacketConn
// destPort will be configured by the test to be the peer expected to respond to a ping.
destPort uint16
}
func (u *udpingPacketConn) WriteTo(body []byte, dest net.Addr) (int, error) {
switch d := dest.(type) {
case *net.IPAddr:
udpAddr := &net.UDPAddr{
IP: d.IP,
Port: int(u.destPort),
Zone: d.Zone,
}
return u.PacketConn.WriteTo(body, udpAddr)
}
return 0, fmt.Errorf("unimplemented udpingPacketConn for %T", dest)
}
func mockPinger(t *testing.T, clock *tstest.Clock) (*Pinger, func()) {
p := New(context.Background(), t.Logf, nil)
p.timeNow = clock.Now
p.Verbose = true
p.id = 1234
// In tests, we use UDP so that we can test without being root; this
// doesn't matter because we mock out the ICMP reply below to be a real
// ICMP echo reply packet.
conn4, err := net.ListenPacket("udp4", "127.0.0.1:0")
if err != nil {
t.Fatalf("net.ListenPacket: %v", err)
}
conn6, err := net.ListenPacket("udp6", "[::]:0")
if err != nil {
t.Fatalf("net.ListenPacket: %v", err)
}
conn4 = &udpingPacketConn{
destPort: 12345,
PacketConn: conn4,
}
conn6 = &udpingPacketConn{
PacketConn: conn6,
destPort: 12345,
}
mak.Set(&p.conns, v4Type, conn4)
mak.Set(&p.conns, v6Type, conn6)
done := func() {
if err := p.Close(); err != nil {
t.Errorf("error on close: %v", err)
}
}
return p, done
}
func mustMarshal(t *testing.T, m *icmp.Message) []byte {
t.Helper()
b, err := m.Marshal(nil)
if err != nil {
t.Fatal(err)
}
return b
}
func (p *Pinger) waitOutstanding(t *testing.T, ctx context.Context, count int) {
// This is a bit janky, but... we busy-loop to wait for the Send call
// to write to our map so we know that a response will be handled.
var haveMapEntry bool
for !haveMapEntry {
time.Sleep(10 * time.Millisecond)
select {
case <-ctx.Done():
t.Error("no entry in ping map before timeout")
return
default:
}
p.mu.Lock()
haveMapEntry = len(p.pings) == count
p.mu.Unlock()
}
}