mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2026-01-21 01:51:09 +01:00
Since the massive pools cleanup that happened in 2.6, the pools architecture was made quite more hierarchical and many alternate code blocks could be moved to runtime flags set by -dM. One of them had not been converted by then, DEBUG_UAF. It's not much more difficult actually, since it only acts on a pair of functions indirection on the slow path (OS-level allocator) and a default setting for the cache activation. This patch adds the "uaf" setting to the options permitted in -dM so that it now becomes possible to set or unset UAF at boot time without recompiling. This is particularly convenient, because every 3 months on average, developers ask a user to recompile haproxy with DEBUG_UAF to understand a bug. Now it will not be needed anymore, instead the user will only have to disable pools and enable uaf using -dMuaf. Note that -dMuaf only disables previously enabled pools, but it remains possible to re-enable caching by specifying the cache after, like -dMuaf,cache. A few tests with this mode show that it can be an interesting combination which catches significantly less UAF but will do so with much less overhead, so it might be compatible with some high-traffic deployments. The change is very small and isolated. It could be helpful to backport this at least to 2.7 once confirmed not to cause build issues on exotic systems, and even to 2.6 a bit later as this has proven to be useful over time, and could be even more if it did not require a rebuild. If a backport is desired, the following patches are needed as well: CLEANUP: pools: move the write before free to the uaf-only function CLEANUP: pool: only include pool-os from pool.c not pool.h REORG: pool: move all the OS specific code to pool-os.h CLEANUP: pools: get rid of CONFIG_HAP_POOLS DEBUG: pool: show a few examples in -dMhelp
1240 lines
38 KiB
C
1240 lines
38 KiB
C
/*
|
|
* Memory management functions.
|
|
*
|
|
* Copyright 2000-2007 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <errno.h>
|
|
|
|
#include <haproxy/activity.h>
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/applet-t.h>
|
|
#include <haproxy/cfgparse.h>
|
|
#include <haproxy/channel.h>
|
|
#include <haproxy/cli.h>
|
|
#include <haproxy/errors.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/list.h>
|
|
#include <haproxy/pool.h>
|
|
#include <haproxy/pool-os.h>
|
|
#include <haproxy/sc_strm.h>
|
|
#include <haproxy/stats-t.h>
|
|
#include <haproxy/stconn.h>
|
|
#include <haproxy/thread.h>
|
|
#include <haproxy/tools.h>
|
|
|
|
|
|
/* These ones are initialized per-thread on startup by init_pools() */
|
|
THREAD_LOCAL size_t pool_cache_bytes = 0; /* total cache size */
|
|
THREAD_LOCAL size_t pool_cache_count = 0; /* #cache objects */
|
|
|
|
static struct list pools __read_mostly = LIST_HEAD_INIT(pools);
|
|
int mem_poison_byte __read_mostly = 'P';
|
|
uint pool_debugging __read_mostly = /* set of POOL_DBG_* flags */
|
|
#ifdef DEBUG_FAIL_ALLOC
|
|
POOL_DBG_FAIL_ALLOC |
|
|
#endif
|
|
#ifdef DEBUG_DONT_SHARE_POOLS
|
|
POOL_DBG_DONT_MERGE |
|
|
#endif
|
|
#ifdef DEBUG_POOL_INTEGRITY
|
|
POOL_DBG_COLD_FIRST |
|
|
#endif
|
|
#ifdef DEBUG_POOL_INTEGRITY
|
|
POOL_DBG_INTEGRITY |
|
|
#endif
|
|
#ifdef CONFIG_HAP_NO_GLOBAL_POOLS
|
|
POOL_DBG_NO_GLOBAL |
|
|
#endif
|
|
#if defined(DEBUG_NO_POOLS) || defined(DEBUG_UAF)
|
|
POOL_DBG_NO_CACHE |
|
|
#endif
|
|
#if defined(DEBUG_POOL_TRACING)
|
|
POOL_DBG_CALLER |
|
|
#endif
|
|
#if defined(DEBUG_MEMORY_POOLS)
|
|
POOL_DBG_TAG |
|
|
#endif
|
|
#if defined(DEBUG_UAF)
|
|
POOL_DBG_UAF |
|
|
#endif
|
|
0;
|
|
|
|
static const struct {
|
|
uint flg;
|
|
const char *set;
|
|
const char *clr;
|
|
const char *hlp;
|
|
} dbg_options[] = {
|
|
/* flg, set, clr, hlp */
|
|
{ POOL_DBG_FAIL_ALLOC, "fail", "no-fail", "randomly fail allocations" },
|
|
{ POOL_DBG_DONT_MERGE, "no-merge", "merge", "disable merging of similar pools" },
|
|
{ POOL_DBG_COLD_FIRST, "cold-first", "hot-first", "pick cold objects first" },
|
|
{ POOL_DBG_INTEGRITY, "integrity", "no-integrity", "enable cache integrity checks" },
|
|
{ POOL_DBG_NO_GLOBAL, "no-global", "global", "disable global shared cache" },
|
|
{ POOL_DBG_NO_CACHE, "no-cache", "cache", "disable thread-local cache" },
|
|
{ POOL_DBG_CALLER, "caller", "no-caller", "save caller information in cache" },
|
|
{ POOL_DBG_TAG, "tag", "no-tag", "add tag at end of allocated objects" },
|
|
{ POOL_DBG_POISON, "poison", "no-poison", "poison newly allocated objects" },
|
|
{ POOL_DBG_UAF, "uaf", "no-uaf", "enable use-after-free checks (slow)" },
|
|
{ 0 /* end */ }
|
|
};
|
|
|
|
/* describes a snapshot of a pool line about to be dumped by "show pools" */
|
|
struct pool_dump_info {
|
|
const struct pool_head *entry;
|
|
ulong alloc_items;
|
|
ulong alloc_bytes;
|
|
ulong used_items;
|
|
ulong cached_items;
|
|
ulong need_avg;
|
|
ulong failed_items;
|
|
};
|
|
|
|
/* context used by "show pools" */
|
|
struct show_pools_ctx {
|
|
char *prefix; /* if non-null, match this prefix name for the pool */
|
|
int by_what; /* 0=no sort, 1=by name, 2=by item size, 3=by total alloc */
|
|
int maxcnt; /* 0=no limit, other=max number of output entries */
|
|
};
|
|
|
|
static int mem_fail_rate __read_mostly = 0;
|
|
static int using_default_allocator __read_mostly = 1;
|
|
static int disable_trim __read_mostly = 0;
|
|
static int(*my_mallctl)(const char *, void *, size_t *, void *, size_t) = NULL;
|
|
|
|
/* ask the allocator to trim memory pools.
|
|
* This must run under thread isolation so that competing threads trying to
|
|
* allocate or release memory do not prevent the allocator from completing
|
|
* its job. We just have to be careful as callers might already be isolated
|
|
* themselves.
|
|
*/
|
|
static void trim_all_pools(void)
|
|
{
|
|
int isolated = thread_isolated();
|
|
|
|
if (disable_trim)
|
|
return;
|
|
|
|
if (!isolated)
|
|
thread_isolate();
|
|
|
|
if (my_mallctl) {
|
|
unsigned int i, narenas = 0;
|
|
size_t len = sizeof(narenas);
|
|
|
|
if (my_mallctl("arenas.narenas", &narenas, &len, NULL, 0) == 0) {
|
|
for (i = 0; i < narenas; i ++) {
|
|
char mib[32] = {0};
|
|
snprintf(mib, sizeof(mib), "arena.%u.purge", i);
|
|
(void)my_mallctl(mib, NULL, NULL, NULL, 0);
|
|
}
|
|
}
|
|
} else {
|
|
#if defined(HA_HAVE_MALLOC_TRIM)
|
|
if (using_default_allocator)
|
|
malloc_trim(0);
|
|
#elif defined(HA_HAVE_MALLOC_ZONE)
|
|
if (using_default_allocator) {
|
|
vm_address_t *zones;
|
|
unsigned int i, nzones;
|
|
|
|
if (malloc_get_all_zones(0, NULL, &zones, &nzones) == KERN_SUCCESS) {
|
|
for (i = 0; i < nzones; i ++) {
|
|
malloc_zone_t *zone = (malloc_zone_t *)zones[i];
|
|
|
|
/* we cannot purge anonymous zones */
|
|
if (zone->zone_name)
|
|
malloc_zone_pressure_relief(zone, 0);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (!isolated)
|
|
thread_release();
|
|
}
|
|
|
|
/* check if we're using the same allocator as the one that provides
|
|
* malloc_trim() and mallinfo(). The principle is that on glibc, both
|
|
* malloc_trim() and mallinfo() are provided, and using mallinfo() we
|
|
* can check if malloc() is performed through glibc or any other one
|
|
* the executable was linked against (e.g. jemalloc). Prior to this we
|
|
* have to check whether we're running on jemalloc by verifying if the
|
|
* mallctl() function is provided. Its pointer will be used later.
|
|
*/
|
|
static void detect_allocator(void)
|
|
{
|
|
#if defined(__ELF__)
|
|
extern int mallctl(const char *, void *, size_t *, void *, size_t) __attribute__((weak));
|
|
|
|
my_mallctl = mallctl;
|
|
#endif
|
|
|
|
if (!my_mallctl) {
|
|
my_mallctl = get_sym_curr_addr("mallctl");
|
|
using_default_allocator = (my_mallctl == NULL);
|
|
}
|
|
|
|
if (!my_mallctl) {
|
|
#if defined(HA_HAVE_MALLOC_TRIM)
|
|
#ifdef HA_HAVE_MALLINFO2
|
|
struct mallinfo2 mi1, mi2;
|
|
#else
|
|
struct mallinfo mi1, mi2;
|
|
#endif
|
|
void *ptr;
|
|
|
|
#ifdef HA_HAVE_MALLINFO2
|
|
mi1 = mallinfo2();
|
|
#else
|
|
mi1 = mallinfo();
|
|
#endif
|
|
ptr = DISGUISE(malloc(1));
|
|
#ifdef HA_HAVE_MALLINFO2
|
|
mi2 = mallinfo2();
|
|
#else
|
|
mi2 = mallinfo();
|
|
#endif
|
|
free(DISGUISE(ptr));
|
|
|
|
using_default_allocator = !!memcmp(&mi1, &mi2, sizeof(mi1));
|
|
#elif defined(HA_HAVE_MALLOC_ZONE)
|
|
using_default_allocator = (malloc_default_zone() != NULL);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static int is_trim_enabled(void)
|
|
{
|
|
return using_default_allocator;
|
|
}
|
|
|
|
static int mem_should_fail(const struct pool_head *pool)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (mem_fail_rate > 0 && !(global.mode & MODE_STARTING)) {
|
|
if (mem_fail_rate > statistical_prng_range(100))
|
|
ret = 1;
|
|
else
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Try to find an existing shared pool with the same characteristics and
|
|
* returns it, otherwise creates this one. NULL is returned if no memory
|
|
* is available for a new creation. Two flags are supported :
|
|
* - MEM_F_SHARED to indicate that the pool may be shared with other users
|
|
* - MEM_F_EXACT to indicate that the size must not be rounded up
|
|
*/
|
|
struct pool_head *create_pool(char *name, unsigned int size, unsigned int flags)
|
|
{
|
|
unsigned int extra_mark, extra_caller, extra;
|
|
struct pool_head *pool;
|
|
struct pool_head *entry;
|
|
struct list *start;
|
|
unsigned int align;
|
|
int thr __maybe_unused;
|
|
|
|
/* We need to store a (void *) at the end of the chunks. Since we know
|
|
* that the malloc() function will never return such a small size,
|
|
* let's round the size up to something slightly bigger, in order to
|
|
* ease merging of entries. Note that the rounding is a power of two.
|
|
* This extra (void *) is not accounted for in the size computation
|
|
* so that the visible parts outside are not affected.
|
|
*
|
|
* Note: for the LRU cache, we need to store 2 doubly-linked lists.
|
|
*/
|
|
|
|
extra_mark = (pool_debugging & POOL_DBG_TAG) ? POOL_EXTRA_MARK : 0;
|
|
extra_caller = (pool_debugging & POOL_DBG_CALLER) ? POOL_EXTRA_CALLER : 0;
|
|
extra = extra_mark + extra_caller;
|
|
|
|
if (!(flags & MEM_F_EXACT)) {
|
|
align = 4 * sizeof(void *); // 2 lists = 4 pointers min
|
|
size = ((size + extra + align - 1) & -align) - extra;
|
|
}
|
|
|
|
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
|
|
/* we'll store two lists there, we need the room for this. This is
|
|
* guaranteed by the test above, except if MEM_F_EXACT is set, or if
|
|
* the only EXTRA part is in fact the one that's stored in the cache
|
|
* in addition to the pci struct.
|
|
*/
|
|
if (size + extra - extra_caller < sizeof(struct pool_cache_item))
|
|
size = sizeof(struct pool_cache_item) + extra_caller - extra;
|
|
}
|
|
|
|
/* TODO: thread: we do not lock pool list for now because all pools are
|
|
* created during HAProxy startup (so before threads creation) */
|
|
start = &pools;
|
|
pool = NULL;
|
|
|
|
list_for_each_entry(entry, &pools, list) {
|
|
if (entry->size == size) {
|
|
/* either we can share this place and we take it, or
|
|
* we look for a shareable one or for the next position
|
|
* before which we will insert a new one.
|
|
*/
|
|
if ((flags & entry->flags & MEM_F_SHARED) &&
|
|
(!(pool_debugging & POOL_DBG_DONT_MERGE) ||
|
|
strcmp(name, entry->name) == 0)) {
|
|
/* we can share this one */
|
|
pool = entry;
|
|
DPRINTF(stderr, "Sharing %s with %s\n", name, pool->name);
|
|
break;
|
|
}
|
|
}
|
|
else if (entry->size > size) {
|
|
/* insert before this one */
|
|
start = &entry->list;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!pool) {
|
|
void *pool_addr;
|
|
|
|
pool_addr = calloc(1, sizeof(*pool) + __alignof__(*pool));
|
|
if (!pool_addr)
|
|
return NULL;
|
|
|
|
/* always provide an aligned pool */
|
|
pool = (struct pool_head*)((((size_t)pool_addr) + __alignof__(*pool)) & -(size_t)__alignof__(*pool));
|
|
pool->base_addr = pool_addr; // keep it, it's the address to free later
|
|
|
|
if (name)
|
|
strlcpy2(pool->name, name, sizeof(pool->name));
|
|
pool->alloc_sz = size + extra;
|
|
pool->size = size;
|
|
pool->flags = flags;
|
|
LIST_APPEND(start, &pool->list);
|
|
|
|
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
|
|
/* update per-thread pool cache if necessary */
|
|
for (thr = 0; thr < MAX_THREADS; thr++) {
|
|
LIST_INIT(&pool->cache[thr].list);
|
|
pool->cache[thr].tid = thr;
|
|
pool->cache[thr].pool = pool;
|
|
}
|
|
}
|
|
}
|
|
pool->users++;
|
|
return pool;
|
|
}
|
|
|
|
/* Tries to allocate an object for the pool <pool> using the system's allocator
|
|
* and directly returns it. The pool's allocated counter is checked and updated,
|
|
* but no other checks are performed.
|
|
*/
|
|
void *pool_get_from_os(struct pool_head *pool)
|
|
{
|
|
if (!pool->limit || pool->allocated < pool->limit) {
|
|
void *ptr;
|
|
|
|
if (pool_debugging & POOL_DBG_UAF)
|
|
ptr = pool_alloc_area_uaf(pool->alloc_sz);
|
|
else
|
|
ptr = pool_alloc_area(pool->alloc_sz);
|
|
if (ptr) {
|
|
_HA_ATOMIC_INC(&pool->allocated);
|
|
return ptr;
|
|
}
|
|
_HA_ATOMIC_INC(&pool->failed);
|
|
}
|
|
activity[tid].pool_fail++;
|
|
return NULL;
|
|
|
|
}
|
|
|
|
/* Releases a pool item back to the operating system and atomically updates
|
|
* the allocation counter.
|
|
*/
|
|
void pool_put_to_os(struct pool_head *pool, void *ptr)
|
|
{
|
|
if (pool_debugging & POOL_DBG_UAF)
|
|
pool_free_area_uaf(ptr, pool->alloc_sz);
|
|
else
|
|
pool_free_area(ptr, pool->alloc_sz);
|
|
_HA_ATOMIC_DEC(&pool->allocated);
|
|
}
|
|
|
|
/* Tries to allocate an object for the pool <pool> using the system's allocator
|
|
* and directly returns it. The pool's counters are updated but the object is
|
|
* never cached, so this is usable with and without local or shared caches.
|
|
*/
|
|
void *pool_alloc_nocache(struct pool_head *pool)
|
|
{
|
|
void *ptr = NULL;
|
|
|
|
ptr = pool_get_from_os(pool);
|
|
if (!ptr)
|
|
return NULL;
|
|
|
|
swrate_add_scaled(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used, POOL_AVG_SAMPLES/4);
|
|
_HA_ATOMIC_INC(&pool->used);
|
|
|
|
/* keep track of where the element was allocated from */
|
|
POOL_DEBUG_SET_MARK(pool, ptr);
|
|
POOL_DEBUG_TRACE_CALLER(pool, (struct pool_cache_item *)ptr, NULL);
|
|
return ptr;
|
|
}
|
|
|
|
/* Release a pool item back to the OS and keeps the pool's counters up to date.
|
|
* This is always defined even when pools are not enabled (their usage stats
|
|
* are maintained).
|
|
*/
|
|
void pool_free_nocache(struct pool_head *pool, void *ptr)
|
|
{
|
|
_HA_ATOMIC_DEC(&pool->used);
|
|
swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used);
|
|
pool_put_to_os(pool, ptr);
|
|
}
|
|
|
|
|
|
/* Updates <pch>'s fill_pattern and fills the free area after <item> with it,
|
|
* up to <size> bytes. The item part is left untouched.
|
|
*/
|
|
void pool_fill_pattern(struct pool_cache_head *pch, struct pool_cache_item *item, uint size)
|
|
{
|
|
ulong *ptr = (ulong *)item;
|
|
uint ofs;
|
|
ulong u;
|
|
|
|
if (size <= sizeof(*item))
|
|
return;
|
|
|
|
/* Upgrade the fill_pattern to change about half of the bits
|
|
* (to be sure to catch static flag corruption), and apply it.
|
|
*/
|
|
u = pch->fill_pattern += ~0UL / 3; // 0x55...55
|
|
ofs = sizeof(*item) / sizeof(*ptr);
|
|
while (ofs < size / sizeof(*ptr))
|
|
ptr[ofs++] = u;
|
|
}
|
|
|
|
/* check for a pool_cache_item integrity after extracting it from the cache. It
|
|
* must have been previously initialized using pool_fill_pattern(). If any
|
|
* corruption is detected, the function provokes an immediate crash.
|
|
*/
|
|
void pool_check_pattern(struct pool_cache_head *pch, struct pool_cache_item *item, uint size)
|
|
{
|
|
const ulong *ptr = (const ulong *)item;
|
|
uint ofs;
|
|
ulong u;
|
|
|
|
if (size <= sizeof(*item))
|
|
return;
|
|
|
|
/* let's check that all words past *item are equal */
|
|
ofs = sizeof(*item) / sizeof(*ptr);
|
|
u = ptr[ofs++];
|
|
while (ofs < size / sizeof(*ptr)) {
|
|
if (unlikely(ptr[ofs] != u))
|
|
ABORT_NOW();
|
|
ofs++;
|
|
}
|
|
}
|
|
|
|
/* removes up to <count> items from the end of the local pool cache <ph> for
|
|
* pool <pool>. The shared pool is refilled with these objects in the limit
|
|
* of the number of acceptable objects, and the rest will be released to the
|
|
* OS. It is not a problem is <count> is larger than the number of objects in
|
|
* the local cache. The counters are automatically updated. Must not be used
|
|
* with pools disabled.
|
|
*/
|
|
static void pool_evict_last_items(struct pool_head *pool, struct pool_cache_head *ph, uint count)
|
|
{
|
|
struct pool_cache_item *item;
|
|
struct pool_item *pi, *head = NULL;
|
|
uint released = 0;
|
|
uint cluster = 0;
|
|
uint to_free_max;
|
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
/* Note: this will be zero when global pools are disabled */
|
|
to_free_max = pool_releasable(pool);
|
|
|
|
while (released < count && !LIST_ISEMPTY(&ph->list)) {
|
|
item = LIST_PREV(&ph->list, typeof(item), by_pool);
|
|
BUG_ON(&item->by_pool == &ph->list);
|
|
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
|
|
pool_check_pattern(ph, item, pool->size);
|
|
LIST_DELETE(&item->by_pool);
|
|
LIST_DELETE(&item->by_lru);
|
|
|
|
if (to_free_max > released || cluster) {
|
|
/* will never match when global pools are disabled */
|
|
pi = (struct pool_item *)item;
|
|
pi->next = NULL;
|
|
pi->down = head;
|
|
head = pi;
|
|
cluster++;
|
|
if (cluster >= CONFIG_HAP_POOL_CLUSTER_SIZE) {
|
|
/* enough to make a cluster */
|
|
pool_put_to_shared_cache(pool, head, cluster);
|
|
cluster = 0;
|
|
head = NULL;
|
|
}
|
|
} else
|
|
pool_free_nocache(pool, item);
|
|
|
|
released++;
|
|
}
|
|
|
|
/* incomplete cluster left */
|
|
if (cluster)
|
|
pool_put_to_shared_cache(pool, head, cluster);
|
|
|
|
ph->count -= released;
|
|
pool_cache_count -= released;
|
|
pool_cache_bytes -= released * pool->size;
|
|
}
|
|
|
|
/* Evicts some of the oldest objects from one local cache, until its number of
|
|
* objects is no more than 16+1/8 of the total number of locally cached objects
|
|
* or the total size of the local cache is no more than 75% of its maximum (i.e.
|
|
* we don't want a single cache to use all the cache for itself). For this, the
|
|
* list is scanned in reverse. If <full> is non-null, all objects are evicted.
|
|
* Must not be used when pools are disabled.
|
|
*/
|
|
void pool_evict_from_local_cache(struct pool_head *pool, int full)
|
|
{
|
|
struct pool_cache_head *ph = &pool->cache[tid];
|
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
while ((ph->count && full) ||
|
|
(ph->count >= CONFIG_HAP_POOL_CLUSTER_SIZE &&
|
|
ph->count >= 16 + pool_cache_count / 8 &&
|
|
pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) {
|
|
pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
|
|
}
|
|
}
|
|
|
|
/* Evicts some of the oldest objects from the local cache, pushing them to the
|
|
* global pool. Must not be used when pools are disabled.
|
|
*/
|
|
void pool_evict_from_local_caches()
|
|
{
|
|
struct pool_cache_item *item;
|
|
struct pool_cache_head *ph;
|
|
struct pool_head *pool;
|
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
do {
|
|
item = LIST_PREV(&th_ctx->pool_lru_head, struct pool_cache_item *, by_lru);
|
|
BUG_ON(&item->by_lru == &th_ctx->pool_lru_head);
|
|
/* note: by definition we remove oldest objects so they also are the
|
|
* oldest in their own pools, thus their next is the pool's head.
|
|
*/
|
|
ph = LIST_NEXT(&item->by_pool, struct pool_cache_head *, list);
|
|
BUG_ON(ph->tid != tid);
|
|
|
|
pool = container_of(ph - tid, struct pool_head, cache);
|
|
BUG_ON(pool != ph->pool);
|
|
|
|
pool_evict_last_items(pool, ph, CONFIG_HAP_POOL_CLUSTER_SIZE);
|
|
} while (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 7 / 8);
|
|
}
|
|
|
|
/* Frees an object to the local cache, possibly pushing oldest objects to the
|
|
* shared cache, which itself may decide to release some of them to the OS.
|
|
* While it is unspecified what the object becomes past this point, it is
|
|
* guaranteed to be released from the users' perpective. A caller address may
|
|
* be passed and stored into the area when DEBUG_POOL_TRACING is set. Must not
|
|
* be used with pools disabled.
|
|
*/
|
|
void pool_put_to_cache(struct pool_head *pool, void *ptr, const void *caller)
|
|
{
|
|
struct pool_cache_item *item = (struct pool_cache_item *)ptr;
|
|
struct pool_cache_head *ph = &pool->cache[tid];
|
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
LIST_INSERT(&ph->list, &item->by_pool);
|
|
LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
|
|
POOL_DEBUG_TRACE_CALLER(pool, item, caller);
|
|
ph->count++;
|
|
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
|
|
pool_fill_pattern(ph, item, pool->size);
|
|
pool_cache_count++;
|
|
pool_cache_bytes += pool->size;
|
|
|
|
if (unlikely(pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE * 3 / 4)) {
|
|
if (ph->count >= 16 + pool_cache_count / 8 + CONFIG_HAP_POOL_CLUSTER_SIZE)
|
|
pool_evict_from_local_cache(pool, 0);
|
|
if (pool_cache_bytes > CONFIG_HAP_POOL_CACHE_SIZE)
|
|
pool_evict_from_local_caches();
|
|
}
|
|
}
|
|
|
|
/* Tries to refill the local cache <pch> from the shared one for pool <pool>.
|
|
* This is only used when pools are in use and shared pools are enabled. No
|
|
* malloc() is attempted, and poisonning is never performed. The purpose is to
|
|
* get the fastest possible refilling so that the caller can easily check if
|
|
* the cache has enough objects for its use. Must not be used when pools are
|
|
* disabled.
|
|
*/
|
|
void pool_refill_local_from_shared(struct pool_head *pool, struct pool_cache_head *pch)
|
|
{
|
|
struct pool_cache_item *item;
|
|
struct pool_item *ret, *down;
|
|
uint count;
|
|
|
|
BUG_ON(pool_debugging & POOL_DBG_NO_CACHE);
|
|
|
|
/* we'll need to reference the first element to figure the next one. We
|
|
* must temporarily lock it so that nobody allocates then releases it,
|
|
* or the dereference could fail.
|
|
*/
|
|
ret = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
do {
|
|
while (unlikely(ret == POOL_BUSY)) {
|
|
__ha_cpu_relax();
|
|
ret = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
}
|
|
if (ret == NULL)
|
|
return;
|
|
} while (unlikely((ret = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY));
|
|
|
|
if (unlikely(ret == NULL)) {
|
|
HA_ATOMIC_STORE(&pool->free_list, NULL);
|
|
return;
|
|
}
|
|
|
|
/* this releases the lock */
|
|
HA_ATOMIC_STORE(&pool->free_list, ret->next);
|
|
|
|
/* now store the retrieved object(s) into the local cache */
|
|
count = 0;
|
|
for (; ret; ret = down) {
|
|
down = ret->down;
|
|
item = (struct pool_cache_item *)ret;
|
|
POOL_DEBUG_TRACE_CALLER(pool, item, NULL);
|
|
LIST_INSERT(&pch->list, &item->by_pool);
|
|
LIST_INSERT(&th_ctx->pool_lru_head, &item->by_lru);
|
|
count++;
|
|
if (unlikely(pool_debugging & POOL_DBG_INTEGRITY))
|
|
pool_fill_pattern(pch, item, pool->size);
|
|
}
|
|
HA_ATOMIC_ADD(&pool->used, count);
|
|
pch->count += count;
|
|
pool_cache_count += count;
|
|
pool_cache_bytes += count * pool->size;
|
|
}
|
|
|
|
/* Adds pool item cluster <item> to the shared cache, which contains <count>
|
|
* elements. The caller is advised to first check using pool_releasable() if
|
|
* it's wise to add this series of objects there. Both the pool and the item's
|
|
* head must be valid.
|
|
*/
|
|
void pool_put_to_shared_cache(struct pool_head *pool, struct pool_item *item, uint count)
|
|
{
|
|
struct pool_item *free_list;
|
|
|
|
_HA_ATOMIC_SUB(&pool->used, count);
|
|
free_list = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
do {
|
|
while (unlikely(free_list == POOL_BUSY)) {
|
|
__ha_cpu_relax();
|
|
free_list = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
}
|
|
_HA_ATOMIC_STORE(&item->next, free_list);
|
|
__ha_barrier_atomic_store();
|
|
} while (!_HA_ATOMIC_CAS(&pool->free_list, &free_list, item));
|
|
__ha_barrier_atomic_store();
|
|
swrate_add(&pool->needed_avg, POOL_AVG_SAMPLES, pool->used);
|
|
}
|
|
|
|
/*
|
|
* This function frees whatever can be freed in pool <pool>.
|
|
*/
|
|
void pool_flush(struct pool_head *pool)
|
|
{
|
|
struct pool_item *next, *temp, *down;
|
|
|
|
if (!pool || (pool_debugging & (POOL_DBG_NO_CACHE|POOL_DBG_NO_GLOBAL)))
|
|
return;
|
|
|
|
/* The loop below atomically detaches the head of the free list and
|
|
* replaces it with a NULL. Then the list can be released.
|
|
*/
|
|
next = pool->free_list;
|
|
do {
|
|
while (unlikely(next == POOL_BUSY)) {
|
|
__ha_cpu_relax();
|
|
next = _HA_ATOMIC_LOAD(&pool->free_list);
|
|
}
|
|
if (next == NULL)
|
|
return;
|
|
} while (unlikely((next = _HA_ATOMIC_XCHG(&pool->free_list, POOL_BUSY)) == POOL_BUSY));
|
|
_HA_ATOMIC_STORE(&pool->free_list, NULL);
|
|
__ha_barrier_atomic_store();
|
|
|
|
while (next) {
|
|
temp = next;
|
|
next = temp->next;
|
|
for (; temp; temp = down) {
|
|
down = temp->down;
|
|
pool_put_to_os(pool, temp);
|
|
}
|
|
}
|
|
/* here, we should have pool->allocated == pool->used */
|
|
}
|
|
|
|
/*
|
|
* This function frees whatever can be freed in all pools, but respecting
|
|
* the minimum thresholds imposed by owners. It makes sure to be alone to
|
|
* run by using thread_isolate(). <pool_ctx> is unused.
|
|
*/
|
|
void pool_gc(struct pool_head *pool_ctx)
|
|
{
|
|
struct pool_head *entry;
|
|
int isolated = thread_isolated();
|
|
|
|
if (!isolated)
|
|
thread_isolate();
|
|
|
|
list_for_each_entry(entry, &pools, list) {
|
|
struct pool_item *temp, *down;
|
|
|
|
while (entry->free_list &&
|
|
(int)(entry->allocated - entry->used) > (int)entry->minavail) {
|
|
temp = entry->free_list;
|
|
entry->free_list = temp->next;
|
|
for (; temp; temp = down) {
|
|
down = temp->down;
|
|
pool_put_to_os(entry, temp);
|
|
}
|
|
}
|
|
}
|
|
|
|
trim_all_pools();
|
|
|
|
if (!isolated)
|
|
thread_release();
|
|
}
|
|
|
|
/*
|
|
* Returns a pointer to type <type> taken from the pool <pool_type> or
|
|
* dynamically allocated. In the first case, <pool_type> is updated to point to
|
|
* the next element in the list. <flags> is a binary-OR of POOL_F_* flags.
|
|
* Prefer using pool_alloc() which does the right thing without flags.
|
|
*/
|
|
void *__pool_alloc(struct pool_head *pool, unsigned int flags)
|
|
{
|
|
void *p = NULL;
|
|
void *caller = __builtin_return_address(0);
|
|
|
|
if (unlikely(pool_debugging & POOL_DBG_FAIL_ALLOC))
|
|
if (!(flags & POOL_F_NO_FAIL) && mem_should_fail(pool))
|
|
return NULL;
|
|
|
|
if (likely(!(pool_debugging & POOL_DBG_NO_CACHE)) && !p)
|
|
p = pool_get_from_cache(pool, caller);
|
|
|
|
if (unlikely(!p))
|
|
p = pool_alloc_nocache(pool);
|
|
|
|
if (likely(p)) {
|
|
#ifdef USE_MEMORY_PROFILING
|
|
if (unlikely(profiling & HA_PROF_MEMORY)) {
|
|
struct memprof_stats *bin;
|
|
|
|
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_P_ALLOC);
|
|
_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
|
|
_HA_ATOMIC_ADD(&bin->alloc_tot, pool->size);
|
|
_HA_ATOMIC_STORE(&bin->info, pool);
|
|
}
|
|
#endif
|
|
if (unlikely(flags & POOL_F_MUST_ZERO))
|
|
memset(p, 0, pool->size);
|
|
else if (unlikely(!(flags & POOL_F_NO_POISON) && (pool_debugging & POOL_DBG_POISON)))
|
|
memset(p, mem_poison_byte, pool->size);
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* Puts a memory area back to the corresponding pool. <ptr> be valid. Using
|
|
* pool_free() is preferred.
|
|
*/
|
|
void __pool_free(struct pool_head *pool, void *ptr)
|
|
{
|
|
const void *caller = __builtin_return_address(0);
|
|
|
|
/* we'll get late corruption if we refill to the wrong pool or double-free */
|
|
POOL_DEBUG_CHECK_MARK(pool, ptr);
|
|
POOL_DEBUG_RESET_MARK(pool, ptr);
|
|
|
|
#ifdef USE_MEMORY_PROFILING
|
|
if (unlikely(profiling & HA_PROF_MEMORY) && ptr) {
|
|
struct memprof_stats *bin;
|
|
|
|
bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_P_FREE);
|
|
_HA_ATOMIC_ADD(&bin->free_calls, 1);
|
|
_HA_ATOMIC_ADD(&bin->free_tot, pool->size);
|
|
_HA_ATOMIC_STORE(&bin->info, pool);
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(pool_debugging & POOL_DBG_NO_CACHE)) {
|
|
pool_free_nocache(pool, ptr);
|
|
return;
|
|
}
|
|
|
|
pool_put_to_cache(pool, ptr, caller);
|
|
}
|
|
|
|
/*
|
|
* This function destroys a pool by freeing it completely, unless it's still
|
|
* in use. This should be called only under extreme circumstances. It always
|
|
* returns NULL if the resulting pool is empty, easing the clearing of the old
|
|
* pointer, otherwise it returns the pool.
|
|
* .
|
|
*/
|
|
void *pool_destroy(struct pool_head *pool)
|
|
{
|
|
if (pool) {
|
|
if (!(pool_debugging & POOL_DBG_NO_CACHE))
|
|
pool_evict_from_local_cache(pool, 1);
|
|
|
|
pool_flush(pool);
|
|
if (pool->used)
|
|
return pool;
|
|
pool->users--;
|
|
if (!pool->users) {
|
|
LIST_DELETE(&pool->list);
|
|
/* note that if used == 0, the cache is empty */
|
|
free(pool->base_addr);
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* This destroys all pools on exit. It is *not* thread safe. */
|
|
void pool_destroy_all()
|
|
{
|
|
struct pool_head *entry, *back;
|
|
|
|
list_for_each_entry_safe(entry, back, &pools, list) {
|
|
/* there's only one occurrence of each pool in the list,
|
|
* and we're existing instead of looping on the whole
|
|
* list just to decrement users, force it to 1 here.
|
|
*/
|
|
entry->users = 1;
|
|
pool_destroy(entry);
|
|
}
|
|
}
|
|
|
|
/* used by qsort in "show pools" to sort by name */
|
|
static int cmp_dump_pools_name(const void *a, const void *b)
|
|
{
|
|
const struct pool_dump_info *l = (const struct pool_dump_info *)a;
|
|
const struct pool_dump_info *r = (const struct pool_dump_info *)b;
|
|
|
|
return strcmp(l->entry->name, r->entry->name);
|
|
}
|
|
|
|
/* used by qsort in "show pools" to sort by item size */
|
|
static int cmp_dump_pools_size(const void *a, const void *b)
|
|
{
|
|
const struct pool_dump_info *l = (const struct pool_dump_info *)a;
|
|
const struct pool_dump_info *r = (const struct pool_dump_info *)b;
|
|
|
|
if (l->entry->size > r->entry->size)
|
|
return -1;
|
|
else if (l->entry->size < r->entry->size)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* used by qsort in "show pools" to sort by usage */
|
|
static int cmp_dump_pools_usage(const void *a, const void *b)
|
|
{
|
|
const struct pool_dump_info *l = (const struct pool_dump_info *)a;
|
|
const struct pool_dump_info *r = (const struct pool_dump_info *)b;
|
|
|
|
if (l->alloc_bytes > r->alloc_bytes)
|
|
return -1;
|
|
else if (l->alloc_bytes < r->alloc_bytes)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/* will not dump more than this number of entries. Anything beyond this will
|
|
* likely not fit into a regular output buffer anyway.
|
|
*/
|
|
#define POOLS_MAX_DUMPED_ENTRIES 1024
|
|
|
|
/* This function dumps memory usage information into the trash buffer.
|
|
* It may sort by a criterion if <by_what> is non-zero, and limit the
|
|
* number of output lines if <max> is non-zero. It may limit only to
|
|
* pools whose names start with <pfx> if <pfx> is non-null.
|
|
*/
|
|
void dump_pools_to_trash(int by_what, int max, const char *pfx)
|
|
{
|
|
struct pool_dump_info pool_info[POOLS_MAX_DUMPED_ENTRIES];
|
|
struct pool_head *entry;
|
|
unsigned long long allocated, used;
|
|
int nbpools, i;
|
|
unsigned long long cached_bytes = 0;
|
|
uint cached = 0;
|
|
|
|
allocated = used = nbpools = 0;
|
|
|
|
list_for_each_entry(entry, &pools, list) {
|
|
if (nbpools >= POOLS_MAX_DUMPED_ENTRIES)
|
|
break;
|
|
|
|
/* do not dump unused entries when sorting by usage */
|
|
if (by_what == 3 && !entry->allocated)
|
|
continue;
|
|
|
|
/* verify the pool name if a prefix is requested */
|
|
if (pfx && strncmp(entry->name, pfx, strlen(pfx)) != 0)
|
|
continue;
|
|
|
|
if (!(pool_debugging & POOL_DBG_NO_CACHE)) {
|
|
for (cached = i = 0; i < global.nbthread; i++)
|
|
cached += entry->cache[i].count;
|
|
}
|
|
pool_info[nbpools].entry = entry;
|
|
pool_info[nbpools].alloc_items = entry->allocated;
|
|
pool_info[nbpools].alloc_bytes = (ulong)entry->size * entry->allocated;
|
|
pool_info[nbpools].used_items = entry->used;
|
|
pool_info[nbpools].cached_items = cached;
|
|
pool_info[nbpools].need_avg = swrate_avg(entry->needed_avg, POOL_AVG_SAMPLES);
|
|
pool_info[nbpools].failed_items = entry->failed;
|
|
nbpools++;
|
|
}
|
|
|
|
if (by_what == 1) /* sort by name */
|
|
qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_name);
|
|
else if (by_what == 2) /* sort by item size */
|
|
qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_size);
|
|
else if (by_what == 3) /* sort by total usage */
|
|
qsort(pool_info, nbpools, sizeof(pool_info[0]), cmp_dump_pools_usage);
|
|
|
|
chunk_printf(&trash, "Dumping pools usage");
|
|
if (!max || max >= POOLS_MAX_DUMPED_ENTRIES)
|
|
max = POOLS_MAX_DUMPED_ENTRIES;
|
|
if (nbpools >= max)
|
|
chunk_appendf(&trash, " (limited to the first %u entries)", max);
|
|
chunk_appendf(&trash, ". Use SIGQUIT to flush them.\n");
|
|
|
|
for (i = 0; i < nbpools && i < max; i++) {
|
|
chunk_appendf(&trash, " - Pool %s (%lu bytes) : %lu allocated (%lu bytes), %lu used"
|
|
" (~%lu by thread caches)"
|
|
", needed_avg %lu, %lu failures, %u users, @%p%s\n",
|
|
pool_info[i].entry->name, (ulong)pool_info[i].entry->size,
|
|
pool_info[i].alloc_items, pool_info[i].alloc_bytes,
|
|
pool_info[i].used_items, pool_info[i].cached_items,
|
|
pool_info[i].need_avg, pool_info[i].failed_items,
|
|
pool_info[i].entry->users, pool_info[i].entry,
|
|
(pool_info[i].entry->flags & MEM_F_SHARED) ? " [SHARED]" : "");
|
|
|
|
cached_bytes += pool_info[i].cached_items * (ulong)pool_info[i].entry->size;
|
|
allocated += pool_info[i].alloc_items * (ulong)pool_info[i].entry->size;
|
|
used += pool_info[i].used_items * (ulong)pool_info[i].entry->size;
|
|
}
|
|
|
|
chunk_appendf(&trash, "Total: %d pools, %llu bytes allocated, %llu used"
|
|
" (~%llu by thread caches)"
|
|
".\n",
|
|
nbpools, allocated, used, cached_bytes
|
|
);
|
|
}
|
|
|
|
/* Dump statistics on pools usage. */
|
|
void dump_pools(void)
|
|
{
|
|
dump_pools_to_trash(0, 0, NULL);
|
|
qfprintf(stderr, "%s", trash.area);
|
|
}
|
|
|
|
/* This function returns the total number of failed pool allocations */
|
|
int pool_total_failures()
|
|
{
|
|
struct pool_head *entry;
|
|
int failed = 0;
|
|
|
|
list_for_each_entry(entry, &pools, list)
|
|
failed += entry->failed;
|
|
return failed;
|
|
}
|
|
|
|
/* This function returns the total amount of memory allocated in pools (in bytes) */
|
|
unsigned long pool_total_allocated()
|
|
{
|
|
struct pool_head *entry;
|
|
unsigned long allocated = 0;
|
|
|
|
list_for_each_entry(entry, &pools, list)
|
|
allocated += entry->allocated * entry->size;
|
|
return allocated;
|
|
}
|
|
|
|
/* This function returns the total amount of memory used in pools (in bytes) */
|
|
unsigned long pool_total_used()
|
|
{
|
|
struct pool_head *entry;
|
|
unsigned long used = 0;
|
|
|
|
list_for_each_entry(entry, &pools, list)
|
|
used += entry->used * entry->size;
|
|
return used;
|
|
}
|
|
|
|
/* This function parses a string made of a set of debugging features as
|
|
* specified after -dM on the command line, and will set pool_debugging
|
|
* accordingly. On success it returns a strictly positive value. It may zero
|
|
* with the first warning in <err>, -1 with a help message in <err>, or -2 with
|
|
* the first error in <err> return the first error in <err>. <err> is undefined
|
|
* on success, and will be non-null and locally allocated on help/error/warning.
|
|
* The caller must free it. Warnings are used to report features that were not
|
|
* enabled at build time, and errors are used to report unknown features.
|
|
*/
|
|
int pool_parse_debugging(const char *str, char **err)
|
|
{
|
|
struct ist args;
|
|
char *end;
|
|
uint new_dbg;
|
|
int v;
|
|
|
|
|
|
/* if it's empty or starts with a number, it's the mem poisonning byte */
|
|
v = strtol(str, &end, 0);
|
|
if (!*end || *end == ',') {
|
|
mem_poison_byte = *str ? v : 'P';
|
|
if (mem_poison_byte >= 0)
|
|
pool_debugging |= POOL_DBG_POISON;
|
|
else
|
|
pool_debugging &= ~POOL_DBG_POISON;
|
|
str = end;
|
|
}
|
|
|
|
new_dbg = pool_debugging;
|
|
|
|
for (args = ist(str); istlen(args); args = istadv(istfind(args, ','), 1)) {
|
|
struct ist feat = iststop(args, ',');
|
|
|
|
if (!istlen(feat))
|
|
continue;
|
|
|
|
if (isteq(feat, ist("help"))) {
|
|
ha_free(err);
|
|
memprintf(err,
|
|
"-dM alone enables memory poisonning with byte 0x50 on allocation. A numeric\n"
|
|
"value may be appended immediately after -dM to use another value (0 supported).\n"
|
|
"Then an optional list of comma-delimited keywords may be appended to set or\n"
|
|
"clear some debugging options ('*' marks the current setting):\n\n"
|
|
" set clear description\n"
|
|
" -----------------+-----------------+-----------------------------------------\n");
|
|
|
|
for (v = 0; dbg_options[v].flg; v++) {
|
|
memprintf(err, "%s %c %-15s|%c %-15s| %s\n",
|
|
*err,
|
|
(pool_debugging & dbg_options[v].flg) ? '*' : ' ',
|
|
dbg_options[v].set,
|
|
(pool_debugging & dbg_options[v].flg) ? ' ' : '*',
|
|
dbg_options[v].clr,
|
|
dbg_options[v].hlp);
|
|
}
|
|
|
|
memprintf(err,
|
|
"%s -----------------+-----------------+-----------------------------------------\n"
|
|
"Examples:\n"
|
|
" Disable merging and enable poisonning with byte 'P': -dM0x50,no-merge\n"
|
|
" Randomly fail allocations: -dMfail\n"
|
|
" Detect out-of-bound corruptions: -dMno-merge,tag\n"
|
|
" Detect post-free cache corruptions: -dMno-merge,cold-first,integrity,caller\n"
|
|
" Detect all cache corruptions: -dMno-merge,cold-first,integrity,tag,caller\n"
|
|
" Detect UAF (disables cache, very slow): -dMuaf\n"
|
|
" Detect post-cache UAF: -dMuaf,cache,no-merge,cold-first,integrity,tag,caller\n"
|
|
" Detect post-free cache corruptions: -dMno-merge,cold-first,integrity,caller\n",
|
|
*err);
|
|
return -1;
|
|
}
|
|
|
|
for (v = 0; dbg_options[v].flg; v++) {
|
|
if (isteq(feat, ist(dbg_options[v].set))) {
|
|
new_dbg |= dbg_options[v].flg;
|
|
/* UAF implicitly disables caching, but it's
|
|
* still possible to forcefully re-enable it.
|
|
*/
|
|
if (dbg_options[v].flg == POOL_DBG_UAF)
|
|
new_dbg |= POOL_DBG_NO_CACHE;
|
|
break;
|
|
}
|
|
else if (isteq(feat, ist(dbg_options[v].clr))) {
|
|
new_dbg &= ~dbg_options[v].flg;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!dbg_options[v].flg) {
|
|
memprintf(err, "unknown pool debugging feature <%.*s>", (int)istlen(feat), istptr(feat));
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
pool_debugging = new_dbg;
|
|
return 1;
|
|
}
|
|
|
|
/* parse a "show pools" command. It returns 1 on failure, 0 if it starts to dump. */
|
|
static int cli_parse_show_pools(char **args, char *payload, struct appctx *appctx, void *private)
|
|
{
|
|
struct show_pools_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
|
|
int arg;
|
|
|
|
for (arg = 2; *args[arg]; arg++) {
|
|
if (strcmp(args[arg], "byname") == 0) {
|
|
ctx->by_what = 1; // sort output by name
|
|
}
|
|
else if (strcmp(args[arg], "bysize") == 0) {
|
|
ctx->by_what = 2; // sort output by item size
|
|
}
|
|
else if (strcmp(args[arg], "byusage") == 0) {
|
|
ctx->by_what = 3; // sort output by total allocated size
|
|
}
|
|
else if (strcmp(args[arg], "match") == 0 && *args[arg+1]) {
|
|
ctx->prefix = strdup(args[arg+1]); // only pools starting with this
|
|
arg++;
|
|
}
|
|
else if (isdigit((unsigned char)*args[arg])) {
|
|
ctx->maxcnt = atoi(args[arg]); // number of entries to dump
|
|
}
|
|
else
|
|
return cli_err(appctx, "Expects either 'byname', 'bysize', 'byusage', 'match <pfx>', or a max number of output lines.\n");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* release the "show pools" context */
|
|
static void cli_release_show_pools(struct appctx *appctx)
|
|
{
|
|
struct show_pools_ctx *ctx = appctx->svcctx;
|
|
|
|
ha_free(&ctx->prefix);
|
|
}
|
|
|
|
/* This function dumps memory usage information onto the stream connector's
|
|
* read buffer. It returns 0 as long as it does not complete, non-zero upon
|
|
* completion. No state is used.
|
|
*/
|
|
static int cli_io_handler_dump_pools(struct appctx *appctx)
|
|
{
|
|
struct show_pools_ctx *ctx = appctx->svcctx;
|
|
|
|
dump_pools_to_trash(ctx->by_what, ctx->maxcnt, ctx->prefix);
|
|
if (applet_putchk(appctx, &trash) == -1)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* callback used to create early pool <name> of size <size> and store the
|
|
* resulting pointer into <ptr>. If the allocation fails, it quits with after
|
|
* emitting an error message.
|
|
*/
|
|
void create_pool_callback(struct pool_head **ptr, char *name, unsigned int size)
|
|
{
|
|
*ptr = create_pool(name, size, MEM_F_SHARED);
|
|
if (!*ptr) {
|
|
ha_alert("Failed to allocate pool '%s' of size %u : %s. Aborting.\n",
|
|
name, size, strerror(errno));
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* Initializes all per-thread arrays on startup */
|
|
static void init_pools()
|
|
{
|
|
int thr;
|
|
|
|
for (thr = 0; thr < MAX_THREADS; thr++) {
|
|
LIST_INIT(&ha_thread_ctx[thr].pool_lru_head);
|
|
}
|
|
|
|
detect_allocator();
|
|
}
|
|
|
|
INITCALL0(STG_PREPARE, init_pools);
|
|
|
|
/* Report in build options if trim is supported */
|
|
static void pools_register_build_options(void)
|
|
{
|
|
if (is_trim_enabled()) {
|
|
char *ptr = NULL;
|
|
memprintf(&ptr, "Support for malloc_trim() is enabled.");
|
|
hap_register_build_opts(ptr, 1);
|
|
}
|
|
}
|
|
INITCALL0(STG_REGISTER, pools_register_build_options);
|
|
|
|
/* register cli keywords */
|
|
static struct cli_kw_list cli_kws = {{ },{
|
|
{ { "show", "pools", NULL }, "show pools [by*] [match <pfx>] [nb] : report information about the memory pools usage", cli_parse_show_pools, cli_io_handler_dump_pools, cli_release_show_pools },
|
|
{{},}
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
|
|
|
|
|
|
/* config parser for global "tune.fail-alloc" */
|
|
static int mem_parse_global_fail_alloc(char **args, int section_type, struct proxy *curpx,
|
|
const struct proxy *defpx, const char *file, int line,
|
|
char **err)
|
|
{
|
|
if (too_many_args(1, args, err, NULL))
|
|
return -1;
|
|
mem_fail_rate = atoi(args[1]);
|
|
if (mem_fail_rate < 0 || mem_fail_rate > 100) {
|
|
memprintf(err, "'%s' expects a numeric value between 0 and 100.", args[0]);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* config parser for global "no-memory-trimming" */
|
|
static int mem_parse_global_no_mem_trim(char **args, int section_type, struct proxy *curpx,
|
|
const struct proxy *defpx, const char *file, int line,
|
|
char **err)
|
|
{
|
|
if (too_many_args(0, args, err, NULL))
|
|
return -1;
|
|
disable_trim = 1;
|
|
return 0;
|
|
}
|
|
|
|
/* register global config keywords */
|
|
static struct cfg_kw_list mem_cfg_kws = {ILH, {
|
|
{ CFG_GLOBAL, "tune.fail-alloc", mem_parse_global_fail_alloc },
|
|
{ CFG_GLOBAL, "no-memory-trimming", mem_parse_global_no_mem_trim },
|
|
{ 0, NULL, NULL }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cfg_register_keywords, &mem_cfg_kws);
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|