mirror of
				https://git.haproxy.org/git/haproxy.git/
				synced 2025-11-04 02:21:03 +01:00 
			
		
		
		
	This defect was found by the coccinelle script "unchecked-strdup.cocci". It can be backported to all supported branches.
		
			
				
	
	
		
			750 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			750 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * HTTP compression.
 | 
						|
 *
 | 
						|
 * Copyright 2012 Exceliance, David Du Colombier <dducolombier@exceliance.fr>
 | 
						|
 *                            William Lallemand <wlallemand@exceliance.fr>
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version
 | 
						|
 * 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
#if defined(USE_ZLIB)
 | 
						|
/* Note: the crappy zlib and openssl libs both define the "free_func" type.
 | 
						|
 * That's a very clever idea to use such a generic name in general purpose
 | 
						|
 * libraries, really... The zlib one is easier to redefine than openssl's,
 | 
						|
 * so let's only fix this one.
 | 
						|
 */
 | 
						|
#define free_func zlib_free_func
 | 
						|
#include <zlib.h>
 | 
						|
#undef free_func
 | 
						|
#endif /* USE_ZLIB */
 | 
						|
 | 
						|
#include <haproxy/api.h>
 | 
						|
#include <haproxy/cfgparse.h>
 | 
						|
#include <haproxy/compression-t.h>
 | 
						|
#include <haproxy/compression.h>
 | 
						|
#include <haproxy/dynbuf.h>
 | 
						|
#include <haproxy/freq_ctr.h>
 | 
						|
#include <haproxy/global.h>
 | 
						|
#include <haproxy/pool.h>
 | 
						|
#include <haproxy/stream.h>
 | 
						|
#include <haproxy/thread.h>
 | 
						|
#include <haproxy/tools.h>
 | 
						|
 | 
						|
 | 
						|
#if defined(USE_ZLIB)
 | 
						|
__decl_spinlock(comp_pool_lock);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef USE_ZLIB
 | 
						|
 | 
						|
static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size);
 | 
						|
static void free_zlib(void *opaque, void *ptr);
 | 
						|
 | 
						|
/* zlib allocation  */
 | 
						|
static struct pool_head *zlib_pool_deflate_state __read_mostly = NULL;
 | 
						|
static struct pool_head *zlib_pool_window __read_mostly = NULL;
 | 
						|
static struct pool_head *zlib_pool_prev __read_mostly = NULL;
 | 
						|
static struct pool_head *zlib_pool_head __read_mostly = NULL;
 | 
						|
static struct pool_head *zlib_pool_pending_buf __read_mostly = NULL;
 | 
						|
 | 
						|
long zlib_used_memory = 0;
 | 
						|
 | 
						|
static int global_tune_zlibmemlevel = 8;            /* zlib memlevel */
 | 
						|
static int global_tune_zlibwindowsize = MAX_WBITS;  /* zlib window size */
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
unsigned int compress_min_idle = 0;
 | 
						|
 | 
						|
static int identity_init(struct comp_ctx **comp_ctx, int level);
 | 
						|
static int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out);
 | 
						|
static int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out);
 | 
						|
static int identity_finish(struct comp_ctx *comp_ctx, struct buffer *out);
 | 
						|
static int identity_end(struct comp_ctx **comp_ctx);
 | 
						|
 | 
						|
#if defined(USE_SLZ)
 | 
						|
 | 
						|
static int rfc1950_init(struct comp_ctx **comp_ctx, int level);
 | 
						|
static int rfc1951_init(struct comp_ctx **comp_ctx, int level);
 | 
						|
static int rfc1952_init(struct comp_ctx **comp_ctx, int level);
 | 
						|
static int rfc195x_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out);
 | 
						|
static int rfc195x_flush(struct comp_ctx *comp_ctx, struct buffer *out);
 | 
						|
static int rfc195x_finish(struct comp_ctx *comp_ctx, struct buffer *out);
 | 
						|
static int rfc195x_end(struct comp_ctx **comp_ctx);
 | 
						|
 | 
						|
#elif defined(USE_ZLIB)
 | 
						|
 | 
						|
static int gzip_init(struct comp_ctx **comp_ctx, int level);
 | 
						|
static int raw_def_init(struct comp_ctx **comp_ctx, int level);
 | 
						|
static int deflate_init(struct comp_ctx **comp_ctx, int level);
 | 
						|
static int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out);
 | 
						|
static int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out);
 | 
						|
static int deflate_finish(struct comp_ctx *comp_ctx, struct buffer *out);
 | 
						|
static int deflate_end(struct comp_ctx **comp_ctx);
 | 
						|
 | 
						|
#endif /* USE_ZLIB */
 | 
						|
 | 
						|
 | 
						|
const struct comp_algo comp_algos[] =
 | 
						|
{
 | 
						|
	{ "identity",     8, "identity", 8, identity_init, identity_add_data, identity_flush, identity_finish, identity_end },
 | 
						|
#if defined(USE_SLZ)
 | 
						|
	{ "deflate",      7, "deflate",  7, rfc1950_init,  rfc195x_add_data,  rfc195x_flush,  rfc195x_finish,  rfc195x_end },
 | 
						|
	{ "raw-deflate", 11, "deflate",  7, rfc1951_init,  rfc195x_add_data,  rfc195x_flush,  rfc195x_finish,  rfc195x_end },
 | 
						|
	{ "gzip",         4, "gzip",     4, rfc1952_init,  rfc195x_add_data,  rfc195x_flush,  rfc195x_finish,  rfc195x_end },
 | 
						|
#elif defined(USE_ZLIB)
 | 
						|
	{ "deflate",      7, "deflate",  7, deflate_init,  deflate_add_data,  deflate_flush,  deflate_finish,  deflate_end },
 | 
						|
	{ "raw-deflate", 11, "deflate",  7, raw_def_init,  deflate_add_data,  deflate_flush,  deflate_finish,  deflate_end },
 | 
						|
	{ "gzip",         4, "gzip",     4, gzip_init,     deflate_add_data,  deflate_flush,  deflate_finish,  deflate_end },
 | 
						|
#endif /* USE_ZLIB */
 | 
						|
	{ NULL,       0, NULL,          0, NULL ,         NULL,              NULL,           NULL,           NULL }
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Add a content-type in the configuration
 | 
						|
 * Returns 0 in case of success, 1 in case of allocation failure.
 | 
						|
 */
 | 
						|
int comp_append_type(struct comp_type **types, const char *type)
 | 
						|
{
 | 
						|
	struct comp_type *comp_type;
 | 
						|
 | 
						|
	comp_type = calloc(1, sizeof(*comp_type));
 | 
						|
	if (!comp_type)
 | 
						|
		goto fail;
 | 
						|
	comp_type->name_len = strlen(type);
 | 
						|
	comp_type->name = strdup(type);
 | 
						|
	if (!comp_type->name)
 | 
						|
		goto fail_free_comp_type;
 | 
						|
	comp_type->next = *types;
 | 
						|
	*types = comp_type;
 | 
						|
	return 0;
 | 
						|
 | 
						|
fail_free_comp_type:
 | 
						|
	free(comp_type);
 | 
						|
fail:
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add an algorithm in the configuration
 | 
						|
 * Returns 0 in case of success, -1 if the <algo> is unmanaged, 1 in case of
 | 
						|
 * allocation failure.
 | 
						|
 */
 | 
						|
int comp_append_algo(struct comp_algo **algos, const char *algo)
 | 
						|
{
 | 
						|
	struct comp_algo *comp_algo;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; comp_algos[i].cfg_name; i++) {
 | 
						|
		if (strcmp(algo, comp_algos[i].cfg_name) == 0) {
 | 
						|
			comp_algo = calloc(1, sizeof(*comp_algo));
 | 
						|
			if (!comp_algo)
 | 
						|
				return 1;
 | 
						|
			memmove(comp_algo, &comp_algos[i], sizeof(struct comp_algo));
 | 
						|
			comp_algo->next = *algos;
 | 
						|
			*algos = comp_algo;
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(USE_ZLIB) || defined(USE_SLZ)
 | 
						|
DECLARE_STATIC_POOL(pool_comp_ctx, "comp_ctx", sizeof(struct comp_ctx));
 | 
						|
 | 
						|
/*
 | 
						|
 * Alloc the comp_ctx
 | 
						|
 */
 | 
						|
static inline int init_comp_ctx(struct comp_ctx **comp_ctx)
 | 
						|
{
 | 
						|
#ifdef USE_ZLIB
 | 
						|
	z_stream *strm;
 | 
						|
 | 
						|
	if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < sizeof(struct comp_ctx))
 | 
						|
		return -1;
 | 
						|
#endif
 | 
						|
 | 
						|
	*comp_ctx = pool_alloc(pool_comp_ctx);
 | 
						|
	if (*comp_ctx == NULL)
 | 
						|
		return -1;
 | 
						|
#if defined(USE_SLZ)
 | 
						|
	(*comp_ctx)->direct_ptr = NULL;
 | 
						|
	(*comp_ctx)->direct_len = 0;
 | 
						|
	(*comp_ctx)->queued = BUF_NULL;
 | 
						|
#elif defined(USE_ZLIB)
 | 
						|
	_HA_ATOMIC_ADD(&zlib_used_memory, sizeof(struct comp_ctx));
 | 
						|
	__ha_barrier_atomic_store();
 | 
						|
 | 
						|
	strm = &(*comp_ctx)->strm;
 | 
						|
	strm->zalloc = alloc_zlib;
 | 
						|
	strm->zfree = free_zlib;
 | 
						|
	strm->opaque = *comp_ctx;
 | 
						|
#endif
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dealloc the comp_ctx
 | 
						|
 */
 | 
						|
static inline int deinit_comp_ctx(struct comp_ctx **comp_ctx)
 | 
						|
{
 | 
						|
	if (!*comp_ctx)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	pool_free(pool_comp_ctx, *comp_ctx);
 | 
						|
	*comp_ctx = NULL;
 | 
						|
 | 
						|
#ifdef USE_ZLIB
 | 
						|
	_HA_ATOMIC_SUB(&zlib_used_memory, sizeof(struct comp_ctx));
 | 
						|
	__ha_barrier_atomic_store();
 | 
						|
#endif
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/****************************
 | 
						|
 **** Identity algorithm ****
 | 
						|
 ****************************/
 | 
						|
 | 
						|
/*
 | 
						|
 * Init the identity algorithm
 | 
						|
 */
 | 
						|
static int identity_init(struct comp_ctx **comp_ctx, int level)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Process data
 | 
						|
 *   Return size of consumed data or -1 on error
 | 
						|
 */
 | 
						|
static int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
 | 
						|
{
 | 
						|
	char *out_data = b_tail(out);
 | 
						|
	int out_len = b_room(out);
 | 
						|
 | 
						|
	if (out_len < in_len)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	memcpy(out_data, in_data, in_len);
 | 
						|
 | 
						|
	b_add(out, in_len);
 | 
						|
 | 
						|
	return in_len;
 | 
						|
}
 | 
						|
 | 
						|
static int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int identity_finish(struct comp_ctx *comp_ctx, struct buffer *out)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Deinit the algorithm
 | 
						|
 */
 | 
						|
static int identity_end(struct comp_ctx **comp_ctx)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef USE_SLZ
 | 
						|
 | 
						|
/* SLZ's gzip format (RFC1952). Returns < 0 on error. */
 | 
						|
static int rfc1952_init(struct comp_ctx **comp_ctx, int level)
 | 
						|
{
 | 
						|
	if (init_comp_ctx(comp_ctx) < 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	(*comp_ctx)->cur_lvl = !!level;
 | 
						|
	return slz_rfc1952_init(&(*comp_ctx)->strm, !!level);
 | 
						|
}
 | 
						|
 | 
						|
/* SLZ's raw deflate format (RFC1951). Returns < 0 on error. */
 | 
						|
static int rfc1951_init(struct comp_ctx **comp_ctx, int level)
 | 
						|
{
 | 
						|
	if (init_comp_ctx(comp_ctx) < 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	(*comp_ctx)->cur_lvl = !!level;
 | 
						|
	return slz_rfc1951_init(&(*comp_ctx)->strm, !!level);
 | 
						|
}
 | 
						|
 | 
						|
/* SLZ's zlib format (RFC1950). Returns < 0 on error. */
 | 
						|
static int rfc1950_init(struct comp_ctx **comp_ctx, int level)
 | 
						|
{
 | 
						|
	if (init_comp_ctx(comp_ctx) < 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	(*comp_ctx)->cur_lvl = !!level;
 | 
						|
	return slz_rfc1950_init(&(*comp_ctx)->strm, !!level);
 | 
						|
}
 | 
						|
 | 
						|
/* Return the size of consumed data or -1. The output buffer is unused at this
 | 
						|
 * point, we only keep a reference to the input data or a copy of them if the
 | 
						|
 * reference is already used.
 | 
						|
 */
 | 
						|
static int rfc195x_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
 | 
						|
{
 | 
						|
	static THREAD_LOCAL struct buffer tmpbuf = BUF_NULL;
 | 
						|
 | 
						|
	if (in_len <= 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (comp_ctx->direct_ptr && b_is_null(&comp_ctx->queued)) {
 | 
						|
		/* data already being pointed to, we're in front of fragmented
 | 
						|
		 * data and need a buffer now. We reuse the same buffer, as it's
 | 
						|
		 * not used out of the scope of a series of add_data()*, end().
 | 
						|
		 */
 | 
						|
		if (b_alloc(&tmpbuf, DB_PERMANENT) == NULL)
 | 
						|
			return -1; /* no memory */
 | 
						|
		b_reset(&tmpbuf);
 | 
						|
		memcpy(b_tail(&tmpbuf), comp_ctx->direct_ptr, comp_ctx->direct_len);
 | 
						|
		b_add(&tmpbuf, comp_ctx->direct_len);
 | 
						|
		comp_ctx->direct_ptr = NULL;
 | 
						|
		comp_ctx->direct_len = 0;
 | 
						|
		comp_ctx->queued = tmpbuf;
 | 
						|
		/* fall through buffer copy */
 | 
						|
	}
 | 
						|
 | 
						|
	if (!b_is_null(&comp_ctx->queued)) {
 | 
						|
		/* data already pending */
 | 
						|
		memcpy(b_tail(&comp_ctx->queued), in_data, in_len);
 | 
						|
		b_add(&comp_ctx->queued, in_len);
 | 
						|
		return in_len;
 | 
						|
	}
 | 
						|
 | 
						|
	comp_ctx->direct_ptr = in_data;
 | 
						|
	comp_ctx->direct_len = in_len;
 | 
						|
	return in_len;
 | 
						|
}
 | 
						|
 | 
						|
/* Compresses the data accumulated using add_data(), and optionally sends the
 | 
						|
 * format-specific trailer if <finish> is non-null. <out> is expected to have a
 | 
						|
 * large enough free non-wrapping space as verified by http_comp_buffer_init().
 | 
						|
 * The number of bytes emitted is reported.
 | 
						|
 */
 | 
						|
static int rfc195x_flush_or_finish(struct comp_ctx *comp_ctx, struct buffer *out, int finish)
 | 
						|
{
 | 
						|
	struct slz_stream *strm = &comp_ctx->strm;
 | 
						|
	const char *in_ptr;
 | 
						|
	int in_len;
 | 
						|
	int out_len;
 | 
						|
 | 
						|
	in_ptr = comp_ctx->direct_ptr;
 | 
						|
	in_len = comp_ctx->direct_len;
 | 
						|
 | 
						|
	if (!b_is_null(&comp_ctx->queued)) {
 | 
						|
		in_ptr = b_head(&comp_ctx->queued);
 | 
						|
		in_len = b_data(&comp_ctx->queued);
 | 
						|
	}
 | 
						|
 | 
						|
	out_len = b_data(out);
 | 
						|
 | 
						|
	if (in_ptr)
 | 
						|
		b_add(out, slz_encode(strm, b_tail(out), in_ptr, in_len, !finish));
 | 
						|
 | 
						|
	if (finish)
 | 
						|
		b_add(out, slz_finish(strm, b_tail(out)));
 | 
						|
	else
 | 
						|
		b_add(out, slz_flush(strm, b_tail(out)));
 | 
						|
 | 
						|
	out_len = b_data(out) - out_len;
 | 
						|
 | 
						|
	/* very important, we must wipe the data we've just flushed */
 | 
						|
	comp_ctx->direct_len = 0;
 | 
						|
	comp_ctx->direct_ptr = NULL;
 | 
						|
	comp_ctx->queued     = BUF_NULL;
 | 
						|
 | 
						|
	/* Verify compression rate limiting and CPU usage */
 | 
						|
	if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) ||    /* rate */
 | 
						|
	   (th_ctx->idle_pct < compress_min_idle)) {                                                         /* idle */
 | 
						|
		if (comp_ctx->cur_lvl > 0)
 | 
						|
			strm->level = --comp_ctx->cur_lvl;
 | 
						|
	}
 | 
						|
	else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel && comp_ctx->cur_lvl < 1) {
 | 
						|
		strm->level = ++comp_ctx->cur_lvl;
 | 
						|
	}
 | 
						|
 | 
						|
	/* and that's all */
 | 
						|
	return out_len;
 | 
						|
}
 | 
						|
 | 
						|
static int rfc195x_flush(struct comp_ctx *comp_ctx, struct buffer *out)
 | 
						|
{
 | 
						|
	return rfc195x_flush_or_finish(comp_ctx, out, 0);
 | 
						|
}
 | 
						|
 | 
						|
static int rfc195x_finish(struct comp_ctx *comp_ctx, struct buffer *out)
 | 
						|
{
 | 
						|
	return rfc195x_flush_or_finish(comp_ctx, out, 1);
 | 
						|
}
 | 
						|
 | 
						|
/* we just need to free the comp_ctx here, nothing was allocated */
 | 
						|
static int rfc195x_end(struct comp_ctx **comp_ctx)
 | 
						|
{
 | 
						|
	deinit_comp_ctx(comp_ctx);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#elif defined(USE_ZLIB)  /* ! USE_SLZ */
 | 
						|
 | 
						|
/*
 | 
						|
 * This is a tricky allocation function using the zlib.
 | 
						|
 * This is based on the allocation order in deflateInit2.
 | 
						|
 */
 | 
						|
static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size)
 | 
						|
{
 | 
						|
	struct comp_ctx *ctx = opaque;
 | 
						|
	static THREAD_LOCAL char round = 0; /* order in deflateInit2 */
 | 
						|
	void *buf = NULL;
 | 
						|
	struct pool_head *pool = NULL;
 | 
						|
 | 
						|
	if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < (long)(items * size))
 | 
						|
		goto end;
 | 
						|
 | 
						|
	switch (round) {
 | 
						|
		case 0:
 | 
						|
			if (zlib_pool_deflate_state == NULL) {
 | 
						|
				HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock);
 | 
						|
				if (zlib_pool_deflate_state == NULL)
 | 
						|
					zlib_pool_deflate_state = create_pool("zlib_state", size * items, MEM_F_SHARED);
 | 
						|
				HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock);
 | 
						|
			}
 | 
						|
			pool = zlib_pool_deflate_state;
 | 
						|
			ctx->zlib_deflate_state = buf = pool_alloc(pool);
 | 
						|
		break;
 | 
						|
 | 
						|
		case 1:
 | 
						|
			if (zlib_pool_window == NULL) {
 | 
						|
				HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock);
 | 
						|
				if (zlib_pool_window == NULL)
 | 
						|
					zlib_pool_window = create_pool("zlib_window", size * items, MEM_F_SHARED);
 | 
						|
				HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock);
 | 
						|
			}
 | 
						|
			pool = zlib_pool_window;
 | 
						|
			ctx->zlib_window = buf = pool_alloc(pool);
 | 
						|
		break;
 | 
						|
 | 
						|
		case 2:
 | 
						|
			if (zlib_pool_prev == NULL) {
 | 
						|
				HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock);
 | 
						|
				if (zlib_pool_prev == NULL)
 | 
						|
					zlib_pool_prev = create_pool("zlib_prev", size * items, MEM_F_SHARED);
 | 
						|
				HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock);
 | 
						|
			}
 | 
						|
			pool = zlib_pool_prev;
 | 
						|
			ctx->zlib_prev = buf = pool_alloc(pool);
 | 
						|
		break;
 | 
						|
 | 
						|
		case 3:
 | 
						|
			if (zlib_pool_head == NULL) {
 | 
						|
				HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock);
 | 
						|
				if (zlib_pool_head == NULL)
 | 
						|
					zlib_pool_head = create_pool("zlib_head", size * items, MEM_F_SHARED);
 | 
						|
				HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock);
 | 
						|
			}
 | 
						|
			pool = zlib_pool_head;
 | 
						|
			ctx->zlib_head = buf = pool_alloc(pool);
 | 
						|
		break;
 | 
						|
 | 
						|
		case 4:
 | 
						|
			if (zlib_pool_pending_buf == NULL) {
 | 
						|
				HA_SPIN_LOCK(COMP_POOL_LOCK, &comp_pool_lock);
 | 
						|
				if (zlib_pool_pending_buf == NULL)
 | 
						|
					zlib_pool_pending_buf = create_pool("zlib_pending_buf", size * items, MEM_F_SHARED);
 | 
						|
				HA_SPIN_UNLOCK(COMP_POOL_LOCK, &comp_pool_lock);
 | 
						|
			}
 | 
						|
			pool = zlib_pool_pending_buf;
 | 
						|
			ctx->zlib_pending_buf = buf = pool_alloc(pool);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	if (buf != NULL) {
 | 
						|
		_HA_ATOMIC_ADD(&zlib_used_memory, pool->size);
 | 
						|
		__ha_barrier_atomic_store();
 | 
						|
	}
 | 
						|
 | 
						|
end:
 | 
						|
 | 
						|
	/* deflateInit2() first allocates and checks the deflate_state, then if
 | 
						|
	 * it succeeds, it allocates all other 4 areas at ones and checks them
 | 
						|
	 * at the end. So we want to correctly count the rounds depending on when
 | 
						|
	 * zlib is supposed to abort.
 | 
						|
	 */
 | 
						|
	if (buf || round)
 | 
						|
		round = (round + 1) % 5;
 | 
						|
	return buf;
 | 
						|
}
 | 
						|
 | 
						|
static void free_zlib(void *opaque, void *ptr)
 | 
						|
{
 | 
						|
	struct comp_ctx *ctx = opaque;
 | 
						|
	struct pool_head *pool = NULL;
 | 
						|
 | 
						|
	if (ptr == ctx->zlib_window)
 | 
						|
		pool = zlib_pool_window;
 | 
						|
	else if (ptr == ctx->zlib_deflate_state)
 | 
						|
		pool = zlib_pool_deflate_state;
 | 
						|
	else if (ptr == ctx->zlib_prev)
 | 
						|
		pool = zlib_pool_prev;
 | 
						|
	else if (ptr == ctx->zlib_head)
 | 
						|
		pool = zlib_pool_head;
 | 
						|
	else if (ptr == ctx->zlib_pending_buf)
 | 
						|
		pool = zlib_pool_pending_buf;
 | 
						|
	else {
 | 
						|
		// never matched, just to silence gcc
 | 
						|
		ABORT_NOW();
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	pool_free(pool, ptr);
 | 
						|
	_HA_ATOMIC_SUB(&zlib_used_memory, pool->size);
 | 
						|
	__ha_barrier_atomic_store();
 | 
						|
}
 | 
						|
 | 
						|
/**************************
 | 
						|
****  gzip algorithm   ****
 | 
						|
***************************/
 | 
						|
static int gzip_init(struct comp_ctx **comp_ctx, int level)
 | 
						|
{
 | 
						|
	z_stream *strm;
 | 
						|
 | 
						|
	if (init_comp_ctx(comp_ctx) < 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	strm = &(*comp_ctx)->strm;
 | 
						|
 | 
						|
	if (deflateInit2(strm, level, Z_DEFLATED, global_tune_zlibwindowsize + 16, global_tune_zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) {
 | 
						|
		deinit_comp_ctx(comp_ctx);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	(*comp_ctx)->cur_lvl = level;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Raw deflate algorithm */
 | 
						|
static int raw_def_init(struct comp_ctx **comp_ctx, int level)
 | 
						|
{
 | 
						|
	z_stream *strm;
 | 
						|
 | 
						|
	if (init_comp_ctx(comp_ctx) < 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	strm = &(*comp_ctx)->strm;
 | 
						|
 | 
						|
	if (deflateInit2(strm, level, Z_DEFLATED, -global_tune_zlibwindowsize, global_tune_zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) {
 | 
						|
		deinit_comp_ctx(comp_ctx);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	(*comp_ctx)->cur_lvl = level;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**************************
 | 
						|
**** Deflate algorithm ****
 | 
						|
***************************/
 | 
						|
 | 
						|
static int deflate_init(struct comp_ctx **comp_ctx, int level)
 | 
						|
{
 | 
						|
	z_stream *strm;
 | 
						|
 | 
						|
	if (init_comp_ctx(comp_ctx) < 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	strm = &(*comp_ctx)->strm;
 | 
						|
 | 
						|
	if (deflateInit2(strm, level, Z_DEFLATED, global_tune_zlibwindowsize, global_tune_zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) {
 | 
						|
		deinit_comp_ctx(comp_ctx);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	(*comp_ctx)->cur_lvl = level;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the size of consumed data or -1 */
 | 
						|
static int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	z_stream *strm = &comp_ctx->strm;
 | 
						|
	char *out_data = b_tail(out);
 | 
						|
	int out_len = b_room(out);
 | 
						|
 | 
						|
	if (in_len <= 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
 | 
						|
	if (out_len <= 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	strm->next_in = (unsigned char *)in_data;
 | 
						|
	strm->avail_in = in_len;
 | 
						|
	strm->next_out = (unsigned char *)out_data;
 | 
						|
	strm->avail_out = out_len;
 | 
						|
 | 
						|
	ret = deflate(strm, Z_NO_FLUSH);
 | 
						|
	if (ret != Z_OK)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/* deflate update the available data out */
 | 
						|
	b_add(out, out_len - strm->avail_out);
 | 
						|
 | 
						|
	return in_len - strm->avail_in;
 | 
						|
}
 | 
						|
 | 
						|
static int deflate_flush_or_finish(struct comp_ctx *comp_ctx, struct buffer *out, int flag)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	int out_len = 0;
 | 
						|
	z_stream *strm = &comp_ctx->strm;
 | 
						|
 | 
						|
	strm->next_in = NULL;
 | 
						|
	strm->avail_in = 0;
 | 
						|
	strm->next_out = (unsigned char *)b_tail(out);
 | 
						|
	strm->avail_out = b_room(out);
 | 
						|
 | 
						|
	ret = deflate(strm, flag);
 | 
						|
	if (ret != Z_OK && ret != Z_STREAM_END)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	out_len = b_room(out) - strm->avail_out;
 | 
						|
	b_add(out, out_len);
 | 
						|
 | 
						|
	/* compression limit */
 | 
						|
	if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) ||    /* rate */
 | 
						|
	   (th_ctx->idle_pct < compress_min_idle)) {                                                         /* idle */
 | 
						|
		/* decrease level */
 | 
						|
		if (comp_ctx->cur_lvl > 0) {
 | 
						|
			comp_ctx->cur_lvl--;
 | 
						|
			deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY);
 | 
						|
		}
 | 
						|
 | 
						|
	} else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel) {
 | 
						|
		/* increase level */
 | 
						|
		comp_ctx->cur_lvl++ ;
 | 
						|
		deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY);
 | 
						|
	}
 | 
						|
 | 
						|
	return out_len;
 | 
						|
}
 | 
						|
 | 
						|
static int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out)
 | 
						|
{
 | 
						|
	return deflate_flush_or_finish(comp_ctx, out, Z_SYNC_FLUSH);
 | 
						|
}
 | 
						|
 | 
						|
static int deflate_finish(struct comp_ctx *comp_ctx, struct buffer *out)
 | 
						|
{
 | 
						|
	return deflate_flush_or_finish(comp_ctx, out, Z_FINISH);
 | 
						|
}
 | 
						|
 | 
						|
static int deflate_end(struct comp_ctx **comp_ctx)
 | 
						|
{
 | 
						|
	z_stream *strm = &(*comp_ctx)->strm;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = deflateEnd(strm);
 | 
						|
 | 
						|
	deinit_comp_ctx(comp_ctx);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* config parser for global "tune.zlibmemlevel" */
 | 
						|
static int zlib_parse_global_memlevel(char **args, int section_type, struct proxy *curpx,
 | 
						|
                                      const struct proxy *defpx, const char *file, int line,
 | 
						|
                                      char **err)
 | 
						|
{
 | 
						|
        if (too_many_args(1, args, err, NULL))
 | 
						|
                return -1;
 | 
						|
 | 
						|
        if (*(args[1]) == 0) {
 | 
						|
                memprintf(err, "'%s' expects a numeric value between 1 and 9.", args[0]);
 | 
						|
                return -1;
 | 
						|
        }
 | 
						|
 | 
						|
	global_tune_zlibmemlevel = atoi(args[1]);
 | 
						|
	if (global_tune_zlibmemlevel < 1 || global_tune_zlibmemlevel > 9) {
 | 
						|
                memprintf(err, "'%s' expects a numeric value between 1 and 9.", args[0]);
 | 
						|
                return -1;
 | 
						|
	}
 | 
						|
        return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* config parser for global "tune.zlibwindowsize" */
 | 
						|
static int zlib_parse_global_windowsize(char **args, int section_type, struct proxy *curpx,
 | 
						|
                                        const struct proxy *defpx, const char *file, int line,
 | 
						|
                                        char **err)
 | 
						|
{
 | 
						|
        if (too_many_args(1, args, err, NULL))
 | 
						|
                return -1;
 | 
						|
 | 
						|
        if (*(args[1]) == 0) {
 | 
						|
                memprintf(err, "'%s' expects a numeric value between 8 and 15.", args[0]);
 | 
						|
                return -1;
 | 
						|
        }
 | 
						|
 | 
						|
	global_tune_zlibwindowsize = atoi(args[1]);
 | 
						|
	if (global_tune_zlibwindowsize < 8 || global_tune_zlibwindowsize > 15) {
 | 
						|
                memprintf(err, "'%s' expects a numeric value between 8 and 15.", args[0]);
 | 
						|
                return -1;
 | 
						|
	}
 | 
						|
        return 0;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* USE_ZLIB */
 | 
						|
 | 
						|
 | 
						|
/* config keyword parsers */
 | 
						|
static struct cfg_kw_list cfg_kws = {ILH, {
 | 
						|
#ifdef USE_ZLIB
 | 
						|
	{ CFG_GLOBAL, "tune.zlib.memlevel",   zlib_parse_global_memlevel },
 | 
						|
	{ CFG_GLOBAL, "tune.zlib.windowsize", zlib_parse_global_windowsize },
 | 
						|
#endif
 | 
						|
	{ 0, NULL, NULL }
 | 
						|
}};
 | 
						|
 | 
						|
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
 | 
						|
 | 
						|
static void comp_register_build_opts(void)
 | 
						|
{
 | 
						|
	char *ptr = NULL;
 | 
						|
	int i;
 | 
						|
 | 
						|
#ifdef USE_ZLIB
 | 
						|
	memprintf(&ptr, "Built with zlib version : " ZLIB_VERSION);
 | 
						|
	memprintf(&ptr, "%s\nRunning on zlib version : %s", ptr, zlibVersion());
 | 
						|
#elif defined(USE_SLZ)
 | 
						|
	memprintf(&ptr, "Built with libslz for stateless compression.");
 | 
						|
#else
 | 
						|
	memprintf(&ptr, "Built without compression support (neither USE_ZLIB nor USE_SLZ are set).");
 | 
						|
#endif
 | 
						|
	memprintf(&ptr, "%s\nCompression algorithms supported :", ptr);
 | 
						|
 | 
						|
	for (i = 0; comp_algos[i].cfg_name; i++)
 | 
						|
		memprintf(&ptr, "%s%s %s(\"%s\")", ptr, (i == 0 ? "" : ","), comp_algos[i].cfg_name, comp_algos[i].ua_name);
 | 
						|
 | 
						|
	if (i == 0)
 | 
						|
		memprintf(&ptr, "%s none", ptr);
 | 
						|
 | 
						|
	hap_register_build_opts(ptr, 1);
 | 
						|
}
 | 
						|
 | 
						|
INITCALL0(STG_REGISTER, comp_register_build_opts);
 |