mirror of
				https://github.com/minio/minio.git
				synced 2025-11-04 02:01:05 +01:00 
			
		
		
		
	This is to ensure that there are no projects that try to import `minio/minio/pkg` into their own repo. Any such common packages should go to `https://github.com/minio/pkg`
		
			
				
	
	
		
			916 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			916 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright (c) 2015-2021 MinIO, Inc.
 | 
						|
//
 | 
						|
// This file is part of MinIO Object Storage stack
 | 
						|
//
 | 
						|
// This program is free software: you can redistribute it and/or modify
 | 
						|
// it under the terms of the GNU Affero General Public License as published by
 | 
						|
// the Free Software Foundation, either version 3 of the License, or
 | 
						|
// (at your option) any later version.
 | 
						|
//
 | 
						|
// This program is distributed in the hope that it will be useful
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
// GNU Affero General Public License for more details.
 | 
						|
//
 | 
						|
// You should have received a copy of the GNU Affero General Public License
 | 
						|
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 | 
						|
package cmd
 | 
						|
 | 
						|
import (
 | 
						|
	"bufio"
 | 
						|
	"crypto/hmac"
 | 
						|
	"crypto/rand"
 | 
						|
	"crypto/sha256"
 | 
						|
	"crypto/subtle"
 | 
						|
	"encoding/binary"
 | 
						|
	"encoding/hex"
 | 
						|
	"errors"
 | 
						|
	"fmt"
 | 
						|
	"io"
 | 
						|
	"net/http"
 | 
						|
	"path"
 | 
						|
	"strconv"
 | 
						|
	"strings"
 | 
						|
 | 
						|
	"github.com/minio/minio/internal/crypto"
 | 
						|
	"github.com/minio/minio/internal/fips"
 | 
						|
	xhttp "github.com/minio/minio/internal/http"
 | 
						|
	"github.com/minio/minio/internal/kms"
 | 
						|
	"github.com/minio/minio/internal/logger"
 | 
						|
	"github.com/minio/sio"
 | 
						|
)
 | 
						|
 | 
						|
var (
 | 
						|
	// AWS errors for invalid SSE-C requests.
 | 
						|
	errEncryptedObject      = errors.New("The object was stored using a form of SSE")
 | 
						|
	errInvalidSSEParameters = errors.New("The SSE-C key for key-rotation is not correct") // special access denied
 | 
						|
	errKMSNotConfigured     = errors.New("KMS not configured for a server side encrypted object")
 | 
						|
	// Additional MinIO errors for SSE-C requests.
 | 
						|
	errObjectTampered = errors.New("The requested object was modified and may be compromised")
 | 
						|
	// error returned when invalid encryption parameters are specified
 | 
						|
	errInvalidEncryptionParameters = errors.New("The encryption parameters are not applicable to this object")
 | 
						|
)
 | 
						|
 | 
						|
const (
 | 
						|
	// SSECustomerKeySize is the size of valid client provided encryption keys in bytes.
 | 
						|
	// Currently AWS supports only AES256. So the SSE-C key size is fixed to 32 bytes.
 | 
						|
	SSECustomerKeySize = 32
 | 
						|
 | 
						|
	// SSEIVSize is the size of the IV data
 | 
						|
	SSEIVSize = 32 // 32 bytes
 | 
						|
 | 
						|
	// SSEDAREPackageBlockSize - SSE dare package block size.
 | 
						|
	SSEDAREPackageBlockSize = 64 * 1024 // 64KiB bytes
 | 
						|
 | 
						|
	// SSEDAREPackageMetaSize - SSE dare package meta padding bytes.
 | 
						|
	SSEDAREPackageMetaSize = 32 // 32 bytes
 | 
						|
 | 
						|
)
 | 
						|
 | 
						|
// isEncryptedMultipart returns true if the current object is
 | 
						|
// uploaded by the user using multipart mechanism:
 | 
						|
// initiate new multipart, upload part, complete upload
 | 
						|
func (o *ObjectInfo) isEncryptedMultipart() bool {
 | 
						|
	if len(o.Parts) == 0 {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	if !crypto.IsMultiPart(o.UserDefined) {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	for _, part := range o.Parts {
 | 
						|
		_, err := sio.DecryptedSize(uint64(part.Size))
 | 
						|
		if err != nil {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
	}
 | 
						|
	// Further check if this object is uploaded using multipart mechanism
 | 
						|
	// by the user and it is not about Erasure internally splitting the
 | 
						|
	// object into parts in PutObject()
 | 
						|
	return !(o.backendType == BackendErasure && len(o.ETag) == 32)
 | 
						|
}
 | 
						|
 | 
						|
// ParseSSECopyCustomerRequest parses the SSE-C header fields of the provided request.
 | 
						|
// It returns the client provided key on success.
 | 
						|
func ParseSSECopyCustomerRequest(h http.Header, metadata map[string]string) (key []byte, err error) {
 | 
						|
	if crypto.S3.IsEncrypted(metadata) && crypto.SSECopy.IsRequested(h) {
 | 
						|
		return nil, crypto.ErrIncompatibleEncryptionMethod
 | 
						|
	}
 | 
						|
	k, err := crypto.SSECopy.ParseHTTP(h)
 | 
						|
	return k[:], err
 | 
						|
}
 | 
						|
 | 
						|
// ParseSSECustomerRequest parses the SSE-C header fields of the provided request.
 | 
						|
// It returns the client provided key on success.
 | 
						|
func ParseSSECustomerRequest(r *http.Request) (key []byte, err error) {
 | 
						|
	return ParseSSECustomerHeader(r.Header)
 | 
						|
}
 | 
						|
 | 
						|
// ParseSSECustomerHeader parses the SSE-C header fields and returns
 | 
						|
// the client provided key on success.
 | 
						|
func ParseSSECustomerHeader(header http.Header) (key []byte, err error) {
 | 
						|
	if crypto.S3.IsRequested(header) && crypto.SSEC.IsRequested(header) {
 | 
						|
		return key, crypto.ErrIncompatibleEncryptionMethod
 | 
						|
	}
 | 
						|
 | 
						|
	k, err := crypto.SSEC.ParseHTTP(header)
 | 
						|
	return k[:], err
 | 
						|
}
 | 
						|
 | 
						|
// This function rotates old to new key.
 | 
						|
func rotateKey(oldKey []byte, newKeyID string, newKey []byte, bucket, object string, metadata map[string]string, ctx kms.Context) error {
 | 
						|
	kind, _ := crypto.IsEncrypted(metadata)
 | 
						|
	switch kind {
 | 
						|
	case crypto.S3:
 | 
						|
		if GlobalKMS == nil {
 | 
						|
			return errKMSNotConfigured
 | 
						|
		}
 | 
						|
		keyID, kmsKey, sealedKey, err := crypto.S3.ParseMetadata(metadata)
 | 
						|
		if err != nil {
 | 
						|
			return err
 | 
						|
		}
 | 
						|
		oldKey, err := GlobalKMS.DecryptKey(keyID, kmsKey, kms.Context{bucket: path.Join(bucket, object)})
 | 
						|
		if err != nil {
 | 
						|
			return err
 | 
						|
		}
 | 
						|
		var objectKey crypto.ObjectKey
 | 
						|
		if err = objectKey.Unseal(oldKey, sealedKey, crypto.S3.String(), bucket, object); err != nil {
 | 
						|
			return err
 | 
						|
		}
 | 
						|
 | 
						|
		newKey, err := GlobalKMS.GenerateKey("", kms.Context{bucket: path.Join(bucket, object)})
 | 
						|
		if err != nil {
 | 
						|
			return err
 | 
						|
		}
 | 
						|
		sealedKey = objectKey.Seal(newKey.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3.String(), bucket, object)
 | 
						|
		crypto.S3.CreateMetadata(metadata, newKey.KeyID, newKey.Ciphertext, sealedKey)
 | 
						|
		return nil
 | 
						|
	case crypto.S3KMS:
 | 
						|
		if GlobalKMS == nil {
 | 
						|
			return errKMSNotConfigured
 | 
						|
		}
 | 
						|
		objectKey, err := crypto.S3KMS.UnsealObjectKey(GlobalKMS, metadata, bucket, object)
 | 
						|
		if err != nil {
 | 
						|
			return err
 | 
						|
		}
 | 
						|
 | 
						|
		if len(ctx) == 0 {
 | 
						|
			_, _, _, ctx, err = crypto.S3KMS.ParseMetadata(metadata)
 | 
						|
			if err != nil {
 | 
						|
				return err
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		// If the context does not contain the bucket key
 | 
						|
		// we must add it for key generation. However,
 | 
						|
		// the context must be stored exactly like the
 | 
						|
		// client provided it. Therefore, we create a copy
 | 
						|
		// of the client provided context and add the bucket
 | 
						|
		// key, if not present.
 | 
						|
		var kmsCtx = kms.Context{}
 | 
						|
		for k, v := range ctx {
 | 
						|
			kmsCtx[k] = v
 | 
						|
		}
 | 
						|
		if _, ok := kmsCtx[bucket]; !ok {
 | 
						|
			kmsCtx[bucket] = path.Join(bucket, object)
 | 
						|
		}
 | 
						|
		newKey, err := GlobalKMS.GenerateKey(newKeyID, kmsCtx)
 | 
						|
		if err != nil {
 | 
						|
			return err
 | 
						|
		}
 | 
						|
 | 
						|
		sealedKey := objectKey.Seal(newKey.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3KMS.String(), bucket, object)
 | 
						|
		crypto.S3KMS.CreateMetadata(metadata, newKey.KeyID, newKey.Ciphertext, sealedKey, ctx)
 | 
						|
		return nil
 | 
						|
	case crypto.SSEC:
 | 
						|
		sealedKey, err := crypto.SSEC.ParseMetadata(metadata)
 | 
						|
		if err != nil {
 | 
						|
			return err
 | 
						|
		}
 | 
						|
 | 
						|
		var objectKey crypto.ObjectKey
 | 
						|
		if err = objectKey.Unseal(oldKey, sealedKey, crypto.SSEC.String(), bucket, object); err != nil {
 | 
						|
			if subtle.ConstantTimeCompare(oldKey, newKey) == 1 {
 | 
						|
				return errInvalidSSEParameters // AWS returns special error for equal but invalid keys.
 | 
						|
			}
 | 
						|
			return crypto.ErrInvalidCustomerKey // To provide strict AWS S3 compatibility we return: access denied.
 | 
						|
 | 
						|
		}
 | 
						|
		if subtle.ConstantTimeCompare(oldKey, newKey) == 1 && sealedKey.Algorithm == crypto.SealAlgorithm {
 | 
						|
			return nil // don't rotate on equal keys if seal algorithm is latest
 | 
						|
		}
 | 
						|
		sealedKey = objectKey.Seal(newKey, sealedKey.IV, crypto.SSEC.String(), bucket, object)
 | 
						|
		crypto.SSEC.CreateMetadata(metadata, sealedKey)
 | 
						|
		return nil
 | 
						|
	default:
 | 
						|
		return errObjectTampered
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func newEncryptMetadata(kind crypto.Type, keyID string, key []byte, bucket, object string, metadata map[string]string, ctx kms.Context) (crypto.ObjectKey, error) {
 | 
						|
	var sealedKey crypto.SealedKey
 | 
						|
	switch kind {
 | 
						|
	case crypto.S3:
 | 
						|
		if GlobalKMS == nil {
 | 
						|
			return crypto.ObjectKey{}, errKMSNotConfigured
 | 
						|
		}
 | 
						|
		key, err := GlobalKMS.GenerateKey("", kms.Context{bucket: path.Join(bucket, object)})
 | 
						|
		if err != nil {
 | 
						|
			return crypto.ObjectKey{}, err
 | 
						|
		}
 | 
						|
 | 
						|
		objectKey := crypto.GenerateKey(key.Plaintext, rand.Reader)
 | 
						|
		sealedKey = objectKey.Seal(key.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3.String(), bucket, object)
 | 
						|
		crypto.S3.CreateMetadata(metadata, key.KeyID, key.Ciphertext, sealedKey)
 | 
						|
		return objectKey, nil
 | 
						|
	case crypto.S3KMS:
 | 
						|
		if GlobalKMS == nil {
 | 
						|
			return crypto.ObjectKey{}, errKMSNotConfigured
 | 
						|
		}
 | 
						|
 | 
						|
		// If the context does not contain the bucket key
 | 
						|
		// we must add it for key generation. However,
 | 
						|
		// the context must be stored exactly like the
 | 
						|
		// client provided it. Therefore, we create a copy
 | 
						|
		// of the client provided context and add the bucket
 | 
						|
		// key, if not present.
 | 
						|
		var kmsCtx = kms.Context{}
 | 
						|
		for k, v := range ctx {
 | 
						|
			kmsCtx[k] = v
 | 
						|
		}
 | 
						|
		if _, ok := kmsCtx[bucket]; !ok {
 | 
						|
			kmsCtx[bucket] = path.Join(bucket, object)
 | 
						|
		}
 | 
						|
		key, err := GlobalKMS.GenerateKey(keyID, kmsCtx)
 | 
						|
		if err != nil {
 | 
						|
			return crypto.ObjectKey{}, err
 | 
						|
		}
 | 
						|
 | 
						|
		objectKey := crypto.GenerateKey(key.Plaintext, rand.Reader)
 | 
						|
		sealedKey = objectKey.Seal(key.Plaintext, crypto.GenerateIV(rand.Reader), crypto.S3KMS.String(), bucket, object)
 | 
						|
		crypto.S3KMS.CreateMetadata(metadata, key.KeyID, key.Ciphertext, sealedKey, ctx)
 | 
						|
		return objectKey, nil
 | 
						|
	case crypto.SSEC:
 | 
						|
		objectKey := crypto.GenerateKey(key, rand.Reader)
 | 
						|
		sealedKey = objectKey.Seal(key, crypto.GenerateIV(rand.Reader), crypto.SSEC.String(), bucket, object)
 | 
						|
		crypto.SSEC.CreateMetadata(metadata, sealedKey)
 | 
						|
		return objectKey, nil
 | 
						|
	default:
 | 
						|
		return crypto.ObjectKey{}, fmt.Errorf("encryption type '%v' not supported", kind)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func newEncryptReader(content io.Reader, kind crypto.Type, keyID string, key []byte, bucket, object string, metadata map[string]string, ctx kms.Context) (io.Reader, crypto.ObjectKey, error) {
 | 
						|
	objectEncryptionKey, err := newEncryptMetadata(kind, keyID, key, bucket, object, metadata, ctx)
 | 
						|
	if err != nil {
 | 
						|
		return nil, crypto.ObjectKey{}, err
 | 
						|
	}
 | 
						|
 | 
						|
	reader, err := sio.EncryptReader(content, sio.Config{Key: objectEncryptionKey[:], MinVersion: sio.Version20, CipherSuites: fips.CipherSuitesDARE()})
 | 
						|
	if err != nil {
 | 
						|
		return nil, crypto.ObjectKey{}, crypto.ErrInvalidCustomerKey
 | 
						|
	}
 | 
						|
 | 
						|
	return reader, objectEncryptionKey, nil
 | 
						|
}
 | 
						|
 | 
						|
// set new encryption metadata from http request headers for SSE-C and generated key from KMS in the case of
 | 
						|
// SSE-S3
 | 
						|
func setEncryptionMetadata(r *http.Request, bucket, object string, metadata map[string]string) (err error) {
 | 
						|
	var (
 | 
						|
		key   []byte
 | 
						|
		keyID string
 | 
						|
		ctx   kms.Context
 | 
						|
	)
 | 
						|
	kind, _ := crypto.IsRequested(r.Header)
 | 
						|
	switch kind {
 | 
						|
	case crypto.SSEC:
 | 
						|
		key, err = ParseSSECustomerRequest(r)
 | 
						|
		if err != nil {
 | 
						|
			return err
 | 
						|
		}
 | 
						|
	case crypto.S3KMS:
 | 
						|
		keyID, ctx, err = crypto.S3KMS.ParseHTTP(r.Header)
 | 
						|
		if err != nil {
 | 
						|
			return err
 | 
						|
		}
 | 
						|
	}
 | 
						|
	_, err = newEncryptMetadata(kind, keyID, key, bucket, object, metadata, ctx)
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// EncryptRequest takes the client provided content and encrypts the data
 | 
						|
// with the client provided key. It also marks the object as client-side-encrypted
 | 
						|
// and sets the correct headers.
 | 
						|
func EncryptRequest(content io.Reader, r *http.Request, bucket, object string, metadata map[string]string) (io.Reader, crypto.ObjectKey, error) {
 | 
						|
	if r.ContentLength > encryptBufferThreshold {
 | 
						|
		// The encryption reads in blocks of 64KB.
 | 
						|
		// We add a buffer on bigger files to reduce the number of syscalls upstream.
 | 
						|
		content = bufio.NewReaderSize(content, encryptBufferSize)
 | 
						|
	}
 | 
						|
 | 
						|
	var (
 | 
						|
		key   []byte
 | 
						|
		keyID string
 | 
						|
		ctx   kms.Context
 | 
						|
		err   error
 | 
						|
	)
 | 
						|
	kind, _ := crypto.IsRequested(r.Header)
 | 
						|
	if kind == crypto.SSEC {
 | 
						|
		key, err = ParseSSECustomerRequest(r)
 | 
						|
		if err != nil {
 | 
						|
			return nil, crypto.ObjectKey{}, err
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if kind == crypto.S3KMS {
 | 
						|
		keyID, ctx, err = crypto.S3KMS.ParseHTTP(r.Header)
 | 
						|
		if err != nil {
 | 
						|
			return nil, crypto.ObjectKey{}, err
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return newEncryptReader(content, kind, keyID, key, bucket, object, metadata, ctx)
 | 
						|
}
 | 
						|
 | 
						|
func decryptObjectInfo(key []byte, bucket, object string, metadata map[string]string) ([]byte, error) {
 | 
						|
	switch kind, _ := crypto.IsEncrypted(metadata); kind {
 | 
						|
	case crypto.S3:
 | 
						|
		var KMS kms.KMS = GlobalKMS
 | 
						|
		if isCacheEncrypted(metadata) {
 | 
						|
			KMS = globalCacheKMS
 | 
						|
		}
 | 
						|
		if KMS == nil {
 | 
						|
			return nil, errKMSNotConfigured
 | 
						|
		}
 | 
						|
		objectKey, err := crypto.S3.UnsealObjectKey(KMS, metadata, bucket, object)
 | 
						|
		if err != nil {
 | 
						|
			return nil, err
 | 
						|
		}
 | 
						|
		return objectKey[:], nil
 | 
						|
	case crypto.S3KMS:
 | 
						|
		if GlobalKMS == nil {
 | 
						|
			return nil, errKMSNotConfigured
 | 
						|
		}
 | 
						|
		objectKey, err := crypto.S3KMS.UnsealObjectKey(GlobalKMS, metadata, bucket, object)
 | 
						|
		if err != nil {
 | 
						|
			return nil, err
 | 
						|
		}
 | 
						|
		return objectKey[:], nil
 | 
						|
	case crypto.SSEC:
 | 
						|
		sealedKey, err := crypto.SSEC.ParseMetadata(metadata)
 | 
						|
		if err != nil {
 | 
						|
			return nil, err
 | 
						|
		}
 | 
						|
		var objectKey crypto.ObjectKey
 | 
						|
		if err = objectKey.Unseal(key, sealedKey, crypto.SSEC.String(), bucket, object); err != nil {
 | 
						|
			return nil, err
 | 
						|
		}
 | 
						|
		return objectKey[:], nil
 | 
						|
	default:
 | 
						|
		return nil, errObjectTampered
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Adding support for reader based interface
 | 
						|
 | 
						|
// DecryptRequestWithSequenceNumberR - same as
 | 
						|
// DecryptRequestWithSequenceNumber but with a reader
 | 
						|
func DecryptRequestWithSequenceNumberR(client io.Reader, h http.Header, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
 | 
						|
	if crypto.SSEC.IsEncrypted(metadata) {
 | 
						|
		key, err := ParseSSECustomerHeader(h)
 | 
						|
		if err != nil {
 | 
						|
			return nil, err
 | 
						|
		}
 | 
						|
		return newDecryptReader(client, key, bucket, object, seqNumber, metadata)
 | 
						|
	}
 | 
						|
	return newDecryptReader(client, nil, bucket, object, seqNumber, metadata)
 | 
						|
}
 | 
						|
 | 
						|
// DecryptCopyRequestR - same as DecryptCopyRequest, but with a
 | 
						|
// Reader
 | 
						|
func DecryptCopyRequestR(client io.Reader, h http.Header, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
 | 
						|
	var (
 | 
						|
		key []byte
 | 
						|
		err error
 | 
						|
	)
 | 
						|
	if crypto.SSECopy.IsRequested(h) {
 | 
						|
		key, err = ParseSSECopyCustomerRequest(h, metadata)
 | 
						|
		if err != nil {
 | 
						|
			return nil, err
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return newDecryptReader(client, key, bucket, object, seqNumber, metadata)
 | 
						|
}
 | 
						|
 | 
						|
func newDecryptReader(client io.Reader, key []byte, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) {
 | 
						|
	objectEncryptionKey, err := decryptObjectInfo(key, bucket, object, metadata)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	return newDecryptReaderWithObjectKey(client, objectEncryptionKey, seqNumber)
 | 
						|
}
 | 
						|
 | 
						|
func newDecryptReaderWithObjectKey(client io.Reader, objectEncryptionKey []byte, seqNumber uint32) (io.Reader, error) {
 | 
						|
	reader, err := sio.DecryptReader(client, sio.Config{
 | 
						|
		Key:            objectEncryptionKey,
 | 
						|
		SequenceNumber: seqNumber,
 | 
						|
		CipherSuites:   fips.CipherSuitesDARE(),
 | 
						|
	})
 | 
						|
	if err != nil {
 | 
						|
		return nil, crypto.ErrInvalidCustomerKey
 | 
						|
	}
 | 
						|
	return reader, nil
 | 
						|
}
 | 
						|
 | 
						|
// DecryptBlocksRequestR - same as DecryptBlocksRequest but with a
 | 
						|
// reader
 | 
						|
func DecryptBlocksRequestR(inputReader io.Reader, h http.Header, seqNumber uint32, partStart int, oi ObjectInfo, copySource bool) (io.Reader, error) {
 | 
						|
 | 
						|
	bucket, object := oi.Bucket, oi.Name
 | 
						|
	// Single part case
 | 
						|
	if !oi.isEncryptedMultipart() {
 | 
						|
		var reader io.Reader
 | 
						|
		var err error
 | 
						|
		if copySource {
 | 
						|
			reader, err = DecryptCopyRequestR(inputReader, h, bucket, object, seqNumber, oi.UserDefined)
 | 
						|
		} else {
 | 
						|
			reader, err = DecryptRequestWithSequenceNumberR(inputReader, h, bucket, object, seqNumber, oi.UserDefined)
 | 
						|
		}
 | 
						|
		if err != nil {
 | 
						|
			return nil, err
 | 
						|
		}
 | 
						|
		return reader, nil
 | 
						|
	}
 | 
						|
 | 
						|
	partDecRelOffset := int64(seqNumber) * SSEDAREPackageBlockSize
 | 
						|
	partEncRelOffset := int64(seqNumber) * (SSEDAREPackageBlockSize + SSEDAREPackageMetaSize)
 | 
						|
 | 
						|
	w := &DecryptBlocksReader{
 | 
						|
		reader:            inputReader,
 | 
						|
		startSeqNum:       seqNumber,
 | 
						|
		partDecRelOffset:  partDecRelOffset,
 | 
						|
		partEncRelOffset:  partEncRelOffset,
 | 
						|
		parts:             oi.Parts,
 | 
						|
		partIndex:         partStart,
 | 
						|
		header:            h,
 | 
						|
		bucket:            bucket,
 | 
						|
		object:            object,
 | 
						|
		customerKeyHeader: h.Get(xhttp.AmzServerSideEncryptionCustomerKey),
 | 
						|
		copySource:        copySource,
 | 
						|
		metadata:          cloneMSS(oi.UserDefined),
 | 
						|
	}
 | 
						|
 | 
						|
	if w.copySource {
 | 
						|
		w.customerKeyHeader = h.Get(xhttp.AmzServerSideEncryptionCopyCustomerKey)
 | 
						|
	}
 | 
						|
 | 
						|
	if err := w.buildDecrypter(w.parts[w.partIndex].Number); err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
 | 
						|
	return w, nil
 | 
						|
}
 | 
						|
 | 
						|
// DecryptBlocksReader - decrypts multipart parts, while implementing
 | 
						|
// a io.Reader compatible interface.
 | 
						|
type DecryptBlocksReader struct {
 | 
						|
	// Source of the encrypted content that will be decrypted
 | 
						|
	reader io.Reader
 | 
						|
	// Current decrypter for the current encrypted data block
 | 
						|
	decrypter io.Reader
 | 
						|
	// Start sequence number
 | 
						|
	startSeqNum uint32
 | 
						|
	// Current part index
 | 
						|
	partIndex int
 | 
						|
	// Parts information
 | 
						|
	parts          []ObjectPartInfo
 | 
						|
	header         http.Header
 | 
						|
	bucket, object string
 | 
						|
	metadata       map[string]string
 | 
						|
 | 
						|
	partDecRelOffset, partEncRelOffset int64
 | 
						|
 | 
						|
	copySource bool
 | 
						|
	// Customer Key
 | 
						|
	customerKeyHeader string
 | 
						|
}
 | 
						|
 | 
						|
func (d *DecryptBlocksReader) buildDecrypter(partID int) error {
 | 
						|
	m := cloneMSS(d.metadata)
 | 
						|
	// Initialize the first decrypter; new decrypters will be
 | 
						|
	// initialized in Read() operation as needed.
 | 
						|
	var key []byte
 | 
						|
	var err error
 | 
						|
	if d.copySource {
 | 
						|
		if crypto.SSEC.IsEncrypted(d.metadata) {
 | 
						|
			d.header.Set(xhttp.AmzServerSideEncryptionCopyCustomerKey, d.customerKeyHeader)
 | 
						|
			key, err = ParseSSECopyCustomerRequest(d.header, d.metadata)
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		if crypto.SSEC.IsEncrypted(d.metadata) {
 | 
						|
			d.header.Set(xhttp.AmzServerSideEncryptionCustomerKey, d.customerKeyHeader)
 | 
						|
			key, err = ParseSSECustomerHeader(d.header)
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	objectEncryptionKey, err := decryptObjectInfo(key, d.bucket, d.object, m)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	var partIDbin [4]byte
 | 
						|
	binary.LittleEndian.PutUint32(partIDbin[:], uint32(partID)) // marshal part ID
 | 
						|
 | 
						|
	mac := hmac.New(sha256.New, objectEncryptionKey) // derive part encryption key from part ID and object key
 | 
						|
	mac.Write(partIDbin[:])
 | 
						|
	partEncryptionKey := mac.Sum(nil)
 | 
						|
 | 
						|
	// Limit the reader, so the decryptor doesnt receive bytes
 | 
						|
	// from the next part (different DARE stream)
 | 
						|
	encLenToRead := d.parts[d.partIndex].Size - d.partEncRelOffset
 | 
						|
	decrypter, err := newDecryptReaderWithObjectKey(io.LimitReader(d.reader, encLenToRead), partEncryptionKey, d.startSeqNum)
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
 | 
						|
	d.decrypter = decrypter
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
func (d *DecryptBlocksReader) Read(p []byte) (int, error) {
 | 
						|
	var err error
 | 
						|
	var n1 int
 | 
						|
	decPartSize, _ := sio.DecryptedSize(uint64(d.parts[d.partIndex].Size))
 | 
						|
	unreadPartLen := int64(decPartSize) - d.partDecRelOffset
 | 
						|
	if int64(len(p)) < unreadPartLen {
 | 
						|
		n1, err = d.decrypter.Read(p)
 | 
						|
		if err != nil {
 | 
						|
			return 0, err
 | 
						|
		}
 | 
						|
		d.partDecRelOffset += int64(n1)
 | 
						|
	} else {
 | 
						|
		n1, err = io.ReadFull(d.decrypter, p[:unreadPartLen])
 | 
						|
		if err != nil {
 | 
						|
			return 0, err
 | 
						|
		}
 | 
						|
 | 
						|
		// We should now proceed to next part, reset all
 | 
						|
		// values appropriately.
 | 
						|
		d.partEncRelOffset = 0
 | 
						|
		d.partDecRelOffset = 0
 | 
						|
		d.startSeqNum = 0
 | 
						|
 | 
						|
		d.partIndex++
 | 
						|
		if d.partIndex == len(d.parts) {
 | 
						|
			return n1, io.EOF
 | 
						|
		}
 | 
						|
 | 
						|
		err = d.buildDecrypter(d.parts[d.partIndex].Number)
 | 
						|
		if err != nil {
 | 
						|
			return 0, err
 | 
						|
		}
 | 
						|
 | 
						|
		n1, err = d.decrypter.Read(p[n1:])
 | 
						|
		if err != nil {
 | 
						|
			return 0, err
 | 
						|
		}
 | 
						|
 | 
						|
		d.partDecRelOffset += int64(n1)
 | 
						|
	}
 | 
						|
	return len(p), nil
 | 
						|
}
 | 
						|
 | 
						|
// DecryptedSize returns the size of the object after decryption in bytes.
 | 
						|
// It returns an error if the object is not encrypted or marked as encrypted
 | 
						|
// but has an invalid size.
 | 
						|
func (o *ObjectInfo) DecryptedSize() (int64, error) {
 | 
						|
	if _, ok := crypto.IsEncrypted(o.UserDefined); !ok {
 | 
						|
		return 0, errors.New("Cannot compute decrypted size of an unencrypted object")
 | 
						|
	}
 | 
						|
	if !o.isEncryptedMultipart() {
 | 
						|
		size, err := sio.DecryptedSize(uint64(o.Size))
 | 
						|
		if err != nil {
 | 
						|
			err = errObjectTampered // assign correct error type
 | 
						|
		}
 | 
						|
		return int64(size), err
 | 
						|
	}
 | 
						|
 | 
						|
	var size int64
 | 
						|
	for _, part := range o.Parts {
 | 
						|
		partSize, err := sio.DecryptedSize(uint64(part.Size))
 | 
						|
		if err != nil {
 | 
						|
			return 0, errObjectTampered
 | 
						|
		}
 | 
						|
		size += int64(partSize)
 | 
						|
	}
 | 
						|
	return size, nil
 | 
						|
}
 | 
						|
 | 
						|
// DecryptETag decrypts the ETag that is part of given object
 | 
						|
// with the given object encryption key.
 | 
						|
//
 | 
						|
// However, DecryptETag does not try to decrypt the ETag if
 | 
						|
// it consists of a 128 bit hex value (32 hex chars) and exactly
 | 
						|
// one '-' followed by a 32-bit number.
 | 
						|
// This special case adresses randomly-generated ETags generated
 | 
						|
// by the MinIO server when running in non-compat mode. These
 | 
						|
// random ETags are not encrypt.
 | 
						|
//
 | 
						|
// Calling DecryptETag with a non-randomly generated ETag will
 | 
						|
// fail.
 | 
						|
func DecryptETag(key crypto.ObjectKey, object ObjectInfo) (string, error) {
 | 
						|
	if n := strings.Count(object.ETag, "-"); n > 0 {
 | 
						|
		if n != 1 {
 | 
						|
			return "", errObjectTampered
 | 
						|
		}
 | 
						|
		i := strings.IndexByte(object.ETag, '-')
 | 
						|
		if len(object.ETag[:i]) != 32 {
 | 
						|
			return "", errObjectTampered
 | 
						|
		}
 | 
						|
		if _, err := hex.DecodeString(object.ETag[:32]); err != nil {
 | 
						|
			return "", errObjectTampered
 | 
						|
		}
 | 
						|
		if _, err := strconv.ParseInt(object.ETag[i+1:], 10, 32); err != nil {
 | 
						|
			return "", errObjectTampered
 | 
						|
		}
 | 
						|
		return object.ETag, nil
 | 
						|
	}
 | 
						|
 | 
						|
	etag, err := hex.DecodeString(object.ETag)
 | 
						|
	if err != nil {
 | 
						|
		return "", err
 | 
						|
	}
 | 
						|
	etag, err = key.UnsealETag(etag)
 | 
						|
	if err != nil {
 | 
						|
		return "", err
 | 
						|
	}
 | 
						|
	return hex.EncodeToString(etag), nil
 | 
						|
}
 | 
						|
 | 
						|
// For encrypted objects, the ETag sent by client if available
 | 
						|
// is stored in encrypted form in the backend. Decrypt the ETag
 | 
						|
// if ETag was previously encrypted.
 | 
						|
func getDecryptedETag(headers http.Header, objInfo ObjectInfo, copySource bool) (decryptedETag string) {
 | 
						|
	var (
 | 
						|
		key [32]byte
 | 
						|
		err error
 | 
						|
	)
 | 
						|
	// If ETag is contentMD5Sum return it as is.
 | 
						|
	if len(objInfo.ETag) == 32 {
 | 
						|
		return objInfo.ETag
 | 
						|
	}
 | 
						|
 | 
						|
	if crypto.IsMultiPart(objInfo.UserDefined) {
 | 
						|
		return objInfo.ETag
 | 
						|
	}
 | 
						|
 | 
						|
	if crypto.SSECopy.IsRequested(headers) {
 | 
						|
		key, err = crypto.SSECopy.ParseHTTP(headers)
 | 
						|
		if err != nil {
 | 
						|
			return objInfo.ETag
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// As per AWS S3 Spec, ETag for SSE-C encrypted objects need not be MD5Sum of the data.
 | 
						|
	// Since server side copy with same source and dest just replaces the ETag, we save
 | 
						|
	// encrypted content MD5Sum as ETag for both SSE-C and SSE-S3, we standardize the ETag
 | 
						|
	// encryption across SSE-C and SSE-S3, and only return last 32 bytes for SSE-C
 | 
						|
	if (crypto.SSEC.IsEncrypted(objInfo.UserDefined) || crypto.S3KMS.IsEncrypted(objInfo.UserDefined)) && !copySource {
 | 
						|
		return objInfo.ETag[len(objInfo.ETag)-32:]
 | 
						|
	}
 | 
						|
 | 
						|
	objectEncryptionKey, err := decryptObjectInfo(key[:], objInfo.Bucket, objInfo.Name, objInfo.UserDefined)
 | 
						|
	if err != nil {
 | 
						|
		return objInfo.ETag
 | 
						|
	}
 | 
						|
	return tryDecryptETag(objectEncryptionKey, objInfo.ETag, false)
 | 
						|
}
 | 
						|
 | 
						|
// helper to decrypt Etag given object encryption key and encrypted ETag
 | 
						|
func tryDecryptETag(key []byte, encryptedETag string, ssec bool) string {
 | 
						|
	// ETag for SSE-C encrypted objects need not be content MD5Sum.While encrypted
 | 
						|
	// md5sum is stored internally, return just the last 32 bytes of hex-encoded and
 | 
						|
	// encrypted md5sum string for SSE-C
 | 
						|
	if ssec {
 | 
						|
		return encryptedETag[len(encryptedETag)-32:]
 | 
						|
	}
 | 
						|
	var objectKey crypto.ObjectKey
 | 
						|
	copy(objectKey[:], key)
 | 
						|
	encBytes, err := hex.DecodeString(encryptedETag)
 | 
						|
	if err != nil {
 | 
						|
		return encryptedETag
 | 
						|
	}
 | 
						|
	etagBytes, err := objectKey.UnsealETag(encBytes)
 | 
						|
	if err != nil {
 | 
						|
		return encryptedETag
 | 
						|
	}
 | 
						|
	return hex.EncodeToString(etagBytes)
 | 
						|
}
 | 
						|
 | 
						|
// GetDecryptedRange - To decrypt the range (off, length) of the
 | 
						|
// decrypted object stream, we need to read the range (encOff,
 | 
						|
// encLength) of the encrypted object stream to decrypt it, and
 | 
						|
// compute skipLen, the number of bytes to skip in the beginning of
 | 
						|
// the encrypted range.
 | 
						|
//
 | 
						|
// In addition we also compute the object part number for where the
 | 
						|
// requested range starts, along with the DARE sequence number within
 | 
						|
// that part. For single part objects, the partStart will be 0.
 | 
						|
func (o *ObjectInfo) GetDecryptedRange(rs *HTTPRangeSpec) (encOff, encLength, skipLen int64, seqNumber uint32, partStart int, err error) {
 | 
						|
	if _, ok := crypto.IsEncrypted(o.UserDefined); !ok {
 | 
						|
		err = errors.New("Object is not encrypted")
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	if rs == nil {
 | 
						|
		// No range, so offsets refer to the whole object.
 | 
						|
		return 0, o.Size, 0, 0, 0, nil
 | 
						|
	}
 | 
						|
 | 
						|
	// Assemble slice of (decrypted) part sizes in `sizes`
 | 
						|
	var sizes []int64
 | 
						|
	var decObjSize int64 // decrypted total object size
 | 
						|
	if o.isEncryptedMultipart() {
 | 
						|
		sizes = make([]int64, len(o.Parts))
 | 
						|
		for i, part := range o.Parts {
 | 
						|
			var partSize uint64
 | 
						|
			partSize, err = sio.DecryptedSize(uint64(part.Size))
 | 
						|
			if err != nil {
 | 
						|
				err = errObjectTampered
 | 
						|
				return
 | 
						|
			}
 | 
						|
			sizes[i] = int64(partSize)
 | 
						|
			decObjSize += int64(partSize)
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		var partSize uint64
 | 
						|
		partSize, err = sio.DecryptedSize(uint64(o.Size))
 | 
						|
		if err != nil {
 | 
						|
			err = errObjectTampered
 | 
						|
			return
 | 
						|
		}
 | 
						|
		sizes = []int64{int64(partSize)}
 | 
						|
		decObjSize = sizes[0]
 | 
						|
	}
 | 
						|
 | 
						|
	var off, length int64
 | 
						|
	off, length, err = rs.GetOffsetLength(decObjSize)
 | 
						|
	if err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	// At this point, we have:
 | 
						|
	//
 | 
						|
	// 1. the decrypted part sizes in `sizes` (single element for
 | 
						|
	//    single part object) and total decrypted object size `decObjSize`
 | 
						|
	//
 | 
						|
	// 2. the (decrypted) start offset `off` and (decrypted)
 | 
						|
	//    length to read `length`
 | 
						|
	//
 | 
						|
	// These are the inputs to the rest of the algorithm below.
 | 
						|
 | 
						|
	// Locate the part containing the start of the required range
 | 
						|
	var partEnd int
 | 
						|
	var cumulativeSum, encCumulativeSum int64
 | 
						|
	for i, size := range sizes {
 | 
						|
		if off < cumulativeSum+size {
 | 
						|
			partStart = i
 | 
						|
			break
 | 
						|
		}
 | 
						|
		cumulativeSum += size
 | 
						|
		encPartSize, _ := sio.EncryptedSize(uint64(size))
 | 
						|
		encCumulativeSum += int64(encPartSize)
 | 
						|
	}
 | 
						|
	// partStart is always found in the loop above,
 | 
						|
	// because off is validated.
 | 
						|
 | 
						|
	sseDAREEncPackageBlockSize := int64(SSEDAREPackageBlockSize + SSEDAREPackageMetaSize)
 | 
						|
	startPkgNum := (off - cumulativeSum) / SSEDAREPackageBlockSize
 | 
						|
 | 
						|
	// Now we can calculate the number of bytes to skip
 | 
						|
	skipLen = (off - cumulativeSum) % SSEDAREPackageBlockSize
 | 
						|
 | 
						|
	encOff = encCumulativeSum + startPkgNum*sseDAREEncPackageBlockSize
 | 
						|
	// Locate the part containing the end of the required range
 | 
						|
	endOffset := off + length - 1
 | 
						|
	for i1, size := range sizes[partStart:] {
 | 
						|
		i := partStart + i1
 | 
						|
		if endOffset < cumulativeSum+size {
 | 
						|
			partEnd = i
 | 
						|
			break
 | 
						|
		}
 | 
						|
		cumulativeSum += size
 | 
						|
		encPartSize, _ := sio.EncryptedSize(uint64(size))
 | 
						|
		encCumulativeSum += int64(encPartSize)
 | 
						|
	}
 | 
						|
	// partEnd is always found in the loop above, because off and
 | 
						|
	// length are validated.
 | 
						|
	endPkgNum := (endOffset - cumulativeSum) / SSEDAREPackageBlockSize
 | 
						|
	// Compute endEncOffset with one additional DARE package (so
 | 
						|
	// we read the package containing the last desired byte).
 | 
						|
	endEncOffset := encCumulativeSum + (endPkgNum+1)*sseDAREEncPackageBlockSize
 | 
						|
	// Check if the DARE package containing the end offset is a
 | 
						|
	// full sized package (as the last package in the part may be
 | 
						|
	// smaller)
 | 
						|
	lastPartSize, _ := sio.EncryptedSize(uint64(sizes[partEnd]))
 | 
						|
	if endEncOffset > encCumulativeSum+int64(lastPartSize) {
 | 
						|
		endEncOffset = encCumulativeSum + int64(lastPartSize)
 | 
						|
	}
 | 
						|
	encLength = endEncOffset - encOff
 | 
						|
	// Set the sequence number as the starting package number of
 | 
						|
	// the requested block
 | 
						|
	seqNumber = uint32(startPkgNum)
 | 
						|
	return encOff, encLength, skipLen, seqNumber, partStart, nil
 | 
						|
}
 | 
						|
 | 
						|
// EncryptedSize returns the size of the object after encryption.
 | 
						|
// An encrypted object is always larger than a plain object
 | 
						|
// except for zero size objects.
 | 
						|
func (o *ObjectInfo) EncryptedSize() int64 {
 | 
						|
	size, err := sio.EncryptedSize(uint64(o.Size))
 | 
						|
	if err != nil {
 | 
						|
		// This cannot happen since AWS S3 allows parts to be 5GB at most
 | 
						|
		// sio max. size is 256 TB
 | 
						|
		reqInfo := (&logger.ReqInfo{}).AppendTags("size", strconv.FormatUint(size, 10))
 | 
						|
		ctx := logger.SetReqInfo(GlobalContext, reqInfo)
 | 
						|
		logger.CriticalIf(ctx, err)
 | 
						|
	}
 | 
						|
	return int64(size)
 | 
						|
}
 | 
						|
 | 
						|
// DecryptObjectInfo tries to decrypt the provided object if it is encrypted.
 | 
						|
// It fails if the object is encrypted and the HTTP headers don't contain
 | 
						|
// SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior)
 | 
						|
// DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the
 | 
						|
// decryption succeeded.
 | 
						|
//
 | 
						|
// DecryptObjectInfo also returns whether the object is encrypted or not.
 | 
						|
func DecryptObjectInfo(info *ObjectInfo, r *http.Request) (encrypted bool, err error) {
 | 
						|
	// Directories are never encrypted.
 | 
						|
	if info.IsDir {
 | 
						|
		return false, nil
 | 
						|
	}
 | 
						|
	if r == nil {
 | 
						|
		return false, errInvalidArgument
 | 
						|
	}
 | 
						|
 | 
						|
	headers := r.Header
 | 
						|
 | 
						|
	// disallow X-Amz-Server-Side-Encryption header on HEAD and GET
 | 
						|
	switch r.Method {
 | 
						|
	case http.MethodGet, http.MethodHead:
 | 
						|
		if crypto.S3.IsRequested(headers) || crypto.S3KMS.IsRequested(headers) {
 | 
						|
			return false, errInvalidEncryptionParameters
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	_, encrypted = crypto.IsEncrypted(info.UserDefined)
 | 
						|
	if !encrypted && crypto.SSEC.IsRequested(headers) && r.Header.Get(xhttp.AmzCopySource) == "" {
 | 
						|
		return false, errInvalidEncryptionParameters
 | 
						|
	}
 | 
						|
 | 
						|
	if encrypted {
 | 
						|
		if crypto.SSEC.IsEncrypted(info.UserDefined) {
 | 
						|
			if !(crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers)) {
 | 
						|
				return encrypted, errEncryptedObject
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if crypto.S3.IsEncrypted(info.UserDefined) && r.Header.Get(xhttp.AmzCopySource) == "" {
 | 
						|
			if crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers) {
 | 
						|
				return encrypted, errEncryptedObject
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if crypto.S3KMS.IsEncrypted(info.UserDefined) && r.Header.Get(xhttp.AmzCopySource) == "" {
 | 
						|
			if crypto.SSEC.IsRequested(headers) || crypto.SSECopy.IsRequested(headers) {
 | 
						|
				return encrypted, errEncryptedObject
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if _, err = info.DecryptedSize(); err != nil {
 | 
						|
			return encrypted, err
 | 
						|
		}
 | 
						|
 | 
						|
		if _, ok := crypto.IsEncrypted(info.UserDefined); ok && !crypto.IsMultiPart(info.UserDefined) {
 | 
						|
			info.ETag = getDecryptedETag(headers, *info, false)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return encrypted, nil
 | 
						|
}
 | 
						|
 | 
						|
// The customer key in the header is used by the gateway for encryption in the case of
 | 
						|
// s3 gateway double encryption. A new client key is derived from the customer provided
 | 
						|
// key to be sent to the s3 backend for encryption at the backend.
 | 
						|
func deriveClientKey(clientKey [32]byte, bucket, object string) [32]byte {
 | 
						|
	var key [32]byte
 | 
						|
	mac := hmac.New(sha256.New, clientKey[:])
 | 
						|
	mac.Write([]byte(crypto.SSEC.String()))
 | 
						|
	mac.Write([]byte(path.Join(bucket, object)))
 | 
						|
	mac.Sum(key[:0])
 | 
						|
	return key
 | 
						|
}
 |