tailscale/cmd/stunstamp/stunstamp.go
Will Norris 3ec5be3f51 all: remove AUTHORS file and references to it
This file was never truly necessary and has never actually been used in
the history of Tailscale's open source releases.

A Brief History of AUTHORS files
---

The AUTHORS file was a pattern developed at Google, originally for
Chromium, then adopted by Go and a bunch of other projects. The problem
was that Chromium originally had a copyright line only recognizing
Google as the copyright holder. Because Google (and most open source
projects) do not require copyright assignemnt for contributions, each
contributor maintains their copyright. Some large corporate contributors
then tried to add their own name to the copyright line in the LICENSE
file or in file headers. This quickly becomes unwieldy, and puts a
tremendous burden on anyone building on top of Chromium, since the
license requires that they keep all copyright lines intact.

The compromise was to create an AUTHORS file that would list all of the
copyright holders. The LICENSE file and source file headers would then
include that list by reference, listing the copyright holder as "The
Chromium Authors".

This also become cumbersome to simply keep the file up to date with a
high rate of new contributors. Plus it's not always obvious who the
copyright holder is. Sometimes it is the individual making the
contribution, but many times it may be their employer. There is no way
for the proejct maintainer to know.

Eventually, Google changed their policy to no longer recommend trying to
keep the AUTHORS file up to date proactively, and instead to only add to
it when requested: https://opensource.google/docs/releasing/authors.
They are also clear that:

> Adding contributors to the AUTHORS file is entirely within the
> project's discretion and has no implications for copyright ownership.

It was primarily added to appease a small number of large contributors
that insisted that they be recognized as copyright holders (which was
entirely their right to do). But it's not truly necessary, and not even
the most accurate way of identifying contributors and/or copyright
holders.

In practice, we've never added anyone to our AUTHORS file. It only lists
Tailscale, so it's not really serving any purpose. It also causes
confusion because Tailscalars put the "Tailscale Inc & AUTHORS" header
in other open source repos which don't actually have an AUTHORS file, so
it's ambiguous what that means.

Instead, we just acknowledge that the contributors to Tailscale (whoever
they are) are copyright holders for their individual contributions. We
also have the benefit of using the DCO (developercertificate.org) which
provides some additional certification of their right to make the
contribution.

The source file changes were purely mechanical with:

    git ls-files | xargs sed -i -e 's/\(Tailscale Inc &\) AUTHORS/\1 contributors/g'

Updates #cleanup

Change-Id: Ia101a4a3005adb9118051b3416f5a64a4a45987d
Signed-off-by: Will Norris <will@tailscale.com>
2026-01-23 15:49:45 -08:00

1112 lines
30 KiB
Go

// Copyright (c) Tailscale Inc & contributors
// SPDX-License-Identifier: BSD-3-Clause
// The stunstamp binary measures round-trip latency with DERPs.
package main
import (
"bytes"
"cmp"
"context"
"crypto/tls"
"encoding/json"
"errors"
"flag"
"fmt"
"io"
"log"
"math"
"math/rand/v2"
"net"
"net/http"
"net/netip"
"net/url"
"os"
"os/signal"
"runtime"
"slices"
"strconv"
"strings"
"sync"
"syscall"
"time"
"github.com/golang/snappy"
"github.com/prometheus/prometheus/prompb"
"github.com/tcnksm/go-httpstat"
"tailscale.com/net/stun"
"tailscale.com/net/tcpinfo"
"tailscale.com/tailcfg"
"tailscale.com/util/backoff"
)
var (
flagDERPMap = flag.String("derp-map", "https://login.tailscale.com/derpmap/default", "URL to DERP map")
flagInterval = flag.Duration("interval", time.Minute, "interval to probe at in time.ParseDuration() format")
flagIPv6 = flag.Bool("ipv6", false, "probe IPv6 addresses")
flagRemoteWriteURL = flag.String("rw-url", "", "prometheus remote write URL")
flagInstance = flag.String("instance", "", "instance label value; defaults to hostname if unspecified")
flagSTUNDstPorts = flag.String("stun-dst-ports", "", "comma-separated list of STUN destination ports to monitor")
flagHTTPSDstPorts = flag.String("https-dst-ports", "", "comma-separated list of HTTPS destination ports to monitor")
flagTCPDstPorts = flag.String("tcp-dst-ports", "", "comma-separated list of TCP destination ports to monitor")
flagICMP = flag.Bool("icmp", false, "probe ICMP")
)
const (
// maxTxJitter is the upper bounds for jitter introduced across probes
maxTXJitter = time.Millisecond * 400
// minInterval is the minimum allowed probe interval/step
minInterval = time.Second * 10
// txRxTimeout is the timeout value used for kernel timestamping loopback,
// and packet receive operations
txRxTimeout = time.Second * 2
// maxBufferDuration is the maximum duration (maxBufferDuration /
// *flagInterval steps worth) of buffered data that can be held in memory
// before data loss occurs around prometheus unavailability.
maxBufferDuration = time.Hour
)
func getDERPMap(ctx context.Context, url string) (*tailcfg.DERPMap, error) {
req, err := http.NewRequestWithContext(ctx, "GET", url, nil)
if err != nil {
return nil, err
}
resp, err := http.DefaultClient.Do(req)
if err != nil {
return nil, err
}
defer resp.Body.Close()
if resp.StatusCode != 200 {
return nil, fmt.Errorf("non-200 derp map resp: %d", resp.StatusCode)
}
dm := tailcfg.DERPMap{}
err = json.NewDecoder(resp.Body).Decode(&dm)
if err != nil {
return nil, fmt.Errorf("failed to decode derp map resp: %v", err)
}
return &dm, nil
}
type timestampSource int
const (
timestampSourceUserspace timestampSource = iota
timestampSourceKernel
)
func (t timestampSource) String() string {
switch t {
case timestampSourceUserspace:
return "userspace"
case timestampSourceKernel:
return "kernel"
default:
return "unknown"
}
}
type protocol string
const (
protocolSTUN protocol = "stun"
protocolICMP protocol = "icmp"
protocolHTTPS protocol = "https"
protocolTCP protocol = "tcp"
)
// resultKey contains the stable dimensions and their values for a given
// timeseries, i.e. not time and not rtt/timeout.
type resultKey struct {
meta nodeMeta
timestampSource timestampSource
connStability connStability
protocol protocol
dstPort int
}
type result struct {
key resultKey
at time.Time
rtt *time.Duration // nil signifies failure, e.g. timeout
}
type lportsPool struct {
sync.Mutex
ports []int
}
func (pl *lportsPool) get() int {
pl.Lock()
defer pl.Unlock()
ret := pl.ports[0]
pl.ports = append(pl.ports[:0], pl.ports[1:]...)
return ret
}
func (pl *lportsPool) put(i int) {
pl.Lock()
defer pl.Unlock()
pl.ports = append(pl.ports, int(i))
}
var (
lports *lportsPool
)
const (
lportPoolSize = 16000
lportBase = 2048
)
func init() {
lports = &lportsPool{
ports: make([]int, 0, lportPoolSize),
}
for i := lportBase; i < lportBase+lportPoolSize; i++ {
lports.ports = append(lports.ports, i)
}
}
// lportForTCPConn satisfies io.ReadWriteCloser, but is really just used to pass
// around a persistent laddr for stableConn purposes. The underlying TCP
// connection is not created until measurement time as in some cases we need to
// measure dial time.
type lportForTCPConn int
func (lp *lportForTCPConn) Close() error {
if *lp == 0 {
return nil
}
lports.put(int(*lp))
return nil
}
func (lp *lportForTCPConn) Write([]byte) (int, error) {
return 0, errors.New("unimplemented")
}
func (lp *lportForTCPConn) Read([]byte) (int, error) {
return 0, errors.New("unimplemented")
}
func addrInUse(err error, lport *lportForTCPConn) bool {
if errors.Is(err, syscall.EADDRINUSE) {
old := int(*lport)
// abandon port, don't return it to pool
*lport = lportForTCPConn(lports.get()) // get a new port
log.Printf("EADDRINUSE: %v old: %d new: %d", err, old, *lport)
return true
}
return false
}
func tcpDial(ctx context.Context, lport *lportForTCPConn, dst netip.AddrPort) (net.Conn, error) {
for {
var opErr error
dialer := &net.Dialer{
LocalAddr: &net.TCPAddr{
Port: int(*lport),
},
Control: func(network, address string, c syscall.RawConn) error {
return c.Control(func(fd uintptr) {
// we may restart faster than TIME_WAIT can clear
opErr = setSOReuseAddr(fd)
})
},
}
if opErr != nil {
panic(opErr)
}
tcpConn, err := dialer.DialContext(ctx, "tcp", dst.String())
if err != nil {
if addrInUse(err, lport) {
continue
}
return nil, err
}
return tcpConn, nil
}
}
type tempError struct {
error
}
func (t tempError) Temporary() bool {
return true
}
func measureTCPRTT(conn io.ReadWriteCloser, _ string, dst netip.AddrPort) (rtt time.Duration, err error) {
lport, ok := conn.(*lportForTCPConn)
if !ok {
return 0, fmt.Errorf("unexpected conn type: %T", conn)
}
// Set a dial timeout < 1s (TCP_TIMEOUT_INIT on Linux) as a means to avoid
// SYN retries, which can contribute to tcpi->rtt below. This simply limits
// retries from the initiator, but SYN+ACK on the reverse path can also
// time out and be retransmitted.
ctx, cancel := context.WithTimeout(context.Background(), time.Millisecond*750)
defer cancel()
tcpConn, err := tcpDial(ctx, lport, dst)
if err != nil {
return 0, tempError{err}
}
defer tcpConn.Close()
// This is an unreliable method to measure TCP RTT. The Linux kernel
// describes it as such in tcp_rtt_estimator(). We take some care in how we
// hold tcp_info->rtt here, e.g. clamping dial timeout, but if we are to
// actually use this elsewhere as an input to some decision it warrants a
// deeper study and consideration for alternative methods. Its usefulness
// here is as a point of comparison against the other methods.
rtt, err = tcpinfo.RTT(tcpConn)
if err != nil {
return 0, tempError{err}
}
return rtt, nil
}
func measureHTTPSRTT(conn io.ReadWriteCloser, hostname string, dst netip.AddrPort) (rtt time.Duration, err error) {
lport, ok := conn.(*lportForTCPConn)
if !ok {
return 0, fmt.Errorf("unexpected conn type: %T", conn)
}
var httpResult httpstat.Result
// 5s mirrors net/netcheck.overallProbeTimeout used in net/netcheck.Client.measureHTTPSLatency.
reqCtx, cancel := context.WithTimeout(httpstat.WithHTTPStat(context.Background(), &httpResult), time.Second*5)
defer cancel()
reqURL := "https://" + dst.String() + "/derp/latency-check"
req, err := http.NewRequestWithContext(reqCtx, "GET", reqURL, nil)
if err != nil {
return 0, err
}
client := &http.Client{}
// 1.5s mirrors derp/derphttp.dialnodeTimeout used in derp/derphttp.DialNode().
dialCtx, dialCancel := context.WithTimeout(reqCtx, time.Millisecond*1500)
defer dialCancel()
tcpConn, err := tcpDial(dialCtx, lport, dst)
if err != nil {
return 0, tempError{err}
}
defer tcpConn.Close()
tlsConn := tls.Client(tcpConn, &tls.Config{
ServerName: hostname,
})
// Mirror client/netcheck behavior, which handshakes before handing the
// tlsConn over to the http.Client via http.Transport
err = tlsConn.Handshake()
if err != nil {
return 0, tempError{err}
}
tlsConnCh := make(chan net.Conn, 1)
tlsConnCh <- tlsConn
tr := &http.Transport{
DialTLSContext: func(ctx context.Context, network string, addr string) (net.Conn, error) {
select {
case tlsConn := <-tlsConnCh:
return tlsConn, nil
default:
return nil, errors.New("unexpected second call of DialTLSContext")
}
},
}
client.Transport = tr
resp, err := client.Do(req)
if err != nil {
return 0, tempError{err}
}
if resp.StatusCode/100 != 2 {
return 0, tempError{fmt.Errorf("unexpected status code: %d", resp.StatusCode)}
}
defer resp.Body.Close()
_, err = io.Copy(io.Discard, io.LimitReader(resp.Body, 8<<10))
if err != nil {
return 0, tempError{err}
}
httpResult.End(time.Now())
return httpResult.ServerProcessing, nil
}
func measureSTUNRTT(conn io.ReadWriteCloser, _ string, dst netip.AddrPort) (rtt time.Duration, err error) {
uconn, ok := conn.(*net.UDPConn)
if !ok {
return 0, fmt.Errorf("unexpected conn type: %T", conn)
}
err = uconn.SetReadDeadline(time.Now().Add(txRxTimeout))
if err != nil {
return 0, fmt.Errorf("error setting read deadline: %w", err)
}
txID := stun.NewTxID()
req := stun.Request(txID)
txAt := time.Now()
_, err = uconn.WriteToUDP(req, &net.UDPAddr{
IP: dst.Addr().AsSlice(),
Port: int(dst.Port()),
})
if err != nil {
return 0, fmt.Errorf("error writing to udp socket: %w", err)
}
b := make([]byte, 1460)
for {
n, err := uconn.Read(b)
rxAt := time.Now()
if err != nil {
return 0, fmt.Errorf("error reading from udp socket: %w", err)
}
gotTxID, _, err := stun.ParseResponse(b[:n])
if err != nil || gotTxID != txID {
continue
}
return rxAt.Sub(txAt), nil
}
}
func isTemporaryOrTimeoutErr(err error) bool {
if errors.Is(err, os.ErrDeadlineExceeded) || errors.Is(err, context.DeadlineExceeded) {
return true
}
if err, ok := err.(interface{ Temporary() bool }); ok {
return err.Temporary()
}
return false
}
type nodeMeta struct {
regionID int
regionCode string
hostname string
addr netip.Addr
}
type measureFn func(conn io.ReadWriteCloser, hostname string, dst netip.AddrPort) (rtt time.Duration, err error)
// nodeMetaFromDERPMap parses the provided DERP map in order to update nodeMeta
// in the provided nodeMetaByAddr. It returns a slice of nodeMeta containing
// the nodes that are no longer seen in the DERP map, but were previously held
// in nodeMetaByAddr.
func nodeMetaFromDERPMap(dm *tailcfg.DERPMap, nodeMetaByAddr map[netip.Addr]nodeMeta, ipv6 bool) (stale []nodeMeta, err error) {
// Parse the new derp map before making any state changes in nodeMetaByAddr.
// If parse fails we just stick with the old state.
updated := make(map[netip.Addr]nodeMeta)
for regionID, region := range dm.Regions {
for _, node := range region.Nodes {
v4, err := netip.ParseAddr(node.IPv4)
if err != nil || !v4.Is4() {
return nil, fmt.Errorf("invalid ipv4 addr for node in derp map: %v", node.Name)
}
metas := make([]nodeMeta, 0, 2)
metas = append(metas, nodeMeta{
regionID: regionID,
regionCode: region.RegionCode,
hostname: node.HostName,
addr: v4,
})
if ipv6 {
v6, err := netip.ParseAddr(node.IPv6)
if err != nil || !v6.Is6() {
return nil, fmt.Errorf("invalid ipv6 addr for node in derp map: %v", node.Name)
}
metas = append(metas, metas[0])
metas[1].addr = v6
}
for _, meta := range metas {
updated[meta.addr] = meta
}
}
}
// Find nodeMeta that have changed
for addr, updatedMeta := range updated {
previousMeta, ok := nodeMetaByAddr[addr]
if ok {
if previousMeta == updatedMeta {
continue
}
stale = append(stale, previousMeta)
nodeMetaByAddr[addr] = updatedMeta
} else {
nodeMetaByAddr[addr] = updatedMeta
}
}
// Find nodeMeta that no longer exist
for addr, potentialStale := range nodeMetaByAddr {
_, ok := updated[addr]
if !ok {
stale = append(stale, potentialStale)
}
}
return stale, nil
}
type connAndMeasureFn struct {
conn io.ReadWriteCloser
fn measureFn
}
// newConnAndMeasureFn returns a connAndMeasureFn or an error. It may return
// nil for both if some combination of the supplied timestampSource, protocol,
// or connStability is unsupported.
func newConnAndMeasureFn(forDst netip.Addr, source timestampSource, protocol protocol, stable connStability) (*connAndMeasureFn, error) {
info := getProtocolSupportInfo(protocol)
if !info.stableConn && bool(stable) {
return nil, nil
}
if !info.userspaceTS && source == timestampSourceUserspace {
return nil, nil
}
if !info.kernelTS && source == timestampSourceKernel {
return nil, nil
}
switch protocol {
case protocolSTUN:
if source == timestampSourceKernel {
conn, err := getUDPConnKernelTimestamp()
if err != nil {
return nil, err
}
return &connAndMeasureFn{
conn: conn,
fn: measureSTUNRTTKernel,
}, nil
} else {
conn, err := net.ListenUDP("udp", &net.UDPAddr{})
if err != nil {
return nil, err
}
return &connAndMeasureFn{
conn: conn,
fn: measureSTUNRTT,
}, nil
}
case protocolICMP:
conn, err := getICMPConn(forDst, source)
if err != nil {
return nil, err
}
return &connAndMeasureFn{
conn: conn,
fn: mkICMPMeasureFn(source),
}, nil
case protocolHTTPS:
localPort := 0
if stable {
localPort = lports.get()
}
conn := lportForTCPConn(localPort)
return &connAndMeasureFn{
conn: &conn,
fn: measureHTTPSRTT,
}, nil
case protocolTCP:
localPort := 0
if stable {
localPort = lports.get()
}
conn := lportForTCPConn(localPort)
return &connAndMeasureFn{
conn: &conn,
fn: measureTCPRTT,
}, nil
}
return nil, errors.New("unknown protocol")
}
type stableConnKey struct {
node netip.Addr
protocol protocol
port int
}
type protocolSupportInfo struct {
kernelTS bool
userspaceTS bool
stableConn bool
}
func getConns(
stableConns map[stableConnKey][2]*connAndMeasureFn,
addr netip.Addr,
protocol protocol,
dstPort int,
) (stable, unstable [2]*connAndMeasureFn, err error) {
key := stableConnKey{addr, protocol, dstPort}
defer func() {
if err != nil {
for _, source := range []timestampSource{timestampSourceUserspace, timestampSourceKernel} {
c := stable[source]
if c != nil {
c.conn.Close()
}
c = unstable[source]
if c != nil {
c.conn.Close()
}
}
}
}()
var ok bool
stable, ok = stableConns[key]
if !ok {
for _, source := range []timestampSource{timestampSourceUserspace, timestampSourceKernel} {
var cf *connAndMeasureFn
cf, err = newConnAndMeasureFn(addr, source, protocol, stableConn)
if err != nil {
return
}
stable[source] = cf
}
stableConns[key] = stable
}
for _, source := range []timestampSource{timestampSourceUserspace, timestampSourceKernel} {
var cf *connAndMeasureFn
cf, err = newConnAndMeasureFn(addr, source, protocol, unstableConn)
if err != nil {
return
}
unstable[source] = cf
}
return stable, unstable, nil
}
// probeNodes measures the round-trip time for the protocols and ports described
// by portsByProtocol against the DERP nodes described by nodeMetaByAddr.
// stableConns are used to recycle connections across calls to probeNodes.
// probeNodes is also responsible for trimming stableConns based on node
// lifetime in nodeMetaByAddr. It returns the results or an error if one occurs.
func probeNodes(nodeMetaByAddr map[netip.Addr]nodeMeta, stableConns map[stableConnKey][2]*connAndMeasureFn, portsByProtocol map[protocol][]int) ([]result, error) {
wg := sync.WaitGroup{}
results := make([]result, 0)
resultsCh := make(chan result)
errCh := make(chan error)
doneCh := make(chan struct{})
numProbes := 0
at := time.Now()
addrsToProbe := make(map[netip.Addr]bool)
doProbe := func(cf *connAndMeasureFn, meta nodeMeta, source timestampSource, stable connStability, protocol protocol, dstPort int) {
defer wg.Done()
r := result{
key: resultKey{
meta: meta,
timestampSource: source,
connStability: stable,
dstPort: dstPort,
protocol: protocol,
},
at: at,
}
time.Sleep(rand.N(maxTXJitter)) // jitter across tx
addrPort := netip.AddrPortFrom(meta.addr, uint16(dstPort))
rtt, err := cf.fn(cf.conn, meta.hostname, addrPort)
if err != nil {
if isTemporaryOrTimeoutErr(err) {
r.rtt = nil
log.Printf("%s: temp error measuring RTT to %s(%s): %v", protocol, meta.hostname, addrPort, err)
} else {
select {
case <-doneCh:
return
case errCh <- fmt.Errorf("%s: %v", protocol, err):
return
}
}
} else {
r.rtt = &rtt
}
select {
case <-doneCh:
case resultsCh <- r:
}
}
for _, meta := range nodeMetaByAddr {
addrsToProbe[meta.addr] = true
for p, ports := range portsByProtocol {
for _, port := range ports {
stable, unstable, err := getConns(stableConns, meta.addr, p, port)
if err != nil {
close(doneCh)
wg.Wait()
return nil, err
}
for i, cf := range stable {
if cf != nil {
wg.Add(1)
numProbes++
go doProbe(cf, meta, timestampSource(i), stableConn, p, port)
}
}
for i, cf := range unstable {
if cf != nil {
wg.Add(1)
numProbes++
go doProbe(cf, meta, timestampSource(i), unstableConn, p, port)
}
}
}
}
}
// cleanup conns we no longer need
for k, cf := range stableConns {
if !addrsToProbe[k.node] {
if cf[timestampSourceKernel] != nil {
cf[timestampSourceKernel].conn.Close()
}
cf[timestampSourceUserspace].conn.Close()
delete(stableConns, k)
}
}
for {
select {
case err := <-errCh:
close(doneCh)
wg.Wait()
return nil, err
case result := <-resultsCh:
results = append(results, result)
if len(results) == numProbes {
return results, nil
}
}
}
}
type connStability bool
const (
unstableConn connStability = false
stableConn connStability = true
)
const (
rttMetricName = "stunstamp_derp_rtt_ns"
timeoutsMetricName = "stunstamp_derp_timeouts_total"
)
func timeSeriesLabels(metricName string, meta nodeMeta, instance string, source timestampSource, stability connStability, protocol protocol, dstPort int) []prompb.Label {
addressFamily := "ipv4"
if meta.addr.Is6() {
addressFamily = "ipv6"
}
labels := make([]prompb.Label, 0)
labels = append(labels, prompb.Label{
Name: "job",
Value: "stunstamp-rw",
})
labels = append(labels, prompb.Label{
Name: "instance",
Value: instance,
})
labels = append(labels, prompb.Label{
Name: "region_id",
Value: fmt.Sprintf("%d", meta.regionID),
})
labels = append(labels, prompb.Label{
Name: "region_code",
Value: meta.regionCode,
})
labels = append(labels, prompb.Label{
Name: "address_family",
Value: addressFamily,
})
labels = append(labels, prompb.Label{
Name: "hostname",
Value: meta.hostname,
})
labels = append(labels, prompb.Label{
Name: "protocol",
Value: string(protocol),
})
labels = append(labels, prompb.Label{
Name: "dst_port",
Value: strconv.Itoa(dstPort),
})
labels = append(labels, prompb.Label{
Name: "__name__",
Value: metricName,
})
labels = append(labels, prompb.Label{
Name: "timestamp_source",
Value: source.String(),
})
labels = append(labels, prompb.Label{
Name: "stable_conn",
Value: fmt.Sprintf("%v", stability),
})
slices.SortFunc(labels, func(a, b prompb.Label) int {
// prometheus remote-write spec requires lexicographically sorted label names
return cmp.Compare(a.Name, b.Name)
})
return labels
}
const (
// https://prometheus.io/docs/concepts/remote_write_spec/#stale-markers
staleNaN uint64 = 0x7ff0000000000002
)
func staleMarkersFromNodeMeta(stale []nodeMeta, instance string, portsByProtocol map[protocol][]int) []prompb.TimeSeries {
staleMarkers := make([]prompb.TimeSeries, 0)
now := time.Now()
for p, ports := range portsByProtocol {
for _, port := range ports {
for _, s := range stale {
samples := []prompb.Sample{
{
Timestamp: now.UnixMilli(),
Value: math.Float64frombits(staleNaN),
},
}
// We send stale markers for all combinations in the interest
// of simplicity.
for _, name := range []string{rttMetricName, timeoutsMetricName} {
for _, source := range []timestampSource{timestampSourceUserspace, timestampSourceKernel} {
for _, stable := range []connStability{unstableConn, stableConn} {
staleMarkers = append(staleMarkers, prompb.TimeSeries{
Labels: timeSeriesLabels(name, s, instance, source, stable, p, port),
Samples: samples,
})
}
}
}
}
}
}
return staleMarkers
}
// resultsToPromTimeSeries returns a slice of prometheus TimeSeries for the
// provided results and instance. timeouts is updated based on results, i.e.
// all result.key's are added to timeouts if they do not exist, and removed
// from timeouts if they are not present in results.
func resultsToPromTimeSeries(results []result, instance string, timeouts map[resultKey]uint64) []prompb.TimeSeries {
all := make([]prompb.TimeSeries, 0, len(results)*2)
seenKeys := make(map[resultKey]bool)
for _, r := range results {
timeoutsCount := timeouts[r.key] // a non-existent key will return a zero val
seenKeys[r.key] = true
rttLabels := timeSeriesLabels(rttMetricName, r.key.meta, instance, r.key.timestampSource, r.key.connStability, r.key.protocol, r.key.dstPort)
rttSamples := make([]prompb.Sample, 1)
rttSamples[0].Timestamp = r.at.UnixMilli()
if r.rtt != nil {
rttSamples[0].Value = float64(*r.rtt)
} else {
rttSamples[0].Value = math.NaN()
timeoutsCount++
}
rttTS := prompb.TimeSeries{
Labels: rttLabels,
Samples: rttSamples,
}
all = append(all, rttTS)
timeouts[r.key] = timeoutsCount
timeoutsLabels := timeSeriesLabels(timeoutsMetricName, r.key.meta, instance, r.key.timestampSource, r.key.connStability, r.key.protocol, r.key.dstPort)
timeoutsSamples := make([]prompb.Sample, 1)
timeoutsSamples[0].Timestamp = r.at.UnixMilli()
timeoutsSamples[0].Value = float64(timeoutsCount)
timeoutsTS := prompb.TimeSeries{
Labels: timeoutsLabels,
Samples: timeoutsSamples,
}
all = append(all, timeoutsTS)
}
for k := range timeouts {
if !seenKeys[k] {
delete(timeouts, k)
}
}
return all
}
type remoteWriteClient struct {
c *http.Client
url string
}
type recoverableErr struct {
error
}
func newRemoteWriteClient(url string) *remoteWriteClient {
return &remoteWriteClient{
c: &http.Client{
Timeout: time.Second * 30,
},
url: url,
}
}
func (r *remoteWriteClient) write(ctx context.Context, ts []prompb.TimeSeries) error {
wr := &prompb.WriteRequest{
Timeseries: ts,
}
b, err := wr.Marshal()
if err != nil {
return fmt.Errorf("unable to marshal write request: %w", err)
}
compressed := snappy.Encode(nil, b)
req, err := http.NewRequestWithContext(ctx, "POST", r.url, bytes.NewReader(compressed))
if err != nil {
return fmt.Errorf("unable to create write request: %w", err)
}
req.Header.Add("Content-Encoding", "snappy")
req.Header.Set("Content-Type", "application/x-protobuf")
req.Header.Set("User-Agent", "stunstamp")
req.Header.Set("X-Prometheus-Remote-Write-Version", "0.1.0")
resp, err := r.c.Do(req)
if err != nil {
return recoverableErr{fmt.Errorf("error performing write request: %w", err)}
}
if resp.StatusCode/100 != 2 {
err = fmt.Errorf("remote server %s returned HTTP status %d", r.url, resp.StatusCode)
}
if resp.StatusCode/100 == 5 || resp.StatusCode == http.StatusTooManyRequests {
return recoverableErr{err}
}
return err
}
func remoteWriteTimeSeries(client *remoteWriteClient, tsCh chan []prompb.TimeSeries) {
bo := backoff.NewBackoff("remote-write", log.Printf, time.Second*30)
// writeErr may contribute to bo's backoff schedule across tsCh read ops,
// i.e. if an unrecoverable error occurs for client.write(ctx, A), that
// should be accounted against bo prior to attempting to
// client.write(ctx, B).
var writeErr error
for ts := range tsCh {
for {
bo.BackOff(context.Background(), writeErr)
reqCtx, cancel := context.WithTimeout(context.Background(), time.Second*30)
writeErr = client.write(reqCtx, ts)
cancel()
var re recoverableErr
recoverable := errors.As(writeErr, &re)
if writeErr != nil {
log.Printf("remote write error(recoverable=%v): %v", recoverable, writeErr)
}
if !recoverable {
// a nil err is not recoverable
break
}
}
}
}
func getPortsFromFlag(f string) ([]int, error) {
if len(f) == 0 {
return nil, nil
}
split := strings.Split(f, ",")
slices.Sort(split)
split = slices.Compact(split)
ports := make([]int, 0)
for _, portStr := range split {
port, err := strconv.ParseUint(portStr, 10, 16)
if err != nil {
return nil, err
}
ports = append(ports, int(port))
}
return ports, nil
}
func main() {
if runtime.GOOS != "linux" && runtime.GOOS != "darwin" {
log.Fatal("unsupported platform")
}
flag.Parse()
portsByProtocol := make(map[protocol][]int)
stunPorts, err := getPortsFromFlag(*flagSTUNDstPorts)
if err != nil {
log.Fatalf("invalid stun-dst-ports flag value: %v", err)
}
if len(stunPorts) > 0 {
portsByProtocol[protocolSTUN] = stunPorts
}
httpsPorts, err := getPortsFromFlag(*flagHTTPSDstPorts)
if err != nil {
log.Fatalf("invalid https-dst-ports flag value: %v", err)
}
if len(httpsPorts) > 0 {
portsByProtocol[protocolHTTPS] = httpsPorts
}
tcpPorts, err := getPortsFromFlag(*flagTCPDstPorts)
if err != nil {
log.Fatalf("invalid tcp-dst-ports flag value: %v", err)
}
if len(tcpPorts) > 0 {
portsByProtocol[protocolTCP] = tcpPorts
}
if *flagICMP {
portsByProtocol[protocolICMP] = []int{0}
}
if len(portsByProtocol) == 0 {
log.Fatal("nothing to probe")
}
if len(*flagDERPMap) < 1 {
log.Fatal("derp-map flag is unset")
}
if *flagInterval < minInterval || *flagInterval > maxBufferDuration {
log.Fatalf("interval must be >= %s and <= %s", minInterval, maxBufferDuration)
}
if len(*flagRemoteWriteURL) < 1 {
log.Fatal("rw-url flag is unset")
}
_, err = url.Parse(*flagRemoteWriteURL)
if err != nil {
log.Fatalf("invalid rw-url flag value: %v", err)
}
if len(*flagInstance) < 1 {
hostname, err := os.Hostname()
if err != nil {
log.Fatalf("failed to get hostname: %v", err)
}
*flagInstance = hostname
}
sigCh := make(chan os.Signal, 1)
signal.Notify(sigCh, syscall.SIGINT, syscall.SIGTERM)
dmCh := make(chan *tailcfg.DERPMap)
go func() {
bo := backoff.NewBackoff("derp-map", log.Printf, time.Second*30)
for {
ctx, cancel := context.WithTimeout(context.Background(), time.Second*10)
dm, err := getDERPMap(ctx, *flagDERPMap)
cancel()
bo.BackOff(context.Background(), err)
if err != nil {
continue
}
dmCh <- dm
return
}
}()
nodeMetaByAddr := make(map[netip.Addr]nodeMeta)
select {
case <-sigCh:
return
case dm := <-dmCh:
_, err := nodeMetaFromDERPMap(dm, nodeMetaByAddr, *flagIPv6)
if err != nil {
log.Fatalf("error parsing derp map on startup: %v", err)
}
}
tsCh := make(chan []prompb.TimeSeries, maxBufferDuration / *flagInterval)
remoteWriteDoneCh := make(chan struct{})
rwc := newRemoteWriteClient(*flagRemoteWriteURL)
go func() {
remoteWriteTimeSeries(rwc, tsCh)
close(remoteWriteDoneCh)
}()
shutdown := func() {
close(tsCh)
select {
case <-time.After(time.Second * 10): // give goroutine some time to flush
case <-remoteWriteDoneCh:
}
// send stale markers on shutdown
staleMeta := make([]nodeMeta, 0, len(nodeMetaByAddr))
for _, v := range nodeMetaByAddr {
staleMeta = append(staleMeta, v)
}
staleMarkers := staleMarkersFromNodeMeta(staleMeta, *flagInstance, portsByProtocol)
if len(staleMarkers) > 0 {
ctx, cancel := context.WithTimeout(context.Background(), time.Second*5)
rwc.write(ctx, staleMarkers)
cancel()
}
return
}
log.Println("stunstamp started")
// Re-using sockets means we get the same 5-tuple across runs. This results
// in a higher probability of the packets traversing the same underlay path.
// Comparison of stable and unstable 5-tuple results can shed light on
// differences between paths where hashing (multipathing/load balancing)
// comes into play. The inner 2 element array index is timestampSource.
stableConns := make(map[stableConnKey][2]*connAndMeasureFn)
// timeouts holds counts of timeout events. Values are persisted for the
// lifetime of the related node in the DERP map.
timeouts := make(map[resultKey]uint64)
derpMapTicker := time.NewTicker(time.Minute * 5)
defer derpMapTicker.Stop()
probeTicker := time.NewTicker(*flagInterval)
defer probeTicker.Stop()
for {
select {
case <-probeTicker.C:
results, err := probeNodes(nodeMetaByAddr, stableConns, portsByProtocol)
if err != nil {
log.Printf("unrecoverable error while probing: %v", err)
shutdown()
return
}
ts := resultsToPromTimeSeries(results, *flagInstance, timeouts)
select {
case tsCh <- ts:
default:
select {
case <-tsCh:
log.Println("prometheus remote-write buffer full, dropped measurements")
default:
tsCh <- ts
}
}
case dm := <-dmCh:
staleMeta, err := nodeMetaFromDERPMap(dm, nodeMetaByAddr, *flagIPv6)
if err != nil {
log.Printf("error parsing DERP map, continuing with stale map: %v", err)
continue
}
staleMarkers := staleMarkersFromNodeMeta(staleMeta, *flagInstance, portsByProtocol)
if len(staleMarkers) < 1 {
continue
}
select {
case tsCh <- staleMarkers:
default:
select {
case <-tsCh:
log.Println("prometheus remote-write buffer full, dropped measurements")
default:
tsCh <- staleMarkers
}
}
case <-derpMapTicker.C:
go func() {
ctx, cancel := context.WithTimeout(context.Background(), time.Second*10)
defer cancel()
updatedDM, err := getDERPMap(ctx, *flagDERPMap)
if err == nil {
dmCh <- updatedDM
}
}()
case <-sigCh:
shutdown()
return
}
}
}