mirror of
https://github.com/prometheus/prometheus.git
synced 2025-12-04 09:01:02 +01:00
Merge pull request #17166 from Naman-B-Parlecha/NamanParlecha/NHCBtoCH
Unroll NHCBs to Classic Histograms func for RW
This commit is contained in:
commit
37418b5910
145
model/histogram/convert.go
Normal file
145
model/histogram/convert.go
Normal file
@ -0,0 +1,145 @@
|
|||||||
|
// Copyright The Prometheus Authors
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
package histogram
|
||||||
|
|
||||||
|
import (
|
||||||
|
"errors"
|
||||||
|
"fmt"
|
||||||
|
"math"
|
||||||
|
|
||||||
|
"github.com/prometheus/common/model"
|
||||||
|
|
||||||
|
"github.com/prometheus/prometheus/model/labels"
|
||||||
|
)
|
||||||
|
|
||||||
|
// ConvertNHCBToClassic converts Native Histogram Custom Buckets (NHCB) to classic histogram series.
|
||||||
|
// This conversion is needed in various scenarios where users need to get NHCB back to classic histogram format,
|
||||||
|
// such as Remote Write v1 for external system compatibility and migration use cases.
|
||||||
|
//
|
||||||
|
// When calling this function, caller must ensure that provided nhcb is valid NHCB histogram.
|
||||||
|
func ConvertNHCBToClassic(nhcb any, lset labels.Labels, lsetBuilder *labels.Builder, emitSeriesFn func(labels labels.Labels, value float64) error) error {
|
||||||
|
baseName := lset.Get(model.MetricNameLabel)
|
||||||
|
if baseName == "" {
|
||||||
|
return errors.New("metric name label '__name__' is missing")
|
||||||
|
}
|
||||||
|
|
||||||
|
// We preserve original labels and restore them after conversion.
|
||||||
|
// This is to ensure that no modifications are made to the original labels
|
||||||
|
// that the queue_manager relies on.
|
||||||
|
oldLabels := lsetBuilder.Labels()
|
||||||
|
defer lsetBuilder.Reset(oldLabels)
|
||||||
|
|
||||||
|
var (
|
||||||
|
customValues []float64
|
||||||
|
positiveBuckets []float64
|
||||||
|
count, sum float64
|
||||||
|
idx int // This index is to track buckets in Classic Histogram
|
||||||
|
currIdx int // This index is to track buckets in Native Histogram
|
||||||
|
)
|
||||||
|
|
||||||
|
switch h := nhcb.(type) {
|
||||||
|
case *Histogram:
|
||||||
|
if !IsCustomBucketsSchema(h.Schema) {
|
||||||
|
return errors.New("unsupported histogram schema, not a NHCB")
|
||||||
|
}
|
||||||
|
|
||||||
|
// Validate the histogram before conversion.
|
||||||
|
// The caller must ensure that the provided histogram is valid NHCB.
|
||||||
|
if h.Validate() != nil {
|
||||||
|
return errors.New(h.Validate().Error())
|
||||||
|
}
|
||||||
|
|
||||||
|
customValues = h.CustomValues
|
||||||
|
positiveBuckets = make([]float64, len(customValues)+1)
|
||||||
|
|
||||||
|
// Histograms are in delta format so we first bring them to absolute format.
|
||||||
|
acc := int64(0)
|
||||||
|
for _, s := range h.PositiveSpans {
|
||||||
|
for i := 0; i < int(s.Offset); i++ {
|
||||||
|
positiveBuckets[idx] = float64(acc)
|
||||||
|
idx++
|
||||||
|
}
|
||||||
|
for i := 0; i < int(s.Length); i++ {
|
||||||
|
acc += h.PositiveBuckets[currIdx]
|
||||||
|
positiveBuckets[idx] = float64(acc)
|
||||||
|
idx++
|
||||||
|
currIdx++
|
||||||
|
}
|
||||||
|
}
|
||||||
|
count = float64(h.Count)
|
||||||
|
sum = h.Sum
|
||||||
|
case *FloatHistogram:
|
||||||
|
if !IsCustomBucketsSchema(h.Schema) {
|
||||||
|
return errors.New("unsupported histogram schema, not a NHCB")
|
||||||
|
}
|
||||||
|
|
||||||
|
// Validate the histogram before conversion.
|
||||||
|
// The caller must ensure that the provided histogram is valid NHCB.
|
||||||
|
if h.Validate() != nil {
|
||||||
|
return errors.New(h.Validate().Error())
|
||||||
|
}
|
||||||
|
customValues = h.CustomValues
|
||||||
|
positiveBuckets = make([]float64, len(customValues)+1)
|
||||||
|
|
||||||
|
for _, span := range h.PositiveSpans {
|
||||||
|
// Since Float Histogram is already in absolute format we should
|
||||||
|
// keep the sparse buckets empty so we jump and go to next filled
|
||||||
|
// bucket index.
|
||||||
|
idx += int(span.Offset)
|
||||||
|
for i := 0; i < int(span.Length); i++ {
|
||||||
|
positiveBuckets[idx] = h.PositiveBuckets[currIdx]
|
||||||
|
idx++
|
||||||
|
currIdx++
|
||||||
|
}
|
||||||
|
}
|
||||||
|
count = h.Count
|
||||||
|
sum = h.Sum
|
||||||
|
default:
|
||||||
|
return fmt.Errorf("unsupported histogram type: %T", h)
|
||||||
|
}
|
||||||
|
|
||||||
|
currCount := float64(0)
|
||||||
|
for i, val := range customValues {
|
||||||
|
currCount += positiveBuckets[i]
|
||||||
|
lsetBuilder.Reset(lset)
|
||||||
|
lsetBuilder.Set(model.MetricNameLabel, baseName+"_bucket")
|
||||||
|
lsetBuilder.Set(model.BucketLabel, labels.FormatOpenMetricsFloat(val))
|
||||||
|
if err := emitSeriesFn(lsetBuilder.Labels(), currCount); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
currCount += positiveBuckets[len(positiveBuckets)-1]
|
||||||
|
|
||||||
|
lsetBuilder.Reset(lset)
|
||||||
|
lsetBuilder.Set(model.MetricNameLabel, baseName+"_bucket")
|
||||||
|
lsetBuilder.Set(model.BucketLabel, labels.FormatOpenMetricsFloat(math.Inf(1)))
|
||||||
|
if err := emitSeriesFn(lsetBuilder.Labels(), currCount); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
lsetBuilder.Reset(lset)
|
||||||
|
lsetBuilder.Set(model.MetricNameLabel, baseName+"_count")
|
||||||
|
if err := emitSeriesFn(lsetBuilder.Labels(), count); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
lsetBuilder.Reset(lset)
|
||||||
|
lsetBuilder.Set(model.MetricNameLabel, baseName+"_sum")
|
||||||
|
if err := emitSeriesFn(lsetBuilder.Labels(), sum); err != nil {
|
||||||
|
return err
|
||||||
|
}
|
||||||
|
|
||||||
|
return nil
|
||||||
|
}
|
||||||
314
model/histogram/convert_test.go
Normal file
314
model/histogram/convert_test.go
Normal file
@ -0,0 +1,314 @@
|
|||||||
|
// Copyright The Prometheus Authors
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
package histogram
|
||||||
|
|
||||||
|
import (
|
||||||
|
"testing"
|
||||||
|
|
||||||
|
"github.com/stretchr/testify/require"
|
||||||
|
|
||||||
|
"github.com/prometheus/prometheus/model/labels"
|
||||||
|
)
|
||||||
|
|
||||||
|
type sample struct {
|
||||||
|
lset labels.Labels
|
||||||
|
val float64
|
||||||
|
}
|
||||||
|
|
||||||
|
func TestConvertNHCBToClassicHistogram(t *testing.T) {
|
||||||
|
tests := []struct {
|
||||||
|
name string
|
||||||
|
nhcb any
|
||||||
|
labels labels.Labels
|
||||||
|
expectErr bool
|
||||||
|
expected []sample
|
||||||
|
}{
|
||||||
|
{
|
||||||
|
name: "valid histogram",
|
||||||
|
nhcb: &Histogram{
|
||||||
|
CustomValues: []float64{1, 2, 3},
|
||||||
|
PositiveBuckets: []int64{10, 20, 30},
|
||||||
|
PositiveSpans: []Span{
|
||||||
|
{Offset: 0, Length: 3},
|
||||||
|
},
|
||||||
|
Count: 100,
|
||||||
|
Sum: 100.0,
|
||||||
|
Schema: CustomBucketsSchema,
|
||||||
|
},
|
||||||
|
labels: labels.FromStrings("__name__", "test_metric"),
|
||||||
|
expected: []sample{
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "1.0"), val: 10},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "2.0"), val: 40},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "3.0"), val: 100},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "+Inf"), val: 100},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_count"), val: 100},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_sum"), val: 100},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "valid floatHistogram",
|
||||||
|
nhcb: &FloatHistogram{
|
||||||
|
CustomValues: []float64{1, 2, 3},
|
||||||
|
PositiveBuckets: []float64{20.0, 40.0, 60.0}, // 20 -> 60 ->120
|
||||||
|
PositiveSpans: []Span{
|
||||||
|
{Offset: 0, Length: 3},
|
||||||
|
},
|
||||||
|
Count: 120.0,
|
||||||
|
Sum: 100.0,
|
||||||
|
Schema: CustomBucketsSchema,
|
||||||
|
},
|
||||||
|
labels: labels.FromStrings("__name__", "test_metric"),
|
||||||
|
expected: []sample{
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "1.0"), val: 20},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "2.0"), val: 60},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "3.0"), val: 120},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "+Inf"), val: 120},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_count"), val: 120},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_sum"), val: 100},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "empty histogram",
|
||||||
|
nhcb: &Histogram{
|
||||||
|
CustomValues: []float64{},
|
||||||
|
PositiveBuckets: []int64{},
|
||||||
|
PositiveSpans: []Span{},
|
||||||
|
Count: 0,
|
||||||
|
Sum: 0.0,
|
||||||
|
Schema: CustomBucketsSchema,
|
||||||
|
},
|
||||||
|
labels: labels.FromStrings("__name__", "test_metric"),
|
||||||
|
expected: []sample{
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "+Inf"), val: 0},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_count"), val: 0},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_sum"), val: 0},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "missing __name__ label",
|
||||||
|
nhcb: &Histogram{
|
||||||
|
CustomValues: []float64{1, 2, 3},
|
||||||
|
PositiveBuckets: []int64{10, 20, 30},
|
||||||
|
Count: 100,
|
||||||
|
Sum: 100.0,
|
||||||
|
Schema: CustomBucketsSchema,
|
||||||
|
},
|
||||||
|
labels: labels.FromStrings("job", "test_job"),
|
||||||
|
expectErr: true,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "unsupported histogram type",
|
||||||
|
nhcb: nil,
|
||||||
|
labels: labels.FromStrings("__name__", "test_metric"),
|
||||||
|
expectErr: true,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "histogram with zero bucket counts",
|
||||||
|
nhcb: &Histogram{
|
||||||
|
CustomValues: []float64{1, 2, 3},
|
||||||
|
PositiveBuckets: []int64{0, 10, 0},
|
||||||
|
PositiveSpans: []Span{
|
||||||
|
{Offset: 0, Length: 3},
|
||||||
|
},
|
||||||
|
Count: 20,
|
||||||
|
Sum: 50.0,
|
||||||
|
Schema: CustomBucketsSchema,
|
||||||
|
},
|
||||||
|
labels: labels.FromStrings("__name__", "test_metric"),
|
||||||
|
expected: []sample{
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "1.0"), val: 0},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "2.0"), val: 10},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "3.0"), val: 20},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "+Inf"), val: 20},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_count"), val: 20},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_sum"), val: 50},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "extra bucket counts than custom values",
|
||||||
|
nhcb: &Histogram{
|
||||||
|
CustomValues: []float64{1, 2},
|
||||||
|
PositiveBuckets: []int64{10, 20, 30},
|
||||||
|
PositiveSpans: []Span{{Offset: 0, Length: 3}},
|
||||||
|
Count: 100,
|
||||||
|
Sum: 100.0,
|
||||||
|
Schema: CustomBucketsSchema,
|
||||||
|
},
|
||||||
|
labels: labels.FromStrings("__name__", "test_metric"),
|
||||||
|
expected: []sample{
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "1.0"), val: 10},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "2.0"), val: 40},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "+Inf"), val: 100},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_count"), val: 100},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_sum"), val: 100},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "mismatched bucket lengths with less filled bucket count",
|
||||||
|
nhcb: &Histogram{
|
||||||
|
CustomValues: []float64{1, 2},
|
||||||
|
PositiveBuckets: []int64{10},
|
||||||
|
PositiveSpans: []Span{{Offset: 0, Length: 2}},
|
||||||
|
Count: 100,
|
||||||
|
Sum: 100.0,
|
||||||
|
Schema: CustomBucketsSchema,
|
||||||
|
},
|
||||||
|
labels: labels.FromStrings("__name__", "test_metric_bucket"),
|
||||||
|
expectErr: true,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "single series Histogram",
|
||||||
|
nhcb: &Histogram{
|
||||||
|
CustomValues: []float64{1},
|
||||||
|
PositiveBuckets: []int64{10},
|
||||||
|
PositiveSpans: []Span{
|
||||||
|
{Offset: 0, Length: 1},
|
||||||
|
},
|
||||||
|
Count: 10,
|
||||||
|
Sum: 20.0,
|
||||||
|
Schema: CustomBucketsSchema,
|
||||||
|
},
|
||||||
|
labels: labels.FromStrings("__name__", "test_metric"),
|
||||||
|
expected: []sample{
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "1.0"), val: 10},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "+Inf"), val: 10},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_count"), val: 10},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_sum"), val: 20},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "multiset label histogram",
|
||||||
|
nhcb: &Histogram{
|
||||||
|
CustomValues: []float64{1},
|
||||||
|
PositiveBuckets: []int64{10},
|
||||||
|
PositiveSpans: []Span{
|
||||||
|
{Offset: 0, Length: 1},
|
||||||
|
},
|
||||||
|
Count: 10,
|
||||||
|
Sum: 20.0,
|
||||||
|
Schema: CustomBucketsSchema,
|
||||||
|
},
|
||||||
|
labels: labels.FromStrings("__name__", "test_metric", "job", "test_job", "instance", "localhost:9090"),
|
||||||
|
expected: []sample{
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "job", "test_job", "instance", "localhost:9090", "le", "1.0"), val: 10},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "job", "test_job", "instance", "localhost:9090", "le", "+Inf"), val: 10},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_count", "job", "test_job", "instance", "localhost:9090"), val: 10},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_sum", "job", "test_job", "instance", "localhost:9090"), val: 20},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "exponential histogram",
|
||||||
|
nhcb: &FloatHistogram{
|
||||||
|
Schema: 1,
|
||||||
|
ZeroThreshold: 0.01,
|
||||||
|
ZeroCount: 5.5,
|
||||||
|
Count: 3493.3,
|
||||||
|
Sum: 2349209.324,
|
||||||
|
PositiveSpans: []Span{
|
||||||
|
{-2, 1},
|
||||||
|
{2, 3},
|
||||||
|
},
|
||||||
|
PositiveBuckets: []float64{1, 3.3, 4.2, 0.1},
|
||||||
|
NegativeSpans: []Span{
|
||||||
|
{3, 2},
|
||||||
|
{3, 2},
|
||||||
|
},
|
||||||
|
NegativeBuckets: []float64{3.1, 3, 1.234e5, 1000},
|
||||||
|
},
|
||||||
|
labels: labels.FromStrings("__name__", "test_metric_bucket"),
|
||||||
|
expectErr: true,
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "sparse histogram",
|
||||||
|
nhcb: &Histogram{
|
||||||
|
Schema: CustomBucketsSchema,
|
||||||
|
CustomValues: []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
|
||||||
|
PositiveSpans: []Span{
|
||||||
|
{0, 2},
|
||||||
|
{4, 1},
|
||||||
|
{1, 2},
|
||||||
|
},
|
||||||
|
PositiveBuckets: []int64{1, 2, 3, 4, 5}, // 1 -> 3 -> 3 -> 3 -> 3 -> 3 -> 6 ->6 ->10 -> 15
|
||||||
|
Count: 35, // 1 -> 4 -> 7 -> 10 -> 13 -> 16 -> 22 -> 28 -> 38 -> 53
|
||||||
|
Sum: 123,
|
||||||
|
},
|
||||||
|
labels: labels.FromStrings("__name__", "test_metric"),
|
||||||
|
expected: []sample{
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "1.0"), val: 1},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "2.0"), val: 4},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "3.0"), val: 7},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "4.0"), val: 10},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "5.0"), val: 13},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "6.0"), val: 16},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "7.0"), val: 22},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "8.0"), val: 28},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "9.0"), val: 38},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "10.0"), val: 53},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "+Inf"), val: 53},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_count"), val: 35},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_sum"), val: 123},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
{
|
||||||
|
name: "sparse float histogram",
|
||||||
|
nhcb: &FloatHistogram{
|
||||||
|
Schema: CustomBucketsSchema,
|
||||||
|
CustomValues: []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
|
||||||
|
PositiveSpans: []Span{
|
||||||
|
{0, 2},
|
||||||
|
{4, 1},
|
||||||
|
{1, 2},
|
||||||
|
},
|
||||||
|
PositiveBuckets: []float64{1, 2, 3, 4, 5}, // 1 -> 2 -> 0 -> 0 -> 0 -> 0 -> 3 -> 0 -> 4 -> 5
|
||||||
|
Count: 15, // 1 -> 3 -> 3 -> 3 -> 3 -> 3 -> 6 -> 6 -> 10 -> 15
|
||||||
|
Sum: 123,
|
||||||
|
},
|
||||||
|
labels: labels.FromStrings("__name__", "test_metric"),
|
||||||
|
expected: []sample{
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "1.0"), val: 1},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "2.0"), val: 3},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "3.0"), val: 3},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "4.0"), val: 3},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "5.0"), val: 3},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "6.0"), val: 3},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "7.0"), val: 6},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "8.0"), val: 6},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "9.0"), val: 10},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "10.0"), val: 15},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_bucket", "le", "+Inf"), val: 15},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_count"), val: 15},
|
||||||
|
{lset: labels.FromStrings("__name__", "test_metric_sum"), val: 123},
|
||||||
|
},
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
labelBuilder := labels.NewBuilder(labels.EmptyLabels())
|
||||||
|
for _, tt := range tests {
|
||||||
|
t.Run(tt.name, func(t *testing.T) {
|
||||||
|
var emittedSamples []sample
|
||||||
|
err := ConvertNHCBToClassic(tt.nhcb, tt.labels, labelBuilder, func(lbls labels.Labels, val float64) error {
|
||||||
|
emittedSamples = append(emittedSamples, sample{lset: lbls, val: val})
|
||||||
|
return nil
|
||||||
|
})
|
||||||
|
require.Equal(t, tt.expectErr, err != nil, "unexpected error: %v", err)
|
||||||
|
if !tt.expectErr {
|
||||||
|
require.Len(t, emittedSamples, len(tt.expected))
|
||||||
|
for i, expSample := range tt.expected {
|
||||||
|
require.True(t, labels.Equal(expSample.lset, emittedSamples[i].lset), "labels mismatch at index %d: expected %v, got %v", i, expSample.lset, emittedSamples[i].lset)
|
||||||
|
require.Equal(t, expSample.val, emittedSamples[i].val, "value mismatch at index %d", i)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
60
model/labels/float.go
Normal file
60
model/labels/float.go
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
// Copyright The Prometheus Authors
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
package labels
|
||||||
|
|
||||||
|
import (
|
||||||
|
"bytes"
|
||||||
|
"math"
|
||||||
|
"strconv"
|
||||||
|
"sync"
|
||||||
|
)
|
||||||
|
|
||||||
|
// floatFormatBufPool is exclusively used in FormatOpenMetricsFloat.
|
||||||
|
var floatFormatBufPool = sync.Pool{
|
||||||
|
New: func() any {
|
||||||
|
// To contain at most 17 digits and additional syntax for a float64.
|
||||||
|
b := make([]byte, 0, 24)
|
||||||
|
return &b
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
// FormatOpenMetricsFloat works like the usual Go string formatting of a float
|
||||||
|
// but appends ".0" if the resulting number would otherwise contain neither a
|
||||||
|
// "." nor an "e".
|
||||||
|
func FormatOpenMetricsFloat(f float64) string {
|
||||||
|
// A few common cases hardcoded.
|
||||||
|
switch {
|
||||||
|
case f == 1:
|
||||||
|
return "1.0"
|
||||||
|
case f == 0:
|
||||||
|
return "0.0"
|
||||||
|
case f == -1:
|
||||||
|
return "-1.0"
|
||||||
|
case math.IsNaN(f):
|
||||||
|
return "NaN"
|
||||||
|
case math.IsInf(f, +1):
|
||||||
|
return "+Inf"
|
||||||
|
case math.IsInf(f, -1):
|
||||||
|
return "-Inf"
|
||||||
|
}
|
||||||
|
bp := floatFormatBufPool.Get().(*[]byte)
|
||||||
|
defer floatFormatBufPool.Put(bp)
|
||||||
|
|
||||||
|
*bp = strconv.AppendFloat((*bp)[:0], f, 'g', -1, 64)
|
||||||
|
if bytes.ContainsAny(*bp, "e.") {
|
||||||
|
return string(*bp)
|
||||||
|
}
|
||||||
|
*bp = append(*bp, '.', '0')
|
||||||
|
return string(*bp)
|
||||||
|
}
|
||||||
@ -773,7 +773,7 @@ func normalizeFloatsInLabelValues(t model.MetricType, l, v string) string {
|
|||||||
if (t == model.MetricTypeSummary && l == model.QuantileLabel) || (t == model.MetricTypeHistogram && l == model.BucketLabel) {
|
if (t == model.MetricTypeSummary && l == model.QuantileLabel) || (t == model.MetricTypeHistogram && l == model.BucketLabel) {
|
||||||
f, err := strconv.ParseFloat(v, 64)
|
f, err := strconv.ParseFloat(v, 64)
|
||||||
if err == nil {
|
if err == nil {
|
||||||
return formatOpenMetricsFloat(f)
|
return labels.FormatOpenMetricsFloat(f)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return v
|
return v
|
||||||
|
|||||||
@ -19,9 +19,7 @@ import (
|
|||||||
"fmt"
|
"fmt"
|
||||||
"io"
|
"io"
|
||||||
"math"
|
"math"
|
||||||
"strconv"
|
|
||||||
"strings"
|
"strings"
|
||||||
"sync"
|
|
||||||
"unicode/utf8"
|
"unicode/utf8"
|
||||||
|
|
||||||
"github.com/gogo/protobuf/types"
|
"github.com/gogo/protobuf/types"
|
||||||
@ -35,15 +33,6 @@ import (
|
|||||||
"github.com/prometheus/prometheus/util/convertnhcb"
|
"github.com/prometheus/prometheus/util/convertnhcb"
|
||||||
)
|
)
|
||||||
|
|
||||||
// floatFormatBufPool is exclusively used in formatOpenMetricsFloat.
|
|
||||||
var floatFormatBufPool = sync.Pool{
|
|
||||||
New: func() any {
|
|
||||||
// To contain at most 17 digits and additional syntax for a float64.
|
|
||||||
b := make([]byte, 0, 24)
|
|
||||||
return &b
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
// ProtobufParser parses the old Prometheus protobuf format and present it
|
// ProtobufParser parses the old Prometheus protobuf format and present it
|
||||||
// as the text-style textparse.Parser interface.
|
// as the text-style textparse.Parser interface.
|
||||||
//
|
//
|
||||||
@ -698,7 +687,7 @@ func (p *ProtobufParser) getMagicLabel() (bool, string, string) {
|
|||||||
qq := p.dec.GetSummary().GetQuantile()
|
qq := p.dec.GetSummary().GetQuantile()
|
||||||
q := qq[p.fieldPos]
|
q := qq[p.fieldPos]
|
||||||
p.fieldsDone = p.fieldPos == len(qq)-1
|
p.fieldsDone = p.fieldPos == len(qq)-1
|
||||||
return true, model.QuantileLabel, formatOpenMetricsFloat(q.GetQuantile())
|
return true, model.QuantileLabel, labels.FormatOpenMetricsFloat(q.GetQuantile())
|
||||||
case dto.MetricType_HISTOGRAM, dto.MetricType_GAUGE_HISTOGRAM:
|
case dto.MetricType_HISTOGRAM, dto.MetricType_GAUGE_HISTOGRAM:
|
||||||
bb := p.dec.GetHistogram().GetBucket()
|
bb := p.dec.GetHistogram().GetBucket()
|
||||||
if p.fieldPos >= len(bb) {
|
if p.fieldPos >= len(bb) {
|
||||||
@ -707,41 +696,11 @@ func (p *ProtobufParser) getMagicLabel() (bool, string, string) {
|
|||||||
}
|
}
|
||||||
b := bb[p.fieldPos]
|
b := bb[p.fieldPos]
|
||||||
p.fieldsDone = math.IsInf(b.GetUpperBound(), +1)
|
p.fieldsDone = math.IsInf(b.GetUpperBound(), +1)
|
||||||
return true, model.BucketLabel, formatOpenMetricsFloat(b.GetUpperBound())
|
return true, model.BucketLabel, labels.FormatOpenMetricsFloat(b.GetUpperBound())
|
||||||
}
|
}
|
||||||
return false, "", ""
|
return false, "", ""
|
||||||
}
|
}
|
||||||
|
|
||||||
// formatOpenMetricsFloat works like the usual Go string formatting of a float
|
|
||||||
// but appends ".0" if the resulting number would otherwise contain neither a
|
|
||||||
// "." nor an "e".
|
|
||||||
func formatOpenMetricsFloat(f float64) string {
|
|
||||||
// A few common cases hardcoded.
|
|
||||||
switch {
|
|
||||||
case f == 1:
|
|
||||||
return "1.0"
|
|
||||||
case f == 0:
|
|
||||||
return "0.0"
|
|
||||||
case f == -1:
|
|
||||||
return "-1.0"
|
|
||||||
case math.IsNaN(f):
|
|
||||||
return "NaN"
|
|
||||||
case math.IsInf(f, +1):
|
|
||||||
return "+Inf"
|
|
||||||
case math.IsInf(f, -1):
|
|
||||||
return "-Inf"
|
|
||||||
}
|
|
||||||
bp := floatFormatBufPool.Get().(*[]byte)
|
|
||||||
defer floatFormatBufPool.Put(bp)
|
|
||||||
|
|
||||||
*bp = strconv.AppendFloat((*bp)[:0], f, 'g', -1, 64)
|
|
||||||
if bytes.ContainsAny(*bp, "e.") {
|
|
||||||
return string(*bp)
|
|
||||||
}
|
|
||||||
*bp = append(*bp, '.', '0')
|
|
||||||
return string(*bp)
|
|
||||||
}
|
|
||||||
|
|
||||||
// isNativeHistogram returns false iff the provided histograms has no spans at
|
// isNativeHistogram returns false iff the provided histograms has no spans at
|
||||||
// all (neither positive nor negative) and a zero threshold of 0 and a zero
|
// all (neither positive nor negative) and a zero threshold of 0 and a zero
|
||||||
// count of 0. In principle, this could still be meant to be a native histogram
|
// count of 0. In principle, this could still be meant to be a native histogram
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user