mirror of
https://github.com/prometheus/prometheus.git
synced 2025-08-06 14:17:12 +02:00
* test(chunkenc): appending histograms with empty buckets and gaps Append such native histograms that have empty buckets and gaps between the indexes of those buckets. There is a special case for appending counter native histograms to a chunk in TSDB: if we append a histogram that is missing some buckets that are already in chunk, then usually that's a counter reset. However if the missing bucket is empty, meaning its value is 0, then we don't consider it missing. For this case to trigger , we need to write empty buckets into the chunk. Normally native histograms are compacted when we emit them , so this is very rare and compact make sure that there are no multiple continuous empty buckets with gaps between them. The code that I've added in #14513 did not take into account that you can bypass compact and write histograms with many empty buckets, with gaps between them. These are still valid, so the code has to account for them. Main fix in the expandIntSpansAndBuckets and expandFloatSpansAndBuckets function. I've also refactored them for clarity. Consequently needed to fix insert and adjustForInserts to also allow gaps between inserts. I've added some new test cases (data driven test would be nice here, too many cases). And removed the deprecated old function that didn't deal with empty buckets at all. Signed-off-by: György Krajcsovits <gyorgy.krajcsovits@grafana.com> Signed-off-by: George Krajcsovits <krajorama@users.noreply.github.com> Co-authored-by: Björn Rabenstein <beorn@grafana.com>
1140 lines
36 KiB
Go
1140 lines
36 KiB
Go
// Copyright 2022 The Prometheus Authors
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package chunkenc
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"math"
|
|
|
|
"github.com/prometheus/prometheus/model/histogram"
|
|
"github.com/prometheus/prometheus/model/value"
|
|
)
|
|
|
|
// FloatHistogramChunk holds encoded sample data for a sparse, high-resolution
|
|
// float histogram.
|
|
//
|
|
// Each sample has multiple "fields", stored in the following way (raw = store
|
|
// number directly, delta = store delta to the previous number, dod = store
|
|
// delta of the delta to the previous number, xor = what we do for regular
|
|
// sample values):
|
|
//
|
|
// field → ts count zeroCount sum []posbuckets []negbuckets
|
|
// sample 1 raw raw raw raw []raw []raw
|
|
// sample 2 delta xor xor xor []xor []xor
|
|
// sample >2 dod xor xor xor []xor []xor
|
|
type FloatHistogramChunk struct {
|
|
b bstream
|
|
}
|
|
|
|
// NewFloatHistogramChunk returns a new chunk with float histogram encoding.
|
|
func NewFloatHistogramChunk() *FloatHistogramChunk {
|
|
b := make([]byte, 3, 128)
|
|
return &FloatHistogramChunk{b: bstream{stream: b, count: 0}}
|
|
}
|
|
|
|
func (c *FloatHistogramChunk) Reset(stream []byte) {
|
|
c.b.Reset(stream)
|
|
}
|
|
|
|
// xorValue holds all the necessary information to encode
|
|
// and decode XOR encoded float64 values.
|
|
type xorValue struct {
|
|
value float64
|
|
leading uint8
|
|
trailing uint8
|
|
}
|
|
|
|
// Encoding returns the encoding type.
|
|
func (c *FloatHistogramChunk) Encoding() Encoding {
|
|
return EncFloatHistogram
|
|
}
|
|
|
|
// Bytes returns the underlying byte slice of the chunk.
|
|
func (c *FloatHistogramChunk) Bytes() []byte {
|
|
return c.b.bytes()
|
|
}
|
|
|
|
// NumSamples returns the number of samples in the chunk.
|
|
func (c *FloatHistogramChunk) NumSamples() int {
|
|
return int(binary.BigEndian.Uint16(c.Bytes()))
|
|
}
|
|
|
|
// Layout returns the histogram layout. Only call this on chunks that have at
|
|
// least one sample.
|
|
func (c *FloatHistogramChunk) Layout() (
|
|
schema int32, zeroThreshold float64,
|
|
negativeSpans, positiveSpans []histogram.Span,
|
|
customValues []float64,
|
|
err error,
|
|
) {
|
|
if c.NumSamples() == 0 {
|
|
panic("FloatHistogramChunk.Layout() called on an empty chunk")
|
|
}
|
|
b := newBReader(c.Bytes()[2:])
|
|
return readHistogramChunkLayout(&b)
|
|
}
|
|
|
|
// GetCounterResetHeader returns the info about the first 2 bits of the chunk
|
|
// header.
|
|
func (c *FloatHistogramChunk) GetCounterResetHeader() CounterResetHeader {
|
|
return CounterResetHeader(c.Bytes()[2] & CounterResetHeaderMask)
|
|
}
|
|
|
|
// Compact implements the Chunk interface.
|
|
func (c *FloatHistogramChunk) Compact() {
|
|
if l := len(c.b.stream); cap(c.b.stream) > l+chunkCompactCapacityThreshold {
|
|
buf := make([]byte, l)
|
|
copy(buf, c.b.stream)
|
|
c.b.stream = buf
|
|
}
|
|
}
|
|
|
|
// Appender implements the Chunk interface.
|
|
func (c *FloatHistogramChunk) Appender() (Appender, error) {
|
|
it := c.iterator(nil)
|
|
|
|
// To get an appender, we must know the state it would have if we had
|
|
// appended all existing data from scratch. We iterate through the end
|
|
// and populate via the iterator's state.
|
|
for it.Next() == ValFloatHistogram {
|
|
}
|
|
if err := it.Err(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pBuckets := make([]xorValue, len(it.pBuckets))
|
|
for i := 0; i < len(it.pBuckets); i++ {
|
|
pBuckets[i] = xorValue{
|
|
value: it.pBuckets[i],
|
|
leading: it.pBucketsLeading[i],
|
|
trailing: it.pBucketsTrailing[i],
|
|
}
|
|
}
|
|
nBuckets := make([]xorValue, len(it.nBuckets))
|
|
for i := 0; i < len(it.nBuckets); i++ {
|
|
nBuckets[i] = xorValue{
|
|
value: it.nBuckets[i],
|
|
leading: it.nBucketsLeading[i],
|
|
trailing: it.nBucketsTrailing[i],
|
|
}
|
|
}
|
|
|
|
a := &FloatHistogramAppender{
|
|
b: &c.b,
|
|
|
|
schema: it.schema,
|
|
zThreshold: it.zThreshold,
|
|
pSpans: it.pSpans,
|
|
nSpans: it.nSpans,
|
|
customValues: it.customValues,
|
|
t: it.t,
|
|
tDelta: it.tDelta,
|
|
cnt: it.cnt,
|
|
zCnt: it.zCnt,
|
|
pBuckets: pBuckets,
|
|
nBuckets: nBuckets,
|
|
sum: it.sum,
|
|
}
|
|
if it.numTotal == 0 {
|
|
a.sum.leading = 0xff
|
|
a.cnt.leading = 0xff
|
|
a.zCnt.leading = 0xff
|
|
}
|
|
return a, nil
|
|
}
|
|
|
|
func (c *FloatHistogramChunk) iterator(it Iterator) *floatHistogramIterator {
|
|
// This comment is copied from XORChunk.iterator:
|
|
// Should iterators guarantee to act on a copy of the data so it doesn't lock append?
|
|
// When using striped locks to guard access to chunks, probably yes.
|
|
// Could only copy data if the chunk is not completed yet.
|
|
if histogramIter, ok := it.(*floatHistogramIterator); ok {
|
|
histogramIter.Reset(c.b.bytes())
|
|
return histogramIter
|
|
}
|
|
return newFloatHistogramIterator(c.b.bytes())
|
|
}
|
|
|
|
func newFloatHistogramIterator(b []byte) *floatHistogramIterator {
|
|
it := &floatHistogramIterator{
|
|
br: newBReader(b),
|
|
numTotal: binary.BigEndian.Uint16(b),
|
|
t: math.MinInt64,
|
|
}
|
|
// The first 3 bytes contain chunk headers.
|
|
// We skip that for actual samples.
|
|
_, _ = it.br.readBits(24)
|
|
it.counterResetHeader = CounterResetHeader(b[2] & CounterResetHeaderMask)
|
|
return it
|
|
}
|
|
|
|
// Iterator implements the Chunk interface.
|
|
func (c *FloatHistogramChunk) Iterator(it Iterator) Iterator {
|
|
return c.iterator(it)
|
|
}
|
|
|
|
// FloatHistogramAppender is an Appender implementation for float histograms.
|
|
type FloatHistogramAppender struct {
|
|
b *bstream
|
|
|
|
// Layout:
|
|
schema int32
|
|
zThreshold float64
|
|
pSpans, nSpans []histogram.Span
|
|
customValues []float64
|
|
|
|
t, tDelta int64
|
|
sum, cnt, zCnt xorValue
|
|
pBuckets, nBuckets []xorValue
|
|
}
|
|
|
|
func (a *FloatHistogramAppender) GetCounterResetHeader() CounterResetHeader {
|
|
return CounterResetHeader(a.b.bytes()[2] & CounterResetHeaderMask)
|
|
}
|
|
|
|
func (a *FloatHistogramAppender) setCounterResetHeader(cr CounterResetHeader) {
|
|
a.b.bytes()[2] = (a.b.bytes()[2] & (^CounterResetHeaderMask)) | (byte(cr) & CounterResetHeaderMask)
|
|
}
|
|
|
|
func (a *FloatHistogramAppender) NumSamples() int {
|
|
return int(binary.BigEndian.Uint16(a.b.bytes()))
|
|
}
|
|
|
|
// Append implements Appender. This implementation panics because normal float
|
|
// samples must never be appended to a histogram chunk.
|
|
func (a *FloatHistogramAppender) Append(int64, float64) {
|
|
panic("appended a float sample to a histogram chunk")
|
|
}
|
|
|
|
// appendable returns whether the chunk can be appended to, and if so whether
|
|
// 1. Any recoding needs to happen to the chunk using the provided forward
|
|
// inserts (in case of any new buckets, positive or negative range,
|
|
// respectively).
|
|
// 2. Any recoding needs to happen for the histogram being appended, using the
|
|
// backward inserts (in case of any missing buckets, positive or negative
|
|
// range, respectively).
|
|
//
|
|
// If the sample is a gauge histogram, AppendableGauge must be used instead.
|
|
//
|
|
// The chunk is not appendable in the following cases:
|
|
//
|
|
// - The schema has changed.
|
|
// - The custom bounds have changed if the current schema is custom buckets.
|
|
// - The threshold for the zero bucket has changed.
|
|
// - Any buckets have disappeared, unless the bucket count was 0, unused.
|
|
// Empty bucket can happen if the chunk was recoded and we're merging a non
|
|
// recoded histogram. In this case backward inserts will be provided.
|
|
// - There was a counter reset in the count of observations or in any bucket,
|
|
// including the zero bucket.
|
|
// - The last sample in the chunk was stale while the current sample is not stale.
|
|
//
|
|
// The method returns an additional boolean set to true if it is not appendable
|
|
// because of a counter reset. If the given sample is stale, it is always ok to
|
|
// append. If counterReset is true, okToAppend is always false.
|
|
func (a *FloatHistogramAppender) appendable(h *histogram.FloatHistogram) (
|
|
positiveInserts, negativeInserts []Insert,
|
|
backwardPositiveInserts, backwardNegativeInserts []Insert,
|
|
okToAppend, counterReset bool,
|
|
) {
|
|
if a.NumSamples() > 0 && a.GetCounterResetHeader() == GaugeType {
|
|
return
|
|
}
|
|
if h.CounterResetHint == histogram.CounterReset {
|
|
// Always honor the explicit counter reset hint.
|
|
counterReset = true
|
|
return
|
|
}
|
|
if value.IsStaleNaN(h.Sum) {
|
|
// This is a stale sample whose buckets and spans don't matter.
|
|
okToAppend = true
|
|
return
|
|
}
|
|
if value.IsStaleNaN(a.sum.value) {
|
|
// If the last sample was stale, then we can only accept stale
|
|
// samples in this chunk.
|
|
return
|
|
}
|
|
|
|
if h.Count < a.cnt.value {
|
|
// There has been a counter reset.
|
|
counterReset = true
|
|
return
|
|
}
|
|
|
|
if h.Schema != a.schema || h.ZeroThreshold != a.zThreshold {
|
|
return
|
|
}
|
|
|
|
if histogram.IsCustomBucketsSchema(h.Schema) && !histogram.FloatBucketsMatch(h.CustomValues, a.customValues) {
|
|
counterReset = true
|
|
return
|
|
}
|
|
|
|
if h.ZeroCount < a.zCnt.value {
|
|
// There has been a counter reset since ZeroThreshold didn't change.
|
|
counterReset = true
|
|
return
|
|
}
|
|
|
|
var ok bool
|
|
positiveInserts, backwardPositiveInserts, ok = expandFloatSpansAndBuckets(a.pSpans, h.PositiveSpans, a.pBuckets, h.PositiveBuckets)
|
|
if !ok {
|
|
counterReset = true
|
|
return
|
|
}
|
|
negativeInserts, backwardNegativeInserts, ok = expandFloatSpansAndBuckets(a.nSpans, h.NegativeSpans, a.nBuckets, h.NegativeBuckets)
|
|
if !ok {
|
|
counterReset = true
|
|
return
|
|
}
|
|
|
|
okToAppend = true
|
|
return
|
|
}
|
|
|
|
// expandFloatSpansAndBuckets returns the inserts to expand the bucket spans 'a' so that
|
|
// they match the spans in 'b'. 'b' must cover the same or more buckets than
|
|
// 'a', otherwise the function will return false.
|
|
// The function also returns the inserts to expand 'b' to also cover all the
|
|
// buckets that are missing in 'b', but are present with 0 counter value in 'a'.
|
|
// The function also checks for counter resets between 'a' and 'b'.
|
|
//
|
|
// Example:
|
|
//
|
|
// Let's say the old buckets look like this:
|
|
//
|
|
// span syntax: [offset, length]
|
|
// spans : [ 0 , 2 ] [2,1] [ 3 , 2 ] [3,1] [1,1]
|
|
// bucket idx : [0] [1] 2 3 [4] 5 6 7 [8] [9] 10 11 12 [13] 14 [15]
|
|
// raw values 6 3 3 2 4 5 1
|
|
// deltas 6 -3 0 -1 2 1 -4
|
|
//
|
|
// But now we introduce a new bucket layout. (Carefully chosen example where we
|
|
// have a span appended, one unchanged[*], one prepended, and two merge - in
|
|
// that order.)
|
|
//
|
|
// [*] unchanged in terms of which bucket indices they represent. but to achieve
|
|
// that, their offset needs to change if "disrupted" by spans changing ahead of
|
|
// them
|
|
//
|
|
// \/ this one is "unchanged"
|
|
// spans : [ 0 , 3 ] [1,1] [ 1 , 4 ] [ 3 , 3 ]
|
|
// bucket idx : [0] [1] [2] 3 [4] 5 [6] [7] [8] [9] 10 11 12 [13] [14] [15]
|
|
// raw values 6 3 0 3 0 0 2 4 5 0 1
|
|
// deltas 6 -3 -3 3 -3 0 2 2 1 -5 1
|
|
// delta mods: / \ / \ / \
|
|
//
|
|
// Note for histograms with delta-encoded buckets: Whenever any new buckets are
|
|
// introduced, the subsequent "old" bucket needs to readjust its delta to the
|
|
// new base of 0. Thus, for the caller who wants to transform the set of
|
|
// original deltas to a new set of deltas to match a new span layout that adds
|
|
// buckets, we simply need to generate a list of inserts.
|
|
//
|
|
// Note: Within expandFloatSpansAndBuckets we don't have to worry about the changes to the
|
|
// spans themselves, thanks to the iterators we get to work with the more useful
|
|
// bucket indices (which of course directly correspond to the buckets we have to
|
|
// adjust).
|
|
func expandFloatSpansAndBuckets(a, b []histogram.Span, aBuckets []xorValue, bBuckets []float64) (forward, backward []Insert, ok bool) {
|
|
ai := newBucketIterator(a)
|
|
bi := newBucketIterator(b)
|
|
|
|
var aInserts []Insert // To insert into buckets of a, to make up for missing buckets in b.
|
|
var bInserts []Insert // To insert into buckets of b, to make up for missing empty(!) buckets in a.
|
|
|
|
// When aInter.num or bInter.num becomes > 0, this becomes a valid insert that should
|
|
// be yielded when we finish a streak of new buckets.
|
|
var aInter Insert
|
|
var bInter Insert
|
|
|
|
aIdx, aOK := ai.Next()
|
|
bIdx, bOK := bi.Next()
|
|
|
|
// Bucket count. Initialize the absolute count and index into the
|
|
// positive/negative counts or deltas array. The bucket count is
|
|
// used to detect counter reset as well as unused buckets in a.
|
|
var (
|
|
aCount float64
|
|
bCount float64
|
|
aCountIdx int
|
|
bCountIdx int
|
|
)
|
|
if aOK {
|
|
aCount = aBuckets[aCountIdx].value
|
|
}
|
|
if bOK {
|
|
bCount = bBuckets[bCountIdx]
|
|
}
|
|
|
|
// addInsert updates the current Insert with a new insert at the given
|
|
// bucket index (otherIdx).
|
|
addInsert := func(inserts []Insert, insert *Insert, otherIdx int) []Insert {
|
|
if insert.num == 0 {
|
|
// First insert.
|
|
insert.bucketIdx = otherIdx
|
|
} else if insert.bucketIdx+insert.num != otherIdx {
|
|
// Insert is not continuous from previous insert.
|
|
inserts = append(inserts, *insert)
|
|
insert.num = 0
|
|
insert.bucketIdx = otherIdx
|
|
}
|
|
insert.num++
|
|
return inserts
|
|
}
|
|
|
|
advanceA := func() {
|
|
if aInter.num > 0 {
|
|
aInserts = append(aInserts, aInter)
|
|
aInter.num = 0
|
|
}
|
|
aIdx, aOK = ai.Next()
|
|
aInter.pos++
|
|
aCountIdx++
|
|
if aOK {
|
|
aCount = aBuckets[aCountIdx].value
|
|
}
|
|
}
|
|
|
|
advanceB := func() {
|
|
if bInter.num > 0 {
|
|
bInserts = append(bInserts, bInter)
|
|
bInter.num = 0
|
|
}
|
|
bIdx, bOK = bi.Next()
|
|
bInter.pos++
|
|
bCountIdx++
|
|
if bOK {
|
|
bCount = bBuckets[bCountIdx]
|
|
}
|
|
}
|
|
|
|
loop:
|
|
for {
|
|
switch {
|
|
case aOK && bOK:
|
|
switch {
|
|
case aIdx == bIdx: // Both have an identical bucket index.
|
|
// Bucket count. Check bucket for reset from a to b.
|
|
if aCount > bCount {
|
|
return nil, nil, false
|
|
}
|
|
|
|
advanceA()
|
|
advanceB()
|
|
|
|
continue
|
|
case aIdx < bIdx: // b misses a bucket index that is in a.
|
|
// This is ok if the count in a is 0, in which case we make a note to
|
|
// fill in the bucket in b and advance a.
|
|
if aCount == 0 {
|
|
bInserts = addInsert(bInserts, &bInter, aIdx)
|
|
advanceA()
|
|
continue
|
|
}
|
|
// Otherwise we are missing a bucket that was in use in a, which is a reset.
|
|
return nil, nil, false
|
|
case aIdx > bIdx: // a misses a value that is in b. Forward b and recompare.
|
|
aInserts = addInsert(aInserts, &aInter, bIdx)
|
|
advanceB()
|
|
}
|
|
case aOK && !bOK: // b misses a value that is in a.
|
|
// This is ok if the count in a is 0, in which case we make a note to
|
|
// fill in the bucket in b and advance a.
|
|
if aCount == 0 {
|
|
bInserts = addInsert(bInserts, &bInter, aIdx)
|
|
advanceA()
|
|
continue
|
|
}
|
|
// Otherwise we are missing a bucket that was in use in a, which is a reset.
|
|
return nil, nil, false
|
|
case !aOK && bOK: // a misses a value that is in b. Forward b and recompare.
|
|
aInserts = addInsert(aInserts, &aInter, bIdx)
|
|
advanceB()
|
|
default: // Both iterators ran out. We're done.
|
|
if aInter.num > 0 {
|
|
aInserts = append(aInserts, aInter)
|
|
}
|
|
if bInter.num > 0 {
|
|
bInserts = append(bInserts, bInter)
|
|
}
|
|
break loop
|
|
}
|
|
}
|
|
|
|
return aInserts, bInserts, true
|
|
}
|
|
|
|
// appendableGauge returns whether the chunk can be appended to, and if so
|
|
// whether:
|
|
// 1. Any recoding needs to happen to the chunk using the provided inserts
|
|
// (in case of any new buckets, positive or negative range, respectively).
|
|
// 2. Any recoding needs to happen for the histogram being appended, using the
|
|
// backward inserts (in case of any missing buckets, positive or negative
|
|
// range, respectively).
|
|
//
|
|
// This method must be only used for gauge histograms.
|
|
//
|
|
// The chunk is not appendable in the following cases:
|
|
// - The schema has changed.
|
|
// - The custom bounds have changed if the current schema is custom buckets.
|
|
// - The threshold for the zero bucket has changed.
|
|
// - The last sample in the chunk was stale while the current sample is not stale.
|
|
func (a *FloatHistogramAppender) appendableGauge(h *histogram.FloatHistogram) (
|
|
positiveInserts, negativeInserts []Insert,
|
|
backwardPositiveInserts, backwardNegativeInserts []Insert,
|
|
positiveSpans, negativeSpans []histogram.Span,
|
|
okToAppend bool,
|
|
) {
|
|
if a.NumSamples() > 0 && a.GetCounterResetHeader() != GaugeType {
|
|
return
|
|
}
|
|
if value.IsStaleNaN(h.Sum) {
|
|
// This is a stale sample whose buckets and spans don't matter.
|
|
okToAppend = true
|
|
return
|
|
}
|
|
if value.IsStaleNaN(a.sum.value) {
|
|
// If the last sample was stale, then we can only accept stale
|
|
// samples in this chunk.
|
|
return
|
|
}
|
|
|
|
if h.Schema != a.schema || h.ZeroThreshold != a.zThreshold {
|
|
return
|
|
}
|
|
|
|
if histogram.IsCustomBucketsSchema(h.Schema) && !histogram.FloatBucketsMatch(h.CustomValues, a.customValues) {
|
|
return
|
|
}
|
|
|
|
positiveInserts, backwardPositiveInserts, positiveSpans = expandSpansBothWays(a.pSpans, h.PositiveSpans)
|
|
negativeInserts, backwardNegativeInserts, negativeSpans = expandSpansBothWays(a.nSpans, h.NegativeSpans)
|
|
okToAppend = true
|
|
return
|
|
}
|
|
|
|
// appendFloatHistogram appends a float histogram to the chunk. The caller must ensure that
|
|
// the histogram is properly structured, e.g. the number of buckets used
|
|
// corresponds to the number conveyed by the span structures. First call
|
|
// Appendable() and act accordingly!
|
|
func (a *FloatHistogramAppender) appendFloatHistogram(t int64, h *histogram.FloatHistogram) {
|
|
var tDelta int64
|
|
num := binary.BigEndian.Uint16(a.b.bytes())
|
|
|
|
if value.IsStaleNaN(h.Sum) {
|
|
// Emptying out other fields to write no buckets, and an empty
|
|
// layout in case of first histogram in the chunk.
|
|
h = &histogram.FloatHistogram{Sum: h.Sum}
|
|
}
|
|
|
|
if num == 0 {
|
|
// The first append gets the privilege to dictate the layout
|
|
// but it's also responsible for encoding it into the chunk!
|
|
writeHistogramChunkLayout(a.b, h.Schema, h.ZeroThreshold, h.PositiveSpans, h.NegativeSpans, h.CustomValues)
|
|
a.schema = h.Schema
|
|
a.zThreshold = h.ZeroThreshold
|
|
|
|
if len(h.PositiveSpans) > 0 {
|
|
a.pSpans = make([]histogram.Span, len(h.PositiveSpans))
|
|
copy(a.pSpans, h.PositiveSpans)
|
|
} else {
|
|
a.pSpans = nil
|
|
}
|
|
if len(h.NegativeSpans) > 0 {
|
|
a.nSpans = make([]histogram.Span, len(h.NegativeSpans))
|
|
copy(a.nSpans, h.NegativeSpans)
|
|
} else {
|
|
a.nSpans = nil
|
|
}
|
|
if len(h.CustomValues) > 0 {
|
|
a.customValues = make([]float64, len(h.CustomValues))
|
|
copy(a.customValues, h.CustomValues)
|
|
} else {
|
|
a.customValues = nil
|
|
}
|
|
|
|
numPBuckets, numNBuckets := countSpans(h.PositiveSpans), countSpans(h.NegativeSpans)
|
|
if numPBuckets > 0 {
|
|
a.pBuckets = make([]xorValue, numPBuckets)
|
|
for i := 0; i < numPBuckets; i++ {
|
|
a.pBuckets[i] = xorValue{
|
|
value: h.PositiveBuckets[i],
|
|
leading: 0xff,
|
|
}
|
|
}
|
|
} else {
|
|
a.pBuckets = nil
|
|
}
|
|
if numNBuckets > 0 {
|
|
a.nBuckets = make([]xorValue, numNBuckets)
|
|
for i := 0; i < numNBuckets; i++ {
|
|
a.nBuckets[i] = xorValue{
|
|
value: h.NegativeBuckets[i],
|
|
leading: 0xff,
|
|
}
|
|
}
|
|
} else {
|
|
a.nBuckets = nil
|
|
}
|
|
|
|
// Now store the actual data.
|
|
putVarbitInt(a.b, t)
|
|
a.b.writeBits(math.Float64bits(h.Count), 64)
|
|
a.b.writeBits(math.Float64bits(h.ZeroCount), 64)
|
|
a.b.writeBits(math.Float64bits(h.Sum), 64)
|
|
a.cnt.value = h.Count
|
|
a.zCnt.value = h.ZeroCount
|
|
a.sum.value = h.Sum
|
|
for _, b := range h.PositiveBuckets {
|
|
a.b.writeBits(math.Float64bits(b), 64)
|
|
}
|
|
for _, b := range h.NegativeBuckets {
|
|
a.b.writeBits(math.Float64bits(b), 64)
|
|
}
|
|
} else {
|
|
// The case for the 2nd sample with single deltas is implicitly handled correctly with the double delta code,
|
|
// so we don't need a separate single delta logic for the 2nd sample.
|
|
tDelta = t - a.t
|
|
tDod := tDelta - a.tDelta
|
|
putVarbitInt(a.b, tDod)
|
|
|
|
a.writeXorValue(&a.cnt, h.Count)
|
|
a.writeXorValue(&a.zCnt, h.ZeroCount)
|
|
a.writeXorValue(&a.sum, h.Sum)
|
|
|
|
for i, b := range h.PositiveBuckets {
|
|
a.writeXorValue(&a.pBuckets[i], b)
|
|
}
|
|
for i, b := range h.NegativeBuckets {
|
|
a.writeXorValue(&a.nBuckets[i], b)
|
|
}
|
|
}
|
|
|
|
binary.BigEndian.PutUint16(a.b.bytes(), num+1)
|
|
|
|
a.t = t
|
|
a.tDelta = tDelta
|
|
}
|
|
|
|
func (a *FloatHistogramAppender) writeXorValue(old *xorValue, v float64) {
|
|
xorWrite(a.b, v, old.value, &old.leading, &old.trailing)
|
|
old.value = v
|
|
}
|
|
|
|
// recode converts the current chunk to accommodate an expansion of the set of
|
|
// (positive and/or negative) buckets used, according to the provided inserts,
|
|
// resulting in the honoring of the provided new positive and negative spans. To
|
|
// continue appending, use the returned Appender rather than the receiver of
|
|
// this method.
|
|
func (a *FloatHistogramAppender) recode(
|
|
positiveInserts, negativeInserts []Insert,
|
|
positiveSpans, negativeSpans []histogram.Span,
|
|
) (Chunk, Appender) {
|
|
// TODO(beorn7): This currently just decodes everything and then encodes
|
|
// it again with the new span layout. This can probably be done in-place
|
|
// by editing the chunk. But let's first see how expensive it is in the
|
|
// big picture. Also, in-place editing might create concurrency issues.
|
|
byts := a.b.bytes()
|
|
it := newFloatHistogramIterator(byts)
|
|
hc := NewFloatHistogramChunk()
|
|
app, err := hc.Appender()
|
|
if err != nil {
|
|
panic(err) // This should never happen for an empty float histogram chunk.
|
|
}
|
|
happ := app.(*FloatHistogramAppender)
|
|
numPositiveBuckets, numNegativeBuckets := countSpans(positiveSpans), countSpans(negativeSpans)
|
|
|
|
for it.Next() == ValFloatHistogram {
|
|
tOld, hOld := it.AtFloatHistogram(nil)
|
|
|
|
// We have to newly allocate slices for the modified buckets
|
|
// here because they are kept by the appender until the next
|
|
// append.
|
|
// TODO(beorn7): We might be able to optimize this.
|
|
var positiveBuckets, negativeBuckets []float64
|
|
if numPositiveBuckets > 0 {
|
|
positiveBuckets = make([]float64, numPositiveBuckets)
|
|
}
|
|
if numNegativeBuckets > 0 {
|
|
negativeBuckets = make([]float64, numNegativeBuckets)
|
|
}
|
|
|
|
// Save the modified histogram to the new chunk.
|
|
hOld.PositiveSpans, hOld.NegativeSpans = positiveSpans, negativeSpans
|
|
if len(positiveInserts) > 0 {
|
|
hOld.PositiveBuckets = insert(hOld.PositiveBuckets, positiveBuckets, positiveInserts, false)
|
|
}
|
|
if len(negativeInserts) > 0 {
|
|
hOld.NegativeBuckets = insert(hOld.NegativeBuckets, negativeBuckets, negativeInserts, false)
|
|
}
|
|
happ.appendFloatHistogram(tOld, hOld)
|
|
}
|
|
|
|
happ.setCounterResetHeader(CounterResetHeader(byts[2] & CounterResetHeaderMask))
|
|
return hc, app
|
|
}
|
|
|
|
// recodeHistogram converts the current histogram (in-place) to accommodate an expansion of the set of
|
|
// (positive and/or negative) buckets used.
|
|
func (a *FloatHistogramAppender) recodeHistogram(
|
|
fh *histogram.FloatHistogram,
|
|
pBackwardInter, nBackwardInter []Insert,
|
|
) {
|
|
if len(pBackwardInter) > 0 {
|
|
numPositiveBuckets := countSpans(fh.PositiveSpans)
|
|
fh.PositiveBuckets = insert(fh.PositiveBuckets, make([]float64, numPositiveBuckets), pBackwardInter, false)
|
|
}
|
|
if len(nBackwardInter) > 0 {
|
|
numNegativeBuckets := countSpans(fh.NegativeSpans)
|
|
fh.NegativeBuckets = insert(fh.NegativeBuckets, make([]float64, numNegativeBuckets), nBackwardInter, false)
|
|
}
|
|
}
|
|
|
|
func (a *FloatHistogramAppender) AppendHistogram(*HistogramAppender, int64, *histogram.Histogram, bool) (Chunk, bool, Appender, error) {
|
|
panic("appended a histogram sample to a float histogram chunk")
|
|
}
|
|
|
|
func (a *FloatHistogramAppender) AppendFloatHistogram(prev *FloatHistogramAppender, t int64, h *histogram.FloatHistogram, appendOnly bool) (Chunk, bool, Appender, error) {
|
|
if a.NumSamples() == 0 {
|
|
a.appendFloatHistogram(t, h)
|
|
if h.CounterResetHint == histogram.GaugeType {
|
|
a.setCounterResetHeader(GaugeType)
|
|
return nil, false, a, nil
|
|
}
|
|
|
|
switch {
|
|
case h.CounterResetHint == histogram.CounterReset:
|
|
// Always honor the explicit counter reset hint.
|
|
a.setCounterResetHeader(CounterReset)
|
|
case prev != nil:
|
|
// This is a new chunk, but continued from a previous one. We need to calculate the reset header unless already set.
|
|
_, _, _, _, _, counterReset := prev.appendable(h)
|
|
if counterReset {
|
|
a.setCounterResetHeader(CounterReset)
|
|
} else {
|
|
a.setCounterResetHeader(NotCounterReset)
|
|
}
|
|
}
|
|
return nil, false, a, nil
|
|
}
|
|
|
|
// Adding counter-like histogram.
|
|
if h.CounterResetHint != histogram.GaugeType {
|
|
pForwardInserts, nForwardInserts, pBackwardInserts, nBackwardInserts, okToAppend, counterReset := a.appendable(h)
|
|
if !okToAppend || counterReset {
|
|
if appendOnly {
|
|
if counterReset {
|
|
return nil, false, a, errors.New("float histogram counter reset")
|
|
}
|
|
return nil, false, a, errors.New("float histogram schema change")
|
|
}
|
|
newChunk := NewFloatHistogramChunk()
|
|
app, err := newChunk.Appender()
|
|
if err != nil {
|
|
panic(err) // This should never happen for an empty float histogram chunk.
|
|
}
|
|
happ := app.(*FloatHistogramAppender)
|
|
if counterReset {
|
|
happ.setCounterResetHeader(CounterReset)
|
|
}
|
|
happ.appendFloatHistogram(t, h)
|
|
return newChunk, false, app, nil
|
|
}
|
|
if len(pBackwardInserts) > 0 || len(nBackwardInserts) > 0 {
|
|
// The histogram needs to be expanded to have the extra empty buckets
|
|
// of the chunk.
|
|
if len(pForwardInserts) == 0 && len(nForwardInserts) == 0 {
|
|
// No new buckets from the histogram, so the spans of the appender can accommodate the new buckets.
|
|
// However we need to make a copy in case the input is sharing spans from an iterator.
|
|
h.PositiveSpans = make([]histogram.Span, len(a.pSpans))
|
|
copy(h.PositiveSpans, a.pSpans)
|
|
h.NegativeSpans = make([]histogram.Span, len(a.nSpans))
|
|
copy(h.NegativeSpans, a.nSpans)
|
|
} else {
|
|
// Spans need pre-adjusting to accommodate the new buckets.
|
|
h.PositiveSpans = adjustForInserts(h.PositiveSpans, pBackwardInserts)
|
|
h.NegativeSpans = adjustForInserts(h.NegativeSpans, nBackwardInserts)
|
|
}
|
|
a.recodeHistogram(h, pBackwardInserts, nBackwardInserts)
|
|
}
|
|
if len(pForwardInserts) > 0 || len(nForwardInserts) > 0 {
|
|
if appendOnly {
|
|
return nil, false, a, fmt.Errorf("float histogram layout change with %d positive and %d negative forwards inserts", len(pForwardInserts), len(nForwardInserts))
|
|
}
|
|
chk, app := a.recode(
|
|
pForwardInserts, nForwardInserts,
|
|
h.PositiveSpans, h.NegativeSpans,
|
|
)
|
|
app.(*FloatHistogramAppender).appendFloatHistogram(t, h)
|
|
return chk, true, app, nil
|
|
}
|
|
a.appendFloatHistogram(t, h)
|
|
return nil, false, a, nil
|
|
}
|
|
// Adding gauge histogram.
|
|
pForwardInserts, nForwardInserts, pBackwardInserts, nBackwardInserts, pMergedSpans, nMergedSpans, okToAppend := a.appendableGauge(h)
|
|
if !okToAppend {
|
|
if appendOnly {
|
|
return nil, false, a, errors.New("float gauge histogram schema change")
|
|
}
|
|
newChunk := NewFloatHistogramChunk()
|
|
app, err := newChunk.Appender()
|
|
if err != nil {
|
|
panic(err) // This should never happen for an empty float histogram chunk.
|
|
}
|
|
happ := app.(*FloatHistogramAppender)
|
|
happ.setCounterResetHeader(GaugeType)
|
|
happ.appendFloatHistogram(t, h)
|
|
return newChunk, false, app, nil
|
|
}
|
|
|
|
if len(pBackwardInserts)+len(nBackwardInserts) > 0 {
|
|
if appendOnly {
|
|
return nil, false, a, fmt.Errorf("float gauge histogram layout change with %d positive and %d negative backwards inserts", len(pBackwardInserts), len(nBackwardInserts))
|
|
}
|
|
h.PositiveSpans = pMergedSpans
|
|
h.NegativeSpans = nMergedSpans
|
|
a.recodeHistogram(h, pBackwardInserts, nBackwardInserts)
|
|
}
|
|
|
|
if len(pForwardInserts) > 0 || len(nForwardInserts) > 0 {
|
|
if appendOnly {
|
|
return nil, false, a, fmt.Errorf("float gauge histogram layout change with %d positive and %d negative forwards inserts", len(pForwardInserts), len(nForwardInserts))
|
|
}
|
|
chk, app := a.recode(
|
|
pForwardInserts, nForwardInserts,
|
|
h.PositiveSpans, h.NegativeSpans,
|
|
)
|
|
app.(*FloatHistogramAppender).appendFloatHistogram(t, h)
|
|
return chk, true, app, nil
|
|
}
|
|
|
|
a.appendFloatHistogram(t, h)
|
|
return nil, false, a, nil
|
|
}
|
|
|
|
type floatHistogramIterator struct {
|
|
br bstreamReader
|
|
numTotal uint16
|
|
numRead uint16
|
|
|
|
counterResetHeader CounterResetHeader
|
|
|
|
// Layout:
|
|
schema int32
|
|
zThreshold float64
|
|
pSpans, nSpans []histogram.Span
|
|
customValues []float64
|
|
|
|
// For the fields that are tracked as deltas and ultimately dod's.
|
|
t int64
|
|
tDelta int64
|
|
|
|
// All Gorilla xor encoded.
|
|
sum, cnt, zCnt xorValue
|
|
|
|
// Buckets are not of type xorValue to avoid creating
|
|
// new slices for every AtFloatHistogram call.
|
|
pBuckets, nBuckets []float64
|
|
pBucketsLeading, nBucketsLeading []uint8
|
|
pBucketsTrailing, nBucketsTrailing []uint8
|
|
|
|
err error
|
|
|
|
// Track calls to retrieve methods. Once they have been called, we
|
|
// cannot recycle the bucket slices anymore because we have returned
|
|
// them in the histogram.
|
|
atFloatHistogramCalled bool
|
|
}
|
|
|
|
func (it *floatHistogramIterator) Seek(t int64) ValueType {
|
|
if it.err != nil {
|
|
return ValNone
|
|
}
|
|
|
|
for t > it.t || it.numRead == 0 {
|
|
if it.Next() == ValNone {
|
|
return ValNone
|
|
}
|
|
}
|
|
return ValFloatHistogram
|
|
}
|
|
|
|
func (it *floatHistogramIterator) At() (int64, float64) {
|
|
panic("cannot call floatHistogramIterator.At")
|
|
}
|
|
|
|
func (it *floatHistogramIterator) AtHistogram(*histogram.Histogram) (int64, *histogram.Histogram) {
|
|
panic("cannot call floatHistogramIterator.AtHistogram")
|
|
}
|
|
|
|
func (it *floatHistogramIterator) AtFloatHistogram(fh *histogram.FloatHistogram) (int64, *histogram.FloatHistogram) {
|
|
if value.IsStaleNaN(it.sum.value) {
|
|
return it.t, &histogram.FloatHistogram{Sum: it.sum.value}
|
|
}
|
|
if fh == nil {
|
|
it.atFloatHistogramCalled = true
|
|
return it.t, &histogram.FloatHistogram{
|
|
CounterResetHint: counterResetHint(it.counterResetHeader, it.numRead),
|
|
Count: it.cnt.value,
|
|
ZeroCount: it.zCnt.value,
|
|
Sum: it.sum.value,
|
|
ZeroThreshold: it.zThreshold,
|
|
Schema: it.schema,
|
|
PositiveSpans: it.pSpans,
|
|
NegativeSpans: it.nSpans,
|
|
PositiveBuckets: it.pBuckets,
|
|
NegativeBuckets: it.nBuckets,
|
|
CustomValues: it.customValues,
|
|
}
|
|
}
|
|
|
|
fh.CounterResetHint = counterResetHint(it.counterResetHeader, it.numRead)
|
|
fh.Schema = it.schema
|
|
fh.ZeroThreshold = it.zThreshold
|
|
fh.ZeroCount = it.zCnt.value
|
|
fh.Count = it.cnt.value
|
|
fh.Sum = it.sum.value
|
|
|
|
fh.PositiveSpans = resize(fh.PositiveSpans, len(it.pSpans))
|
|
copy(fh.PositiveSpans, it.pSpans)
|
|
|
|
fh.NegativeSpans = resize(fh.NegativeSpans, len(it.nSpans))
|
|
copy(fh.NegativeSpans, it.nSpans)
|
|
|
|
fh.PositiveBuckets = resize(fh.PositiveBuckets, len(it.pBuckets))
|
|
copy(fh.PositiveBuckets, it.pBuckets)
|
|
|
|
fh.NegativeBuckets = resize(fh.NegativeBuckets, len(it.nBuckets))
|
|
copy(fh.NegativeBuckets, it.nBuckets)
|
|
|
|
// Custom values are interned. The single copy is in this iterator.
|
|
fh.CustomValues = it.customValues
|
|
|
|
return it.t, fh
|
|
}
|
|
|
|
func (it *floatHistogramIterator) AtT() int64 {
|
|
return it.t
|
|
}
|
|
|
|
func (it *floatHistogramIterator) Err() error {
|
|
return it.err
|
|
}
|
|
|
|
func (it *floatHistogramIterator) Reset(b []byte) {
|
|
// The first 3 bytes contain chunk headers.
|
|
// We skip that for actual samples.
|
|
it.br = newBReader(b[3:])
|
|
it.numTotal = binary.BigEndian.Uint16(b)
|
|
it.numRead = 0
|
|
|
|
it.counterResetHeader = CounterResetHeader(b[2] & CounterResetHeaderMask)
|
|
|
|
it.t, it.tDelta = 0, 0
|
|
it.cnt, it.zCnt, it.sum = xorValue{}, xorValue{}, xorValue{}
|
|
|
|
if it.atFloatHistogramCalled {
|
|
it.atFloatHistogramCalled = false
|
|
it.pBuckets, it.nBuckets = nil, nil
|
|
it.pSpans, it.nSpans = nil, nil
|
|
it.customValues = nil
|
|
} else {
|
|
it.pBuckets, it.nBuckets = it.pBuckets[:0], it.nBuckets[:0]
|
|
}
|
|
it.pBucketsLeading, it.pBucketsTrailing = it.pBucketsLeading[:0], it.pBucketsTrailing[:0]
|
|
it.nBucketsLeading, it.nBucketsTrailing = it.nBucketsLeading[:0], it.nBucketsTrailing[:0]
|
|
|
|
it.err = nil
|
|
}
|
|
|
|
func (it *floatHistogramIterator) Next() ValueType {
|
|
if it.err != nil || it.numRead == it.numTotal {
|
|
return ValNone
|
|
}
|
|
|
|
if it.numRead == 0 {
|
|
// The first read is responsible for reading the chunk layout
|
|
// and for initializing fields that depend on it. We give
|
|
// counter reset info at chunk level, hence we discard it here.
|
|
schema, zeroThreshold, posSpans, negSpans, customValues, err := readHistogramChunkLayout(&it.br)
|
|
if err != nil {
|
|
it.err = err
|
|
return ValNone
|
|
}
|
|
it.schema = schema
|
|
it.zThreshold = zeroThreshold
|
|
it.pSpans, it.nSpans = posSpans, negSpans
|
|
it.customValues = customValues
|
|
numPBuckets, numNBuckets := countSpans(posSpans), countSpans(negSpans)
|
|
// Allocate bucket slices as needed, recycling existing slices
|
|
// in case this iterator was reset and already has slices of a
|
|
// sufficient capacity.
|
|
if numPBuckets > 0 {
|
|
it.pBuckets = append(it.pBuckets, make([]float64, numPBuckets)...)
|
|
it.pBucketsLeading = append(it.pBucketsLeading, make([]uint8, numPBuckets)...)
|
|
it.pBucketsTrailing = append(it.pBucketsTrailing, make([]uint8, numPBuckets)...)
|
|
}
|
|
if numNBuckets > 0 {
|
|
it.nBuckets = append(it.nBuckets, make([]float64, numNBuckets)...)
|
|
it.nBucketsLeading = append(it.nBucketsLeading, make([]uint8, numNBuckets)...)
|
|
it.nBucketsTrailing = append(it.nBucketsTrailing, make([]uint8, numNBuckets)...)
|
|
}
|
|
|
|
// Now read the actual data.
|
|
t, err := readVarbitInt(&it.br)
|
|
if err != nil {
|
|
it.err = err
|
|
return ValNone
|
|
}
|
|
it.t = t
|
|
|
|
cnt, err := it.br.readBits(64)
|
|
if err != nil {
|
|
it.err = err
|
|
return ValNone
|
|
}
|
|
it.cnt.value = math.Float64frombits(cnt)
|
|
|
|
zcnt, err := it.br.readBits(64)
|
|
if err != nil {
|
|
it.err = err
|
|
return ValNone
|
|
}
|
|
it.zCnt.value = math.Float64frombits(zcnt)
|
|
|
|
sum, err := it.br.readBits(64)
|
|
if err != nil {
|
|
it.err = err
|
|
return ValNone
|
|
}
|
|
it.sum.value = math.Float64frombits(sum)
|
|
|
|
for i := range it.pBuckets {
|
|
v, err := it.br.readBits(64)
|
|
if err != nil {
|
|
it.err = err
|
|
return ValNone
|
|
}
|
|
it.pBuckets[i] = math.Float64frombits(v)
|
|
}
|
|
for i := range it.nBuckets {
|
|
v, err := it.br.readBits(64)
|
|
if err != nil {
|
|
it.err = err
|
|
return ValNone
|
|
}
|
|
it.nBuckets[i] = math.Float64frombits(v)
|
|
}
|
|
|
|
it.numRead++
|
|
return ValFloatHistogram
|
|
}
|
|
|
|
// The case for the 2nd sample with single deltas is implicitly handled correctly with the double delta code,
|
|
// so we don't need a separate single delta logic for the 2nd sample.
|
|
|
|
// Recycle bucket, span and custom value slices that have not been returned yet. Otherwise, copy them.
|
|
// We can always recycle the slices for leading and trailing bits as they are
|
|
// never returned to the caller.
|
|
if it.atFloatHistogramCalled {
|
|
it.atFloatHistogramCalled = false
|
|
if len(it.pBuckets) > 0 {
|
|
newBuckets := make([]float64, len(it.pBuckets))
|
|
copy(newBuckets, it.pBuckets)
|
|
it.pBuckets = newBuckets
|
|
} else {
|
|
it.pBuckets = nil
|
|
}
|
|
if len(it.nBuckets) > 0 {
|
|
newBuckets := make([]float64, len(it.nBuckets))
|
|
copy(newBuckets, it.nBuckets)
|
|
it.nBuckets = newBuckets
|
|
} else {
|
|
it.nBuckets = nil
|
|
}
|
|
if len(it.pSpans) > 0 {
|
|
newSpans := make([]histogram.Span, len(it.pSpans))
|
|
copy(newSpans, it.pSpans)
|
|
it.pSpans = newSpans
|
|
} else {
|
|
it.pSpans = nil
|
|
}
|
|
if len(it.nSpans) > 0 {
|
|
newSpans := make([]histogram.Span, len(it.nSpans))
|
|
copy(newSpans, it.nSpans)
|
|
it.nSpans = newSpans
|
|
} else {
|
|
it.nSpans = nil
|
|
}
|
|
if len(it.customValues) > 0 {
|
|
newCustomValues := make([]float64, len(it.customValues))
|
|
copy(newCustomValues, it.customValues)
|
|
it.customValues = newCustomValues
|
|
} else {
|
|
it.customValues = nil
|
|
}
|
|
}
|
|
|
|
tDod, err := readVarbitInt(&it.br)
|
|
if err != nil {
|
|
it.err = err
|
|
return ValNone
|
|
}
|
|
it.tDelta += tDod
|
|
it.t += it.tDelta
|
|
|
|
if ok := it.readXor(&it.cnt.value, &it.cnt.leading, &it.cnt.trailing); !ok {
|
|
return ValNone
|
|
}
|
|
|
|
if ok := it.readXor(&it.zCnt.value, &it.zCnt.leading, &it.zCnt.trailing); !ok {
|
|
return ValNone
|
|
}
|
|
|
|
if ok := it.readXor(&it.sum.value, &it.sum.leading, &it.sum.trailing); !ok {
|
|
return ValNone
|
|
}
|
|
|
|
if value.IsStaleNaN(it.sum.value) {
|
|
it.numRead++
|
|
return ValFloatHistogram
|
|
}
|
|
|
|
for i := range it.pBuckets {
|
|
if ok := it.readXor(&it.pBuckets[i], &it.pBucketsLeading[i], &it.pBucketsTrailing[i]); !ok {
|
|
return ValNone
|
|
}
|
|
}
|
|
|
|
for i := range it.nBuckets {
|
|
if ok := it.readXor(&it.nBuckets[i], &it.nBucketsLeading[i], &it.nBucketsTrailing[i]); !ok {
|
|
return ValNone
|
|
}
|
|
}
|
|
|
|
it.numRead++
|
|
return ValFloatHistogram
|
|
}
|
|
|
|
func (it *floatHistogramIterator) readXor(v *float64, leading, trailing *uint8) bool {
|
|
err := xorRead(&it.br, v, leading, trailing)
|
|
if err != nil {
|
|
it.err = err
|
|
return false
|
|
}
|
|
return true
|
|
}
|