// Copyright 2016 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package dhcp import ( "bytes" "encoding/binary" "errors" "fmt" "net" "runtime" "unsafe" "golang.org/x/sys/unix" ) var ( protoAll = int(unix.ETH_P_ALL) byteOrder = binary.ByteOrder(binary.BigEndian) macBroadcast = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff} ipBroadcast = []byte{0xff, 0xff, 0xff, 0xff} ) func init() { // This kernel API is icky through and through. It wants the // ethernet protocol number in big-endian form, but receives it as // a native-endian integer. Thus, we need to do the moral // equivalent of htons(). i := uint16(1) b := *(*byte)(unsafe.Pointer(&i)) if b == 1 { protoAll = protoAll << 8 byteOrder = binary.LittleEndian } } // LinuxConn implements Conn using Linux raw sockets. // // The advantage compared to PortableConn is that LinuxConn does not // need to bind to any port, and so can be run alongside other DHCP // services on the same machine. However, using it requires // CAP_NET_RAW, whereas PortableConn doesn't. type LinuxConn struct { port uint16 ethernetFd int // AF_PACKET SOCK_RAW socket ipFd int // AF_INET SOCK_RAW IPPROTO_RAW socket } func closeLinuxConn(c *LinuxConn) { if c.ethernetFd != -1 { unix.Close(c.ethernetFd) c.ethernetFd = -1 } if c.ipFd != -1 { unix.Close(c.ipFd) c.ipFd = -1 } } // NewLinuxConn creates a LinuxConn that receives DHCP packets on the // given UDP port (should typically be 67) func NewLinuxConn(port uint16) (*LinuxConn, error) { // TODO: support for interface binding eth, err := unix.Socket(unix.AF_PACKET, unix.SOCK_RAW, protoAll) if err != nil { return nil, err } filter := []unix.SockFilter{ {0x28, 0, 0, 12}, // Load ethernet frame type {0x15, 0, 8, 0x0800}, // Is IPv4? {0x30, 0, 0, 23}, // Load IP packet type {0x15, 0, 6, 17}, // Is UDP? {0x28, 0, 0, 20}, // Load fragment offset {0x45, 4, 0, 0x1fff}, // Is first/only fragment? {0xb1, 0, 0, 14}, // Jump to start of UDP header {0x48, 0, 0, 16}, // Load destination port {0x15, 0, 1, uint32(port)}, // Is correct port? {0x6, 0, 0, 0x40000}, // Yes, receive packet {0x6, 0, 0, 0}, // No, ignore packet } filterProg := &unix.SockFprog{ Len: uint16(len(filter)), Filter: &filter[0], } _, _, errno := unix.Syscall6(unix.SYS_SETSOCKOPT, uintptr(eth), uintptr(unix.SOL_SOCKET), uintptr(unix.SO_ATTACH_FILTER), uintptr(unsafe.Pointer(filterProg)), uintptr(unsafe.Sizeof(*filterProg)), 0) if errno != 0 { unix.Close(eth) return nil, errno } ip, err := unix.Socket(unix.AF_INET, unix.SOCK_RAW, unix.IPPROTO_RAW) if err != nil { unix.Close(eth) } ret := &LinuxConn{port, eth, ip} runtime.SetFinalizer(ret, closeLinuxConn) return ret, nil } // Close closes the connection. func (c *LinuxConn) Close() error { closeLinuxConn(c) return nil } // RecvDHCP implements the Conn RecvDHCP method. func (c *LinuxConn) RecvDHCP() (*Packet, *net.Interface, error) { buf := make([]byte, 1500) for { n, from, err := unix.Recvfrom(c.ethernetFd, buf, 0) if err != nil { return nil, nil, err } bs := buf[:n] // Advance past the ethernet, IP and UDP headers, to reach the // DHCP packet. off := 22 + 4*int(buf[14]&0xf) pkt, err := Unmarshal(bs[off:]) if err != nil { // TODO: return temporary error to allow the server to log // stuff. continue } if err = validatePacket(bs, pkt); err != nil { // TODO: return temporary error to allow the server to log // stuff. continue } addr := from.(*unix.SockaddrLinklayer) intf, err := net.InterfaceByIndex(addr.Ifindex) if err != nil { return nil, nil, err } return pkt, intf, nil } } // SendDHCP implements the Conn SendDHCP method. func (c *LinuxConn) SendDHCP(pkt *Packet, intf *net.Interface) error { payload, err := pkt.Marshal() if err != nil { return err } switch pkt.TxType() { case TxBroadcast: if intf == nil { return errors.New("packet needs to be broadcast, but no interface specified") } srcIP, err := interfaceIP(intf) if err != nil { return err } bs := assemblePacket(intf.HardwareAddr, macBroadcast, srcIP, ipBroadcast, c.port, 68, payload) addr := &unix.SockaddrLinklayer{ Ifindex: intf.Index, Halen: 6, } copy(addr.Addr[:6], intf.HardwareAddr) if err = unix.Sendto(c.ethernetFd, bs, 0, addr); err != nil { return err } case TxRelayAddr: bs := assemblePacket(nil, nil, nil, pkt.RelayAddr, c.port, 67, payload) bs = bs[14:] // Skip the ethernet header addr := &unix.SockaddrInet4{} if err = unix.Sendto(c.ipFd, bs, 0, addr); err != nil { return err } case TxClientAddr: bs := assemblePacket(nil, nil, nil, pkt.ClientAddr, c.port, 68, payload) bs = bs[14:] // Skip the ethernet header addr := &unix.SockaddrInet4{} if err = unix.Sendto(c.ipFd, bs, 0, addr); err != nil { return err } case TxHardwareAddr: if intf == nil { return errors.New("packet needs to be transmitted to unconfigured client, but no interface specified") } srcIP, err := interfaceIP(intf) if err != nil { return err } bs := assemblePacket(intf.HardwareAddr, pkt.HardwareAddr, srcIP, pkt.YourAddr, c.port, 68, payload) addr := &unix.SockaddrLinklayer{ Ifindex: intf.Index, Halen: 6, } copy(addr.Addr[:6], intf.HardwareAddr) if err = unix.Sendto(c.ethernetFd, bs, 0, addr); err != nil { return err } } return nil } func validatePacket(frame []byte, pkt *Packet) error { if pkt.RelayAddr != nil { // If the packet is from a relay, no validation is needed. return nil } // ciaddr must match the IP header's source IP (either an actual // address, or 0.0.0.0). if !bytes.Equal(pkt.ClientAddr, frame[24:28]) { return errors.New("ciaddr doesn't match packet source IP") } // chaddr must match the source MAC address if !bytes.Equal(pkt.HardwareAddr, frame[6:12]) { return errors.New("chaddr doesn't match packet source MAC") } return nil } func interfaceIP(intf *net.Interface) (net.IP, error) { addrs, err := intf.Addrs() if err != nil { return nil, err } // Try to find an IPv4 address to use, in the following order: // global unicast (includes rfc1918), link-local unicast, // loopback. fs := [](func(net.IP) bool){ net.IP.IsGlobalUnicast, net.IP.IsLinkLocalUnicast, net.IP.IsLoopback, } for _, f := range fs { for _, a := range addrs { ipaddr, ok := a.(*net.IPNet) if !ok { continue } ip := ipaddr.IP.To4() if ip == nil { continue } if f(ip) { return ip, nil } } } return nil, fmt.Errorf("interface %s has no unicast address usable as a DHCP packet source", intf.Name) } func assemblePacket(srcMAC, dstMAC net.HardwareAddr, srcIP, dstIP net.IP, srcPort, dstPort uint16, payload []byte) []byte { buf := make([]byte, 42, 42+len(payload)) // Ethernet header copy(buf[:6], dstMAC) copy(buf[6:12], srcMAC) binary.BigEndian.PutUint16(buf[12:14], 0x0800) // IP header buf[14] = (4 << 4) + 5 // IP version 4, 5-word header (20b) buf[15] = 0xc0 // ToS CS6 (Network Control) binary.BigEndian.PutUint16(buf[16:18], uint16(28+len(payload))) // IP packet length binary.BigEndian.PutUint32(buf[18:22], 0x4000) // ID=0, frag_off=0, dont_fragment=1 buf[22] = 64 // TTL buf[23] = 17 // Inner protocol: UDP copy(buf[26:30], srcIP) copy(buf[30:34], dstIP) var cksum uint32 for i := 14; i < 34; i += 2 { cksum += uint32(binary.BigEndian.Uint16(buf[i : i+2])) } cksum = (cksum >> 16) + (cksum & 0xFFFF) binary.BigEndian.PutUint16(buf[24:26], ^uint16(cksum)) // UDP header binary.BigEndian.PutUint16(buf[34:36], srcPort) // Source port binary.BigEndian.PutUint16(buf[36:38], dstPort) // Destination port binary.BigEndian.PutUint16(buf[38:40], uint16(8+len(payload))) // UDP length return append(buf, payload...) }