mirror of
				https://github.com/prometheus/prometheus.git
				synced 2025-10-31 08:21:16 +01:00 
			
		
		
		
	And use the new method to call to compact Histograms during parsing. This happens for both `Histogram` and `FloatHistogram`. In this way, if targets decide to optimize the exposition size by merging spans with empty buckets in between, we still get a normalized results. It will also normalize away any valid but weird representations like empty spans, spans with offset zero, and empty buckets at the start or end of a span. The implementation seemed easy at first as it just turns the `compactBuckets` helper into a generic function (which now got its own file). However, the integer Histograms have delta buckets instead of absolute buckets, which had to be treated specially in the generic `compactBuckets` function. To make sure it works, I have added plenty of explicit tests for `Histogram` in addition to the `FloatHistogram` tests. I have also updated the doc comment for the `Compact` method. Based on the insights now expressed in the doc comment, compacting with a maxEmptyBuckets > 0 is rarely useful. Therefore, this commit also sets the value to 0 in the two cases we were using 3 so far. We might still want to reconsider, so I don't want to remove the maxEmptyBuckets parameter right now. Signed-off-by: beorn7 <beorn@grafana.com>
		
			
				
	
	
		
			519 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			519 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2021 The Prometheus Authors
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| // http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| package textparse
 | |
| 
 | |
| import (
 | |
| 	"bytes"
 | |
| 	"encoding/binary"
 | |
| 	"fmt"
 | |
| 	"io"
 | |
| 	"math"
 | |
| 	"sort"
 | |
| 	"strings"
 | |
| 	"unicode/utf8"
 | |
| 
 | |
| 	"github.com/gogo/protobuf/proto"
 | |
| 	"github.com/pkg/errors"
 | |
| 	"github.com/prometheus/common/model"
 | |
| 
 | |
| 	"github.com/prometheus/prometheus/model/exemplar"
 | |
| 	"github.com/prometheus/prometheus/model/histogram"
 | |
| 	"github.com/prometheus/prometheus/model/labels"
 | |
| 
 | |
| 	dto "github.com/prometheus/prometheus/prompb/io/prometheus/client"
 | |
| )
 | |
| 
 | |
| // ProtobufParser is a very inefficient way of unmarshaling the old Prometheus
 | |
| // protobuf format and then present it as it if were parsed by a
 | |
| // Prometheus-2-style text parser. This is only done so that we can easily plug
 | |
| // in the protobuf format into Prometheus 2. For future use (with the final
 | |
| // format that will be used for native histograms), we have to revisit the
 | |
| // parsing. A lot of the efficiency tricks of the Prometheus-2-style parsing
 | |
| // could be used in a similar fashion (byte-slice pointers into the raw
 | |
| // payload), which requires some hand-coded protobuf handling. But the current
 | |
| // parsers all expect the full series name (metric name plus label pairs) as one
 | |
| // string, which is not how things are represented in the protobuf format. If
 | |
| // the re-arrangement work is actually causing problems (which has to be seen),
 | |
| // that expectation needs to be changed.
 | |
| type ProtobufParser struct {
 | |
| 	in        []byte // The intput to parse.
 | |
| 	inPos     int    // Position within the input.
 | |
| 	metricPos int    // Position within Metric slice.
 | |
| 	// fieldPos is the position within a Summary or (legacy) Histogram. -2
 | |
| 	// is the count. -1 is the sum. Otherwise it is the index within
 | |
| 	// quantiles/buckets.
 | |
| 	fieldPos   int
 | |
| 	fieldsDone bool // true if no more fields of a Summary or (legacy) Histogram to be processed.
 | |
| 	// state is marked by the entry we are processing. EntryInvalid implies
 | |
| 	// that we have to decode the next MetricFamily.
 | |
| 	state Entry
 | |
| 
 | |
| 	mf *dto.MetricFamily
 | |
| 
 | |
| 	// The following are just shenanigans to satisfy the Parser interface.
 | |
| 	metricBytes *bytes.Buffer // A somewhat fluid representation of the current metric.
 | |
| }
 | |
| 
 | |
| // NewProtobufParser returns a parser for the payload in the byte slice.
 | |
| func NewProtobufParser(b []byte) Parser {
 | |
| 	return &ProtobufParser{
 | |
| 		in:          b,
 | |
| 		state:       EntryInvalid,
 | |
| 		mf:          &dto.MetricFamily{},
 | |
| 		metricBytes: &bytes.Buffer{},
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Series returns the bytes of a series with a simple float64 as a
 | |
| // value, the timestamp if set, and the value of the current sample.
 | |
| func (p *ProtobufParser) Series() ([]byte, *int64, float64) {
 | |
| 	var (
 | |
| 		m  = p.mf.GetMetric()[p.metricPos]
 | |
| 		ts = m.GetTimestampMs()
 | |
| 		v  float64
 | |
| 	)
 | |
| 	switch p.mf.GetType() {
 | |
| 	case dto.MetricType_COUNTER:
 | |
| 		v = m.GetCounter().GetValue()
 | |
| 	case dto.MetricType_GAUGE:
 | |
| 		v = m.GetGauge().GetValue()
 | |
| 	case dto.MetricType_UNTYPED:
 | |
| 		v = m.GetUntyped().GetValue()
 | |
| 	case dto.MetricType_SUMMARY:
 | |
| 		s := m.GetSummary()
 | |
| 		switch p.fieldPos {
 | |
| 		case -2:
 | |
| 			v = float64(s.GetSampleCount())
 | |
| 		case -1:
 | |
| 			v = s.GetSampleSum()
 | |
| 			// Need to detect a summaries without quantile here.
 | |
| 			if len(s.GetQuantile()) == 0 {
 | |
| 				p.fieldsDone = true
 | |
| 			}
 | |
| 		default:
 | |
| 			v = s.GetQuantile()[p.fieldPos].GetValue()
 | |
| 		}
 | |
| 	case dto.MetricType_HISTOGRAM:
 | |
| 		// This should only happen for a legacy histogram.
 | |
| 		h := m.GetHistogram()
 | |
| 		switch p.fieldPos {
 | |
| 		case -2:
 | |
| 			v = float64(h.GetSampleCount())
 | |
| 		case -1:
 | |
| 			v = h.GetSampleSum()
 | |
| 		default:
 | |
| 			bb := h.GetBucket()
 | |
| 			if p.fieldPos >= len(bb) {
 | |
| 				v = float64(h.GetSampleCount())
 | |
| 			} else {
 | |
| 				v = float64(bb[p.fieldPos].GetCumulativeCount())
 | |
| 			}
 | |
| 		}
 | |
| 	default:
 | |
| 		panic("encountered unexpected metric type, this is a bug")
 | |
| 	}
 | |
| 	if ts != 0 {
 | |
| 		return p.metricBytes.Bytes(), &ts, v
 | |
| 	}
 | |
| 	// Nasty hack: Assume that ts==0 means no timestamp. That's not true in
 | |
| 	// general, but proto3 has no distinction between unset and
 | |
| 	// default. Need to avoid in the final format.
 | |
| 	return p.metricBytes.Bytes(), nil, v
 | |
| }
 | |
| 
 | |
| // Histogram returns the bytes of a series with a native histogram as a value,
 | |
| // the timestamp if set, and the native histogram in the current sample.
 | |
| //
 | |
| // The Compact method is called before returning the Histogram (or FloatHistogram).
 | |
| //
 | |
| // If the SampleCountFloat or the ZeroCountFloat in the proto message is > 0,
 | |
| // the histogram is parsed and returned as a FloatHistogram and nil is returned
 | |
| // as the (integer) Histogram return value. Otherwise, it is parsed and returned
 | |
| // as an (integer) Histogram and nil is returned as the FloatHistogram return
 | |
| // value.
 | |
| func (p *ProtobufParser) Histogram() ([]byte, *int64, *histogram.Histogram, *histogram.FloatHistogram) {
 | |
| 	var (
 | |
| 		m  = p.mf.GetMetric()[p.metricPos]
 | |
| 		ts = m.GetTimestampMs()
 | |
| 		h  = m.GetHistogram()
 | |
| 	)
 | |
| 	if h.GetSampleCountFloat() > 0 || h.GetZeroCountFloat() > 0 {
 | |
| 		// It is a float histogram.
 | |
| 		fh := histogram.FloatHistogram{
 | |
| 			Count:           h.GetSampleCountFloat(),
 | |
| 			Sum:             h.GetSampleSum(),
 | |
| 			ZeroThreshold:   h.GetZeroThreshold(),
 | |
| 			ZeroCount:       h.GetZeroCountFloat(),
 | |
| 			Schema:          h.GetSchema(),
 | |
| 			PositiveSpans:   make([]histogram.Span, len(h.GetPositiveSpan())),
 | |
| 			PositiveBuckets: h.GetPositiveCount(),
 | |
| 			NegativeSpans:   make([]histogram.Span, len(h.GetNegativeSpan())),
 | |
| 			NegativeBuckets: h.GetNegativeCount(),
 | |
| 		}
 | |
| 		for i, span := range h.GetPositiveSpan() {
 | |
| 			fh.PositiveSpans[i].Offset = span.GetOffset()
 | |
| 			fh.PositiveSpans[i].Length = span.GetLength()
 | |
| 		}
 | |
| 		for i, span := range h.GetNegativeSpan() {
 | |
| 			fh.NegativeSpans[i].Offset = span.GetOffset()
 | |
| 			fh.NegativeSpans[i].Length = span.GetLength()
 | |
| 		}
 | |
| 		fh.Compact(0)
 | |
| 		if ts != 0 {
 | |
| 			return p.metricBytes.Bytes(), &ts, nil, &fh
 | |
| 		}
 | |
| 		// Nasty hack: Assume that ts==0 means no timestamp. That's not true in
 | |
| 		// general, but proto3 has no distinction between unset and
 | |
| 		// default. Need to avoid in the final format.
 | |
| 		return p.metricBytes.Bytes(), nil, nil, &fh
 | |
| 	}
 | |
| 
 | |
| 	sh := histogram.Histogram{
 | |
| 		Count:           h.GetSampleCount(),
 | |
| 		Sum:             h.GetSampleSum(),
 | |
| 		ZeroThreshold:   h.GetZeroThreshold(),
 | |
| 		ZeroCount:       h.GetZeroCount(),
 | |
| 		Schema:          h.GetSchema(),
 | |
| 		PositiveSpans:   make([]histogram.Span, len(h.GetPositiveSpan())),
 | |
| 		PositiveBuckets: h.GetPositiveDelta(),
 | |
| 		NegativeSpans:   make([]histogram.Span, len(h.GetNegativeSpan())),
 | |
| 		NegativeBuckets: h.GetNegativeDelta(),
 | |
| 	}
 | |
| 	for i, span := range h.GetPositiveSpan() {
 | |
| 		sh.PositiveSpans[i].Offset = span.GetOffset()
 | |
| 		sh.PositiveSpans[i].Length = span.GetLength()
 | |
| 	}
 | |
| 	for i, span := range h.GetNegativeSpan() {
 | |
| 		sh.NegativeSpans[i].Offset = span.GetOffset()
 | |
| 		sh.NegativeSpans[i].Length = span.GetLength()
 | |
| 	}
 | |
| 	sh.Compact(0)
 | |
| 	if ts != 0 {
 | |
| 		return p.metricBytes.Bytes(), &ts, &sh, nil
 | |
| 	}
 | |
| 	return p.metricBytes.Bytes(), nil, &sh, nil
 | |
| }
 | |
| 
 | |
| // Help returns the metric name and help text in the current entry.
 | |
| // Must only be called after Next returned a help entry.
 | |
| // The returned byte slices become invalid after the next call to Next.
 | |
| func (p *ProtobufParser) Help() ([]byte, []byte) {
 | |
| 	return p.metricBytes.Bytes(), []byte(p.mf.GetHelp())
 | |
| }
 | |
| 
 | |
| // Type returns the metric name and type in the current entry.
 | |
| // Must only be called after Next returned a type entry.
 | |
| // The returned byte slices become invalid after the next call to Next.
 | |
| func (p *ProtobufParser) Type() ([]byte, MetricType) {
 | |
| 	n := p.metricBytes.Bytes()
 | |
| 	switch p.mf.GetType() {
 | |
| 	case dto.MetricType_COUNTER:
 | |
| 		return n, MetricTypeCounter
 | |
| 	case dto.MetricType_GAUGE:
 | |
| 		return n, MetricTypeGauge
 | |
| 	case dto.MetricType_HISTOGRAM:
 | |
| 		return n, MetricTypeHistogram
 | |
| 	case dto.MetricType_SUMMARY:
 | |
| 		return n, MetricTypeSummary
 | |
| 	}
 | |
| 	return n, MetricTypeUnknown
 | |
| }
 | |
| 
 | |
| // Unit always returns (nil, nil) because units aren't supported by the protobuf
 | |
| // format.
 | |
| func (p *ProtobufParser) Unit() ([]byte, []byte) {
 | |
| 	return nil, nil
 | |
| }
 | |
| 
 | |
| // Comment always returns nil because comments aren't supported by the protobuf
 | |
| // format.
 | |
| func (p *ProtobufParser) Comment() []byte {
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // Metric writes the labels of the current sample into the passed labels.
 | |
| // It returns the string from which the metric was parsed.
 | |
| func (p *ProtobufParser) Metric(l *labels.Labels) string {
 | |
| 	*l = append(*l, labels.Label{
 | |
| 		Name:  labels.MetricName,
 | |
| 		Value: p.getMagicName(),
 | |
| 	})
 | |
| 
 | |
| 	for _, lp := range p.mf.GetMetric()[p.metricPos].GetLabel() {
 | |
| 		*l = append(*l, labels.Label{
 | |
| 			Name:  lp.GetName(),
 | |
| 			Value: lp.GetValue(),
 | |
| 		})
 | |
| 	}
 | |
| 	if needed, name, value := p.getMagicLabel(); needed {
 | |
| 		*l = append(*l, labels.Label{Name: name, Value: value})
 | |
| 	}
 | |
| 
 | |
| 	// Sort labels to maintain the sorted labels invariant.
 | |
| 	sort.Sort(*l)
 | |
| 
 | |
| 	return p.metricBytes.String()
 | |
| }
 | |
| 
 | |
| // Exemplar writes the exemplar of the current sample into the passed
 | |
| // exemplar. It returns if an exemplar exists or not. In case of a native
 | |
| // histogram, the legacy bucket section is still used for exemplars. To ingest
 | |
| // all examplars, call the Exemplar method repeatedly until it returns false.
 | |
| func (p *ProtobufParser) Exemplar(ex *exemplar.Exemplar) bool {
 | |
| 	m := p.mf.GetMetric()[p.metricPos]
 | |
| 	var exProto *dto.Exemplar
 | |
| 	switch p.mf.GetType() {
 | |
| 	case dto.MetricType_COUNTER:
 | |
| 		exProto = m.GetCounter().GetExemplar()
 | |
| 	case dto.MetricType_HISTOGRAM:
 | |
| 		bb := m.GetHistogram().GetBucket()
 | |
| 		if p.fieldPos < 0 {
 | |
| 			if p.state == EntrySeries {
 | |
| 				return false // At _count or _sum.
 | |
| 			}
 | |
| 			p.fieldPos = 0 // Start at 1st bucket for native histograms.
 | |
| 		}
 | |
| 		for p.fieldPos < len(bb) {
 | |
| 			exProto = bb[p.fieldPos].GetExemplar()
 | |
| 			if p.state == EntrySeries {
 | |
| 				break
 | |
| 			}
 | |
| 			p.fieldPos++
 | |
| 			if exProto != nil {
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 	default:
 | |
| 		return false
 | |
| 	}
 | |
| 	if exProto == nil {
 | |
| 		return false
 | |
| 	}
 | |
| 	ex.Value = exProto.GetValue()
 | |
| 	if ts := exProto.GetTimestamp(); ts != nil {
 | |
| 		ex.HasTs = true
 | |
| 		ex.Ts = ts.GetSeconds()*1000 + int64(ts.GetNanos()/1_000_000)
 | |
| 	}
 | |
| 	for _, lp := range exProto.GetLabel() {
 | |
| 		ex.Labels = append(ex.Labels, labels.Label{
 | |
| 			Name:  lp.GetName(),
 | |
| 			Value: lp.GetValue(),
 | |
| 		})
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // Next advances the parser to the next "sample" (emulating the behavior of a
 | |
| // text format parser). It returns (EntryInvalid, io.EOF) if no samples were
 | |
| // read.
 | |
| func (p *ProtobufParser) Next() (Entry, error) {
 | |
| 	switch p.state {
 | |
| 	case EntryInvalid:
 | |
| 		p.metricPos = 0
 | |
| 		p.fieldPos = -2
 | |
| 		n, err := readDelimited(p.in[p.inPos:], p.mf)
 | |
| 		p.inPos += n
 | |
| 		if err != nil {
 | |
| 			return p.state, err
 | |
| 		}
 | |
| 
 | |
| 		// Skip empty metric families.
 | |
| 		if len(p.mf.GetMetric()) == 0 {
 | |
| 			return p.Next()
 | |
| 		}
 | |
| 
 | |
| 		// We are at the beginning of a metric family. Put only the name
 | |
| 		// into metricBytes and validate only name and help for now.
 | |
| 		name := p.mf.GetName()
 | |
| 		if !model.IsValidMetricName(model.LabelValue(name)) {
 | |
| 			return EntryInvalid, errors.Errorf("invalid metric name: %s", name)
 | |
| 		}
 | |
| 		if help := p.mf.GetHelp(); !utf8.ValidString(help) {
 | |
| 			return EntryInvalid, errors.Errorf("invalid help for metric %q: %s", name, help)
 | |
| 		}
 | |
| 		p.metricBytes.Reset()
 | |
| 		p.metricBytes.WriteString(name)
 | |
| 
 | |
| 		p.state = EntryHelp
 | |
| 	case EntryHelp:
 | |
| 		p.state = EntryType
 | |
| 	case EntryType:
 | |
| 		if p.mf.GetType() == dto.MetricType_HISTOGRAM &&
 | |
| 			isNativeHistogram(p.mf.GetMetric()[0].GetHistogram()) {
 | |
| 			p.state = EntryHistogram
 | |
| 		} else {
 | |
| 			p.state = EntrySeries
 | |
| 		}
 | |
| 		if err := p.updateMetricBytes(); err != nil {
 | |
| 			return EntryInvalid, err
 | |
| 		}
 | |
| 	case EntryHistogram, EntrySeries:
 | |
| 		if p.state == EntrySeries && !p.fieldsDone &&
 | |
| 			(p.mf.GetType() == dto.MetricType_SUMMARY || p.mf.GetType() == dto.MetricType_HISTOGRAM) {
 | |
| 			p.fieldPos++
 | |
| 		} else {
 | |
| 			p.metricPos++
 | |
| 			p.fieldPos = -2
 | |
| 			p.fieldsDone = false
 | |
| 		}
 | |
| 		if p.metricPos >= len(p.mf.GetMetric()) {
 | |
| 			p.state = EntryInvalid
 | |
| 			return p.Next()
 | |
| 		}
 | |
| 		if err := p.updateMetricBytes(); err != nil {
 | |
| 			return EntryInvalid, err
 | |
| 		}
 | |
| 	default:
 | |
| 		return EntryInvalid, errors.Errorf("invalid protobuf parsing state: %d", p.state)
 | |
| 	}
 | |
| 	return p.state, nil
 | |
| }
 | |
| 
 | |
| func (p *ProtobufParser) updateMetricBytes() error {
 | |
| 	b := p.metricBytes
 | |
| 	b.Reset()
 | |
| 	b.WriteString(p.getMagicName())
 | |
| 	for _, lp := range p.mf.GetMetric()[p.metricPos].GetLabel() {
 | |
| 		b.WriteByte(model.SeparatorByte)
 | |
| 		n := lp.GetName()
 | |
| 		if !model.LabelName(n).IsValid() {
 | |
| 			return errors.Errorf("invalid label name: %s", n)
 | |
| 		}
 | |
| 		b.WriteString(n)
 | |
| 		b.WriteByte(model.SeparatorByte)
 | |
| 		v := lp.GetValue()
 | |
| 		if !utf8.ValidString(v) {
 | |
| 			return errors.Errorf("invalid label value: %s", v)
 | |
| 		}
 | |
| 		b.WriteString(v)
 | |
| 	}
 | |
| 	if needed, n, v := p.getMagicLabel(); needed {
 | |
| 		b.WriteByte(model.SeparatorByte)
 | |
| 		b.WriteString(n)
 | |
| 		b.WriteByte(model.SeparatorByte)
 | |
| 		b.WriteString(v)
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // getMagicName usually just returns p.mf.GetType() but adds a magic suffix
 | |
| // ("_count", "_sum", "_bucket") if needed according to the current parser
 | |
| // state.
 | |
| func (p *ProtobufParser) getMagicName() string {
 | |
| 	t := p.mf.GetType()
 | |
| 	if p.state == EntryHistogram || (t != dto.MetricType_HISTOGRAM && t != dto.MetricType_SUMMARY) {
 | |
| 		return p.mf.GetName()
 | |
| 	}
 | |
| 	if p.fieldPos == -2 {
 | |
| 		return p.mf.GetName() + "_count"
 | |
| 	}
 | |
| 	if p.fieldPos == -1 {
 | |
| 		return p.mf.GetName() + "_sum"
 | |
| 	}
 | |
| 	if t == dto.MetricType_HISTOGRAM {
 | |
| 		return p.mf.GetName() + "_bucket"
 | |
| 	}
 | |
| 	return p.mf.GetName()
 | |
| }
 | |
| 
 | |
| // getMagicLabel returns if a magic label ("quantile" or "le") is needed and, if
 | |
| // so, its name and value. It also sets p.fieldsDone if applicable.
 | |
| func (p *ProtobufParser) getMagicLabel() (bool, string, string) {
 | |
| 	if p.state == EntryHistogram || p.fieldPos < 0 {
 | |
| 		return false, "", ""
 | |
| 	}
 | |
| 	switch p.mf.GetType() {
 | |
| 	case dto.MetricType_SUMMARY:
 | |
| 		qq := p.mf.GetMetric()[p.metricPos].GetSummary().GetQuantile()
 | |
| 		q := qq[p.fieldPos]
 | |
| 		p.fieldsDone = p.fieldPos == len(qq)-1
 | |
| 		return true, model.QuantileLabel, formatOpenMetricsFloat(q.GetQuantile())
 | |
| 	case dto.MetricType_HISTOGRAM:
 | |
| 		bb := p.mf.GetMetric()[p.metricPos].GetHistogram().GetBucket()
 | |
| 		if p.fieldPos >= len(bb) {
 | |
| 			p.fieldsDone = true
 | |
| 			return true, model.BucketLabel, "+Inf"
 | |
| 		}
 | |
| 		b := bb[p.fieldPos]
 | |
| 		p.fieldsDone = math.IsInf(b.GetUpperBound(), +1)
 | |
| 		return true, model.BucketLabel, formatOpenMetricsFloat(b.GetUpperBound())
 | |
| 	}
 | |
| 	return false, "", ""
 | |
| }
 | |
| 
 | |
| var errInvalidVarint = errors.New("protobufparse: invalid varint encountered")
 | |
| 
 | |
| // readDelimited is essentially doing what the function of the same name in
 | |
| // github.com/matttproud/golang_protobuf_extensions/pbutil is doing, but it is
 | |
| // specific to a MetricFamily, utilizes the more efficient gogo-protobuf
 | |
| // unmarshaling, and acts on a byte slice directly without any additional
 | |
| // staging buffers.
 | |
| func readDelimited(b []byte, mf *dto.MetricFamily) (n int, err error) {
 | |
| 	if len(b) == 0 {
 | |
| 		return 0, io.EOF
 | |
| 	}
 | |
| 	messageLength, varIntLength := proto.DecodeVarint(b)
 | |
| 	if varIntLength == 0 || varIntLength > binary.MaxVarintLen32 {
 | |
| 		return 0, errInvalidVarint
 | |
| 	}
 | |
| 	totalLength := varIntLength + int(messageLength)
 | |
| 	if totalLength > len(b) {
 | |
| 		return 0, errors.Errorf("protobufparse: insufficient length of buffer, expected at least %d bytes, got %d bytes", totalLength, len(b))
 | |
| 	}
 | |
| 	mf.Reset()
 | |
| 	return totalLength, mf.Unmarshal(b[varIntLength:totalLength])
 | |
| }
 | |
| 
 | |
| // formatOpenMetricsFloat works like the usual Go string formatting of a fleat
 | |
| // but appends ".0" if the resulting number would otherwise contain neither a
 | |
| // "." nor an "e".
 | |
| func formatOpenMetricsFloat(f float64) string {
 | |
| 	// A few common cases hardcoded.
 | |
| 	switch {
 | |
| 	case f == 1:
 | |
| 		return "1.0"
 | |
| 	case f == 0:
 | |
| 		return "0.0"
 | |
| 	case f == -1:
 | |
| 		return "-1.0"
 | |
| 	case math.IsNaN(f):
 | |
| 		return "NaN"
 | |
| 	case math.IsInf(f, +1):
 | |
| 		return "+Inf"
 | |
| 	case math.IsInf(f, -1):
 | |
| 		return "-Inf"
 | |
| 	}
 | |
| 	s := fmt.Sprint(f)
 | |
| 	if strings.ContainsAny(s, "e.") {
 | |
| 		return s
 | |
| 	}
 | |
| 	return s + ".0"
 | |
| }
 | |
| 
 | |
| // isNativeHistogram returns false iff the provided histograms has no sparse
 | |
| // buckets and a zero threshold of 0 and a zero count of 0. In principle, this
 | |
| // could still be meant to be a native histogram (with a zero threshold of 0 and
 | |
| // no observations yet), but for now, we'll treat this case as a conventional
 | |
| // histogram.
 | |
| //
 | |
| // TODO(beorn7): In the final format, there should be an unambiguous way of
 | |
| // deciding if a histogram should be ingested as a conventional one or a native
 | |
| // one.
 | |
| func isNativeHistogram(h *dto.Histogram) bool {
 | |
| 	return len(h.GetNegativeDelta()) > 0 ||
 | |
| 		len(h.GetPositiveDelta()) > 0 ||
 | |
| 		h.GetZeroCount() > 0 ||
 | |
| 		h.GetZeroThreshold() > 0
 | |
| }
 |