prometheus/promql/parse.go
Tobias Guggenmos f5eed7ae0a PromQL: Fix panic in parser (#6650)
Fixes #6649.

The crash is fixed here, was caused because some  AST sanity checks were performed on the syntax tree while assembling it. In case of previous parsing errors this could lead to undefined behaviour.

The fix is to move the checks to the typechecking phase, which runs only when a syntax tree was assembled without there being parsing errors.

There are other places, where similiar checks are performed while assembling the syntax tree. It might be a good idea to move those to the typechecking phase, too. Should I do this in the same or a separate PR?

Signed-off-by: Tobias Guggenmos <tguggenm@redhat.com>
2020-01-17 13:06:26 +00:00

697 lines
19 KiB
Go

// Copyright 2015 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package promql
import (
"fmt"
"os"
"runtime"
"strconv"
"strings"
"sync"
"time"
"github.com/pkg/errors"
"github.com/prometheus/common/model"
"github.com/prometheus/prometheus/pkg/labels"
"github.com/prometheus/prometheus/util/strutil"
)
var parserPool = sync.Pool{
New: func() interface{} {
return &parser{}
},
}
type parser struct {
lex Lexer
inject ItemType
injecting bool
// Everytime an Item is lexed that could be the end
// of certain expressions its end position is stored here.
lastClosing Pos
yyParser yyParserImpl
generatedParserResult interface{}
parseErrors ParseErrors
}
// ParseErr wraps a parsing error with line and position context.
type ParseErr struct {
PositionRange PositionRange
Err error
Query string
// An additional line offset to be added. Only used inside unit tests.
lineOffset int
}
func (e *ParseErr) Error() string {
pos := int(e.PositionRange.Start)
lastLineBreak := -1
line := e.lineOffset + 1
var positionStr string
if pos < 0 || pos > len(e.Query) {
positionStr = "invalid position:"
} else {
for i, c := range e.Query[:e.PositionRange.Start] {
if c == '\n' {
lastLineBreak = i
line++
}
}
col := pos - lastLineBreak
positionStr = fmt.Sprintf("%d:%d:", line, col)
}
return fmt.Sprintf("%s parse error: %s", positionStr, e.Err)
}
type ParseErrors []ParseErr
// Since producing multiple error messages might look weird when combined with error wrapping,
// only the first error produced by the parser is included in the error string.
// If getting the full error list is desired, it is recommended to typecast the error returned
// by the parser to ParseErrors and work with the underlying slice.
func (errs ParseErrors) Error() string {
if len(errs) != 0 {
return errs[0].Error()
} else {
// Should never happen
// Panicking while printing an error seems like a bad idea, so the
// situation is explained in the error message instead.
return "error contains no error message"
}
}
// ParseExpr returns the expression parsed from the input.
func ParseExpr(input string) (expr Expr, err error) {
p := newParser(input)
defer parserPool.Put(p)
defer p.recover(&err)
parseResult := p.parseGenerated(START_EXPRESSION)
if parseResult != nil {
expr = parseResult.(Expr)
}
// Only typecheck when there are no syntax errors.
if len(p.parseErrors) == 0 {
p.checkType(expr)
}
if len(p.parseErrors) != 0 {
err = p.parseErrors
}
return expr, err
}
// ParseMetric parses the input into a metric
func ParseMetric(input string) (m labels.Labels, err error) {
p := newParser(input)
defer parserPool.Put(p)
defer p.recover(&err)
parseResult := p.parseGenerated(START_METRIC)
if parseResult != nil {
m = parseResult.(labels.Labels)
}
if len(p.parseErrors) != 0 {
err = p.parseErrors
}
return m, err
}
// ParseMetricSelector parses the provided textual metric selector into a list of
// label matchers.
func ParseMetricSelector(input string) (m []*labels.Matcher, err error) {
p := newParser(input)
defer parserPool.Put(p)
defer p.recover(&err)
parseResult := p.parseGenerated(START_METRIC_SELECTOR)
if parseResult != nil {
m = parseResult.(*VectorSelector).LabelMatchers
}
if len(p.parseErrors) != 0 {
err = p.parseErrors
}
return m, err
}
// newParser returns a new parser.
func newParser(input string) *parser {
p := parserPool.Get().(*parser)
p.injecting = false
p.parseErrors = nil
// Clear lexer struct before reusing.
p.lex = Lexer{
input: input,
state: lexStatements,
}
return p
}
// sequenceValue is an omittable value in a sequence of time series values.
type sequenceValue struct {
value float64
omitted bool
}
func (v sequenceValue) String() string {
if v.omitted {
return "_"
}
return fmt.Sprintf("%f", v.value)
}
type seriesDescription struct {
labels labels.Labels
values []sequenceValue
}
// parseSeriesDesc parses the description of a time series.
func parseSeriesDesc(input string) (labels labels.Labels, values []sequenceValue, err error) {
p := newParser(input)
p.lex.seriesDesc = true
defer parserPool.Put(p)
defer p.recover(&err)
parseResult := p.parseGenerated(START_SERIES_DESCRIPTION)
if parseResult != nil {
result := parseResult.(*seriesDescription)
labels = result.labels
values = result.values
}
if len(p.parseErrors) != 0 {
err = p.parseErrors
}
return labels, values, err
}
// failf formats the error and terminates processing.
func (p *parser) failf(positionRange PositionRange, format string, args ...interface{}) {
p.fail(positionRange, errors.Errorf(format, args...))
}
// fail terminates processing.
func (p *parser) fail(positionRange PositionRange, err error) {
perr := ParseErr{
PositionRange: positionRange,
Err: err,
Query: p.lex.input,
}
p.parseErrors = append(p.parseErrors, perr)
}
// unexpected creates a parser error complaining about an unexpected lexer item.
// The item that is presented as unexpected is always the last item produced
// by the lexer.
func (p *parser) unexpected(context string, expected string) {
var errMsg strings.Builder
errMsg.WriteString("unexpected ")
errMsg.WriteString(p.yyParser.lval.item.desc())
if context != "" {
errMsg.WriteString(" in ")
errMsg.WriteString(context)
}
if expected != "" {
errMsg.WriteString(", expected ")
errMsg.WriteString(expected)
}
p.fail(p.yyParser.lval.item.PositionRange(), errors.New(errMsg.String()))
}
var errUnexpected = errors.New("unexpected error")
// recover is the handler that turns panics into returns from the top level of Parse.
func (p *parser) recover(errp *error) {
e := recover()
if _, ok := e.(runtime.Error); ok {
// Print the stack trace but do not inhibit the running application.
buf := make([]byte, 64<<10)
buf = buf[:runtime.Stack(buf, false)]
fmt.Fprintf(os.Stderr, "parser panic: %v\n%s", e, buf)
*errp = errUnexpected
} else if e != nil {
*errp = e.(error)
}
}
// Lex is expected by the yyLexer interface of the yacc generated parser.
// It writes the next Item provided by the lexer to the provided pointer address.
// Comments are skipped.
//
// The yyLexer interface is currently implemented by the parser to allow
// the generated and non-generated parts to work together with regards to lookahead
// and error handling.
//
// For more information, see https://godoc.org/golang.org/x/tools/cmd/goyacc.
func (p *parser) Lex(lval *yySymType) int {
var typ ItemType
if p.injecting {
p.injecting = false
return int(p.inject)
} else {
// Skip comments.
for {
p.lex.NextItem(&lval.item)
typ = lval.item.Typ
if typ != COMMENT {
break
}
}
}
switch typ {
case ERROR:
p.failf(lval.item.PositionRange(), "%s", lval.item.Val)
p.InjectItem(0)
case EOF:
lval.item.Typ = EOF
p.InjectItem(0)
case RIGHT_BRACE, RIGHT_PAREN, RIGHT_BRACKET, DURATION:
p.lastClosing = lval.item.Pos + Pos(len(lval.item.Val))
}
return int(typ)
}
// Error is expected by the yyLexer interface of the yacc generated parser.
//
// It is a no-op since the parsers error routines are triggered
// by mechanisms that allow more fine-grained control
// For more information, see https://godoc.org/golang.org/x/tools/cmd/goyacc.
func (p *parser) Error(e string) {
}
// InjectItem allows injecting a single Item at the beginning of the token stream
// consumed by the generated parser.
// This allows having multiple start symbols as described in
// https://www.gnu.org/software/bison/manual/html_node/Multiple-start_002dsymbols.html .
// Only the Lex function used by the generated parser is affected by this injected Item.
// Trying to inject when a previously injected Item has not yet been consumed will panic.
// Only Item types that are supposed to be used as start symbols are allowed as an argument.
func (p *parser) InjectItem(typ ItemType) {
if p.injecting {
panic("cannot inject multiple Items into the token stream")
}
if typ != 0 && (typ <= startSymbolsStart || typ >= startSymbolsEnd) {
panic("cannot inject symbol that isn't start symbol")
}
p.inject = typ
p.injecting = true
}
func (p *parser) newBinaryExpression(lhs Node, op Item, modifiers Node, rhs Node) *BinaryExpr {
ret := modifiers.(*BinaryExpr)
ret.LHS = lhs.(Expr)
ret.RHS = rhs.(Expr)
ret.Op = op.Typ
return ret
}
func (p *parser) assembleVectorSelector(vs *VectorSelector) {
if vs.Name != "" {
for _, m := range vs.LabelMatchers {
if m != nil && m.Name == labels.MetricName {
p.failf(vs.PositionRange(), "metric name must not be set twice: %q or %q", vs.Name, m.Value)
}
}
nameMatcher, err := labels.NewMatcher(labels.MatchEqual, labels.MetricName, vs.Name)
if err != nil {
panic(err) // Must not happen with labels.MatchEqual
}
vs.LabelMatchers = append(vs.LabelMatchers, nameMatcher)
}
// A Vector selector must contain at least one non-empty matcher to prevent
// implicit selection of all metrics (e.g. by a typo).
notEmpty := false
for _, lm := range vs.LabelMatchers {
if lm != nil && !lm.Matches("") {
notEmpty = true
break
}
}
if !notEmpty {
p.failf(vs.PositionRange(), "vector selector must contain at least one non-empty matcher")
}
}
func (p *parser) newAggregateExpr(op Item, modifier Node, args Node) (ret *AggregateExpr) {
ret = modifier.(*AggregateExpr)
arguments := args.(Expressions)
ret.Op = op.Typ
if len(arguments) == 0 {
p.failf(ret.PositionRange(), "no arguments for aggregate expression provided")
// Currently p.failf() panics, so this return is not needed
// at the moment.
// However, this behaviour is likely to be changed in the
// future. In case of having non-panicking errors this
// return prevents invalid array accesses
return
}
desiredArgs := 1
if ret.Op.isAggregatorWithParam() {
desiredArgs = 2
ret.Param = arguments[0]
}
if len(arguments) != desiredArgs {
p.failf(ret.PositionRange(), "wrong number of arguments for aggregate expression provided, expected %d, got %d", desiredArgs, len(arguments))
return
}
ret.Expr = arguments[desiredArgs-1]
ret.PosRange = PositionRange{
Start: op.Pos,
End: p.lastClosing,
}
return ret
}
// number parses a number.
func (p *parser) number(val string) float64 {
n, err := strconv.ParseInt(val, 0, 64)
f := float64(n)
if err != nil {
f, err = strconv.ParseFloat(val, 64)
}
if err != nil {
p.failf(p.yyParser.lval.item.PositionRange(), "error parsing number: %s", err)
}
return f
}
// expectType checks the type of the node and raises an error if it
// is not of the expected type.
func (p *parser) expectType(node Node, want ValueType, context string) {
t := p.checkType(node)
if t != want {
p.failf(node.PositionRange(), "expected type %s in %s, got %s", documentedType(want), context, documentedType(t))
}
}
// check the types of the children of each node and raise an error
// if they do not form a valid node.
//
// Some of these checks are redundant as the parsing stage does not allow
// them, but the costs are small and might reveal errors when making changes.
func (p *parser) checkType(node Node) (typ ValueType) {
// For expressions the type is determined by their Type function.
// Lists do not have a type but are not invalid either.
switch n := node.(type) {
case Expressions:
typ = ValueTypeNone
case Expr:
typ = n.Type()
default:
p.failf(node.PositionRange(), "unknown node type: %T", node)
}
// Recursively check correct typing for child nodes and raise
// errors in case of bad typing.
switch n := node.(type) {
case *EvalStmt:
ty := p.checkType(n.Expr)
if ty == ValueTypeNone {
p.failf(n.Expr.PositionRange(), "evaluation statement must have a valid expression type but got %s", documentedType(ty))
}
case Expressions:
for _, e := range n {
ty := p.checkType(e)
if ty == ValueTypeNone {
p.failf(e.PositionRange(), "expression must have a valid expression type but got %s", documentedType(ty))
}
}
case *AggregateExpr:
if !n.Op.isAggregator() {
p.failf(n.PositionRange(), "aggregation operator expected in aggregation expression but got %q", n.Op)
}
p.expectType(n.Expr, ValueTypeVector, "aggregation expression")
if n.Op == TOPK || n.Op == BOTTOMK || n.Op == QUANTILE {
p.expectType(n.Param, ValueTypeScalar, "aggregation parameter")
}
if n.Op == COUNT_VALUES {
p.expectType(n.Param, ValueTypeString, "aggregation parameter")
}
case *BinaryExpr:
lt := p.checkType(n.LHS)
rt := p.checkType(n.RHS)
// opRange returns the PositionRange of the operator part of the BinaryExpr.
// This is made a function instead of a variable, so it is lazily evaluated on demand.
opRange := func() (r PositionRange) {
// Remove whitespace at the beginning and end of the range.
for r.Start = n.LHS.PositionRange().End; isSpace(rune(p.lex.input[r.Start])); r.Start++ {
}
for r.End = n.RHS.PositionRange().Start - 1; isSpace(rune(p.lex.input[r.End])); r.End-- {
}
return
}
if n.ReturnBool && !n.Op.isComparisonOperator() {
p.failf(opRange(), "bool modifier can only be used on comparison operators")
}
if n.Op.isComparisonOperator() && !n.ReturnBool && n.RHS.Type() == ValueTypeScalar && n.LHS.Type() == ValueTypeScalar {
p.failf(opRange(), "comparisons between scalars must use BOOL modifier")
}
if n.Op.isSetOperator() && n.VectorMatching.Card == CardOneToOne {
n.VectorMatching.Card = CardManyToMany
}
for _, l1 := range n.VectorMatching.MatchingLabels {
for _, l2 := range n.VectorMatching.Include {
if l1 == l2 && n.VectorMatching.On {
p.failf(opRange(), "label %q must not occur in ON and GROUP clause at once", l1)
}
}
}
if !n.Op.isOperator() {
p.failf(n.PositionRange(), "binary expression does not support operator %q", n.Op)
}
if lt != ValueTypeScalar && lt != ValueTypeVector {
p.failf(n.LHS.PositionRange(), "binary expression must contain only scalar and instant vector types")
}
if rt != ValueTypeScalar && rt != ValueTypeVector {
p.failf(n.RHS.PositionRange(), "binary expression must contain only scalar and instant vector types")
}
if (lt != ValueTypeVector || rt != ValueTypeVector) && n.VectorMatching != nil {
if len(n.VectorMatching.MatchingLabels) > 0 {
p.failf(n.PositionRange(), "vector matching only allowed between instant vectors")
}
n.VectorMatching = nil
} else {
// Both operands are Vectors.
if n.Op.isSetOperator() {
if n.VectorMatching.Card == CardOneToMany || n.VectorMatching.Card == CardManyToOne {
p.failf(n.PositionRange(), "no grouping allowed for %q operation", n.Op)
}
if n.VectorMatching.Card != CardManyToMany {
p.failf(n.PositionRange(), "set operations must always be many-to-many")
}
}
}
if (lt == ValueTypeScalar || rt == ValueTypeScalar) && n.Op.isSetOperator() {
p.failf(n.PositionRange(), "set operator %q not allowed in binary scalar expression", n.Op)
}
case *Call:
nargs := len(n.Func.ArgTypes)
if n.Func.Variadic == 0 {
if nargs != len(n.Args) {
p.failf(n.PositionRange(), "expected %d argument(s) in call to %q, got %d", nargs, n.Func.Name, len(n.Args))
}
} else {
na := nargs - 1
if na > len(n.Args) {
p.failf(n.PositionRange(), "expected at least %d argument(s) in call to %q, got %d", na, n.Func.Name, len(n.Args))
} else if nargsmax := na + n.Func.Variadic; n.Func.Variadic > 0 && nargsmax < len(n.Args) {
p.failf(n.PositionRange(), "expected at most %d argument(s) in call to %q, got %d", nargsmax, n.Func.Name, len(n.Args))
}
}
for i, arg := range n.Args {
if i >= len(n.Func.ArgTypes) {
i = len(n.Func.ArgTypes) - 1
}
p.expectType(arg, n.Func.ArgTypes[i], fmt.Sprintf("call to function %q", n.Func.Name))
}
case *ParenExpr:
p.checkType(n.Expr)
case *UnaryExpr:
if n.Op != ADD && n.Op != SUB {
p.failf(n.PositionRange(), "only + and - operators allowed for unary expressions")
}
if t := p.checkType(n.Expr); t != ValueTypeScalar && t != ValueTypeVector {
p.failf(n.PositionRange(), "unary expression only allowed on expressions of type scalar or instant vector, got %q", documentedType(t))
}
case *SubqueryExpr:
ty := p.checkType(n.Expr)
if ty != ValueTypeVector {
p.failf(n.PositionRange(), "subquery is only allowed on instant vector, got %s in %q instead", ty, n.String())
}
case *MatrixSelector:
p.checkType(n.VectorSelector)
case *NumberLiteral, *StringLiteral, *VectorSelector:
// Nothing to do for terminals.
default:
p.failf(n.PositionRange(), "unknown node type: %T", node)
}
return
}
func (p *parser) unquoteString(s string) string {
unquoted, err := strutil.Unquote(s)
if err != nil {
p.failf(p.yyParser.lval.item.PositionRange(), "error unquoting string %q: %s", s, err)
}
return unquoted
}
func parseDuration(ds string) (time.Duration, error) {
dur, err := model.ParseDuration(ds)
if err != nil {
return 0, err
}
if dur == 0 {
return 0, errors.New("duration must be greater than 0")
}
return time.Duration(dur), nil
}
// parseGenerated invokes the yacc generated parser.
// The generated parser gets the provided startSymbol injected into
// the lexer stream, based on which grammar will be used.
func (p *parser) parseGenerated(startSymbol ItemType) interface{} {
p.InjectItem(startSymbol)
p.yyParser.Parse(p)
return p.generatedParserResult
}
func (p *parser) newLabelMatcher(label Item, operator Item, value Item) *labels.Matcher {
op := operator.Typ
val := p.unquoteString(value.Val)
// Map the Item to the respective match type.
var matchType labels.MatchType
switch op {
case EQL:
matchType = labels.MatchEqual
case NEQ:
matchType = labels.MatchNotEqual
case EQL_REGEX:
matchType = labels.MatchRegexp
case NEQ_REGEX:
matchType = labels.MatchNotRegexp
default:
// This should never happen, since the error should have been caught
// by the generated parser.
panic("invalid operator")
}
m, err := labels.NewMatcher(matchType, label.Val, val)
if err != nil {
p.fail(mergeRanges(&label, &value), err)
}
return m
}
func (p *parser) addOffset(e Node, offset time.Duration) {
var offsetp *time.Duration
var endPosp *Pos
switch s := e.(type) {
case *VectorSelector:
offsetp = &s.Offset
endPosp = &s.PosRange.End
case *MatrixSelector:
offsetp = &s.VectorSelector.Offset
endPosp = &s.EndPos
case *SubqueryExpr:
offsetp = &s.Offset
endPosp = &s.EndPos
default:
p.failf(e.PositionRange(), "offset modifier must be preceded by an instant or range selector, but follows a %T instead", e)
return
}
// it is already ensured by parseDuration func that there never will be a zero offset modifier
if *offsetp != 0 {
p.failf(e.PositionRange(), "offset may not be set multiple times")
} else {
*offsetp = offset
}
*endPosp = p.lastClosing
}