mirror of
				https://github.com/prometheus/prometheus.git
				synced 2025-10-31 00:11:23 +01:00 
			
		
		
		
	* adapt code.go and write_handler.go to support float histograms * adapt watcher.go to support float histograms * wip adapt queue_manager.go to support float histograms * address comments for metrics in queue_manager.go * set test cases for queue manager * use same counts for histograms and float histograms * refactor createHistograms tests * fix float histograms ref in watcher_test.go * address PR comments Signed-off-by: Marc Tuduri <marctc@protonmail.com>
		
			
				
	
	
		
			1638 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1638 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2013 The Prometheus Authors
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| // http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| package remote
 | |
| 
 | |
| import (
 | |
| 	"context"
 | |
| 	"errors"
 | |
| 	"math"
 | |
| 	"strconv"
 | |
| 	"sync"
 | |
| 	"time"
 | |
| 
 | |
| 	"github.com/go-kit/log"
 | |
| 	"github.com/go-kit/log/level"
 | |
| 	"github.com/gogo/protobuf/proto"
 | |
| 	"github.com/golang/snappy"
 | |
| 	"github.com/prometheus/client_golang/prometheus"
 | |
| 	"github.com/prometheus/common/model"
 | |
| 	"go.opentelemetry.io/otel"
 | |
| 	"go.opentelemetry.io/otel/attribute"
 | |
| 	"go.uber.org/atomic"
 | |
| 
 | |
| 	"github.com/prometheus/prometheus/config"
 | |
| 	"github.com/prometheus/prometheus/model/histogram"
 | |
| 	"github.com/prometheus/prometheus/model/labels"
 | |
| 	"github.com/prometheus/prometheus/model/relabel"
 | |
| 	"github.com/prometheus/prometheus/prompb"
 | |
| 	"github.com/prometheus/prometheus/scrape"
 | |
| 	"github.com/prometheus/prometheus/tsdb/chunks"
 | |
| 	"github.com/prometheus/prometheus/tsdb/record"
 | |
| 	"github.com/prometheus/prometheus/tsdb/wlog"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	// We track samples in/out and how long pushes take using an Exponentially
 | |
| 	// Weighted Moving Average.
 | |
| 	ewmaWeight          = 0.2
 | |
| 	shardUpdateDuration = 10 * time.Second
 | |
| 
 | |
| 	// Allow 30% too many shards before scaling down.
 | |
| 	shardToleranceFraction = 0.3
 | |
| )
 | |
| 
 | |
| type queueManagerMetrics struct {
 | |
| 	reg prometheus.Registerer
 | |
| 
 | |
| 	samplesTotal           prometheus.Counter
 | |
| 	exemplarsTotal         prometheus.Counter
 | |
| 	histogramsTotal        prometheus.Counter
 | |
| 	metadataTotal          prometheus.Counter
 | |
| 	failedSamplesTotal     prometheus.Counter
 | |
| 	failedExemplarsTotal   prometheus.Counter
 | |
| 	failedHistogramsTotal  prometheus.Counter
 | |
| 	failedMetadataTotal    prometheus.Counter
 | |
| 	retriedSamplesTotal    prometheus.Counter
 | |
| 	retriedExemplarsTotal  prometheus.Counter
 | |
| 	retriedHistogramsTotal prometheus.Counter
 | |
| 	retriedMetadataTotal   prometheus.Counter
 | |
| 	droppedSamplesTotal    prometheus.Counter
 | |
| 	droppedExemplarsTotal  prometheus.Counter
 | |
| 	droppedHistogramsTotal prometheus.Counter
 | |
| 	enqueueRetriesTotal    prometheus.Counter
 | |
| 	sentBatchDuration      prometheus.Histogram
 | |
| 	highestSentTimestamp   *maxTimestamp
 | |
| 	pendingSamples         prometheus.Gauge
 | |
| 	pendingExemplars       prometheus.Gauge
 | |
| 	pendingHistograms      prometheus.Gauge
 | |
| 	shardCapacity          prometheus.Gauge
 | |
| 	numShards              prometheus.Gauge
 | |
| 	maxNumShards           prometheus.Gauge
 | |
| 	minNumShards           prometheus.Gauge
 | |
| 	desiredNumShards       prometheus.Gauge
 | |
| 	sentBytesTotal         prometheus.Counter
 | |
| 	metadataBytesTotal     prometheus.Counter
 | |
| 	maxSamplesPerSend      prometheus.Gauge
 | |
| }
 | |
| 
 | |
| func newQueueManagerMetrics(r prometheus.Registerer, rn, e string) *queueManagerMetrics {
 | |
| 	m := &queueManagerMetrics{
 | |
| 		reg: r,
 | |
| 	}
 | |
| 	constLabels := prometheus.Labels{
 | |
| 		remoteName: rn,
 | |
| 		endpoint:   e,
 | |
| 	}
 | |
| 
 | |
| 	m.samplesTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "samples_total",
 | |
| 		Help:        "Total number of samples sent to remote storage.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.exemplarsTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "exemplars_total",
 | |
| 		Help:        "Total number of exemplars sent to remote storage.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.histogramsTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "histograms_total",
 | |
| 		Help:        "Total number of histograms sent to remote storage.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.metadataTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "metadata_total",
 | |
| 		Help:        "Total number of metadata entries sent to remote storage.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.failedSamplesTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "samples_failed_total",
 | |
| 		Help:        "Total number of samples which failed on send to remote storage, non-recoverable errors.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.failedExemplarsTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "exemplars_failed_total",
 | |
| 		Help:        "Total number of exemplars which failed on send to remote storage, non-recoverable errors.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.failedHistogramsTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "histograms_failed_total",
 | |
| 		Help:        "Total number of histograms which failed on send to remote storage, non-recoverable errors.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.failedMetadataTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "metadata_failed_total",
 | |
| 		Help:        "Total number of metadata entries which failed on send to remote storage, non-recoverable errors.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.retriedSamplesTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "samples_retried_total",
 | |
| 		Help:        "Total number of samples which failed on send to remote storage but were retried because the send error was recoverable.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.retriedExemplarsTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "exemplars_retried_total",
 | |
| 		Help:        "Total number of exemplars which failed on send to remote storage but were retried because the send error was recoverable.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.retriedHistogramsTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "histograms_retried_total",
 | |
| 		Help:        "Total number of histograms which failed on send to remote storage but were retried because the send error was recoverable.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.retriedMetadataTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "metadata_retried_total",
 | |
| 		Help:        "Total number of metadata entries which failed on send to remote storage but were retried because the send error was recoverable.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.droppedSamplesTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "samples_dropped_total",
 | |
| 		Help:        "Total number of samples which were dropped after being read from the WAL before being sent via remote write, either via relabelling or unintentionally because of an unknown reference ID.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.droppedExemplarsTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "exemplars_dropped_total",
 | |
| 		Help:        "Total number of exemplars which were dropped after being read from the WAL before being sent via remote write, either via relabelling or unintentionally because of an unknown reference ID.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.droppedHistogramsTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "histograms_dropped_total",
 | |
| 		Help:        "Total number of histograms which were dropped after being read from the WAL before being sent via remote write, either via relabelling or unintentionally because of an unknown reference ID.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.enqueueRetriesTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "enqueue_retries_total",
 | |
| 		Help:        "Total number of times enqueue has failed because a shards queue was full.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.sentBatchDuration = prometheus.NewHistogram(prometheus.HistogramOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "sent_batch_duration_seconds",
 | |
| 		Help:        "Duration of send calls to the remote storage.",
 | |
| 		Buckets:     append(prometheus.DefBuckets, 25, 60, 120, 300),
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.highestSentTimestamp = &maxTimestamp{
 | |
| 		Gauge: prometheus.NewGauge(prometheus.GaugeOpts{
 | |
| 			Namespace:   namespace,
 | |
| 			Subsystem:   subsystem,
 | |
| 			Name:        "queue_highest_sent_timestamp_seconds",
 | |
| 			Help:        "Timestamp from a WAL sample, the highest timestamp successfully sent by this queue, in seconds since epoch.",
 | |
| 			ConstLabels: constLabels,
 | |
| 		}),
 | |
| 	}
 | |
| 	m.pendingSamples = prometheus.NewGauge(prometheus.GaugeOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "samples_pending",
 | |
| 		Help:        "The number of samples pending in the queues shards to be sent to the remote storage.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.pendingExemplars = prometheus.NewGauge(prometheus.GaugeOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "exemplars_pending",
 | |
| 		Help:        "The number of exemplars pending in the queues shards to be sent to the remote storage.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.pendingHistograms = prometheus.NewGauge(prometheus.GaugeOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "histograms_pending",
 | |
| 		Help:        "The number of histograms pending in the queues shards to be sent to the remote storage.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.shardCapacity = prometheus.NewGauge(prometheus.GaugeOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "shard_capacity",
 | |
| 		Help:        "The capacity of each shard of the queue used for parallel sending to the remote storage.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.numShards = prometheus.NewGauge(prometheus.GaugeOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "shards",
 | |
| 		Help:        "The number of shards used for parallel sending to the remote storage.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.maxNumShards = prometheus.NewGauge(prometheus.GaugeOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "shards_max",
 | |
| 		Help:        "The maximum number of shards that the queue is allowed to run.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.minNumShards = prometheus.NewGauge(prometheus.GaugeOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "shards_min",
 | |
| 		Help:        "The minimum number of shards that the queue is allowed to run.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.desiredNumShards = prometheus.NewGauge(prometheus.GaugeOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "shards_desired",
 | |
| 		Help:        "The number of shards that the queues shard calculation wants to run based on the rate of samples in vs. samples out.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.sentBytesTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "bytes_total",
 | |
| 		Help:        "The total number of bytes of data (not metadata) sent by the queue after compression. Note that when exemplars over remote write is enabled the exemplars included in a remote write request count towards this metric.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.metadataBytesTotal = prometheus.NewCounter(prometheus.CounterOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "metadata_bytes_total",
 | |
| 		Help:        "The total number of bytes of metadata sent by the queue after compression.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 	m.maxSamplesPerSend = prometheus.NewGauge(prometheus.GaugeOpts{
 | |
| 		Namespace:   namespace,
 | |
| 		Subsystem:   subsystem,
 | |
| 		Name:        "max_samples_per_send",
 | |
| 		Help:        "The maximum number of samples to be sent, in a single request, to the remote storage. Note that, when sending of exemplars over remote write is enabled, exemplars count towards this limt.",
 | |
| 		ConstLabels: constLabels,
 | |
| 	})
 | |
| 
 | |
| 	return m
 | |
| }
 | |
| 
 | |
| func (m *queueManagerMetrics) register() {
 | |
| 	if m.reg != nil {
 | |
| 		m.reg.MustRegister(
 | |
| 			m.samplesTotal,
 | |
| 			m.exemplarsTotal,
 | |
| 			m.histogramsTotal,
 | |
| 			m.metadataTotal,
 | |
| 			m.failedSamplesTotal,
 | |
| 			m.failedExemplarsTotal,
 | |
| 			m.failedHistogramsTotal,
 | |
| 			m.failedMetadataTotal,
 | |
| 			m.retriedSamplesTotal,
 | |
| 			m.retriedExemplarsTotal,
 | |
| 			m.retriedHistogramsTotal,
 | |
| 			m.retriedMetadataTotal,
 | |
| 			m.droppedSamplesTotal,
 | |
| 			m.droppedExemplarsTotal,
 | |
| 			m.droppedHistogramsTotal,
 | |
| 			m.enqueueRetriesTotal,
 | |
| 			m.sentBatchDuration,
 | |
| 			m.highestSentTimestamp,
 | |
| 			m.pendingSamples,
 | |
| 			m.pendingExemplars,
 | |
| 			m.pendingHistograms,
 | |
| 			m.shardCapacity,
 | |
| 			m.numShards,
 | |
| 			m.maxNumShards,
 | |
| 			m.minNumShards,
 | |
| 			m.desiredNumShards,
 | |
| 			m.sentBytesTotal,
 | |
| 			m.metadataBytesTotal,
 | |
| 			m.maxSamplesPerSend,
 | |
| 		)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (m *queueManagerMetrics) unregister() {
 | |
| 	if m.reg != nil {
 | |
| 		m.reg.Unregister(m.samplesTotal)
 | |
| 		m.reg.Unregister(m.exemplarsTotal)
 | |
| 		m.reg.Unregister(m.histogramsTotal)
 | |
| 		m.reg.Unregister(m.metadataTotal)
 | |
| 		m.reg.Unregister(m.failedSamplesTotal)
 | |
| 		m.reg.Unregister(m.failedExemplarsTotal)
 | |
| 		m.reg.Unregister(m.failedHistogramsTotal)
 | |
| 		m.reg.Unregister(m.failedMetadataTotal)
 | |
| 		m.reg.Unregister(m.retriedSamplesTotal)
 | |
| 		m.reg.Unregister(m.retriedExemplarsTotal)
 | |
| 		m.reg.Unregister(m.retriedHistogramsTotal)
 | |
| 		m.reg.Unregister(m.retriedMetadataTotal)
 | |
| 		m.reg.Unregister(m.droppedSamplesTotal)
 | |
| 		m.reg.Unregister(m.droppedExemplarsTotal)
 | |
| 		m.reg.Unregister(m.droppedHistogramsTotal)
 | |
| 		m.reg.Unregister(m.enqueueRetriesTotal)
 | |
| 		m.reg.Unregister(m.sentBatchDuration)
 | |
| 		m.reg.Unregister(m.highestSentTimestamp)
 | |
| 		m.reg.Unregister(m.pendingSamples)
 | |
| 		m.reg.Unregister(m.pendingExemplars)
 | |
| 		m.reg.Unregister(m.pendingHistograms)
 | |
| 		m.reg.Unregister(m.shardCapacity)
 | |
| 		m.reg.Unregister(m.numShards)
 | |
| 		m.reg.Unregister(m.maxNumShards)
 | |
| 		m.reg.Unregister(m.minNumShards)
 | |
| 		m.reg.Unregister(m.desiredNumShards)
 | |
| 		m.reg.Unregister(m.sentBytesTotal)
 | |
| 		m.reg.Unregister(m.metadataBytesTotal)
 | |
| 		m.reg.Unregister(m.maxSamplesPerSend)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // WriteClient defines an interface for sending a batch of samples to an
 | |
| // external timeseries database.
 | |
| type WriteClient interface {
 | |
| 	// Store stores the given samples in the remote storage.
 | |
| 	Store(context.Context, []byte) error
 | |
| 	// Name uniquely identifies the remote storage.
 | |
| 	Name() string
 | |
| 	// Endpoint is the remote read or write endpoint for the storage client.
 | |
| 	Endpoint() string
 | |
| }
 | |
| 
 | |
| // QueueManager manages a queue of samples to be sent to the Storage
 | |
| // indicated by the provided WriteClient. Implements writeTo interface
 | |
| // used by WAL Watcher.
 | |
| type QueueManager struct {
 | |
| 	lastSendTimestamp atomic.Int64
 | |
| 
 | |
| 	logger               log.Logger
 | |
| 	flushDeadline        time.Duration
 | |
| 	cfg                  config.QueueConfig
 | |
| 	mcfg                 config.MetadataConfig
 | |
| 	externalLabels       []labels.Label
 | |
| 	relabelConfigs       []*relabel.Config
 | |
| 	sendExemplars        bool
 | |
| 	sendNativeHistograms bool
 | |
| 	watcher              *wlog.Watcher
 | |
| 	metadataWatcher      *MetadataWatcher
 | |
| 
 | |
| 	clientMtx   sync.RWMutex
 | |
| 	storeClient WriteClient
 | |
| 
 | |
| 	seriesMtx     sync.Mutex // Covers seriesLabels and droppedSeries.
 | |
| 	seriesLabels  map[chunks.HeadSeriesRef]labels.Labels
 | |
| 	droppedSeries map[chunks.HeadSeriesRef]struct{}
 | |
| 
 | |
| 	seriesSegmentMtx     sync.Mutex // Covers seriesSegmentIndexes - if you also lock seriesMtx, take seriesMtx first.
 | |
| 	seriesSegmentIndexes map[chunks.HeadSeriesRef]int
 | |
| 
 | |
| 	shards      *shards
 | |
| 	numShards   int
 | |
| 	reshardChan chan int
 | |
| 	quit        chan struct{}
 | |
| 	wg          sync.WaitGroup
 | |
| 
 | |
| 	dataIn, dataDropped, dataOut, dataOutDuration *ewmaRate
 | |
| 
 | |
| 	metrics              *queueManagerMetrics
 | |
| 	interner             *pool
 | |
| 	highestRecvTimestamp *maxTimestamp
 | |
| }
 | |
| 
 | |
| // NewQueueManager builds a new QueueManager and starts a new
 | |
| // WAL watcher with queue manager as the WriteTo destination.
 | |
| // The WAL watcher takes the dir parameter as the base directory
 | |
| // for where the WAL shall be located. Note that the full path to
 | |
| // the WAL directory will be constructed as <dir>/wal.
 | |
| func NewQueueManager(
 | |
| 	metrics *queueManagerMetrics,
 | |
| 	watcherMetrics *wlog.WatcherMetrics,
 | |
| 	readerMetrics *wlog.LiveReaderMetrics,
 | |
| 	logger log.Logger,
 | |
| 	dir string,
 | |
| 	samplesIn *ewmaRate,
 | |
| 	cfg config.QueueConfig,
 | |
| 	mCfg config.MetadataConfig,
 | |
| 	externalLabels labels.Labels,
 | |
| 	relabelConfigs []*relabel.Config,
 | |
| 	client WriteClient,
 | |
| 	flushDeadline time.Duration,
 | |
| 	interner *pool,
 | |
| 	highestRecvTimestamp *maxTimestamp,
 | |
| 	sm ReadyScrapeManager,
 | |
| 	enableExemplarRemoteWrite bool,
 | |
| 	enableNativeHistogramRemoteWrite bool,
 | |
| ) *QueueManager {
 | |
| 	if logger == nil {
 | |
| 		logger = log.NewNopLogger()
 | |
| 	}
 | |
| 
 | |
| 	// Copy externalLabels into slice which we need for processExternalLabels.
 | |
| 	extLabelsSlice := make([]labels.Label, 0, externalLabels.Len())
 | |
| 	externalLabels.Range(func(l labels.Label) {
 | |
| 		extLabelsSlice = append(extLabelsSlice, l)
 | |
| 	})
 | |
| 
 | |
| 	logger = log.With(logger, remoteName, client.Name(), endpoint, client.Endpoint())
 | |
| 	t := &QueueManager{
 | |
| 		logger:               logger,
 | |
| 		flushDeadline:        flushDeadline,
 | |
| 		cfg:                  cfg,
 | |
| 		mcfg:                 mCfg,
 | |
| 		externalLabels:       extLabelsSlice,
 | |
| 		relabelConfigs:       relabelConfigs,
 | |
| 		storeClient:          client,
 | |
| 		sendExemplars:        enableExemplarRemoteWrite,
 | |
| 		sendNativeHistograms: enableNativeHistogramRemoteWrite,
 | |
| 
 | |
| 		seriesLabels:         make(map[chunks.HeadSeriesRef]labels.Labels),
 | |
| 		seriesSegmentIndexes: make(map[chunks.HeadSeriesRef]int),
 | |
| 		droppedSeries:        make(map[chunks.HeadSeriesRef]struct{}),
 | |
| 
 | |
| 		numShards:   cfg.MinShards,
 | |
| 		reshardChan: make(chan int),
 | |
| 		quit:        make(chan struct{}),
 | |
| 
 | |
| 		dataIn:          samplesIn,
 | |
| 		dataDropped:     newEWMARate(ewmaWeight, shardUpdateDuration),
 | |
| 		dataOut:         newEWMARate(ewmaWeight, shardUpdateDuration),
 | |
| 		dataOutDuration: newEWMARate(ewmaWeight, shardUpdateDuration),
 | |
| 
 | |
| 		metrics:              metrics,
 | |
| 		interner:             interner,
 | |
| 		highestRecvTimestamp: highestRecvTimestamp,
 | |
| 	}
 | |
| 
 | |
| 	t.watcher = wlog.NewWatcher(watcherMetrics, readerMetrics, logger, client.Name(), t, dir, enableExemplarRemoteWrite, enableNativeHistogramRemoteWrite)
 | |
| 	if t.mcfg.Send {
 | |
| 		t.metadataWatcher = NewMetadataWatcher(logger, sm, client.Name(), t, t.mcfg.SendInterval, flushDeadline)
 | |
| 	}
 | |
| 	t.shards = t.newShards()
 | |
| 
 | |
| 	return t
 | |
| }
 | |
| 
 | |
| // AppendMetadata sends metadata the remote storage. Metadata is sent in batches, but is not parallelized.
 | |
| func (t *QueueManager) AppendMetadata(ctx context.Context, metadata []scrape.MetricMetadata) {
 | |
| 	mm := make([]prompb.MetricMetadata, 0, len(metadata))
 | |
| 	for _, entry := range metadata {
 | |
| 		mm = append(mm, prompb.MetricMetadata{
 | |
| 			MetricFamilyName: entry.Metric,
 | |
| 			Help:             entry.Help,
 | |
| 			Type:             metricTypeToMetricTypeProto(entry.Type),
 | |
| 			Unit:             entry.Unit,
 | |
| 		})
 | |
| 	}
 | |
| 
 | |
| 	pBuf := proto.NewBuffer(nil)
 | |
| 	numSends := int(math.Ceil(float64(len(metadata)) / float64(t.mcfg.MaxSamplesPerSend)))
 | |
| 	for i := 0; i < numSends; i++ {
 | |
| 		last := (i + 1) * t.mcfg.MaxSamplesPerSend
 | |
| 		if last > len(metadata) {
 | |
| 			last = len(metadata)
 | |
| 		}
 | |
| 		err := t.sendMetadataWithBackoff(ctx, mm[i*t.mcfg.MaxSamplesPerSend:last], pBuf)
 | |
| 		if err != nil {
 | |
| 			t.metrics.failedMetadataTotal.Add(float64(last - (i * t.mcfg.MaxSamplesPerSend)))
 | |
| 			level.Error(t.logger).Log("msg", "non-recoverable error while sending metadata", "count", last-(i*t.mcfg.MaxSamplesPerSend), "err", err)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *QueueManager) sendMetadataWithBackoff(ctx context.Context, metadata []prompb.MetricMetadata, pBuf *proto.Buffer) error {
 | |
| 	// Build the WriteRequest with no samples.
 | |
| 	req, _, err := buildWriteRequest(nil, metadata, pBuf, nil)
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	metadataCount := len(metadata)
 | |
| 
 | |
| 	attemptStore := func(try int) error {
 | |
| 		ctx, span := otel.Tracer("").Start(ctx, "Remote Metadata Send Batch")
 | |
| 		defer span.End()
 | |
| 
 | |
| 		span.SetAttributes(
 | |
| 			attribute.Int("metadata", metadataCount),
 | |
| 			attribute.Int("try", try),
 | |
| 			attribute.String("remote_name", t.storeClient.Name()),
 | |
| 			attribute.String("remote_url", t.storeClient.Endpoint()),
 | |
| 		)
 | |
| 
 | |
| 		begin := time.Now()
 | |
| 		err := t.storeClient.Store(ctx, req)
 | |
| 		t.metrics.sentBatchDuration.Observe(time.Since(begin).Seconds())
 | |
| 
 | |
| 		if err != nil {
 | |
| 			span.RecordError(err)
 | |
| 			return err
 | |
| 		}
 | |
| 
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	retry := func() {
 | |
| 		t.metrics.retriedMetadataTotal.Add(float64(len(metadata)))
 | |
| 	}
 | |
| 	err = sendWriteRequestWithBackoff(ctx, t.cfg, t.logger, attemptStore, retry)
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	t.metrics.metadataTotal.Add(float64(len(metadata)))
 | |
| 	t.metrics.metadataBytesTotal.Add(float64(len(req)))
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // Append queues a sample to be sent to the remote storage. Blocks until all samples are
 | |
| // enqueued on their shards or a shutdown signal is received.
 | |
| func (t *QueueManager) Append(samples []record.RefSample) bool {
 | |
| outer:
 | |
| 	for _, s := range samples {
 | |
| 		t.seriesMtx.Lock()
 | |
| 		lbls, ok := t.seriesLabels[s.Ref]
 | |
| 		if !ok {
 | |
| 			t.metrics.droppedSamplesTotal.Inc()
 | |
| 			t.dataDropped.incr(1)
 | |
| 			if _, ok := t.droppedSeries[s.Ref]; !ok {
 | |
| 				level.Info(t.logger).Log("msg", "Dropped sample for series that was not explicitly dropped via relabelling", "ref", s.Ref)
 | |
| 			}
 | |
| 			t.seriesMtx.Unlock()
 | |
| 			continue
 | |
| 		}
 | |
| 		t.seriesMtx.Unlock()
 | |
| 		// Start with a very small backoff. This should not be t.cfg.MinBackoff
 | |
| 		// as it can happen without errors, and we want to pickup work after
 | |
| 		// filling a queue/resharding as quickly as possible.
 | |
| 		// TODO: Consider using the average duration of a request as the backoff.
 | |
| 		backoff := model.Duration(5 * time.Millisecond)
 | |
| 		for {
 | |
| 			select {
 | |
| 			case <-t.quit:
 | |
| 				return false
 | |
| 			default:
 | |
| 			}
 | |
| 			if t.shards.enqueue(s.Ref, timeSeries{
 | |
| 				seriesLabels: lbls,
 | |
| 				timestamp:    s.T,
 | |
| 				value:        s.V,
 | |
| 				sType:        tSample,
 | |
| 			}) {
 | |
| 				continue outer
 | |
| 			}
 | |
| 
 | |
| 			t.metrics.enqueueRetriesTotal.Inc()
 | |
| 			time.Sleep(time.Duration(backoff))
 | |
| 			backoff = backoff * 2
 | |
| 			// It is reasonable to use t.cfg.MaxBackoff here, as if we have hit
 | |
| 			// the full backoff we are likely waiting for external resources.
 | |
| 			if backoff > t.cfg.MaxBackoff {
 | |
| 				backoff = t.cfg.MaxBackoff
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| func (t *QueueManager) AppendExemplars(exemplars []record.RefExemplar) bool {
 | |
| 	if !t.sendExemplars {
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| outer:
 | |
| 	for _, e := range exemplars {
 | |
| 		t.seriesMtx.Lock()
 | |
| 		lbls, ok := t.seriesLabels[e.Ref]
 | |
| 		if !ok {
 | |
| 			t.metrics.droppedExemplarsTotal.Inc()
 | |
| 			// Track dropped exemplars in the same EWMA for sharding calc.
 | |
| 			t.dataDropped.incr(1)
 | |
| 			if _, ok := t.droppedSeries[e.Ref]; !ok {
 | |
| 				level.Info(t.logger).Log("msg", "Dropped exemplar for series that was not explicitly dropped via relabelling", "ref", e.Ref)
 | |
| 			}
 | |
| 			t.seriesMtx.Unlock()
 | |
| 			continue
 | |
| 		}
 | |
| 		t.seriesMtx.Unlock()
 | |
| 		// This will only loop if the queues are being resharded.
 | |
| 		backoff := t.cfg.MinBackoff
 | |
| 		for {
 | |
| 			select {
 | |
| 			case <-t.quit:
 | |
| 				return false
 | |
| 			default:
 | |
| 			}
 | |
| 			if t.shards.enqueue(e.Ref, timeSeries{
 | |
| 				seriesLabels:   lbls,
 | |
| 				timestamp:      e.T,
 | |
| 				value:          e.V,
 | |
| 				exemplarLabels: e.Labels,
 | |
| 				sType:          tExemplar,
 | |
| 			}) {
 | |
| 				continue outer
 | |
| 			}
 | |
| 
 | |
| 			t.metrics.enqueueRetriesTotal.Inc()
 | |
| 			time.Sleep(time.Duration(backoff))
 | |
| 			backoff = backoff * 2
 | |
| 			if backoff > t.cfg.MaxBackoff {
 | |
| 				backoff = t.cfg.MaxBackoff
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| func (t *QueueManager) AppendHistograms(histograms []record.RefHistogramSample) bool {
 | |
| 	if !t.sendNativeHistograms {
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| outer:
 | |
| 	for _, h := range histograms {
 | |
| 		t.seriesMtx.Lock()
 | |
| 		lbls, ok := t.seriesLabels[h.Ref]
 | |
| 		if !ok {
 | |
| 			t.metrics.droppedHistogramsTotal.Inc()
 | |
| 			t.dataDropped.incr(1)
 | |
| 			if _, ok := t.droppedSeries[h.Ref]; !ok {
 | |
| 				level.Info(t.logger).Log("msg", "Dropped histogram for series that was not explicitly dropped via relabelling", "ref", h.Ref)
 | |
| 			}
 | |
| 			t.seriesMtx.Unlock()
 | |
| 			continue
 | |
| 		}
 | |
| 		t.seriesMtx.Unlock()
 | |
| 
 | |
| 		backoff := model.Duration(5 * time.Millisecond)
 | |
| 		for {
 | |
| 			select {
 | |
| 			case <-t.quit:
 | |
| 				return false
 | |
| 			default:
 | |
| 			}
 | |
| 			if t.shards.enqueue(h.Ref, timeSeries{
 | |
| 				seriesLabels: lbls,
 | |
| 				timestamp:    h.T,
 | |
| 				histogram:    h.H,
 | |
| 				sType:        tHistogram,
 | |
| 			}) {
 | |
| 				continue outer
 | |
| 			}
 | |
| 
 | |
| 			t.metrics.enqueueRetriesTotal.Inc()
 | |
| 			time.Sleep(time.Duration(backoff))
 | |
| 			backoff = backoff * 2
 | |
| 			if backoff > t.cfg.MaxBackoff {
 | |
| 				backoff = t.cfg.MaxBackoff
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| func (t *QueueManager) AppendFloatHistograms(floatHistograms []record.RefFloatHistogramSample) bool {
 | |
| 	if !t.sendNativeHistograms {
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| outer:
 | |
| 	for _, h := range floatHistograms {
 | |
| 		t.seriesMtx.Lock()
 | |
| 		lbls, ok := t.seriesLabels[h.Ref]
 | |
| 		if !ok {
 | |
| 			t.metrics.droppedHistogramsTotal.Inc()
 | |
| 			t.dataDropped.incr(1)
 | |
| 			if _, ok := t.droppedSeries[h.Ref]; !ok {
 | |
| 				level.Info(t.logger).Log("msg", "Dropped histogram for series that was not explicitly dropped via relabelling", "ref", h.Ref)
 | |
| 			}
 | |
| 			t.seriesMtx.Unlock()
 | |
| 			continue
 | |
| 		}
 | |
| 		t.seriesMtx.Unlock()
 | |
| 
 | |
| 		backoff := model.Duration(5 * time.Millisecond)
 | |
| 		for {
 | |
| 			select {
 | |
| 			case <-t.quit:
 | |
| 				return false
 | |
| 			default:
 | |
| 			}
 | |
| 			if t.shards.enqueue(h.Ref, timeSeries{
 | |
| 				seriesLabels:   lbls,
 | |
| 				timestamp:      h.T,
 | |
| 				floatHistogram: h.FH,
 | |
| 				sType:          tFloatHistogram,
 | |
| 			}) {
 | |
| 				continue outer
 | |
| 			}
 | |
| 
 | |
| 			t.metrics.enqueueRetriesTotal.Inc()
 | |
| 			time.Sleep(time.Duration(backoff))
 | |
| 			backoff = backoff * 2
 | |
| 			if backoff > t.cfg.MaxBackoff {
 | |
| 				backoff = t.cfg.MaxBackoff
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // Start the queue manager sending samples to the remote storage.
 | |
| // Does not block.
 | |
| func (t *QueueManager) Start() {
 | |
| 	// Register and initialise some metrics.
 | |
| 	t.metrics.register()
 | |
| 	t.metrics.shardCapacity.Set(float64(t.cfg.Capacity))
 | |
| 	t.metrics.maxNumShards.Set(float64(t.cfg.MaxShards))
 | |
| 	t.metrics.minNumShards.Set(float64(t.cfg.MinShards))
 | |
| 	t.metrics.desiredNumShards.Set(float64(t.cfg.MinShards))
 | |
| 	t.metrics.maxSamplesPerSend.Set(float64(t.cfg.MaxSamplesPerSend))
 | |
| 
 | |
| 	t.shards.start(t.numShards)
 | |
| 	t.watcher.Start()
 | |
| 	if t.mcfg.Send {
 | |
| 		t.metadataWatcher.Start()
 | |
| 	}
 | |
| 
 | |
| 	t.wg.Add(2)
 | |
| 	go t.updateShardsLoop()
 | |
| 	go t.reshardLoop()
 | |
| }
 | |
| 
 | |
| // Stop stops sending samples to the remote storage and waits for pending
 | |
| // sends to complete.
 | |
| func (t *QueueManager) Stop() {
 | |
| 	level.Info(t.logger).Log("msg", "Stopping remote storage...")
 | |
| 	defer level.Info(t.logger).Log("msg", "Remote storage stopped.")
 | |
| 
 | |
| 	close(t.quit)
 | |
| 	t.wg.Wait()
 | |
| 	// Wait for all QueueManager routines to end before stopping shards, metadata watcher, and WAL watcher. This
 | |
| 	// is to ensure we don't end up executing a reshard and shards.stop() at the same time, which
 | |
| 	// causes a closed channel panic.
 | |
| 	t.shards.stop()
 | |
| 	t.watcher.Stop()
 | |
| 	if t.mcfg.Send {
 | |
| 		t.metadataWatcher.Stop()
 | |
| 	}
 | |
| 
 | |
| 	// On shutdown, release the strings in the labels from the intern pool.
 | |
| 	t.seriesMtx.Lock()
 | |
| 	for _, labels := range t.seriesLabels {
 | |
| 		t.releaseLabels(labels)
 | |
| 	}
 | |
| 	t.seriesMtx.Unlock()
 | |
| 	t.metrics.unregister()
 | |
| }
 | |
| 
 | |
| // StoreSeries keeps track of which series we know about for lookups when sending samples to remote.
 | |
| func (t *QueueManager) StoreSeries(series []record.RefSeries, index int) {
 | |
| 	t.seriesMtx.Lock()
 | |
| 	defer t.seriesMtx.Unlock()
 | |
| 	t.seriesSegmentMtx.Lock()
 | |
| 	defer t.seriesSegmentMtx.Unlock()
 | |
| 	for _, s := range series {
 | |
| 		// Just make sure all the Refs of Series will insert into seriesSegmentIndexes map for tracking.
 | |
| 		t.seriesSegmentIndexes[s.Ref] = index
 | |
| 
 | |
| 		ls := processExternalLabels(s.Labels, t.externalLabels)
 | |
| 		lbls, keep := relabel.Process(ls, t.relabelConfigs...)
 | |
| 		if !keep || lbls.IsEmpty() {
 | |
| 			t.droppedSeries[s.Ref] = struct{}{}
 | |
| 			continue
 | |
| 		}
 | |
| 		t.internLabels(lbls)
 | |
| 
 | |
| 		// We should not ever be replacing a series labels in the map, but just
 | |
| 		// in case we do we need to ensure we do not leak the replaced interned
 | |
| 		// strings.
 | |
| 		if orig, ok := t.seriesLabels[s.Ref]; ok {
 | |
| 			t.releaseLabels(orig)
 | |
| 		}
 | |
| 		t.seriesLabels[s.Ref] = lbls
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // UpdateSeriesSegment updates the segment number held against the series,
 | |
| // so we can trim older ones in SeriesReset.
 | |
| func (t *QueueManager) UpdateSeriesSegment(series []record.RefSeries, index int) {
 | |
| 	t.seriesSegmentMtx.Lock()
 | |
| 	defer t.seriesSegmentMtx.Unlock()
 | |
| 	for _, s := range series {
 | |
| 		t.seriesSegmentIndexes[s.Ref] = index
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // SeriesReset is used when reading a checkpoint. WAL Watcher should have
 | |
| // stored series records with the checkpoints index number, so we can now
 | |
| // delete any ref ID's lower than that # from the two maps.
 | |
| func (t *QueueManager) SeriesReset(index int) {
 | |
| 	t.seriesMtx.Lock()
 | |
| 	defer t.seriesMtx.Unlock()
 | |
| 	t.seriesSegmentMtx.Lock()
 | |
| 	defer t.seriesSegmentMtx.Unlock()
 | |
| 	// Check for series that are in segments older than the checkpoint
 | |
| 	// that were not also present in the checkpoint.
 | |
| 	for k, v := range t.seriesSegmentIndexes {
 | |
| 		if v < index {
 | |
| 			delete(t.seriesSegmentIndexes, k)
 | |
| 			t.releaseLabels(t.seriesLabels[k])
 | |
| 			delete(t.seriesLabels, k)
 | |
| 			delete(t.droppedSeries, k)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // SetClient updates the client used by a queue. Used when only client specific
 | |
| // fields are updated to avoid restarting the queue.
 | |
| func (t *QueueManager) SetClient(c WriteClient) {
 | |
| 	t.clientMtx.Lock()
 | |
| 	t.storeClient = c
 | |
| 	t.clientMtx.Unlock()
 | |
| }
 | |
| 
 | |
| func (t *QueueManager) client() WriteClient {
 | |
| 	t.clientMtx.RLock()
 | |
| 	defer t.clientMtx.RUnlock()
 | |
| 	return t.storeClient
 | |
| }
 | |
| 
 | |
| func (t *QueueManager) internLabels(lbls labels.Labels) {
 | |
| 	lbls.InternStrings(t.interner.intern)
 | |
| }
 | |
| 
 | |
| func (t *QueueManager) releaseLabels(ls labels.Labels) {
 | |
| 	ls.ReleaseStrings(t.interner.release)
 | |
| }
 | |
| 
 | |
| // processExternalLabels merges externalLabels into ls. If ls contains
 | |
| // a label in externalLabels, the value in ls wins.
 | |
| func processExternalLabels(ls labels.Labels, externalLabels []labels.Label) labels.Labels {
 | |
| 	b := labels.NewScratchBuilder(ls.Len() + len(externalLabels))
 | |
| 	j := 0
 | |
| 	ls.Range(func(l labels.Label) {
 | |
| 		for j < len(externalLabels) && l.Name > externalLabels[j].Name {
 | |
| 			b.Add(externalLabels[j].Name, externalLabels[j].Value)
 | |
| 			j++
 | |
| 		}
 | |
| 		if j < len(externalLabels) && l.Name == externalLabels[j].Name {
 | |
| 			j++
 | |
| 		}
 | |
| 		b.Add(l.Name, l.Value)
 | |
| 	})
 | |
| 	for ; j < len(externalLabels); j++ {
 | |
| 		b.Add(externalLabels[j].Name, externalLabels[j].Value)
 | |
| 	}
 | |
| 
 | |
| 	return b.Labels()
 | |
| }
 | |
| 
 | |
| func (t *QueueManager) updateShardsLoop() {
 | |
| 	defer t.wg.Done()
 | |
| 
 | |
| 	ticker := time.NewTicker(shardUpdateDuration)
 | |
| 	defer ticker.Stop()
 | |
| 	for {
 | |
| 		select {
 | |
| 		case <-ticker.C:
 | |
| 			desiredShards := t.calculateDesiredShards()
 | |
| 			if !t.shouldReshard(desiredShards) {
 | |
| 				continue
 | |
| 			}
 | |
| 			// Resharding can take some time, and we want this loop
 | |
| 			// to stay close to shardUpdateDuration.
 | |
| 			select {
 | |
| 			case t.reshardChan <- desiredShards:
 | |
| 				level.Info(t.logger).Log("msg", "Remote storage resharding", "from", t.numShards, "to", desiredShards)
 | |
| 				t.numShards = desiredShards
 | |
| 			default:
 | |
| 				level.Info(t.logger).Log("msg", "Currently resharding, skipping.")
 | |
| 			}
 | |
| 		case <-t.quit:
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // shouldReshard returns if resharding should occur
 | |
| func (t *QueueManager) shouldReshard(desiredShards int) bool {
 | |
| 	if desiredShards == t.numShards {
 | |
| 		return false
 | |
| 	}
 | |
| 	// We shouldn't reshard if Prometheus hasn't been able to send to the
 | |
| 	// remote endpoint successfully within some period of time.
 | |
| 	minSendTimestamp := time.Now().Add(-2 * time.Duration(t.cfg.BatchSendDeadline)).Unix()
 | |
| 	lsts := t.lastSendTimestamp.Load()
 | |
| 	if lsts < minSendTimestamp {
 | |
| 		level.Warn(t.logger).Log("msg", "Skipping resharding, last successful send was beyond threshold", "lastSendTimestamp", lsts, "minSendTimestamp", minSendTimestamp)
 | |
| 		return false
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // calculateDesiredShards returns the number of desired shards, which will be
 | |
| // the current QueueManager.numShards if resharding should not occur for reasons
 | |
| // outlined in this functions implementation. It is up to the caller to reshard, or not,
 | |
| // based on the return value.
 | |
| func (t *QueueManager) calculateDesiredShards() int {
 | |
| 	t.dataOut.tick()
 | |
| 	t.dataDropped.tick()
 | |
| 	t.dataOutDuration.tick()
 | |
| 
 | |
| 	// We use the number of incoming samples as a prediction of how much work we
 | |
| 	// will need to do next iteration.  We add to this any pending samples
 | |
| 	// (received - send) so we can catch up with any backlog. We use the average
 | |
| 	// outgoing batch latency to work out how many shards we need.
 | |
| 	var (
 | |
| 		dataInRate      = t.dataIn.rate()
 | |
| 		dataOutRate     = t.dataOut.rate()
 | |
| 		dataKeptRatio   = dataOutRate / (t.dataDropped.rate() + dataOutRate)
 | |
| 		dataOutDuration = t.dataOutDuration.rate() / float64(time.Second)
 | |
| 		dataPendingRate = dataInRate*dataKeptRatio - dataOutRate
 | |
| 		highestSent     = t.metrics.highestSentTimestamp.Get()
 | |
| 		highestRecv     = t.highestRecvTimestamp.Get()
 | |
| 		delay           = highestRecv - highestSent
 | |
| 		dataPending     = delay * dataInRate * dataKeptRatio
 | |
| 	)
 | |
| 
 | |
| 	if dataOutRate <= 0 {
 | |
| 		return t.numShards
 | |
| 	}
 | |
| 
 | |
| 	var (
 | |
| 		// When behind we will try to catch up on 5% of samples per second.
 | |
| 		backlogCatchup = 0.05 * dataPending
 | |
| 		// Calculate Time to send one sample, averaged across all sends done this tick.
 | |
| 		timePerSample = dataOutDuration / dataOutRate
 | |
| 		desiredShards = timePerSample * (dataInRate*dataKeptRatio + backlogCatchup)
 | |
| 	)
 | |
| 	t.metrics.desiredNumShards.Set(desiredShards)
 | |
| 	level.Debug(t.logger).Log("msg", "QueueManager.calculateDesiredShards",
 | |
| 		"dataInRate", dataInRate,
 | |
| 		"dataOutRate", dataOutRate,
 | |
| 		"dataKeptRatio", dataKeptRatio,
 | |
| 		"dataPendingRate", dataPendingRate,
 | |
| 		"dataPending", dataPending,
 | |
| 		"dataOutDuration", dataOutDuration,
 | |
| 		"timePerSample", timePerSample,
 | |
| 		"desiredShards", desiredShards,
 | |
| 		"highestSent", highestSent,
 | |
| 		"highestRecv", highestRecv,
 | |
| 	)
 | |
| 
 | |
| 	// Changes in the number of shards must be greater than shardToleranceFraction.
 | |
| 	var (
 | |
| 		lowerBound = float64(t.numShards) * (1. - shardToleranceFraction)
 | |
| 		upperBound = float64(t.numShards) * (1. + shardToleranceFraction)
 | |
| 	)
 | |
| 	level.Debug(t.logger).Log("msg", "QueueManager.updateShardsLoop",
 | |
| 		"lowerBound", lowerBound, "desiredShards", desiredShards, "upperBound", upperBound)
 | |
| 
 | |
| 	desiredShards = math.Ceil(desiredShards) // Round up to be on the safe side.
 | |
| 	if lowerBound <= desiredShards && desiredShards <= upperBound {
 | |
| 		return t.numShards
 | |
| 	}
 | |
| 
 | |
| 	numShards := int(desiredShards)
 | |
| 	// Do not downshard if we are more than ten seconds back.
 | |
| 	if numShards < t.numShards && delay > 10.0 {
 | |
| 		level.Debug(t.logger).Log("msg", "Not downsharding due to being too far behind")
 | |
| 		return t.numShards
 | |
| 	}
 | |
| 
 | |
| 	if numShards > t.cfg.MaxShards {
 | |
| 		numShards = t.cfg.MaxShards
 | |
| 	} else if numShards < t.cfg.MinShards {
 | |
| 		numShards = t.cfg.MinShards
 | |
| 	}
 | |
| 	return numShards
 | |
| }
 | |
| 
 | |
| func (t *QueueManager) reshardLoop() {
 | |
| 	defer t.wg.Done()
 | |
| 
 | |
| 	for {
 | |
| 		select {
 | |
| 		case numShards := <-t.reshardChan:
 | |
| 			// We start the newShards after we have stopped (the therefore completely
 | |
| 			// flushed) the oldShards, to guarantee we only every deliver samples in
 | |
| 			// order.
 | |
| 			t.shards.stop()
 | |
| 			t.shards.start(numShards)
 | |
| 		case <-t.quit:
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *QueueManager) newShards() *shards {
 | |
| 	s := &shards{
 | |
| 		qm:   t,
 | |
| 		done: make(chan struct{}),
 | |
| 	}
 | |
| 	return s
 | |
| }
 | |
| 
 | |
| type shards struct {
 | |
| 	mtx sync.RWMutex // With the WAL, this is never actually contended.
 | |
| 
 | |
| 	qm     *QueueManager
 | |
| 	queues []*queue
 | |
| 	// So we can accurately track how many of each are lost during shard shutdowns.
 | |
| 	enqueuedSamples    atomic.Int64
 | |
| 	enqueuedExemplars  atomic.Int64
 | |
| 	enqueuedHistograms atomic.Int64
 | |
| 
 | |
| 	// Emulate a wait group with a channel and an atomic int, as you
 | |
| 	// cannot select on a wait group.
 | |
| 	done    chan struct{}
 | |
| 	running atomic.Int32
 | |
| 
 | |
| 	// Soft shutdown context will prevent new enqueues and deadlocks.
 | |
| 	softShutdown chan struct{}
 | |
| 
 | |
| 	// Hard shutdown context is used to terminate outgoing HTTP connections
 | |
| 	// after giving them a chance to terminate.
 | |
| 	hardShutdown                    context.CancelFunc
 | |
| 	samplesDroppedOnHardShutdown    atomic.Uint32
 | |
| 	exemplarsDroppedOnHardShutdown  atomic.Uint32
 | |
| 	histogramsDroppedOnHardShutdown atomic.Uint32
 | |
| }
 | |
| 
 | |
| // start the shards; must be called before any call to enqueue.
 | |
| func (s *shards) start(n int) {
 | |
| 	s.mtx.Lock()
 | |
| 	defer s.mtx.Unlock()
 | |
| 
 | |
| 	s.qm.metrics.pendingSamples.Set(0)
 | |
| 	s.qm.metrics.numShards.Set(float64(n))
 | |
| 
 | |
| 	newQueues := make([]*queue, n)
 | |
| 	for i := 0; i < n; i++ {
 | |
| 		newQueues[i] = newQueue(s.qm.cfg.MaxSamplesPerSend, s.qm.cfg.Capacity)
 | |
| 	}
 | |
| 
 | |
| 	s.queues = newQueues
 | |
| 
 | |
| 	var hardShutdownCtx context.Context
 | |
| 	hardShutdownCtx, s.hardShutdown = context.WithCancel(context.Background())
 | |
| 	s.softShutdown = make(chan struct{})
 | |
| 	s.running.Store(int32(n))
 | |
| 	s.done = make(chan struct{})
 | |
| 	s.enqueuedSamples.Store(0)
 | |
| 	s.enqueuedExemplars.Store(0)
 | |
| 	s.enqueuedHistograms.Store(0)
 | |
| 	s.samplesDroppedOnHardShutdown.Store(0)
 | |
| 	s.exemplarsDroppedOnHardShutdown.Store(0)
 | |
| 	s.histogramsDroppedOnHardShutdown.Store(0)
 | |
| 	for i := 0; i < n; i++ {
 | |
| 		go s.runShard(hardShutdownCtx, i, newQueues[i])
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // stop the shards; subsequent call to enqueue will return false.
 | |
| func (s *shards) stop() {
 | |
| 	// Attempt a clean shutdown, but only wait flushDeadline for all the shards
 | |
| 	// to cleanly exit.  As we're doing RPCs, enqueue can block indefinitely.
 | |
| 	// We must be able so call stop concurrently, hence we can only take the
 | |
| 	// RLock here.
 | |
| 	s.mtx.RLock()
 | |
| 	close(s.softShutdown)
 | |
| 	s.mtx.RUnlock()
 | |
| 
 | |
| 	// Enqueue should now be unblocked, so we can take the write lock.  This
 | |
| 	// also ensures we don't race with writes to the queues, and get a panic:
 | |
| 	// send on closed channel.
 | |
| 	s.mtx.Lock()
 | |
| 	defer s.mtx.Unlock()
 | |
| 	for _, queue := range s.queues {
 | |
| 		go queue.FlushAndShutdown(s.done)
 | |
| 	}
 | |
| 	select {
 | |
| 	case <-s.done:
 | |
| 		return
 | |
| 	case <-time.After(s.qm.flushDeadline):
 | |
| 	}
 | |
| 
 | |
| 	// Force an unclean shutdown.
 | |
| 	s.hardShutdown()
 | |
| 	<-s.done
 | |
| 	if dropped := s.samplesDroppedOnHardShutdown.Load(); dropped > 0 {
 | |
| 		level.Error(s.qm.logger).Log("msg", "Failed to flush all samples on shutdown", "count", dropped)
 | |
| 	}
 | |
| 	if dropped := s.exemplarsDroppedOnHardShutdown.Load(); dropped > 0 {
 | |
| 		level.Error(s.qm.logger).Log("msg", "Failed to flush all exemplars on shutdown", "count", dropped)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // enqueue data (sample or exemplar). If the shard is full, shutting down, or
 | |
| // resharding, it will return false; in this case, you should back off and
 | |
| // retry. A shard is full when its configured capacity has been reached,
 | |
| // specifically, when s.queues[shard] has filled its batchQueue channel and the
 | |
| // partial batch has also been filled.
 | |
| func (s *shards) enqueue(ref chunks.HeadSeriesRef, data timeSeries) bool {
 | |
| 	s.mtx.RLock()
 | |
| 	defer s.mtx.RUnlock()
 | |
| 
 | |
| 	shard := uint64(ref) % uint64(len(s.queues))
 | |
| 	select {
 | |
| 	case <-s.softShutdown:
 | |
| 		return false
 | |
| 	default:
 | |
| 		appended := s.queues[shard].Append(data)
 | |
| 		if !appended {
 | |
| 			return false
 | |
| 		}
 | |
| 		switch data.sType {
 | |
| 		case tSample:
 | |
| 			s.qm.metrics.pendingSamples.Inc()
 | |
| 			s.enqueuedSamples.Inc()
 | |
| 		case tExemplar:
 | |
| 			s.qm.metrics.pendingExemplars.Inc()
 | |
| 			s.enqueuedExemplars.Inc()
 | |
| 		case tHistogram, tFloatHistogram:
 | |
| 			s.qm.metrics.pendingHistograms.Inc()
 | |
| 			s.enqueuedHistograms.Inc()
 | |
| 		}
 | |
| 		return true
 | |
| 	}
 | |
| }
 | |
| 
 | |
| type queue struct {
 | |
| 	// batchMtx covers operations appending to or publishing the partial batch.
 | |
| 	batchMtx   sync.Mutex
 | |
| 	batch      []timeSeries
 | |
| 	batchQueue chan []timeSeries
 | |
| 
 | |
| 	// Since we know there are a limited number of batches out, using a stack
 | |
| 	// is easy and safe so a sync.Pool is not necessary.
 | |
| 	// poolMtx covers adding and removing batches from the batchPool.
 | |
| 	poolMtx   sync.Mutex
 | |
| 	batchPool [][]timeSeries
 | |
| }
 | |
| 
 | |
| type timeSeries struct {
 | |
| 	seriesLabels   labels.Labels
 | |
| 	value          float64
 | |
| 	histogram      *histogram.Histogram
 | |
| 	floatHistogram *histogram.FloatHistogram
 | |
| 	timestamp      int64
 | |
| 	exemplarLabels labels.Labels
 | |
| 	// The type of series: sample, exemplar, or histogram.
 | |
| 	sType seriesType
 | |
| }
 | |
| 
 | |
| type seriesType int
 | |
| 
 | |
| const (
 | |
| 	tSample seriesType = iota
 | |
| 	tExemplar
 | |
| 	tHistogram
 | |
| 	tFloatHistogram
 | |
| )
 | |
| 
 | |
| func newQueue(batchSize, capacity int) *queue {
 | |
| 	batches := capacity / batchSize
 | |
| 	// Always create an unbuffered channel even if capacity is configured to be
 | |
| 	// less than max_samples_per_send.
 | |
| 	if batches == 0 {
 | |
| 		batches = 1
 | |
| 	}
 | |
| 	return &queue{
 | |
| 		batch:      make([]timeSeries, 0, batchSize),
 | |
| 		batchQueue: make(chan []timeSeries, batches),
 | |
| 		// batchPool should have capacity for everything in the channel + 1 for
 | |
| 		// the batch being processed.
 | |
| 		batchPool: make([][]timeSeries, 0, batches+1),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Append the timeSeries to the buffered batch. Returns false if it
 | |
| // cannot be added and must be retried.
 | |
| func (q *queue) Append(datum timeSeries) bool {
 | |
| 	q.batchMtx.Lock()
 | |
| 	defer q.batchMtx.Unlock()
 | |
| 	q.batch = append(q.batch, datum)
 | |
| 	if len(q.batch) == cap(q.batch) {
 | |
| 		select {
 | |
| 		case q.batchQueue <- q.batch:
 | |
| 			q.batch = q.newBatch(cap(q.batch))
 | |
| 			return true
 | |
| 		default:
 | |
| 			// Remove the sample we just appended. It will get retried.
 | |
| 			q.batch = q.batch[:len(q.batch)-1]
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| func (q *queue) Chan() <-chan []timeSeries {
 | |
| 	return q.batchQueue
 | |
| }
 | |
| 
 | |
| // Batch returns the current batch and allocates a new batch.
 | |
| func (q *queue) Batch() []timeSeries {
 | |
| 	q.batchMtx.Lock()
 | |
| 	defer q.batchMtx.Unlock()
 | |
| 
 | |
| 	select {
 | |
| 	case batch := <-q.batchQueue:
 | |
| 		return batch
 | |
| 	default:
 | |
| 		batch := q.batch
 | |
| 		q.batch = q.newBatch(cap(batch))
 | |
| 		return batch
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // ReturnForReuse adds the batch buffer back to the internal pool.
 | |
| func (q *queue) ReturnForReuse(batch []timeSeries) {
 | |
| 	q.poolMtx.Lock()
 | |
| 	defer q.poolMtx.Unlock()
 | |
| 	if len(q.batchPool) < cap(q.batchPool) {
 | |
| 		q.batchPool = append(q.batchPool, batch[:0])
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // FlushAndShutdown stops the queue and flushes any samples. No appends can be
 | |
| // made after this is called.
 | |
| func (q *queue) FlushAndShutdown(done <-chan struct{}) {
 | |
| 	for q.tryEnqueueingBatch(done) {
 | |
| 		time.Sleep(time.Second)
 | |
| 	}
 | |
| 	q.batch = nil
 | |
| 	close(q.batchQueue)
 | |
| }
 | |
| 
 | |
| // tryEnqueueingBatch tries to send a batch if necessary. If sending needs to
 | |
| // be retried it will return true.
 | |
| func (q *queue) tryEnqueueingBatch(done <-chan struct{}) bool {
 | |
| 	q.batchMtx.Lock()
 | |
| 	defer q.batchMtx.Unlock()
 | |
| 	if len(q.batch) == 0 {
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	select {
 | |
| 	case q.batchQueue <- q.batch:
 | |
| 		return false
 | |
| 	case <-done:
 | |
| 		// The shard has been hard shut down, so no more samples can be sent.
 | |
| 		// No need to try again as we will drop everything left in the queue.
 | |
| 		return false
 | |
| 	default:
 | |
| 		// The batchQueue is full, so we need to try again later.
 | |
| 		return true
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (q *queue) newBatch(capacity int) []timeSeries {
 | |
| 	q.poolMtx.Lock()
 | |
| 	defer q.poolMtx.Unlock()
 | |
| 	batches := len(q.batchPool)
 | |
| 	if batches > 0 {
 | |
| 		batch := q.batchPool[batches-1]
 | |
| 		q.batchPool = q.batchPool[:batches-1]
 | |
| 		return batch
 | |
| 	}
 | |
| 	return make([]timeSeries, 0, capacity)
 | |
| }
 | |
| 
 | |
| func (s *shards) runShard(ctx context.Context, shardID int, queue *queue) {
 | |
| 	defer func() {
 | |
| 		if s.running.Dec() == 0 {
 | |
| 			close(s.done)
 | |
| 		}
 | |
| 	}()
 | |
| 
 | |
| 	shardNum := strconv.Itoa(shardID)
 | |
| 
 | |
| 	// Send batches of at most MaxSamplesPerSend samples to the remote storage.
 | |
| 	// If we have fewer samples than that, flush them out after a deadline anyways.
 | |
| 	var (
 | |
| 		max = s.qm.cfg.MaxSamplesPerSend
 | |
| 
 | |
| 		pBuf = proto.NewBuffer(nil)
 | |
| 		buf  []byte
 | |
| 	)
 | |
| 	if s.qm.sendExemplars {
 | |
| 		max += int(float64(max) * 0.1)
 | |
| 	}
 | |
| 
 | |
| 	batchQueue := queue.Chan()
 | |
| 	pendingData := make([]prompb.TimeSeries, max)
 | |
| 	for i := range pendingData {
 | |
| 		pendingData[i].Samples = []prompb.Sample{{}}
 | |
| 		if s.qm.sendExemplars {
 | |
| 			pendingData[i].Exemplars = []prompb.Exemplar{{}}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	timer := time.NewTimer(time.Duration(s.qm.cfg.BatchSendDeadline))
 | |
| 	stop := func() {
 | |
| 		if !timer.Stop() {
 | |
| 			select {
 | |
| 			case <-timer.C:
 | |
| 			default:
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	defer stop()
 | |
| 
 | |
| 	for {
 | |
| 		select {
 | |
| 		case <-ctx.Done():
 | |
| 			// In this case we drop all samples in the buffer and the queue.
 | |
| 			// Remove them from pending and mark them as failed.
 | |
| 			droppedSamples := int(s.enqueuedSamples.Load())
 | |
| 			droppedExemplars := int(s.enqueuedExemplars.Load())
 | |
| 			droppedHistograms := int(s.enqueuedHistograms.Load())
 | |
| 			s.qm.metrics.pendingSamples.Sub(float64(droppedSamples))
 | |
| 			s.qm.metrics.pendingExemplars.Sub(float64(droppedExemplars))
 | |
| 			s.qm.metrics.pendingHistograms.Sub(float64(droppedHistograms))
 | |
| 			s.qm.metrics.failedSamplesTotal.Add(float64(droppedSamples))
 | |
| 			s.qm.metrics.failedExemplarsTotal.Add(float64(droppedExemplars))
 | |
| 			s.qm.metrics.failedHistogramsTotal.Add(float64(droppedHistograms))
 | |
| 			s.samplesDroppedOnHardShutdown.Add(uint32(droppedSamples))
 | |
| 			s.exemplarsDroppedOnHardShutdown.Add(uint32(droppedExemplars))
 | |
| 			s.histogramsDroppedOnHardShutdown.Add(uint32(droppedHistograms))
 | |
| 			return
 | |
| 
 | |
| 		case batch, ok := <-batchQueue:
 | |
| 			if !ok {
 | |
| 				return
 | |
| 			}
 | |
| 			nPendingSamples, nPendingExemplars, nPendingHistograms := s.populateTimeSeries(batch, pendingData)
 | |
| 			queue.ReturnForReuse(batch)
 | |
| 			n := nPendingSamples + nPendingExemplars + nPendingHistograms
 | |
| 			s.sendSamples(ctx, pendingData[:n], nPendingSamples, nPendingExemplars, nPendingHistograms, pBuf, &buf)
 | |
| 
 | |
| 			stop()
 | |
| 			timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline))
 | |
| 
 | |
| 		case <-timer.C:
 | |
| 			batch := queue.Batch()
 | |
| 			if len(batch) > 0 {
 | |
| 				nPendingSamples, nPendingExemplars, nPendingHistograms := s.populateTimeSeries(batch, pendingData)
 | |
| 				n := nPendingSamples + nPendingExemplars + nPendingHistograms
 | |
| 				level.Debug(s.qm.logger).Log("msg", "runShard timer ticked, sending buffered data", "samples", nPendingSamples,
 | |
| 					"exemplars", nPendingExemplars, "shard", shardNum, "histograms", nPendingHistograms)
 | |
| 				s.sendSamples(ctx, pendingData[:n], nPendingSamples, nPendingExemplars, nPendingHistograms, pBuf, &buf)
 | |
| 			}
 | |
| 			queue.ReturnForReuse(batch)
 | |
| 			timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline))
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (s *shards) populateTimeSeries(batch []timeSeries, pendingData []prompb.TimeSeries) (int, int, int) {
 | |
| 	var nPendingSamples, nPendingExemplars, nPendingHistograms int
 | |
| 	for nPending, d := range batch {
 | |
| 		pendingData[nPending].Samples = pendingData[nPending].Samples[:0]
 | |
| 		if s.qm.sendExemplars {
 | |
| 			pendingData[nPending].Exemplars = pendingData[nPending].Exemplars[:0]
 | |
| 		}
 | |
| 		if s.qm.sendNativeHistograms {
 | |
| 			pendingData[nPending].Histograms = pendingData[nPending].Histograms[:0]
 | |
| 		}
 | |
| 
 | |
| 		// Number of pending samples is limited by the fact that sendSamples (via sendSamplesWithBackoff)
 | |
| 		// retries endlessly, so once we reach max samples, if we can never send to the endpoint we'll
 | |
| 		// stop reading from the queue. This makes it safe to reference pendingSamples by index.
 | |
| 		pendingData[nPending].Labels = labelsToLabelsProto(d.seriesLabels, pendingData[nPending].Labels)
 | |
| 		switch d.sType {
 | |
| 		case tSample:
 | |
| 			pendingData[nPending].Samples = append(pendingData[nPending].Samples, prompb.Sample{
 | |
| 				Value:     d.value,
 | |
| 				Timestamp: d.timestamp,
 | |
| 			})
 | |
| 			nPendingSamples++
 | |
| 		case tExemplar:
 | |
| 			pendingData[nPending].Exemplars = append(pendingData[nPending].Exemplars, prompb.Exemplar{
 | |
| 				Labels:    labelsToLabelsProto(d.exemplarLabels, nil),
 | |
| 				Value:     d.value,
 | |
| 				Timestamp: d.timestamp,
 | |
| 			})
 | |
| 			nPendingExemplars++
 | |
| 		case tHistogram:
 | |
| 			pendingData[nPending].Histograms = append(pendingData[nPending].Histograms, HistogramToHistogramProto(d.timestamp, d.histogram))
 | |
| 			nPendingHistograms++
 | |
| 		case tFloatHistogram:
 | |
| 			pendingData[nPending].Histograms = append(pendingData[nPending].Histograms, FloatHistogramToHistogramProto(d.timestamp, d.floatHistogram))
 | |
| 			nPendingHistograms++
 | |
| 		}
 | |
| 	}
 | |
| 	return nPendingSamples, nPendingExemplars, nPendingHistograms
 | |
| }
 | |
| 
 | |
| func (s *shards) sendSamples(ctx context.Context, samples []prompb.TimeSeries, sampleCount, exemplarCount, histogramCount int, pBuf *proto.Buffer, buf *[]byte) {
 | |
| 	begin := time.Now()
 | |
| 	err := s.sendSamplesWithBackoff(ctx, samples, sampleCount, exemplarCount, histogramCount, pBuf, buf)
 | |
| 	if err != nil {
 | |
| 		level.Error(s.qm.logger).Log("msg", "non-recoverable error", "count", sampleCount, "exemplarCount", exemplarCount, "err", err)
 | |
| 		s.qm.metrics.failedSamplesTotal.Add(float64(sampleCount))
 | |
| 		s.qm.metrics.failedExemplarsTotal.Add(float64(exemplarCount))
 | |
| 		s.qm.metrics.failedHistogramsTotal.Add(float64(histogramCount))
 | |
| 	}
 | |
| 
 | |
| 	// These counters are used to calculate the dynamic sharding, and as such
 | |
| 	// should be maintained irrespective of success or failure.
 | |
| 	s.qm.dataOut.incr(int64(len(samples)))
 | |
| 	s.qm.dataOutDuration.incr(int64(time.Since(begin)))
 | |
| 	s.qm.lastSendTimestamp.Store(time.Now().Unix())
 | |
| 	// Pending samples/exemplars/histograms also should be subtracted as an error means
 | |
| 	// they will not be retried.
 | |
| 	s.qm.metrics.pendingSamples.Sub(float64(sampleCount))
 | |
| 	s.qm.metrics.pendingExemplars.Sub(float64(exemplarCount))
 | |
| 	s.qm.metrics.pendingHistograms.Sub(float64(histogramCount))
 | |
| 	s.enqueuedSamples.Sub(int64(sampleCount))
 | |
| 	s.enqueuedExemplars.Sub(int64(exemplarCount))
 | |
| 	s.enqueuedHistograms.Sub(int64(histogramCount))
 | |
| }
 | |
| 
 | |
| // sendSamples to the remote storage with backoff for recoverable errors.
 | |
| func (s *shards) sendSamplesWithBackoff(ctx context.Context, samples []prompb.TimeSeries, sampleCount, exemplarCount, histogramCount int, pBuf *proto.Buffer, buf *[]byte) error {
 | |
| 	// Build the WriteRequest with no metadata.
 | |
| 	req, highest, err := buildWriteRequest(samples, nil, pBuf, *buf)
 | |
| 	if err != nil {
 | |
| 		// Failing to build the write request is non-recoverable, since it will
 | |
| 		// only error if marshaling the proto to bytes fails.
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	reqSize := len(req)
 | |
| 	*buf = req
 | |
| 
 | |
| 	// An anonymous function allows us to defer the completion of our per-try spans
 | |
| 	// without causing a memory leak, and it has the nice effect of not propagating any
 | |
| 	// parameters for sendSamplesWithBackoff/3.
 | |
| 	attemptStore := func(try int) error {
 | |
| 		ctx, span := otel.Tracer("").Start(ctx, "Remote Send Batch")
 | |
| 		defer span.End()
 | |
| 
 | |
| 		span.SetAttributes(
 | |
| 			attribute.Int("request_size", reqSize),
 | |
| 			attribute.Int("samples", sampleCount),
 | |
| 			attribute.Int("try", try),
 | |
| 			attribute.String("remote_name", s.qm.storeClient.Name()),
 | |
| 			attribute.String("remote_url", s.qm.storeClient.Endpoint()),
 | |
| 		)
 | |
| 
 | |
| 		if exemplarCount > 0 {
 | |
| 			span.SetAttributes(attribute.Int("exemplars", exemplarCount))
 | |
| 		}
 | |
| 		if histogramCount > 0 {
 | |
| 			span.SetAttributes(attribute.Int("histograms", histogramCount))
 | |
| 		}
 | |
| 
 | |
| 		begin := time.Now()
 | |
| 		s.qm.metrics.samplesTotal.Add(float64(sampleCount))
 | |
| 		s.qm.metrics.exemplarsTotal.Add(float64(exemplarCount))
 | |
| 		s.qm.metrics.histogramsTotal.Add(float64(histogramCount))
 | |
| 		err := s.qm.client().Store(ctx, *buf)
 | |
| 		s.qm.metrics.sentBatchDuration.Observe(time.Since(begin).Seconds())
 | |
| 
 | |
| 		if err != nil {
 | |
| 			span.RecordError(err)
 | |
| 			return err
 | |
| 		}
 | |
| 
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	onRetry := func() {
 | |
| 		s.qm.metrics.retriedSamplesTotal.Add(float64(sampleCount))
 | |
| 		s.qm.metrics.retriedExemplarsTotal.Add(float64(exemplarCount))
 | |
| 		s.qm.metrics.retriedHistogramsTotal.Add(float64(histogramCount))
 | |
| 	}
 | |
| 
 | |
| 	err = sendWriteRequestWithBackoff(ctx, s.qm.cfg, s.qm.logger, attemptStore, onRetry)
 | |
| 	if errors.Is(err, context.Canceled) {
 | |
| 		// When there is resharding, we cancel the context for this queue, which means the data is not sent.
 | |
| 		// So we exit early to not update the metrics.
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	s.qm.metrics.sentBytesTotal.Add(float64(reqSize))
 | |
| 	s.qm.metrics.highestSentTimestamp.Set(float64(highest / 1000))
 | |
| 
 | |
| 	return err
 | |
| }
 | |
| 
 | |
| func sendWriteRequestWithBackoff(ctx context.Context, cfg config.QueueConfig, l log.Logger, attempt func(int) error, onRetry func()) error {
 | |
| 	backoff := cfg.MinBackoff
 | |
| 	sleepDuration := model.Duration(0)
 | |
| 	try := 0
 | |
| 
 | |
| 	for {
 | |
| 		select {
 | |
| 		case <-ctx.Done():
 | |
| 			return ctx.Err()
 | |
| 		default:
 | |
| 		}
 | |
| 
 | |
| 		err := attempt(try)
 | |
| 
 | |
| 		if err == nil {
 | |
| 			return nil
 | |
| 		}
 | |
| 
 | |
| 		// If the error is unrecoverable, we should not retry.
 | |
| 		backoffErr, ok := err.(RecoverableError)
 | |
| 		if !ok {
 | |
| 			return err
 | |
| 		}
 | |
| 
 | |
| 		sleepDuration = backoff
 | |
| 		if backoffErr.retryAfter > 0 {
 | |
| 			sleepDuration = backoffErr.retryAfter
 | |
| 			level.Info(l).Log("msg", "Retrying after duration specified by Retry-After header", "duration", sleepDuration)
 | |
| 		} else if backoffErr.retryAfter < 0 {
 | |
| 			level.Debug(l).Log("msg", "retry-after cannot be in past, retrying using default backoff mechanism")
 | |
| 		}
 | |
| 
 | |
| 		select {
 | |
| 		case <-ctx.Done():
 | |
| 		case <-time.After(time.Duration(sleepDuration)):
 | |
| 		}
 | |
| 
 | |
| 		// If we make it this far, we've encountered a recoverable error and will retry.
 | |
| 		onRetry()
 | |
| 		level.Warn(l).Log("msg", "Failed to send batch, retrying", "err", err)
 | |
| 
 | |
| 		backoff = sleepDuration * 2
 | |
| 
 | |
| 		if backoff > cfg.MaxBackoff {
 | |
| 			backoff = cfg.MaxBackoff
 | |
| 		}
 | |
| 
 | |
| 		try++
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func buildWriteRequest(samples []prompb.TimeSeries, metadata []prompb.MetricMetadata, pBuf *proto.Buffer, buf []byte) ([]byte, int64, error) {
 | |
| 	var highest int64
 | |
| 	for _, ts := range samples {
 | |
| 		// At the moment we only ever append a TimeSeries with a single sample or exemplar in it.
 | |
| 		if len(ts.Samples) > 0 && ts.Samples[0].Timestamp > highest {
 | |
| 			highest = ts.Samples[0].Timestamp
 | |
| 		}
 | |
| 		if len(ts.Exemplars) > 0 && ts.Exemplars[0].Timestamp > highest {
 | |
| 			highest = ts.Exemplars[0].Timestamp
 | |
| 		}
 | |
| 		if len(ts.Histograms) > 0 && ts.Histograms[0].Timestamp > highest {
 | |
| 			highest = ts.Histograms[0].Timestamp
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	req := &prompb.WriteRequest{
 | |
| 		Timeseries: samples,
 | |
| 		Metadata:   metadata,
 | |
| 	}
 | |
| 
 | |
| 	if pBuf == nil {
 | |
| 		pBuf = proto.NewBuffer(nil) // For convenience in tests. Not efficient.
 | |
| 	} else {
 | |
| 		pBuf.Reset()
 | |
| 	}
 | |
| 	err := pBuf.Marshal(req)
 | |
| 	if err != nil {
 | |
| 		return nil, highest, err
 | |
| 	}
 | |
| 
 | |
| 	// snappy uses len() to see if it needs to allocate a new slice. Make the
 | |
| 	// buffer as long as possible.
 | |
| 	if buf != nil {
 | |
| 		buf = buf[0:cap(buf)]
 | |
| 	}
 | |
| 	compressed := snappy.Encode(buf, pBuf.Bytes())
 | |
| 	return compressed, highest, nil
 | |
| }
 |