prometheus/storage/metric/stochastic_test.go
Julius Volz 63625bd244 Make view use memory persistence, remove obsolete code.
This makes the memory persistence the backing store for views and
adjusts the MetricPersistence interface accordingly. It also removes
unused Get* method implementations from the LevelDB persistence so they
don't need to be adapted to the new interface. In the future, we should
rethink these interfaces.

All staleness and interpolation handling is now removed from the storage
layer and will be handled only by the query layer in the future.
2013-04-18 22:26:29 +02:00

661 lines
17 KiB
Go

// Copyright 2013 Prometheus Team
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package metric
import (
"fmt"
"github.com/prometheus/prometheus/coding"
"github.com/prometheus/prometheus/coding/indexable"
"github.com/prometheus/prometheus/model"
dto "github.com/prometheus/prometheus/model/generated"
"github.com/prometheus/prometheus/utility/test"
"math"
"math/rand"
"testing"
"testing/quick"
"time"
)
const (
stochasticMaximumVariance = 8
)
func BasicLifecycleTests(p MetricPersistence, t test.Tester) {
if p == nil {
t.Errorf("Received nil Metric Persistence.\n")
return
}
}
func ReadEmptyTests(p MetricPersistence, t test.Tester) {
hasLabelPair := func(x int) (success bool) {
name := model.LabelName(string(x))
value := model.LabelValue(string(x))
labelSet := model.LabelSet{
name: value,
}
fingerprints, err := p.GetFingerprintsForLabelSet(labelSet)
if err != nil {
t.Error(err)
return
}
success = len(fingerprints) == 0
if !success {
t.Errorf("unexpected fingerprint length %d, got %d", 0, len(fingerprints))
}
return
}
err := quick.Check(hasLabelPair, nil)
if err != nil {
t.Error(err)
return
}
hasLabelName := func(x int) (success bool) {
labelName := model.LabelName(string(x))
fingerprints, err := p.GetFingerprintsForLabelName(labelName)
if err != nil {
t.Error(err)
return
}
success = len(fingerprints) == 0
if !success {
t.Errorf("unexpected fingerprint length %d, got %d", 0, len(fingerprints))
}
return
}
err = quick.Check(hasLabelName, nil)
if err != nil {
t.Error(err)
return
}
}
func AppendSampleAsPureSparseAppendTests(p MetricPersistence, t test.Tester) {
appendSample := func(x int) (success bool) {
v := model.SampleValue(x)
ts := time.Unix(int64(x), int64(x))
labelName := model.LabelName(x)
labelValue := model.LabelValue(x)
l := model.Metric{labelName: labelValue}
sample := model.Sample{
Value: v,
Timestamp: ts,
Metric: l,
}
err := p.AppendSample(sample)
success = err == nil
if !success {
t.Error(err)
}
return
}
if err := quick.Check(appendSample, nil); err != nil {
t.Error(err)
}
}
func AppendSampleAsSparseAppendWithReadsTests(p MetricPersistence, t test.Tester) {
appendSample := func(x int) (success bool) {
v := model.SampleValue(x)
ts := time.Unix(int64(x), int64(x))
labelName := model.LabelName(x)
labelValue := model.LabelValue(x)
l := model.Metric{labelName: labelValue}
sample := model.Sample{
Value: v,
Timestamp: ts,
Metric: l,
}
err := p.AppendSample(sample)
if err != nil {
t.Error(err)
return
}
fingerprints, err := p.GetFingerprintsForLabelName(labelName)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) != 1 {
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
return
}
fingerprints, err = p.GetFingerprintsForLabelSet(model.LabelSet{
labelName: labelValue,
})
if err != nil {
t.Error(err)
return
}
if len(fingerprints) != 1 {
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
return
}
return true
}
if err := quick.Check(appendSample, nil); err != nil {
t.Error(err)
}
}
func AppendSampleAsPureSingleEntityAppendTests(p MetricPersistence, t test.Tester) {
appendSample := func(x int) bool {
sample := model.Sample{
Value: model.SampleValue(x),
Timestamp: time.Unix(int64(x), 0),
Metric: model.Metric{model.MetricNameLabel: "my_metric"},
}
err := p.AppendSample(sample)
return err == nil
}
if err := quick.Check(appendSample, nil); err != nil {
t.Error(err)
}
}
func levelDBGetRangeValues(l *LevelDBMetricPersistence, fp model.Fingerprint, i model.Interval) (samples []model.SamplePair, err error) {
begin := time.Now()
defer func() {
duration := time.Since(begin)
recordOutcome(duration, err, map[string]string{operation: getRangeValues, result: success}, map[string]string{operation: getRangeValues, result: failure})
}()
k := &dto.SampleKey{
Fingerprint: fp.ToDTO(),
Timestamp: indexable.EncodeTime(i.OldestInclusive),
}
e, err := coding.NewProtocolBuffer(k).Encode()
if err != nil {
return
}
iterator := l.metricSamples.NewIterator(true)
defer iterator.Close()
predicate := keyIsOlderThan(i.NewestInclusive)
for valid := iterator.Seek(e); valid; valid = iterator.Next() {
retrievedKey := &dto.SampleKey{}
retrievedKey, err = extractSampleKey(iterator)
if err != nil {
return
}
if predicate(retrievedKey) {
break
}
if !fingerprintsEqual(retrievedKey.Fingerprint, k.Fingerprint) {
break
}
retrievedValue, err := extractSampleValues(iterator)
if err != nil {
return nil, err
}
samples = append(samples, model.SamplePair{
Value: model.SampleValue(*retrievedValue.Value[0].Value),
Timestamp: indexable.DecodeTime(retrievedKey.Timestamp),
})
}
return
}
func StochasticTests(persistenceMaker func() (MetricPersistence, test.Closer), t test.Tester) {
stochastic := func(x int) (success bool) {
p, closer := persistenceMaker()
defer closer.Close()
defer p.Close()
seed := rand.NewSource(int64(x))
random := rand.New(seed)
numberOfMetrics := random.Intn(stochasticMaximumVariance) + 1
numberOfSharedLabels := random.Intn(stochasticMaximumVariance)
numberOfUnsharedLabels := random.Intn(stochasticMaximumVariance)
numberOfSamples := random.Intn(stochasticMaximumVariance) + 2
numberOfRangeScans := random.Intn(stochasticMaximumVariance)
metricTimestamps := map[int]map[int64]bool{}
metricEarliestSample := map[int]int64{}
metricNewestSample := map[int]int64{}
for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ {
sample := model.Sample{
Metric: model.Metric{},
}
v := model.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex))
sample.Metric[model.MetricNameLabel] = v
for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ {
l := model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex))
v := model.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex))
sample.Metric[l] = v
}
for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ {
l := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex))
v := model.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex))
sample.Metric[l] = v
}
timestamps := map[int64]bool{}
metricTimestamps[metricIndex] = timestamps
var (
newestSample int64 = math.MinInt64
oldestSample int64 = math.MaxInt64
nextTimestamp func() int64
)
nextTimestamp = func() int64 {
var candidate int64
candidate = random.Int63n(math.MaxInt32 - 1)
if _, has := timestamps[candidate]; has {
// WART
candidate = nextTimestamp()
}
timestamps[candidate] = true
if candidate < oldestSample {
oldestSample = candidate
}
if candidate > newestSample {
newestSample = candidate
}
return candidate
}
for sampleIndex := 0; sampleIndex < numberOfSamples; sampleIndex++ {
sample.Timestamp = time.Unix(nextTimestamp(), 0)
sample.Value = model.SampleValue(sampleIndex)
err := p.AppendSample(sample)
if err != nil {
t.Error(err)
return
}
}
metricEarliestSample[metricIndex] = oldestSample
metricNewestSample[metricIndex] = newestSample
for sharedLabelIndex := 0; sharedLabelIndex < numberOfSharedLabels; sharedLabelIndex++ {
labelPair := model.LabelSet{
model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex)): model.LabelValue(fmt.Sprintf("label_%d", sharedLabelIndex)),
}
fingerprints, err := p.GetFingerprintsForLabelSet(labelPair)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) == 0 {
t.Errorf("expected fingerprint count of %d, got %d", 0, len(fingerprints))
return
}
labelName := model.LabelName(fmt.Sprintf("shared_label_%d", sharedLabelIndex))
fingerprints, err = p.GetFingerprintsForLabelName(labelName)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) == 0 {
t.Errorf("expected fingerprint count of %d, got %d", 0, len(fingerprints))
return
}
}
}
for sharedIndex := 0; sharedIndex < numberOfSharedLabels; sharedIndex++ {
labelName := model.LabelName(fmt.Sprintf("shared_label_%d", sharedIndex))
fingerprints, err := p.GetFingerprintsForLabelName(labelName)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) != numberOfMetrics {
t.Errorf("expected fingerprint count of %d, got %d", numberOfMetrics, len(fingerprints))
return
}
}
for metricIndex := 0; metricIndex < numberOfMetrics; metricIndex++ {
for unsharedLabelIndex := 0; unsharedLabelIndex < numberOfUnsharedLabels; unsharedLabelIndex++ {
labelName := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, unsharedLabelIndex))
labelValue := model.LabelValue(fmt.Sprintf("private_label_%d", unsharedLabelIndex))
labelSet := model.LabelSet{
labelName: labelValue,
}
fingerprints, err := p.GetFingerprintsForLabelSet(labelSet)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) != 1 {
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
return
}
fingerprints, err = p.GetFingerprintsForLabelName(labelName)
if err != nil {
t.Error(err)
return
}
if len(fingerprints) != 1 {
t.Errorf("expected fingerprint count of %d, got %d", 1, len(fingerprints))
return
}
}
metric := model.Metric{}
metric[model.MetricNameLabel] = model.LabelValue(fmt.Sprintf("metric_index_%d", metricIndex))
for i := 0; i < numberOfSharedLabels; i++ {
l := model.LabelName(fmt.Sprintf("shared_label_%d", i))
v := model.LabelValue(fmt.Sprintf("label_%d", i))
metric[l] = v
}
for i := 0; i < numberOfUnsharedLabels; i++ {
l := model.LabelName(fmt.Sprintf("metric_index_%d_private_label_%d", metricIndex, i))
v := model.LabelValue(fmt.Sprintf("private_label_%d", i))
metric[l] = v
}
for i := 0; i < numberOfRangeScans; i++ {
timestamps := metricTimestamps[metricIndex]
var first int64 = 0
var second int64 = 0
for {
firstCandidate := random.Int63n(int64(len(timestamps)))
secondCandidate := random.Int63n(int64(len(timestamps)))
smallest := int64(-1)
largest := int64(-1)
if firstCandidate == secondCandidate {
continue
} else if firstCandidate > secondCandidate {
largest = firstCandidate
smallest = secondCandidate
} else {
largest = secondCandidate
smallest = firstCandidate
}
j := int64(0)
for i := range timestamps {
if j == smallest {
first = i
} else if j == largest {
second = i
break
}
j++
}
break
}
begin := first
end := second
if second < first {
begin, end = second, first
}
interval := model.Interval{
OldestInclusive: time.Unix(begin, 0),
NewestInclusive: time.Unix(end, 0),
}
samples := []model.SamplePair{}
fp := model.NewFingerprintFromMetric(metric)
switch persistence := p.(type) {
case *LevelDBMetricPersistence:
var err error
samples, err = levelDBGetRangeValues(persistence, fp, interval)
if err != nil {
t.Fatal(err)
return
}
default:
samples = p.GetRangeValues(fp, interval)
}
if len(samples) < 2 {
t.Errorf("expected sample count less than %d, got %d", 2, len(samples))
return
}
}
}
return true
}
if err := quick.Check(stochastic, nil); err != nil {
t.Error(err)
}
}
// Test Definitions Follow
var testLevelDBBasicLifecycle = buildLevelDBTestPersistence("basic_lifecycle", BasicLifecycleTests)
func TestLevelDBBasicLifecycle(t *testing.T) {
testLevelDBBasicLifecycle(t)
}
func BenchmarkLevelDBBasicLifecycle(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBBasicLifecycle(b)
}
}
var testLevelDBReadEmpty = buildLevelDBTestPersistence("read_empty", ReadEmptyTests)
func TestLevelDBReadEmpty(t *testing.T) {
testLevelDBReadEmpty(t)
}
func BenchmarkLevelDBReadEmpty(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBReadEmpty(b)
}
}
var testLevelDBAppendSampleAsPureSparseAppend = buildLevelDBTestPersistence("append_sample_as_pure_sparse_append", AppendSampleAsPureSparseAppendTests)
func TestLevelDBAppendSampleAsPureSparseAppend(t *testing.T) {
testLevelDBAppendSampleAsPureSparseAppend(t)
}
func BenchmarkLevelDBAppendSampleAsPureSparseAppend(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBAppendSampleAsPureSparseAppend(b)
}
}
var testLevelDBAppendSampleAsSparseAppendWithReads = buildLevelDBTestPersistence("append_sample_as_sparse_append_with_reads", AppendSampleAsSparseAppendWithReadsTests)
func TestLevelDBAppendSampleAsSparseAppendWithReads(t *testing.T) {
testLevelDBAppendSampleAsSparseAppendWithReads(t)
}
func BenchmarkLevelDBAppendSampleAsSparseAppendWithReads(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBAppendSampleAsSparseAppendWithReads(b)
}
}
var testLevelDBAppendSampleAsPureSingleEntityAppend = buildLevelDBTestPersistence("append_sample_as_pure_single_entity_append", AppendSampleAsPureSingleEntityAppendTests)
func TestLevelDBAppendSampleAsPureSingleEntityAppend(t *testing.T) {
testLevelDBAppendSampleAsPureSingleEntityAppend(t)
}
func BenchmarkLevelDBAppendSampleAsPureSingleEntityAppend(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBAppendSampleAsPureSingleEntityAppend(b)
}
}
func testLevelDBStochastic(t test.Tester) {
persistenceMaker := func() (MetricPersistence, test.Closer) {
temporaryDirectory := test.NewTemporaryDirectory("test_leveldb_stochastic", t)
p, err := NewLevelDBMetricPersistence(temporaryDirectory.Path())
if err != nil {
t.Errorf("Could not start up LevelDB: %q\n", err)
}
return p, temporaryDirectory
}
StochasticTests(persistenceMaker, t)
}
func TestLevelDBStochastic(t *testing.T) {
testLevelDBStochastic(t)
}
func BenchmarkLevelDBStochastic(b *testing.B) {
for i := 0; i < b.N; i++ {
testLevelDBStochastic(b)
}
}
var testMemoryBasicLifecycle = buildMemoryTestPersistence(BasicLifecycleTests)
func TestMemoryBasicLifecycle(t *testing.T) {
testMemoryBasicLifecycle(t)
}
func BenchmarkMemoryBasicLifecycle(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryBasicLifecycle(b)
}
}
var testMemoryReadEmpty = buildMemoryTestPersistence(ReadEmptyTests)
func TestMemoryReadEmpty(t *testing.T) {
testMemoryReadEmpty(t)
}
func BenchmarkMemoryReadEmpty(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryReadEmpty(b)
}
}
var testMemoryAppendSampleAsPureSparseAppend = buildMemoryTestPersistence(AppendSampleAsPureSparseAppendTests)
func TestMemoryAppendSampleAsPureSparseAppend(t *testing.T) {
testMemoryAppendSampleAsPureSparseAppend(t)
}
func BenchmarkMemoryAppendSampleAsPureSparseAppend(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryAppendSampleAsPureSparseAppend(b)
}
}
var testMemoryAppendSampleAsSparseAppendWithReads = buildMemoryTestPersistence(AppendSampleAsSparseAppendWithReadsTests)
func TestMemoryAppendSampleAsSparseAppendWithReads(t *testing.T) {
testMemoryAppendSampleAsSparseAppendWithReads(t)
}
func BenchmarkMemoryAppendSampleAsSparseAppendWithReads(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryAppendSampleAsSparseAppendWithReads(b)
}
}
var testMemoryAppendSampleAsPureSingleEntityAppend = buildMemoryTestPersistence(AppendSampleAsPureSingleEntityAppendTests)
func TestMemoryAppendSampleAsPureSingleEntityAppend(t *testing.T) {
testMemoryAppendSampleAsPureSingleEntityAppend(t)
}
func BenchmarkMemoryAppendSampleAsPureSingleEntityAppend(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryAppendSampleAsPureSingleEntityAppend(b)
}
}
func testMemoryStochastic(t test.Tester) {
persistenceMaker := func() (MetricPersistence, test.Closer) {
return NewMemorySeriesStorage(), test.NilCloser
}
StochasticTests(persistenceMaker, t)
}
func TestMemoryStochastic(t *testing.T) {
testMemoryStochastic(t)
}
func BenchmarkMemoryStochastic(b *testing.B) {
for i := 0; i < b.N; i++ {
testMemoryStochastic(b)
}
}