netboot/dhcp/conn_linux.go
David Anderson 78dd971886 Checkpoint some further hacking on AF_PACKET, before bailing.
AF_PACKET is poorly suited to be the main receiving socket of this
implementation, for a variety of reasons: it bypasses netfilter, you
receive duplicate packets when bridges and aggregated links are involved,
and more generally it's a lot of pain just to get a MAC address out of
the link layer.

Next up, I'm going to try using an AF_INET/SOCK_RAW socket as the main
listening socket, which loses a bit of precision in acquiring packets, but
puts more of the kernel and its desirable semantics between us and the wire.
We'll still have to use an AF_PACKET socket to transmit to unconfigured
clients (although the spec gives us an option to sidestep that as well
if we want).
2016-03-24 23:58:38 -07:00

369 lines
10 KiB
Go

// Copyright 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package dhcp
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"net"
"runtime"
"unsafe"
"golang.org/x/sys/unix"
)
var (
protoAll = int(unix.ETH_P_ALL)
macbcast = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
)
func init() {
// This kernel API is icky through and through. It wants the
// ethernet protocol number in big-endian form, but receives it as
// a native-endian integer. Thus, we need to do the moral
// equivalent of htons().
i := uint16(1)
b := *(*byte)(unsafe.Pointer(&i))
if b == 1 {
protoAll = protoAll << 8
}
}
// LinuxConn implements Conn using Linux raw sockets.
//
// The advantage compared to PortableConn is that LinuxConn does not
// need to bind to any port, and so can be run alongside other DHCP
// services on the same machine. However, using it requires
// CAP_NET_RAW, whereas PortableConn doesn't.
type LinuxConn struct {
port int
ethernetFd int // AF_PACKET SOCK_RAW socket
ipFd int // AF_INET SOCK_RAW IPPROTO_RAW socket
}
func closeLinuxConn(c *LinuxConn) {
if c.ethernetFd != -1 {
unix.Close(c.ethernetFd)
c.ethernetFd = -1
}
if c.ipFd != -1 {
unix.Close(c.ipFd)
c.ipFd = -1
}
}
// NewLinuxConn creates a LinuxConn that receives DHCP packets. TODO better
func NewLinuxConn(addr string) (*LinuxConn, error) {
if addr == "" {
addr = ":67"
}
udpAddr, err := net.ResolveUDPAddr("udp4", addr)
if err != nil {
return nil, err
}
udpAddr.IP = udpAddr.IP.To4()
eth, err := unix.Socket(unix.AF_PACKET, unix.SOCK_RAW, protoAll)
if err != nil {
return nil, err
}
filter := filterPortOnly(udpAddr.Port)
if udpAddr.IP != nil {
filter = filterIPAndPort(udpAddr.IP, udpAddr.Port)
}
if err = attachFilter(eth, filter); err != nil {
unix.Close(eth)
return nil, err
}
ip, err := unix.Socket(unix.AF_INET, unix.SOCK_RAW, unix.IPPROTO_RAW)
if err != nil {
unix.Close(eth)
return nil, err
}
// if err = attachFilter(ip, filterNoPackets()); err != nil {
// unix.Close(eth)
// unix.Close(ip)
// return nil, err
// }
ret := &LinuxConn{
port: udpAddr.Port,
ethernetFd: eth,
ipFd: ip,
}
runtime.SetFinalizer(ret, closeLinuxConn)
return ret, nil
}
// Close closes the connection.
func (c *LinuxConn) Close() error {
closeLinuxConn(c)
return nil
}
// RecvDHCP implements the Conn RecvDHCP method.
func (c *LinuxConn) RecvDHCP() (*Packet, *net.Interface, error) {
buf := make([]byte, 1500)
for {
n, from, err := unix.Recvfrom(c.ethernetFd, buf, 0)
if err != nil {
return nil, nil, err
}
bs := buf[:n]
// Advance past the ethernet, IP and UDP headers, to reach the
// DHCP packet.
off := 22 + 4*int(buf[14]&0xf)
pkt, err := Unmarshal(bs[off:])
if err != nil {
// TODO: return temporary error to allow the server to log
// stuff.
continue
}
if err = validatePacket(bs, pkt); err != nil {
// TODO: return temporary error to allow the server to log
// stuff.
continue
}
addr := from.(*unix.SockaddrLinklayer)
intf, err := net.InterfaceByIndex(addr.Ifindex)
if err != nil {
return nil, nil, err
}
return pkt, intf, nil
}
}
// SendDHCP implements the Conn SendDHCP method.
func (c *LinuxConn) SendDHCP(pkt *Packet, intf *net.Interface) error {
payload, err := pkt.Marshal()
if err != nil {
return err
}
switch pkt.TxType() {
case TxBroadcast:
if intf == nil {
return errors.New("packet needs to be broadcast, but no interface specified")
}
srcIP, err := interfaceIP(intf)
if err != nil {
return err
}
bs := assemblePacket(intf.HardwareAddr, macbcast, srcIP, net.IPv4bcast, c.port, 68, payload)
addr := &unix.SockaddrLinklayer{
Ifindex: intf.Index,
Halen: 6,
}
copy(addr.Addr[:6], intf.HardwareAddr)
if err = unix.Sendto(c.ethernetFd, bs, 0, addr); err != nil {
return err
}
case TxRelayAddr:
bs := assemblePacket(nil, nil, nil, pkt.RelayAddr, c.port, 67, payload)
bs = bs[14:] // Skip the ethernet header
addr := &unix.SockaddrInet4{}
copy(addr.Addr[:], pkt.RelayAddr.To4())
if err = unix.Sendto(c.ipFd, bs, 0, addr); err != nil {
return err
}
case TxClientAddr:
bs := assemblePacket(nil, nil, nil, pkt.ClientAddr, c.port, 68, payload)
bs = bs[14:] // Skip the ethernet header
addr := &unix.SockaddrInet4{}
if err = unix.Sendto(c.ipFd, bs, 0, addr); err != nil {
return err
}
case TxHardwareAddr:
if intf == nil {
return errors.New("packet needs to be transmitted to unconfigured client, but no interface specified")
}
srcIP, err := interfaceIP(intf)
if err != nil {
return err
}
bs := assemblePacket(intf.HardwareAddr, pkt.HardwareAddr, srcIP, pkt.YourAddr, c.port, 68, payload)
addr := &unix.SockaddrLinklayer{
Ifindex: intf.Index,
Halen: 6,
}
copy(addr.Addr[:6], intf.HardwareAddr)
if err = unix.Sendto(c.ethernetFd, bs, 0, addr); err != nil {
return err
}
}
return nil
}
func validatePacket(frame []byte, pkt *Packet) error {
if pkt.RelayAddr != nil {
// If the packet is from a relay, no validation is needed.
return nil
}
// ciaddr must match the IP header's source IP (either an actual
// address, or 0.0.0.0).
if !bytes.Equal(pkt.ClientAddr, frame[24:28]) {
return errors.New("ciaddr doesn't match packet source IP")
}
// chaddr must match the source MAC address
if !bytes.Equal(pkt.HardwareAddr, frame[6:12]) {
return errors.New("chaddr doesn't match packet source MAC")
}
return nil
}
func interfaceIP(intf *net.Interface) (net.IP, error) {
addrs, err := intf.Addrs()
if err != nil {
return nil, err
}
// Try to find an IPv4 address to use, in the following order:
// global unicast (includes rfc1918), link-local unicast,
// loopback.
fs := [](func(net.IP) bool){
net.IP.IsGlobalUnicast,
net.IP.IsLinkLocalUnicast,
net.IP.IsLoopback,
}
for _, f := range fs {
for _, a := range addrs {
ipaddr, ok := a.(*net.IPNet)
if !ok {
continue
}
ip := ipaddr.IP.To4()
if ip == nil {
continue
}
if f(ip) {
return ip, nil
}
}
}
return nil, fmt.Errorf("interface %s has no unicast address usable as a DHCP packet source", intf.Name)
}
func assemblePacket(srcMAC, dstMAC net.HardwareAddr, srcIP, dstIP net.IP, srcPort, dstPort int, payload []byte) []byte {
buf := make([]byte, 42, 42+len(payload))
// Ethernet header
copy(buf[:6], dstMAC)
copy(buf[6:12], srcMAC)
binary.BigEndian.PutUint16(buf[12:14], 0x0800)
// IP header
buf[14] = (4 << 4) + 5 // IP version 4, 5-word header (20b)
buf[15] = 0xc0 // ToS CS6 (Network Control)
binary.BigEndian.PutUint16(buf[16:18], uint16(28+len(payload))) // IP packet length
binary.BigEndian.PutUint32(buf[18:22], 0x4000) // ID=0, frag_off=0, dont_fragment=1
buf[22] = 64 // TTL
buf[23] = 17 // Inner protocol: UDP
copy(buf[26:30], srcIP.To4())
copy(buf[30:34], dstIP.To4())
fmt.Println(buf[30:34])
var cksum uint32
for i := 14; i < 34; i += 2 {
cksum += uint32(binary.BigEndian.Uint16(buf[i : i+2]))
}
cksum = (cksum >> 16) + (cksum & 0xFFFF)
binary.BigEndian.PutUint16(buf[24:26], ^uint16(cksum))
// UDP header
binary.BigEndian.PutUint16(buf[34:36], uint16(srcPort)) // Source port
binary.BigEndian.PutUint16(buf[36:38], uint16(dstPort)) // Destination port
binary.BigEndian.PutUint16(buf[38:40], uint16(8+len(payload))) // UDP length
return append(buf, payload...)
}
func attachFilter(fd int, filter *unix.SockFprog) error {
_, _, errno := unix.Syscall6(unix.SYS_SETSOCKOPT, uintptr(fd), uintptr(unix.SOL_SOCKET), uintptr(unix.SO_ATTACH_FILTER), uintptr(unsafe.Pointer(filter)), uintptr(unsafe.Sizeof(*filter)), 0)
if errno != 0 {
return errno
}
return nil
}
func filterPortOnly(port int) *unix.SockFprog {
// This filter comes from:
// tcpdump -dd 'ip and udp dst port 68'
filter := []unix.SockFilter{
{0x28, 0, 0, 12}, // Load ethernet frame type
{0x15, 0, 8, 0x0800}, // Is IPv4?
{0x30, 0, 0, 23}, // Load IP packet type
{0x15, 0, 6, 17}, // Is UDP?
{0x28, 0, 0, 20}, // Load fragment offset
{0x45, 4, 0, 0x1fff}, // Is first/only fragment?
{0xb1, 0, 0, 14}, // Jump to start of UDP header
{0x48, 0, 0, 16}, // Load destination port
{0x15, 0, 1, uint32(port)}, // Is correct port?
{0x6, 0, 0, 0x40000}, // Yes, receive packet
{0x6, 0, 0, 0}, // No, ignore packet
}
return &unix.SockFprog{
Len: uint16(len(filter)),
Filter: &filter[0],
}
}
func filterIPAndPort(dstIP net.IP, port int) *unix.SockFprog {
d := binary.BigEndian.Uint32([]byte(dstIP.To4()))
// This filter comes from:
// tcpdump -dd 'ip and udp and (dst 192.168.2.2 or dst 255.255.255.255) and dst port 68'
filter := []unix.SockFilter{
{0x28, 0, 0, 12}, // Load ethernet frame type
{0x15, 0, 11, 0x0800}, // Is IPv4?
{0x30, 0, 0, 23}, // Load IP packet type
{0x15, 0, 9, 17}, // Is UDP?
{0x20, 0, 0, 30}, // Load destination IP
{0x15, 1, 0, d}, // Is target IP?
{0x15, 0, 6, 0xffffffff}, // Is Broadcast?
{0x28, 0, 0, 20}, // Load fragment offset
{0x45, 4, 0, 0x1fff}, // Is first/only fragment?
{0xb1, 0, 0, 14}, // Jump to start of UDP header
{0x48, 0, 0, 16}, // Load destination port
{0x15, 0, 1, uint32(port)}, // Is correct port?
{0x6, 0, 0, 0x40000}, // Yes, receive packet
{0x6, 0, 0, 0}, // No, ignore packet
}
return &unix.SockFprog{
Len: uint16(len(filter)),
Filter: &filter[0],
}
}
func filterNoPackets() *unix.SockFprog {
filter := []unix.SockFilter{
{0x6, 0, 0, 0}, // ignore packet
}
return &unix.SockFprog{
Len: uint16(len(filter)),
Filter: &filter[0],
}
}