mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2025-11-21 19:01:00 +01:00
Dump the secret used to derive the next one during a key update initiated by the client and dump the resulted new secret and the new key and iv to be used to decryption Application level packets. Also add a trace when the key update is supposed to be initiated on haproxy side. This has already helped in diagnosing an issue evealed by the key update interop test with xquic as client. Must be backported to 2.7.
690 lines
23 KiB
C
690 lines
23 KiB
C
#include <haproxy/quic_tls.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/evp.h>
|
|
#include <openssl/kdf.h>
|
|
#include <openssl/ssl.h>
|
|
|
|
#include <haproxy/buf.h>
|
|
#include <haproxy/chunk.h>
|
|
#include <haproxy/pool.h>
|
|
#include <haproxy/quic_conn-t.h>
|
|
|
|
|
|
DECLARE_POOL(pool_head_quic_tls_secret, "quic_tls_secret", QUIC_TLS_SECRET_LEN);
|
|
DECLARE_POOL(pool_head_quic_tls_iv, "quic_tls_iv", QUIC_TLS_IV_LEN);
|
|
DECLARE_POOL(pool_head_quic_tls_key, "quic_tls_key", QUIC_TLS_KEY_LEN);
|
|
|
|
/* Initial salt depending on QUIC version to derive client/server initial secrets.
|
|
* This one is for draft-29 QUIC version.
|
|
*/
|
|
const unsigned char initial_salt_draft_29[20] = {
|
|
0xaf, 0xbf, 0xec, 0x28, 0x99, 0x93, 0xd2, 0x4c,
|
|
0x9e, 0x97, 0x86, 0xf1, 0x9c, 0x61, 0x11, 0xe0,
|
|
0x43, 0x90, 0xa8, 0x99
|
|
};
|
|
|
|
const unsigned char initial_salt_v1[20] = {
|
|
0x38, 0x76, 0x2c, 0xf7, 0xf5, 0x59, 0x34, 0xb3,
|
|
0x4d, 0x17, 0x9a, 0xe6, 0xa4, 0xc8, 0x0c, 0xad,
|
|
0xcc, 0xbb, 0x7f, 0x0a
|
|
};
|
|
|
|
const unsigned char initial_salt_v2[20] = {
|
|
0x0d, 0xed, 0xe3, 0xde, 0xf7, 0x00, 0xa6, 0xdb,
|
|
0x81, 0x93, 0x81, 0xbe, 0x6e, 0x26, 0x9d, 0xcb,
|
|
0xf9, 0xbd, 0x2e, 0xd9
|
|
};
|
|
|
|
/* Dump the RX/TX secrets of <secs> QUIC TLS secrets. */
|
|
void quic_tls_keys_hexdump(struct buffer *buf,
|
|
const struct quic_tls_secrets *secs)
|
|
{
|
|
int i;
|
|
size_t aead_keylen = (size_t)EVP_CIPHER_key_length(secs->aead);
|
|
size_t aead_ivlen = (size_t)EVP_CIPHER_iv_length(secs->aead);
|
|
size_t hp_len = (size_t)EVP_CIPHER_key_length(secs->hp);
|
|
|
|
chunk_appendf(buf, "\n key=");
|
|
for (i = 0; i < aead_keylen; i++)
|
|
chunk_appendf(buf, "%02x", secs->key[i]);
|
|
chunk_appendf(buf, "\n iv=");
|
|
for (i = 0; i < aead_ivlen; i++)
|
|
chunk_appendf(buf, "%02x", secs->iv[i]);
|
|
chunk_appendf(buf, "\n hp=");
|
|
for (i = 0; i < hp_len; i++)
|
|
chunk_appendf(buf, "%02x", secs->hp_key[i]);
|
|
}
|
|
|
|
/* Dump the RX/TX secrets of <kp> QUIC TLS key phase */
|
|
void quic_tls_kp_keys_hexdump(struct buffer *buf,
|
|
const struct quic_tls_kp *kp)
|
|
{
|
|
int i;
|
|
|
|
chunk_appendf(buf, "\n secret=");
|
|
for (i = 0; i < kp->secretlen; i++)
|
|
chunk_appendf(buf, "%02x", kp->secret[i]);
|
|
chunk_appendf(buf, "\n key=");
|
|
for (i = 0; i < kp->keylen; i++)
|
|
chunk_appendf(buf, "%02x", kp->key[i]);
|
|
chunk_appendf(buf, "\n iv=");
|
|
for (i = 0; i < kp->ivlen; i++)
|
|
chunk_appendf(buf, "%02x", kp->iv[i]);
|
|
}
|
|
|
|
/* Dump <secret> TLS secret. */
|
|
void quic_tls_secret_hexdump(struct buffer *buf,
|
|
const unsigned char *secret, size_t secret_len)
|
|
{
|
|
int i;
|
|
|
|
chunk_appendf(buf, " secret=");
|
|
for (i = 0; i < secret_len; i++)
|
|
chunk_appendf(buf, "%02x", secret[i]);
|
|
}
|
|
|
|
int quic_hkdf_extract(const EVP_MD *md,
|
|
unsigned char *buf, size_t buflen,
|
|
const unsigned char *key, size_t keylen,
|
|
const unsigned char *salt, size_t saltlen)
|
|
{
|
|
EVP_PKEY_CTX *ctx;
|
|
|
|
ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
if (EVP_PKEY_derive_init(ctx) <= 0 ||
|
|
EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY) <= 0 ||
|
|
EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 ||
|
|
EVP_PKEY_CTX_set1_hkdf_salt(ctx, salt, saltlen) <= 0 ||
|
|
EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 ||
|
|
EVP_PKEY_derive(ctx, buf, &buflen) <= 0)
|
|
goto err;
|
|
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return 1;
|
|
|
|
err:
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return 0;
|
|
}
|
|
|
|
int quic_hkdf_expand(const EVP_MD *md,
|
|
unsigned char *buf, size_t buflen,
|
|
const unsigned char *key, size_t keylen,
|
|
const unsigned char *label, size_t labellen)
|
|
{
|
|
EVP_PKEY_CTX *ctx;
|
|
|
|
ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
if (EVP_PKEY_derive_init(ctx) <= 0 ||
|
|
EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY) <= 0 ||
|
|
EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 ||
|
|
EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 ||
|
|
EVP_PKEY_CTX_add1_hkdf_info(ctx, label, labellen) <= 0 ||
|
|
EVP_PKEY_derive(ctx, buf, &buflen) <= 0)
|
|
goto err;
|
|
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return 1;
|
|
|
|
err:
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return 0;
|
|
}
|
|
|
|
/* Extracts a peudo-random secret key from <key> which is eventually not
|
|
* pseudo-random and expand it to a new pseudo-random key into
|
|
* <buf> with <buflen> as key length according to HKDF specifications
|
|
* (https://datatracker.ietf.org/doc/html/rfc5869).
|
|
* According to this specifications it is highly recommended to use
|
|
* a salt, even if optional (NULL value).
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
int quic_hkdf_extract_and_expand(const EVP_MD *md,
|
|
unsigned char *buf, size_t buflen,
|
|
const unsigned char *key, size_t keylen,
|
|
const unsigned char *salt, size_t saltlen,
|
|
const unsigned char *label, size_t labellen)
|
|
{
|
|
EVP_PKEY_CTX *ctx;
|
|
|
|
ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
if (EVP_PKEY_derive_init(ctx) <= 0 ||
|
|
EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXTRACT_AND_EXPAND) <= 0 ||
|
|
EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 ||
|
|
EVP_PKEY_CTX_set1_hkdf_salt(ctx, salt, saltlen) <= 0 ||
|
|
EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 ||
|
|
EVP_PKEY_CTX_add1_hkdf_info(ctx, label, labellen) <= 0 ||
|
|
EVP_PKEY_derive(ctx, buf, &buflen) <= 0)
|
|
goto err;
|
|
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return 1;
|
|
|
|
err:
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return 0;
|
|
}
|
|
|
|
/* https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#protection-keys
|
|
* refers to:
|
|
*
|
|
* https://tools.ietf.org/html/rfc8446#section-7.1:
|
|
* 7.1. Key Schedule
|
|
*
|
|
* The key derivation process makes use of the HKDF-Extract and
|
|
* HKDF-Expand functions as defined for HKDF [RFC5869], as well as the
|
|
* functions defined below:
|
|
*
|
|
* HKDF-Expand-Label(Secret, Label, Context, Length) =
|
|
* HKDF-Expand(Secret, HkdfLabel, Length)
|
|
*
|
|
* Where HkdfLabel is specified as:
|
|
*
|
|
* struct {
|
|
* uint16 length = Length;
|
|
* opaque label<7..255> = "tls13 " + Label;
|
|
* opaque context<0..255> = Context;
|
|
* } HkdfLabel;
|
|
*
|
|
* Derive-Secret(Secret, Label, Messages) =
|
|
* HKDF-Expand-Label(Secret, Label,
|
|
* Transcript-Hash(Messages), Hash.length)
|
|
*
|
|
*/
|
|
int quic_hkdf_expand_label(const EVP_MD *md,
|
|
unsigned char *buf, size_t buflen,
|
|
const unsigned char *key, size_t keylen,
|
|
const unsigned char *label, size_t labellen)
|
|
{
|
|
unsigned char hdkf_label[256], *pos;
|
|
const unsigned char hdkf_label_label[] = "tls13 ";
|
|
size_t hdkf_label_label_sz = sizeof hdkf_label_label - 1;
|
|
|
|
pos = hdkf_label;
|
|
*pos++ = buflen >> 8;
|
|
*pos++ = buflen & 0xff;
|
|
*pos++ = hdkf_label_label_sz + labellen;
|
|
memcpy(pos, hdkf_label_label, hdkf_label_label_sz);
|
|
pos += hdkf_label_label_sz;
|
|
memcpy(pos, label, labellen);
|
|
pos += labellen;
|
|
*pos++ = '\0';
|
|
|
|
return quic_hkdf_expand(md, buf, buflen,
|
|
key, keylen, hdkf_label, pos - hdkf_label);
|
|
}
|
|
|
|
/*
|
|
* This function derives two keys from <secret> is <ctx> as TLS cryptographic context.
|
|
* ->key is the TLS key to be derived to encrypt/decrypt data at TLS level.
|
|
* ->iv is the initialization vector to be used with ->key.
|
|
* ->hp_key is the key to be derived for header protection.
|
|
* Obviouly these keys have the same size becaused derived with the same TLS cryptographic context.
|
|
*/
|
|
int quic_tls_derive_keys(const EVP_CIPHER *aead, const EVP_CIPHER *hp,
|
|
const EVP_MD *md, const struct quic_version *qv,
|
|
unsigned char *key, size_t keylen,
|
|
unsigned char *iv, size_t ivlen,
|
|
unsigned char *hp_key, size_t hp_keylen,
|
|
const unsigned char *secret, size_t secretlen)
|
|
{
|
|
size_t aead_keylen = (size_t)EVP_CIPHER_key_length(aead);
|
|
size_t aead_ivlen = (size_t)EVP_CIPHER_iv_length(aead);
|
|
size_t hp_len = hp ? (size_t)EVP_CIPHER_key_length(hp) : 0;
|
|
|
|
if (aead_keylen > keylen || aead_ivlen > ivlen || hp_len > hp_keylen)
|
|
return 0;
|
|
|
|
if (!quic_hkdf_expand_label(md, key, aead_keylen, secret, secretlen,
|
|
qv->key_label,qv->key_label_len) ||
|
|
!quic_hkdf_expand_label(md, iv, aead_ivlen, secret, secretlen,
|
|
qv->iv_label, qv->iv_label_len) ||
|
|
(hp_key && !quic_hkdf_expand_label(md, hp_key, hp_len, secret, secretlen,
|
|
qv->hp_label, qv->hp_label_len)))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Derive the initial secret from <secret> and QUIC version dependent salt.
|
|
* Returns the size of the derived secret if succeeded, 0 if not.
|
|
*/
|
|
int quic_derive_initial_secret(const EVP_MD *md,
|
|
const unsigned char *initial_salt, size_t initial_salt_sz,
|
|
unsigned char *initial_secret, size_t initial_secret_sz,
|
|
const unsigned char *secret, size_t secret_sz)
|
|
{
|
|
if (!quic_hkdf_extract(md, initial_secret, initial_secret_sz, secret, secret_sz,
|
|
initial_salt, initial_salt_sz))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Derive the client initial secret from the initial secret.
|
|
* Returns the size of the derived secret if succeeded, 0 if not.
|
|
*/
|
|
int quic_tls_derive_initial_secrets(const EVP_MD *md,
|
|
unsigned char *rx, size_t rx_sz,
|
|
unsigned char *tx, size_t tx_sz,
|
|
const unsigned char *secret, size_t secret_sz,
|
|
int server)
|
|
{
|
|
const unsigned char client_label[] = "client in";
|
|
const unsigned char server_label[] = "server in";
|
|
const unsigned char *tx_label, *rx_label;
|
|
size_t rx_label_sz, tx_label_sz;
|
|
|
|
if (server) {
|
|
rx_label = client_label;
|
|
rx_label_sz = sizeof client_label;
|
|
tx_label = server_label;
|
|
tx_label_sz = sizeof server_label;
|
|
}
|
|
else {
|
|
rx_label = server_label;
|
|
rx_label_sz = sizeof server_label;
|
|
tx_label = client_label;
|
|
tx_label_sz = sizeof client_label;
|
|
}
|
|
|
|
if (!quic_hkdf_expand_label(md, rx, rx_sz, secret, secret_sz,
|
|
rx_label, rx_label_sz - 1) ||
|
|
!quic_hkdf_expand_label(md, tx, tx_sz, secret, secret_sz,
|
|
tx_label, tx_label_sz - 1))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Update <sec> secret key into <new_sec> according to RFC 9001 6.1.
|
|
* Always succeeds.
|
|
*/
|
|
int quic_tls_sec_update(const EVP_MD *md, const struct quic_version *qv,
|
|
unsigned char *new_sec, size_t new_seclen,
|
|
const unsigned char *sec, size_t seclen)
|
|
{
|
|
return quic_hkdf_expand_label(md, new_sec, new_seclen, sec, seclen,
|
|
qv->ku_label, qv->ku_label_len);
|
|
}
|
|
|
|
/*
|
|
* Build an IV into <iv> buffer with <ivlen> as size from <aead_iv> with
|
|
* <aead_ivlen> as size depending on <pn> packet number.
|
|
* This is the function which must be called to build an AEAD IV for the AEAD cryptographic algorithm
|
|
* used to encrypt/decrypt the QUIC packet payloads depending on the packet number <pn>.
|
|
* This function fails and return 0 only if the two buffer lengths are different, 1 if not.
|
|
*/
|
|
int quic_aead_iv_build(unsigned char *iv, size_t ivlen,
|
|
unsigned char *aead_iv, size_t aead_ivlen, uint64_t pn)
|
|
{
|
|
int i;
|
|
unsigned int shift;
|
|
unsigned char *pos = iv;
|
|
|
|
if (ivlen != aead_ivlen)
|
|
return 0;
|
|
|
|
for (i = 0; i < ivlen - sizeof pn; i++)
|
|
*pos++ = *aead_iv++;
|
|
|
|
/* Only the remaining (sizeof pn) bytes are XOR'ed. */
|
|
shift = 56;
|
|
for (i = aead_ivlen - sizeof pn; i < aead_ivlen ; i++, shift -= 8)
|
|
*pos++ = *aead_iv++ ^ (pn >> shift);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Initialize the cipher context for RX part of <tls_ctx> QUIC TLS context.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
int quic_tls_rx_ctx_init(EVP_CIPHER_CTX **rx_ctx,
|
|
const EVP_CIPHER *aead, unsigned char *key)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
int aead_nid = EVP_CIPHER_nid(aead);
|
|
|
|
ctx = EVP_CIPHER_CTX_new();
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
if (!EVP_DecryptInit_ex(ctx, aead, NULL, NULL, NULL) ||
|
|
!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, QUIC_TLS_IV_LEN, NULL) ||
|
|
(aead_nid == NID_aes_128_ccm &&
|
|
!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, NULL)) ||
|
|
!EVP_DecryptInit_ex(ctx, NULL, NULL, key, NULL))
|
|
goto err;
|
|
|
|
*rx_ctx = ctx;
|
|
|
|
return 1;
|
|
|
|
err:
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize <*aes_ctx> AES cipher context with <key> as key for encryption */
|
|
int quic_tls_enc_aes_ctx_init(EVP_CIPHER_CTX **aes_ctx,
|
|
const EVP_CIPHER *aes, unsigned char *key)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
ctx = EVP_CIPHER_CTX_new();
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
if (!EVP_EncryptInit_ex(ctx, aes, NULL, key, NULL))
|
|
goto err;
|
|
|
|
*aes_ctx = ctx;
|
|
return 1;
|
|
|
|
err:
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
return 0;
|
|
}
|
|
|
|
/* Encrypt <inlen> bytes from <in> buffer into <out> with <ctx> as AES
|
|
* cipher context. This is the responsibility of the caller to check there
|
|
* is at least <inlen> bytes of available space in <out> buffer.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
int quic_tls_aes_encrypt(unsigned char *out,
|
|
const unsigned char *in, size_t inlen,
|
|
EVP_CIPHER_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, in) ||
|
|
!EVP_EncryptUpdate(ctx, out, &ret, out, inlen) ||
|
|
!EVP_EncryptFinal_ex(ctx, out, &ret))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Initialize <*aes_ctx> AES cipher context with <key> as key for decryption */
|
|
int quic_tls_dec_aes_ctx_init(EVP_CIPHER_CTX **aes_ctx,
|
|
const EVP_CIPHER *aes, unsigned char *key)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
ctx = EVP_CIPHER_CTX_new();
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
if (!EVP_DecryptInit_ex(ctx, aes, NULL, key, NULL))
|
|
goto err;
|
|
|
|
*aes_ctx = ctx;
|
|
return 1;
|
|
|
|
err:
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
return 0;
|
|
}
|
|
|
|
/* Decrypt <in> data into <out> with <ctx> as AES cipher context.
|
|
* This is the responsibility of the caller to check there is at least
|
|
* <outlen> bytes into <in> buffer.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
int quic_tls_aes_decrypt(unsigned char *out,
|
|
const unsigned char *in, size_t inlen,
|
|
EVP_CIPHER_CTX *ctx)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, in) ||
|
|
!EVP_DecryptUpdate(ctx, out, &ret, out, inlen) ||
|
|
!EVP_DecryptFinal_ex(ctx, out, &ret))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Initialize the cipher context for TX part of <tls_ctx> QUIC TLS context.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
int quic_tls_tx_ctx_init(EVP_CIPHER_CTX **tx_ctx,
|
|
const EVP_CIPHER *aead, unsigned char *key)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
int aead_nid = EVP_CIPHER_nid(aead);
|
|
|
|
ctx = EVP_CIPHER_CTX_new();
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
if (!EVP_EncryptInit_ex(ctx, aead, NULL, NULL, NULL) ||
|
|
!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, QUIC_TLS_IV_LEN, NULL) ||
|
|
(aead_nid == NID_aes_128_ccm &&
|
|
!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, NULL)) ||
|
|
!EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL))
|
|
goto err;
|
|
|
|
*tx_ctx = ctx;
|
|
|
|
return 1;
|
|
|
|
err:
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#aead
|
|
*
|
|
* 5.3. AEAD Usage
|
|
*
|
|
* Packets are protected prior to applying header protection (Section 5.4).
|
|
* The unprotected packet header is part of the associated data (A). When removing
|
|
* packet protection, an endpoint first removes the header protection.
|
|
* (...)
|
|
* These ciphersuites have a 16-byte authentication tag and produce an output 16
|
|
* bytes larger than their input.
|
|
* The key and IV for the packet are computed as described in Section 5.1. The nonce,
|
|
* N, is formed by combining the packet protection IV with the packet number. The 62
|
|
* bits of the reconstructed QUIC packet number in network byte order are left-padded
|
|
* with zeros to the size of the IV. The exclusive OR of the padded packet number and
|
|
* the IV forms the AEAD nonce.
|
|
*
|
|
* The associated data, A, for the AEAD is the contents of the QUIC header, starting
|
|
* from the flags byte in either the short or long header, up to and including the
|
|
* unprotected packet number.
|
|
*
|
|
* The input plaintext, P, for the AEAD is the payload of the QUIC packet, as described
|
|
* in [QUIC-TRANSPORT].
|
|
*
|
|
* The output ciphertext, C, of the AEAD is transmitted in place of P.
|
|
*
|
|
* Some AEAD functions have limits for how many packets can be encrypted under the same
|
|
* key and IV (see for example [AEBounds]). This might be lower than the packet number limit.
|
|
* An endpoint MUST initiate a key update (Section 6) prior to exceeding any limit set for
|
|
* the AEAD that is in use.
|
|
*/
|
|
|
|
/* Encrypt in place <buf> plaintext with <len> as length with QUIC_TLS_TAG_LEN
|
|
* included tailing bytes for the tag.
|
|
* Note that for CCM mode, we must set the the ciphertext length if AAD data
|
|
* are provided from <aad> buffer with <aad_len> as length. This is always the
|
|
* case here. So the caller of this function must provide <aad>.
|
|
*
|
|
* https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption
|
|
*/
|
|
int quic_tls_encrypt(unsigned char *buf, size_t len,
|
|
const unsigned char *aad, size_t aad_len,
|
|
EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead,
|
|
const unsigned char *key, const unsigned char *iv)
|
|
{
|
|
int outlen;
|
|
int aead_nid = EVP_CIPHER_nid(aead);
|
|
|
|
if (!EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) ||
|
|
(aead_nid == NID_aes_128_ccm &&
|
|
!EVP_EncryptUpdate(ctx, NULL, &outlen, NULL, len)) ||
|
|
!EVP_EncryptUpdate(ctx, NULL, &outlen, aad, aad_len) ||
|
|
!EVP_EncryptUpdate(ctx, buf, &outlen, buf, len) ||
|
|
!EVP_EncryptFinal_ex(ctx, buf + outlen, &outlen) ||
|
|
!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, QUIC_TLS_TAG_LEN, buf + len))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Decrypt in place <buf> ciphertext with <len> as length with QUIC_TLS_TAG_LEN
|
|
* included tailing bytes for the tag.
|
|
* Note that for CCM mode, we must set the the ciphertext length if AAD data
|
|
* are provided from <aad> buffer with <aad_len> as length. This is always the
|
|
* case here. So the caller of this function must provide <aad>. Also not the
|
|
* there is no need to call EVP_DecryptFinal_ex for CCM mode.
|
|
*
|
|
* https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption
|
|
*/
|
|
int quic_tls_decrypt(unsigned char *buf, size_t len,
|
|
unsigned char *aad, size_t aad_len,
|
|
EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead,
|
|
const unsigned char *key, const unsigned char *iv)
|
|
{
|
|
int outlen;
|
|
int aead_nid = EVP_CIPHER_nid(aead);
|
|
|
|
if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) ||
|
|
!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN,
|
|
buf + len - QUIC_TLS_TAG_LEN) ||
|
|
(aead_nid == NID_aes_128_ccm &&
|
|
!EVP_DecryptUpdate(ctx, NULL, &outlen, NULL, len - QUIC_TLS_TAG_LEN)) ||
|
|
!EVP_DecryptUpdate(ctx, NULL, &outlen, aad, aad_len) ||
|
|
!EVP_DecryptUpdate(ctx, buf, &outlen, buf, len - QUIC_TLS_TAG_LEN) ||
|
|
(aead_nid != NID_aes_128_ccm &&
|
|
!EVP_DecryptFinal_ex(ctx, buf + outlen, &outlen)))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Similar to quic_tls_decrypt(), except that this function does not decrypt
|
|
* in place its ciphertest if <out> output buffer ciphertest with <len> as length
|
|
* is different from <in> input buffer. This is the responbality of the caller
|
|
* to check that the output buffer has at least the same size as the input buffer.
|
|
* Note that for CCM mode, we must set the the ciphertext length if AAD data
|
|
* are provided from <aad> buffer with <aad_len> as length. This is always the
|
|
* case here. So the caller of this function must provide <aad>. Also note that
|
|
* there is no need to call EVP_DecryptFinal_ex for CCM mode.
|
|
*
|
|
* https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption
|
|
*
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
int quic_tls_decrypt2(unsigned char *out,
|
|
unsigned char *in, size_t len,
|
|
unsigned char *aad, size_t aad_len,
|
|
EVP_CIPHER_CTX *ctx, const EVP_CIPHER *aead,
|
|
const unsigned char *key, const unsigned char *iv)
|
|
{
|
|
int outlen;
|
|
int aead_nid = EVP_CIPHER_nid(aead);
|
|
|
|
len -= QUIC_TLS_TAG_LEN;
|
|
if (!EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) ||
|
|
!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN, in + len) ||
|
|
(aead_nid == NID_aes_128_ccm &&
|
|
!EVP_DecryptUpdate(ctx, NULL, &outlen, NULL, len)) ||
|
|
!EVP_DecryptUpdate(ctx, NULL, &outlen, aad, aad_len) ||
|
|
!EVP_DecryptUpdate(ctx, out, &outlen, in, len) ||
|
|
(aead_nid != NID_aes_128_ccm &&
|
|
!EVP_DecryptFinal_ex(ctx, out + outlen, &outlen)))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Derive <key> and <iv> key and IV to be used to encrypt a retry token
|
|
* with <secret> which is not pseudo-random.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
int quic_tls_derive_retry_token_secret(const EVP_MD *md,
|
|
unsigned char *key, size_t keylen,
|
|
unsigned char *iv, size_t ivlen,
|
|
const unsigned char *salt, size_t saltlen,
|
|
const unsigned char *secret, size_t secretlen)
|
|
{
|
|
unsigned char tmpkey[QUIC_TLS_KEY_LEN];
|
|
const unsigned char tmpkey_label[] = "retry token";
|
|
const unsigned char key_label[] = "retry token key";
|
|
const unsigned char iv_label[] = "retry token iv";
|
|
|
|
if (!quic_hkdf_extract_and_expand(md, tmpkey, sizeof tmpkey,
|
|
secret, secretlen, salt, saltlen,
|
|
tmpkey_label, sizeof tmpkey_label - 1) ||
|
|
!quic_hkdf_expand(md, key, keylen, tmpkey, sizeof tmpkey,
|
|
key_label, sizeof key_label - 1) ||
|
|
!quic_hkdf_expand(md, iv, ivlen, secret, secretlen,
|
|
iv_label, sizeof iv_label - 1))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Generate the AEAD tag for the Retry packet <pkt> of <pkt_len> bytes and
|
|
* write it to <tag>. The tag is written just after the <pkt> area. It should
|
|
* be at least 16 bytes longs. <odcid> is the CID of the Initial packet
|
|
* received which triggers the Retry.
|
|
*
|
|
* Returns non-zero on success else zero.
|
|
*/
|
|
int quic_tls_generate_retry_integrity_tag(unsigned char *odcid, unsigned char odcid_len,
|
|
unsigned char *pkt, size_t pkt_len,
|
|
const struct quic_version *qv)
|
|
{
|
|
const EVP_CIPHER *evp = EVP_aes_128_gcm();
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
/* encryption buffer - not used as only AEAD tag generation is proceed */
|
|
unsigned char *out = NULL;
|
|
/* address to store the AEAD tag */
|
|
unsigned char *tag = pkt + pkt_len;
|
|
int outlen, ret = 0;
|
|
|
|
ctx = EVP_CIPHER_CTX_new();
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
/* rfc9001 5.8. Retry Packet Integrity
|
|
*
|
|
* AEAD is proceed over a pseudo-Retry packet used as AAD. It contains
|
|
* the ODCID len + data and the Retry packet itself.
|
|
*/
|
|
if (!EVP_EncryptInit_ex(ctx, evp, NULL, qv->retry_tag_key, qv->retry_tag_nonce) ||
|
|
/* specify pseudo-Retry as AAD */
|
|
!EVP_EncryptUpdate(ctx, NULL, &outlen, &odcid_len, sizeof(odcid_len)) ||
|
|
!EVP_EncryptUpdate(ctx, NULL, &outlen, odcid, odcid_len) ||
|
|
!EVP_EncryptUpdate(ctx, NULL, &outlen, pkt, pkt_len) ||
|
|
/* finalize */
|
|
!EVP_EncryptFinal_ex(ctx, out, &outlen) ||
|
|
/* store the tag */
|
|
!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, QUIC_TLS_TAG_LEN, tag)) {
|
|
goto out;
|
|
}
|
|
ret = 1;
|
|
|
|
out:
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
return ret;
|
|
}
|