mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2025-08-08 08:07:10 +02:00
This is used to force access to down servers for some requests. This is useful when validating that a change on a server correctly works before enabling the server again.
1700 lines
51 KiB
C
1700 lines
51 KiB
C
/*
|
|
* Server management functions.
|
|
*
|
|
* Copyright 2000-2008 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <common/config.h>
|
|
#include <common/debug.h>
|
|
#include <common/memory.h>
|
|
|
|
#include <types/capture.h>
|
|
#include <types/global.h>
|
|
|
|
#include <proto/acl.h>
|
|
#include <proto/backend.h>
|
|
#include <proto/buffers.h>
|
|
#include <proto/checks.h>
|
|
#include <proto/dumpstats.h>
|
|
#include <proto/hdr_idx.h>
|
|
#include <proto/log.h>
|
|
#include <proto/session.h>
|
|
#include <proto/pattern.h>
|
|
#include <proto/pipe.h>
|
|
#include <proto/proto_http.h>
|
|
#include <proto/proto_tcp.h>
|
|
#include <proto/proxy.h>
|
|
#include <proto/queue.h>
|
|
#include <proto/server.h>
|
|
#include <proto/stick_table.h>
|
|
#include <proto/stream_interface.h>
|
|
#include <proto/stream_sock.h>
|
|
#include <proto/task.h>
|
|
|
|
struct pool_head *pool2_session;
|
|
struct list sessions;
|
|
|
|
/*
|
|
* frees the context associated to a session. It must have been removed first.
|
|
*/
|
|
void session_free(struct session *s)
|
|
{
|
|
struct http_txn *txn = &s->txn;
|
|
struct proxy *fe = s->fe;
|
|
struct bref *bref, *back;
|
|
|
|
if (s->pend_pos)
|
|
pendconn_free(s->pend_pos);
|
|
|
|
if (s->srv) { /* there may be requests left pending in queue */
|
|
if (s->flags & SN_CURR_SESS) {
|
|
s->flags &= ~SN_CURR_SESS;
|
|
s->srv->cur_sess--;
|
|
}
|
|
if (may_dequeue_tasks(s->srv, s->be))
|
|
process_srv_queue(s->srv);
|
|
}
|
|
|
|
if (unlikely(s->srv_conn)) {
|
|
/* the session still has a reserved slot on a server, but
|
|
* it should normally be only the same as the one above,
|
|
* so this should not happen in fact.
|
|
*/
|
|
sess_change_server(s, NULL);
|
|
}
|
|
|
|
if (s->req->pipe)
|
|
put_pipe(s->req->pipe);
|
|
|
|
if (s->rep->pipe)
|
|
put_pipe(s->rep->pipe);
|
|
|
|
pool_free2(pool2_buffer, s->req);
|
|
pool_free2(pool2_buffer, s->rep);
|
|
|
|
http_end_txn(s);
|
|
|
|
if (fe) {
|
|
pool_free2(fe->hdr_idx_pool, txn->hdr_idx.v);
|
|
pool_free2(fe->rsp_cap_pool, txn->rsp.cap);
|
|
pool_free2(fe->req_cap_pool, txn->req.cap);
|
|
}
|
|
|
|
list_for_each_entry_safe(bref, back, &s->back_refs, users) {
|
|
/* we have to unlink all watchers. We must not relink them if
|
|
* this session was the last one in the list.
|
|
*/
|
|
LIST_DEL(&bref->users);
|
|
LIST_INIT(&bref->users);
|
|
if (s->list.n != &sessions)
|
|
LIST_ADDQ(&LIST_ELEM(s->list.n, struct session *, list)->back_refs, &bref->users);
|
|
bref->ref = s->list.n;
|
|
}
|
|
LIST_DEL(&s->list);
|
|
pool_free2(pool2_session, s);
|
|
|
|
/* We may want to free the maximum amount of pools if the proxy is stopping */
|
|
if (fe && unlikely(fe->state == PR_STSTOPPED)) {
|
|
pool_flush2(pool2_buffer);
|
|
pool_flush2(fe->hdr_idx_pool);
|
|
pool_flush2(pool2_requri);
|
|
pool_flush2(pool2_capture);
|
|
pool_flush2(pool2_session);
|
|
pool_flush2(fe->req_cap_pool);
|
|
pool_flush2(fe->rsp_cap_pool);
|
|
}
|
|
}
|
|
|
|
|
|
/* perform minimal intializations, report 0 in case of error, 1 if OK. */
|
|
int init_session()
|
|
{
|
|
LIST_INIT(&sessions);
|
|
pool2_session = create_pool("session", sizeof(struct session), MEM_F_SHARED);
|
|
return pool2_session != NULL;
|
|
}
|
|
|
|
void session_process_counters(struct session *s)
|
|
{
|
|
unsigned long long bytes;
|
|
|
|
if (s->req) {
|
|
bytes = s->req->total - s->logs.bytes_in;
|
|
s->logs.bytes_in = s->req->total;
|
|
if (bytes) {
|
|
s->fe->counters.bytes_in += bytes;
|
|
|
|
if (s->be != s->fe)
|
|
s->be->counters.bytes_in += bytes;
|
|
|
|
if (s->srv)
|
|
s->srv->counters.bytes_in += bytes;
|
|
|
|
if (s->listener->counters)
|
|
s->listener->counters->bytes_in += bytes;
|
|
}
|
|
}
|
|
|
|
if (s->rep) {
|
|
bytes = s->rep->total - s->logs.bytes_out;
|
|
s->logs.bytes_out = s->rep->total;
|
|
if (bytes) {
|
|
s->fe->counters.bytes_out += bytes;
|
|
|
|
if (s->be != s->fe)
|
|
s->be->counters.bytes_out += bytes;
|
|
|
|
if (s->srv)
|
|
s->srv->counters.bytes_out += bytes;
|
|
|
|
if (s->listener->counters)
|
|
s->listener->counters->bytes_out += bytes;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This function is called with (si->state == SI_ST_CON) meaning that a
|
|
* connection was attempted and that the file descriptor is already allocated.
|
|
* We must check for establishment, error and abort. Possible output states
|
|
* are SI_ST_EST (established), SI_ST_CER (error), SI_ST_DIS (abort), and
|
|
* SI_ST_CON (no change). The function returns 0 if it switches to SI_ST_CER,
|
|
* otherwise 1.
|
|
*/
|
|
int sess_update_st_con_tcp(struct session *s, struct stream_interface *si)
|
|
{
|
|
struct buffer *req = si->ob;
|
|
struct buffer *rep = si->ib;
|
|
|
|
/* If we got an error, or if nothing happened and the connection timed
|
|
* out, we must give up. The CER state handler will take care of retry
|
|
* attempts and error reports.
|
|
*/
|
|
if (unlikely(si->flags & (SI_FL_EXP|SI_FL_ERR))) {
|
|
si->exp = TICK_ETERNITY;
|
|
si->state = SI_ST_CER;
|
|
si->flags &= ~SI_FL_CAP_SPLICE;
|
|
fd_delete(si->fd);
|
|
|
|
if (si->err_type)
|
|
return 0;
|
|
|
|
si->err_loc = s->srv;
|
|
if (si->flags & SI_FL_ERR)
|
|
si->err_type = SI_ET_CONN_ERR;
|
|
else
|
|
si->err_type = SI_ET_CONN_TO;
|
|
return 0;
|
|
}
|
|
|
|
/* OK, maybe we want to abort */
|
|
if (unlikely((rep->flags & BF_SHUTW) ||
|
|
((req->flags & BF_SHUTW_NOW) && /* FIXME: this should not prevent a connection from establishing */
|
|
(((req->flags & (BF_OUT_EMPTY|BF_WRITE_ACTIVITY)) == BF_OUT_EMPTY) ||
|
|
s->be->options & PR_O_ABRT_CLOSE)))) {
|
|
/* give up */
|
|
si->shutw(si);
|
|
si->err_type |= SI_ET_CONN_ABRT;
|
|
si->err_loc = s->srv;
|
|
si->flags &= ~SI_FL_CAP_SPLICE;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return 1;
|
|
}
|
|
|
|
/* we need to wait a bit more if there was no activity either */
|
|
if (!(req->flags & BF_WRITE_ACTIVITY))
|
|
return 1;
|
|
|
|
/* OK, this means that a connection succeeded. The caller will be
|
|
* responsible for handling the transition from CON to EST.
|
|
*/
|
|
s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
si->exp = TICK_ETERNITY;
|
|
si->state = SI_ST_EST;
|
|
si->err_type = SI_ET_NONE;
|
|
si->err_loc = NULL;
|
|
return 1;
|
|
}
|
|
|
|
/* This function is called with (si->state == SI_ST_CER) meaning that a
|
|
* previous connection attempt has failed and that the file descriptor
|
|
* has already been released. Possible causes include asynchronous error
|
|
* notification and time out. Possible output states are SI_ST_CLO when
|
|
* retries are exhausted, SI_ST_TAR when a delay is wanted before a new
|
|
* connection attempt, SI_ST_ASS when it's wise to retry on the same server,
|
|
* and SI_ST_REQ when an immediate redispatch is wanted. The buffers are
|
|
* marked as in error state. It returns 0.
|
|
*/
|
|
int sess_update_st_cer(struct session *s, struct stream_interface *si)
|
|
{
|
|
/* we probably have to release last session from the server */
|
|
if (s->srv) {
|
|
health_adjust(s->srv, HANA_STATUS_L4_ERR);
|
|
|
|
if (s->flags & SN_CURR_SESS) {
|
|
s->flags &= ~SN_CURR_SESS;
|
|
s->srv->cur_sess--;
|
|
}
|
|
}
|
|
|
|
/* ensure that we have enough retries left */
|
|
s->conn_retries--;
|
|
if (s->conn_retries < 0) {
|
|
if (!si->err_type) {
|
|
si->err_type = SI_ET_CONN_ERR;
|
|
si->err_loc = s->srv;
|
|
}
|
|
|
|
if (s->srv)
|
|
s->srv->counters.failed_conns++;
|
|
s->be->counters.failed_conns++;
|
|
if (may_dequeue_tasks(s->srv, s->be))
|
|
process_srv_queue(s->srv);
|
|
|
|
/* shutw is enough so stop a connecting socket */
|
|
si->shutw(si);
|
|
si->ob->flags |= BF_WRITE_ERROR;
|
|
si->ib->flags |= BF_READ_ERROR;
|
|
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return 0;
|
|
}
|
|
|
|
/* If the "redispatch" option is set on the backend, we are allowed to
|
|
* retry on another server for the last retry. In order to achieve this,
|
|
* we must mark the session unassigned, and eventually clear the DIRECT
|
|
* bit to ignore any persistence cookie. We won't count a retry nor a
|
|
* redispatch yet, because this will depend on what server is selected.
|
|
*/
|
|
if (s->srv && s->conn_retries == 0 &&
|
|
s->be->options & PR_O_REDISP && !(s->flags & SN_FORCE_PRST)) {
|
|
if (may_dequeue_tasks(s->srv, s->be))
|
|
process_srv_queue(s->srv);
|
|
|
|
s->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET);
|
|
s->prev_srv = s->srv;
|
|
si->state = SI_ST_REQ;
|
|
} else {
|
|
if (s->srv)
|
|
s->srv->counters.retries++;
|
|
s->be->counters.retries++;
|
|
si->state = SI_ST_ASS;
|
|
}
|
|
|
|
if (si->flags & SI_FL_ERR) {
|
|
/* The error was an asynchronous connection error, and we will
|
|
* likely have to retry connecting to the same server, most
|
|
* likely leading to the same result. To avoid this, we wait
|
|
* one second before retrying.
|
|
*/
|
|
|
|
if (!si->err_type)
|
|
si->err_type = SI_ET_CONN_ERR;
|
|
|
|
si->state = SI_ST_TAR;
|
|
si->exp = tick_add(now_ms, MS_TO_TICKS(1000));
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function handles the transition between the SI_ST_CON state and the
|
|
* SI_ST_EST state. It must only be called after switching from SI_ST_CON to
|
|
* SI_ST_EST.
|
|
*/
|
|
void sess_establish(struct session *s, struct stream_interface *si)
|
|
{
|
|
struct buffer *req = si->ob;
|
|
struct buffer *rep = si->ib;
|
|
|
|
if (s->srv)
|
|
health_adjust(s->srv, HANA_STATUS_L4_OK);
|
|
|
|
if (s->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */
|
|
/* if the user wants to log as soon as possible, without counting
|
|
* bytes from the server, then this is the right moment. */
|
|
if (s->fe->to_log && !(s->logs.logwait & LW_BYTES)) {
|
|
s->logs.t_close = s->logs.t_connect; /* to get a valid end date */
|
|
s->do_log(s);
|
|
}
|
|
}
|
|
else {
|
|
s->txn.rsp.msg_state = HTTP_MSG_RPBEFORE;
|
|
/* reset hdr_idx which was already initialized by the request.
|
|
* right now, the http parser does it.
|
|
* hdr_idx_init(&s->txn.hdr_idx);
|
|
*/
|
|
}
|
|
|
|
rep->analysers |= s->fe->fe_rsp_ana | s->be->be_rsp_ana;
|
|
rep->flags |= BF_READ_ATTACHED; /* producer is now attached */
|
|
req->wex = TICK_ETERNITY;
|
|
}
|
|
|
|
/* Update stream interface status for input states SI_ST_ASS, SI_ST_QUE, SI_ST_TAR.
|
|
* Other input states are simply ignored.
|
|
* Possible output states are SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ, SI_ST_CON.
|
|
* Flags must have previously been updated for timeouts and other conditions.
|
|
*/
|
|
void sess_update_stream_int(struct session *s, struct stream_interface *si)
|
|
{
|
|
DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rql=%d rpl=%d cs=%d ss=%d\n",
|
|
now_ms, __FUNCTION__,
|
|
s,
|
|
s->req, s->rep,
|
|
s->req->rex, s->rep->wex,
|
|
s->req->flags, s->rep->flags,
|
|
s->req->l, s->rep->l, s->rep->cons->state, s->req->cons->state);
|
|
|
|
if (si->state == SI_ST_ASS) {
|
|
/* Server assigned to connection request, we have to try to connect now */
|
|
int conn_err;
|
|
|
|
conn_err = connect_server(s);
|
|
if (conn_err == SN_ERR_NONE) {
|
|
/* state = SI_ST_CON now */
|
|
if (s->srv)
|
|
srv_inc_sess_ctr(s->srv);
|
|
return;
|
|
}
|
|
|
|
/* We have received a synchronous error. We might have to
|
|
* abort, retry immediately or redispatch.
|
|
*/
|
|
if (conn_err == SN_ERR_INTERNAL) {
|
|
if (!si->err_type) {
|
|
si->err_type = SI_ET_CONN_OTHER;
|
|
si->err_loc = s->srv;
|
|
}
|
|
|
|
if (s->srv)
|
|
srv_inc_sess_ctr(s->srv);
|
|
if (s->srv)
|
|
s->srv->counters.failed_conns++;
|
|
s->be->counters.failed_conns++;
|
|
|
|
/* release other sessions waiting for this server */
|
|
if (may_dequeue_tasks(s->srv, s->be))
|
|
process_srv_queue(s->srv);
|
|
|
|
/* Failed and not retryable. */
|
|
si->shutr(si);
|
|
si->shutw(si);
|
|
si->ob->flags |= BF_WRITE_ERROR;
|
|
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
|
|
/* no session was ever accounted for this server */
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return;
|
|
}
|
|
|
|
/* We are facing a retryable error, but we don't want to run a
|
|
* turn-around now, as the problem is likely a source port
|
|
* allocation problem, so we want to retry now.
|
|
*/
|
|
si->state = SI_ST_CER;
|
|
si->flags &= ~SI_FL_ERR;
|
|
sess_update_st_cer(s, si);
|
|
/* now si->state is one of SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ */
|
|
return;
|
|
}
|
|
else if (si->state == SI_ST_QUE) {
|
|
/* connection request was queued, check for any update */
|
|
if (!s->pend_pos) {
|
|
/* The connection is not in the queue anymore. Either
|
|
* we have a server connection slot available and we
|
|
* go directly to the assigned state, or we need to
|
|
* load-balance first and go to the INI state.
|
|
*/
|
|
si->exp = TICK_ETERNITY;
|
|
if (unlikely(!(s->flags & SN_ASSIGNED)))
|
|
si->state = SI_ST_REQ;
|
|
else {
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
si->state = SI_ST_ASS;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Connection request still in queue... */
|
|
if (si->flags & SI_FL_EXP) {
|
|
/* ... and timeout expired */
|
|
si->exp = TICK_ETERNITY;
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
if (s->srv)
|
|
s->srv->counters.failed_conns++;
|
|
s->be->counters.failed_conns++;
|
|
si->shutr(si);
|
|
si->shutw(si);
|
|
si->ob->flags |= BF_WRITE_TIMEOUT;
|
|
if (!si->err_type)
|
|
si->err_type = SI_ET_QUEUE_TO;
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return;
|
|
}
|
|
|
|
/* Connection remains in queue, check if we have to abort it */
|
|
if ((si->ob->flags & (BF_READ_ERROR)) ||
|
|
((si->ob->flags & BF_SHUTW_NOW) && /* empty and client aborted */
|
|
(si->ob->flags & BF_OUT_EMPTY || s->be->options & PR_O_ABRT_CLOSE))) {
|
|
/* give up */
|
|
si->exp = TICK_ETERNITY;
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
si->shutr(si);
|
|
si->shutw(si);
|
|
si->err_type |= SI_ET_QUEUE_ABRT;
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return;
|
|
}
|
|
|
|
/* Nothing changed */
|
|
return;
|
|
}
|
|
else if (si->state == SI_ST_TAR) {
|
|
/* Connection request might be aborted */
|
|
if ((si->ob->flags & (BF_READ_ERROR)) ||
|
|
((si->ob->flags & BF_SHUTW_NOW) && /* empty and client aborted */
|
|
(si->ob->flags & BF_OUT_EMPTY || s->be->options & PR_O_ABRT_CLOSE))) {
|
|
/* give up */
|
|
si->exp = TICK_ETERNITY;
|
|
si->shutr(si);
|
|
si->shutw(si);
|
|
si->err_type |= SI_ET_CONN_ABRT;
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return;
|
|
}
|
|
|
|
if (!(si->flags & SI_FL_EXP))
|
|
return; /* still in turn-around */
|
|
|
|
si->exp = TICK_ETERNITY;
|
|
|
|
/* we keep trying on the same server as long as the session is
|
|
* marked "assigned".
|
|
* FIXME: Should we force a redispatch attempt when the server is down ?
|
|
*/
|
|
if (s->flags & SN_ASSIGNED)
|
|
si->state = SI_ST_ASS;
|
|
else
|
|
si->state = SI_ST_REQ;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* This function initiates a server connection request on a stream interface
|
|
* already in SI_ST_REQ state. Upon success, the state goes to SI_ST_ASS,
|
|
* indicating that a server has been assigned. It may also return SI_ST_QUE,
|
|
* or SI_ST_CLO upon error.
|
|
*/
|
|
static void sess_prepare_conn_req(struct session *s, struct stream_interface *si) {
|
|
DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rql=%d rpl=%d cs=%d ss=%d\n",
|
|
now_ms, __FUNCTION__,
|
|
s,
|
|
s->req, s->rep,
|
|
s->req->rex, s->rep->wex,
|
|
s->req->flags, s->rep->flags,
|
|
s->req->l, s->rep->l, s->rep->cons->state, s->req->cons->state);
|
|
|
|
if (si->state != SI_ST_REQ)
|
|
return;
|
|
|
|
/* Try to assign a server */
|
|
if (srv_redispatch_connect(s) != 0) {
|
|
/* We did not get a server. Either we queued the
|
|
* connection request, or we encountered an error.
|
|
*/
|
|
if (si->state == SI_ST_QUE)
|
|
return;
|
|
|
|
/* we did not get any server, let's check the cause */
|
|
si->shutr(si);
|
|
si->shutw(si);
|
|
si->ob->flags |= BF_WRITE_ERROR;
|
|
if (!si->err_type)
|
|
si->err_type = SI_ET_CONN_OTHER;
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
return;
|
|
}
|
|
|
|
/* The server is assigned */
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
si->state = SI_ST_ASS;
|
|
}
|
|
|
|
/* This stream analyser checks the switching rules and changes the backend
|
|
* if appropriate. The default_backend rule is also considered, then the
|
|
* target backend's forced persistence rules are also evaluated last if any.
|
|
* It returns 1 if the processing can continue on next analysers, or zero if it
|
|
* either needs more data or wants to immediately abort the request.
|
|
*/
|
|
int process_switching_rules(struct session *s, struct buffer *req, int an_bit)
|
|
{
|
|
struct force_persist_rule *prst_rule;
|
|
|
|
req->analysers &= ~an_bit;
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
|
|
DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n",
|
|
now_ms, __FUNCTION__,
|
|
s,
|
|
req,
|
|
req->rex, req->wex,
|
|
req->flags,
|
|
req->l,
|
|
req->analysers);
|
|
|
|
/* now check whether we have some switching rules for this request */
|
|
if (!(s->flags & SN_BE_ASSIGNED)) {
|
|
struct switching_rule *rule;
|
|
|
|
list_for_each_entry(rule, &s->fe->switching_rules, list) {
|
|
int ret;
|
|
|
|
ret = acl_exec_cond(rule->cond, s->fe, s, &s->txn, ACL_DIR_REQ);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
|
|
if (ret) {
|
|
if (!session_set_backend(s, rule->be.backend))
|
|
goto sw_failed;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* To ensure correct connection accounting on the backend, we
|
|
* have to assign one if it was not set (eg: a listen). This
|
|
* measure also takes care of correctly setting the default
|
|
* backend if any.
|
|
*/
|
|
if (!(s->flags & SN_BE_ASSIGNED))
|
|
if (!session_set_backend(s, s->fe->defbe.be ? s->fe->defbe.be : s->be))
|
|
goto sw_failed;
|
|
}
|
|
|
|
/* we don't want to run the HTTP filters again if the backend has not changed */
|
|
if (s->fe == s->be)
|
|
s->req->analysers &= ~AN_REQ_HTTP_PROCESS_BE;
|
|
|
|
/* as soon as we know the backend, we must check if we have a matching forced
|
|
* persistence rule, and report that in the session.
|
|
*/
|
|
list_for_each_entry(prst_rule, &s->be->force_persist_rules, list) {
|
|
int ret = 1;
|
|
|
|
if (prst_rule->cond) {
|
|
ret = acl_exec_cond(prst_rule->cond, s->be, s, &s->txn, ACL_DIR_REQ);
|
|
ret = acl_pass(ret);
|
|
if (prst_rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
/* no rule, or the rule matches */
|
|
s->flags |= SN_FORCE_PRST;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
|
|
sw_failed:
|
|
/* immediately abort this request in case of allocation failure */
|
|
buffer_abort(s->req);
|
|
buffer_abort(s->rep);
|
|
|
|
if (!(s->flags & SN_ERR_MASK))
|
|
s->flags |= SN_ERR_RESOURCE;
|
|
if (!(s->flags & SN_FINST_MASK))
|
|
s->flags |= SN_FINST_R;
|
|
|
|
s->txn.status = 500;
|
|
s->req->analysers = 0;
|
|
s->req->analyse_exp = TICK_ETERNITY;
|
|
return 0;
|
|
}
|
|
|
|
/* This stream analyser works on a request. It applies all sticking rules on
|
|
* it then returns 1. The data must already be present in the buffer otherwise
|
|
* they won't match. It always returns 1.
|
|
*/
|
|
int process_sticking_rules(struct session *s, struct buffer *req, int an_bit)
|
|
{
|
|
struct proxy *px = s->be;
|
|
struct sticking_rule *rule;
|
|
|
|
DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n",
|
|
now_ms, __FUNCTION__,
|
|
s,
|
|
req,
|
|
req->rex, req->wex,
|
|
req->flags,
|
|
req->l,
|
|
req->analysers);
|
|
|
|
list_for_each_entry(rule, &px->sticking_rules, list) {
|
|
int ret = 1 ;
|
|
int i;
|
|
|
|
for (i = 0; i < s->store_count; i++) {
|
|
if (rule->table.t == s->store[i].table)
|
|
break;
|
|
}
|
|
|
|
if (i != s->store_count)
|
|
continue;
|
|
|
|
if (rule->cond) {
|
|
ret = acl_exec_cond(rule->cond, px, s, &s->txn, ACL_DIR_REQ);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
struct stktable_key *key;
|
|
|
|
key = pattern_process_key(px, s, &s->txn, PATTERN_FETCH_REQ, rule->expr, rule->table.t->type);
|
|
if (!key)
|
|
continue;
|
|
|
|
if (rule->flags & STK_IS_MATCH) {
|
|
struct stksess *ts;
|
|
|
|
if ((ts = stktable_lookup(rule->table.t, key)) != NULL) {
|
|
if (!(s->flags & SN_ASSIGNED)) {
|
|
struct eb32_node *node;
|
|
|
|
/* srv found in table */
|
|
node = eb32_lookup(&px->conf.used_server_id, ts->sid);
|
|
if (node) {
|
|
struct server *srv;
|
|
|
|
srv = container_of(node, struct server, conf.id);
|
|
if ((srv->state & SRV_RUNNING) ||
|
|
(px->options & PR_O_PERSIST) ||
|
|
(s->flags & SN_FORCE_PRST)) {
|
|
s->flags |= SN_DIRECT | SN_ASSIGNED;
|
|
s->srv = srv;
|
|
}
|
|
}
|
|
}
|
|
ts->expire = tick_add(now_ms, MS_TO_TICKS(rule->table.t->expire));
|
|
}
|
|
}
|
|
if (rule->flags & STK_IS_STORE) {
|
|
if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
|
|
struct stksess *ts;
|
|
|
|
ts = stksess_new(rule->table.t, key);
|
|
if (ts) {
|
|
s->store[s->store_count].table = rule->table.t;
|
|
s->store[s->store_count++].ts = ts;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
req->analysers &= ~an_bit;
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
return 1;
|
|
}
|
|
|
|
/* This stream analyser works on a response. It applies all store rules on it
|
|
* then returns 1. The data must already be present in the buffer otherwise
|
|
* they won't match. It always returns 1.
|
|
*/
|
|
int process_store_rules(struct session *s, struct buffer *rep, int an_bit)
|
|
{
|
|
struct proxy *px = s->be;
|
|
struct sticking_rule *rule;
|
|
int i;
|
|
|
|
DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n",
|
|
now_ms, __FUNCTION__,
|
|
s,
|
|
req,
|
|
req->rex, req->wex,
|
|
req->flags,
|
|
req->l,
|
|
req->analysers);
|
|
|
|
list_for_each_entry(rule, &px->storersp_rules, list) {
|
|
int ret = 1 ;
|
|
int storereqidx = -1;
|
|
|
|
for (i = 0; i < s->store_count; i++) {
|
|
if (rule->table.t == s->store[i].table) {
|
|
if (!(s->store[i].flags))
|
|
storereqidx = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((i != s->store_count) && (storereqidx == -1))
|
|
continue;
|
|
|
|
if (rule->cond) {
|
|
ret = acl_exec_cond(rule->cond, px, s, &s->txn, ACL_DIR_RTR);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
struct stktable_key *key;
|
|
|
|
key = pattern_process_key(px, s, &s->txn, PATTERN_FETCH_RTR, rule->expr, rule->table.t->type);
|
|
if (!key)
|
|
continue;
|
|
|
|
if (storereqidx != -1) {
|
|
stksess_key(s->store[storereqidx].table, s->store[storereqidx].ts, key);
|
|
s->store[storereqidx].flags = 1;
|
|
}
|
|
else if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
|
|
struct stksess *ts;
|
|
|
|
ts = stksess_new(rule->table.t, key);
|
|
if (ts) {
|
|
s->store[s->store_count].table = rule->table.t;
|
|
s->store[s->store_count].flags = 1;
|
|
s->store[s->store_count++].ts = ts;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* process store request and store response */
|
|
for (i = 0; i < s->store_count; i++) {
|
|
if (stktable_store(s->store[i].table, s->store[i].ts, s->srv->puid) > 0) {
|
|
stksess_free(s->store[i].table, s->store[i].ts);
|
|
s->store[i].ts = NULL;
|
|
}
|
|
}
|
|
|
|
rep->analysers &= ~an_bit;
|
|
rep->analyse_exp = TICK_ETERNITY;
|
|
return 1;
|
|
}
|
|
|
|
/* This macro is very specific to the function below. See the comments in
|
|
* process_session() below to understand the logic and the tests.
|
|
*/
|
|
#define UPDATE_ANALYSERS(real, list, back, flag) { \
|
|
list = (((list) & ~(flag)) | ~(back)) & (real); \
|
|
back = real; \
|
|
if (!(list)) \
|
|
break; \
|
|
if (((list) ^ ((list) & ((list) - 1))) < (flag)) \
|
|
continue; \
|
|
}
|
|
|
|
/* Processes the client, server, request and response jobs of a session task,
|
|
* then puts it back to the wait queue in a clean state, or cleans up its
|
|
* resources if it must be deleted. Returns in <next> the date the task wants
|
|
* to be woken up, or TICK_ETERNITY. In order not to call all functions for
|
|
* nothing too many times, the request and response buffers flags are monitored
|
|
* and each function is called only if at least another function has changed at
|
|
* least one flag it is interested in.
|
|
*/
|
|
struct task *process_session(struct task *t)
|
|
{
|
|
struct session *s = t->context;
|
|
unsigned int rqf_last, rpf_last;
|
|
unsigned int req_ana_back;
|
|
|
|
//DPRINTF(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__,
|
|
// s->si[0].state, s->si[1].state, s->si[1].err_type, s->req->flags, s->rep->flags);
|
|
|
|
/* This flag must explicitly be set every time */
|
|
s->req->flags &= ~BF_READ_NOEXP;
|
|
|
|
/* Keep a copy of req/rep flags so that we can detect shutdowns */
|
|
rqf_last = s->req->flags;
|
|
rpf_last = s->rep->flags;
|
|
|
|
/* we don't want the stream interface functions to recursively wake us up */
|
|
if (s->req->prod->owner == t)
|
|
s->req->prod->flags |= SI_FL_DONT_WAKE;
|
|
if (s->req->cons->owner == t)
|
|
s->req->cons->flags |= SI_FL_DONT_WAKE;
|
|
|
|
/* 1a: Check for low level timeouts if needed. We just set a flag on
|
|
* stream interfaces when their timeouts have expired.
|
|
*/
|
|
if (unlikely(t->state & TASK_WOKEN_TIMER)) {
|
|
stream_int_check_timeouts(&s->si[0]);
|
|
stream_int_check_timeouts(&s->si[1]);
|
|
|
|
/* check buffer timeouts, and close the corresponding stream interfaces
|
|
* for future reads or writes. Note: this will also concern upper layers
|
|
* but we do not touch any other flag. We must be careful and correctly
|
|
* detect state changes when calling them.
|
|
*/
|
|
|
|
buffer_check_timeouts(s->req);
|
|
|
|
if (unlikely((s->req->flags & (BF_SHUTW|BF_WRITE_TIMEOUT)) == BF_WRITE_TIMEOUT)) {
|
|
s->req->cons->flags |= SI_FL_NOLINGER;
|
|
s->req->cons->shutw(s->req->cons);
|
|
}
|
|
|
|
if (unlikely((s->req->flags & (BF_SHUTR|BF_READ_TIMEOUT)) == BF_READ_TIMEOUT))
|
|
s->req->prod->shutr(s->req->prod);
|
|
|
|
buffer_check_timeouts(s->rep);
|
|
|
|
if (unlikely((s->rep->flags & (BF_SHUTW|BF_WRITE_TIMEOUT)) == BF_WRITE_TIMEOUT)) {
|
|
s->rep->cons->flags |= SI_FL_NOLINGER;
|
|
s->rep->cons->shutw(s->rep->cons);
|
|
}
|
|
|
|
if (unlikely((s->rep->flags & (BF_SHUTR|BF_READ_TIMEOUT)) == BF_READ_TIMEOUT))
|
|
s->rep->prod->shutr(s->rep->prod);
|
|
}
|
|
|
|
/* 1b: check for low-level errors reported at the stream interface.
|
|
* First we check if it's a retryable error (in which case we don't
|
|
* want to tell the buffer). Otherwise we report the error one level
|
|
* upper by setting flags into the buffers. Note that the side towards
|
|
* the client cannot have connect (hence retryable) errors. Also, the
|
|
* connection setup code must be able to deal with any type of abort.
|
|
*/
|
|
if (unlikely(s->si[0].flags & SI_FL_ERR)) {
|
|
if (s->si[0].state == SI_ST_EST || s->si[0].state == SI_ST_DIS) {
|
|
s->si[0].shutr(&s->si[0]);
|
|
s->si[0].shutw(&s->si[0]);
|
|
stream_int_report_error(&s->si[0]);
|
|
if (!(s->req->analysers) && !(s->rep->analysers)) {
|
|
if (!(s->flags & SN_ERR_MASK))
|
|
s->flags |= SN_ERR_CLICL;
|
|
if (!(s->flags & SN_FINST_MASK))
|
|
s->flags |= SN_FINST_D;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (unlikely(s->si[1].flags & SI_FL_ERR)) {
|
|
if (s->si[1].state == SI_ST_EST || s->si[1].state == SI_ST_DIS) {
|
|
s->si[1].shutr(&s->si[1]);
|
|
s->si[1].shutw(&s->si[1]);
|
|
stream_int_report_error(&s->si[1]);
|
|
s->be->counters.failed_resp++;
|
|
if (s->srv)
|
|
s->srv->counters.failed_resp++;
|
|
if (!(s->req->analysers) && !(s->rep->analysers)) {
|
|
if (!(s->flags & SN_ERR_MASK))
|
|
s->flags |= SN_ERR_SRVCL;
|
|
if (!(s->flags & SN_FINST_MASK))
|
|
s->flags |= SN_FINST_D;
|
|
}
|
|
}
|
|
/* note: maybe we should process connection errors here ? */
|
|
}
|
|
|
|
if (s->si[1].state == SI_ST_CON) {
|
|
/* we were trying to establish a connection on the server side,
|
|
* maybe it succeeded, maybe it failed, maybe we timed out, ...
|
|
*/
|
|
if (unlikely(!sess_update_st_con_tcp(s, &s->si[1])))
|
|
sess_update_st_cer(s, &s->si[1]);
|
|
else if (s->si[1].state == SI_ST_EST)
|
|
sess_establish(s, &s->si[1]);
|
|
|
|
/* state is now one of SI_ST_CON (still in progress), SI_ST_EST
|
|
* (established), SI_ST_DIS (abort), SI_ST_CLO (last error),
|
|
* SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors.
|
|
*/
|
|
}
|
|
|
|
resync_stream_interface:
|
|
/* Check for connection closure */
|
|
|
|
DPRINTF(stderr,
|
|
"[%u] %s:%d: task=%p s=%p, sfl=0x%08x, rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rql=%d rpl=%d cs=%d ss=%d, cet=0x%x set=0x%x retr=%d\n",
|
|
now_ms, __FUNCTION__, __LINE__,
|
|
t,
|
|
s, s->flags,
|
|
s->req, s->rep,
|
|
s->req->rex, s->rep->wex,
|
|
s->req->flags, s->rep->flags,
|
|
s->req->l, s->rep->l, s->rep->cons->state, s->req->cons->state,
|
|
s->rep->cons->err_type, s->req->cons->err_type,
|
|
s->conn_retries);
|
|
|
|
/* nothing special to be done on client side */
|
|
if (unlikely(s->req->prod->state == SI_ST_DIS))
|
|
s->req->prod->state = SI_ST_CLO;
|
|
|
|
/* When a server-side connection is released, we have to count it and
|
|
* check for pending connections on this server.
|
|
*/
|
|
if (unlikely(s->req->cons->state == SI_ST_DIS)) {
|
|
s->req->cons->state = SI_ST_CLO;
|
|
if (s->srv) {
|
|
if (s->flags & SN_CURR_SESS) {
|
|
s->flags &= ~SN_CURR_SESS;
|
|
s->srv->cur_sess--;
|
|
}
|
|
sess_change_server(s, NULL);
|
|
if (may_dequeue_tasks(s->srv, s->be))
|
|
process_srv_queue(s->srv);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note: of the transient states (REQ, CER, DIS), only REQ may remain
|
|
* at this point.
|
|
*/
|
|
|
|
resync_request:
|
|
/* Analyse request */
|
|
if ((s->req->flags & BF_MASK_ANALYSER) ||
|
|
(s->req->flags ^ rqf_last) & BF_MASK_STATIC) {
|
|
unsigned int flags = s->req->flags;
|
|
|
|
if (s->req->prod->state >= SI_ST_EST) {
|
|
int max_loops = global.tune.maxpollevents;
|
|
unsigned int ana_list;
|
|
unsigned int ana_back;
|
|
|
|
/* it's up to the analysers to stop new connections,
|
|
* disable reading or closing. Note: if an analyser
|
|
* disables any of these bits, it is responsible for
|
|
* enabling them again when it disables itself, so
|
|
* that other analysers are called in similar conditions.
|
|
*/
|
|
buffer_auto_read(s->req);
|
|
buffer_auto_connect(s->req);
|
|
buffer_auto_close(s->req);
|
|
|
|
/* We will call all analysers for which a bit is set in
|
|
* s->req->analysers, following the bit order from LSB
|
|
* to MSB. The analysers must remove themselves from
|
|
* the list when not needed. Any analyser may return 0
|
|
* to break out of the loop, either because of missing
|
|
* data to take a decision, or because it decides to
|
|
* kill the session. We loop at least once through each
|
|
* analyser, and we may loop again if other analysers
|
|
* are added in the middle.
|
|
*
|
|
* We build a list of analysers to run. We evaluate all
|
|
* of these analysers in the order of the lower bit to
|
|
* the higher bit. This ordering is very important.
|
|
* An analyser will often add/remove other analysers,
|
|
* including itself. Any changes to itself have no effect
|
|
* on the loop. If it removes any other analysers, we
|
|
* want those analysers not to be called anymore during
|
|
* this loop. If it adds an analyser that is located
|
|
* after itself, we want it to be scheduled for being
|
|
* processed during the loop. If it adds an analyser
|
|
* which is located before it, we want it to switch to
|
|
* it immediately, even if it has already been called
|
|
* once but removed since.
|
|
*
|
|
* In order to achieve this, we compare the analyser
|
|
* list after the call with a copy of it before the
|
|
* call. The work list is fed with analyser bits that
|
|
* appeared during the call. Then we compare previous
|
|
* work list with the new one, and check the bits that
|
|
* appeared. If the lowest of these bits is lower than
|
|
* the current bit, it means we have enabled a previous
|
|
* analyser and must immediately loop again.
|
|
*/
|
|
|
|
ana_list = ana_back = s->req->analysers;
|
|
while (ana_list && max_loops--) {
|
|
/* Warning! ensure that analysers are always placed in ascending order! */
|
|
|
|
if (ana_list & AN_REQ_INSPECT) {
|
|
if (!tcp_inspect_request(s, s->req, AN_REQ_INSPECT))
|
|
break;
|
|
UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_INSPECT);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_WAIT_HTTP) {
|
|
if (!http_wait_for_request(s, s->req, AN_REQ_WAIT_HTTP))
|
|
break;
|
|
UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_WAIT_HTTP);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_HTTP_PROCESS_FE) {
|
|
if (!http_process_req_common(s, s->req, AN_REQ_HTTP_PROCESS_FE, s->fe))
|
|
break;
|
|
UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_SWITCHING_RULES) {
|
|
if (!process_switching_rules(s, s->req, AN_REQ_SWITCHING_RULES))
|
|
break;
|
|
UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_SWITCHING_RULES);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_HTTP_PROCESS_BE) {
|
|
if (!http_process_req_common(s, s->req, AN_REQ_HTTP_PROCESS_BE, s->be))
|
|
break;
|
|
UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_HTTP_TARPIT) {
|
|
if (!http_process_tarpit(s, s->req, AN_REQ_HTTP_TARPIT))
|
|
break;
|
|
UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_TARPIT);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_HTTP_INNER) {
|
|
if (!http_process_request(s, s->req, AN_REQ_HTTP_INNER))
|
|
break;
|
|
UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_INNER);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_HTTP_BODY) {
|
|
if (!http_process_request_body(s, s->req, AN_REQ_HTTP_BODY))
|
|
break;
|
|
UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_BODY);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_PRST_RDP_COOKIE) {
|
|
if (!tcp_persist_rdp_cookie(s, s->req, AN_REQ_PRST_RDP_COOKIE))
|
|
break;
|
|
UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_STICKING_RULES) {
|
|
if (!process_sticking_rules(s, s->req, AN_REQ_STICKING_RULES))
|
|
break;
|
|
UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_STICKING_RULES);
|
|
}
|
|
|
|
if (ana_list & AN_REQ_HTTP_XFER_BODY) {
|
|
if (!http_request_forward_body(s, s->req, AN_REQ_HTTP_XFER_BODY))
|
|
break;
|
|
UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((s->req->flags ^ flags) & BF_MASK_STATIC) {
|
|
rqf_last = s->req->flags;
|
|
goto resync_request;
|
|
}
|
|
}
|
|
|
|
/* we'll monitor the request analysers while parsing the response,
|
|
* because some response analysers may indirectly enable new request
|
|
* analysers (eg: HTTP keep-alive).
|
|
*/
|
|
req_ana_back = s->req->analysers;
|
|
|
|
resync_response:
|
|
/* Analyse response */
|
|
|
|
if (unlikely(s->rep->flags & BF_HIJACK)) {
|
|
/* In inject mode, we wake up everytime something has
|
|
* happened on the write side of the buffer.
|
|
*/
|
|
unsigned int flags = s->rep->flags;
|
|
|
|
if ((s->rep->flags & (BF_WRITE_PARTIAL|BF_WRITE_ERROR|BF_SHUTW)) &&
|
|
!(s->rep->flags & BF_FULL)) {
|
|
s->rep->hijacker(s, s->rep);
|
|
}
|
|
|
|
if ((s->rep->flags ^ flags) & BF_MASK_STATIC) {
|
|
rpf_last = s->rep->flags;
|
|
goto resync_response;
|
|
}
|
|
}
|
|
else if ((s->rep->flags & BF_MASK_ANALYSER) ||
|
|
(s->rep->flags ^ rpf_last) & BF_MASK_STATIC) {
|
|
unsigned int flags = s->rep->flags;
|
|
|
|
if (s->rep->prod->state >= SI_ST_EST) {
|
|
int max_loops = global.tune.maxpollevents;
|
|
unsigned int ana_list;
|
|
unsigned int ana_back;
|
|
|
|
/* it's up to the analysers to stop disable reading or
|
|
* closing. Note: if an analyser disables any of these
|
|
* bits, it is responsible for enabling them again when
|
|
* it disables itself, so that other analysers are called
|
|
* in similar conditions.
|
|
*/
|
|
buffer_auto_read(s->rep);
|
|
buffer_auto_close(s->rep);
|
|
|
|
/* We will call all analysers for which a bit is set in
|
|
* s->rep->analysers, following the bit order from LSB
|
|
* to MSB. The analysers must remove themselves from
|
|
* the list when not needed. Any analyser may return 0
|
|
* to break out of the loop, either because of missing
|
|
* data to take a decision, or because it decides to
|
|
* kill the session. We loop at least once through each
|
|
* analyser, and we may loop again if other analysers
|
|
* are added in the middle.
|
|
*/
|
|
|
|
ana_list = ana_back = s->rep->analysers;
|
|
while (ana_list && max_loops--) {
|
|
if (!ana_list)
|
|
break;
|
|
|
|
/* Warning! ensure that analysers are always placed in ascending order! */
|
|
|
|
if (ana_list & AN_RES_WAIT_HTTP) {
|
|
if (!http_wait_for_response(s, s->rep, AN_RES_WAIT_HTTP))
|
|
break;
|
|
UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_WAIT_HTTP);
|
|
}
|
|
|
|
if (ana_list & AN_RES_STORE_RULES) {
|
|
if (!process_store_rules(s, s->rep, AN_RES_STORE_RULES))
|
|
break;
|
|
UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_STORE_RULES);
|
|
}
|
|
|
|
if (ana_list & AN_RES_HTTP_PROCESS_BE) {
|
|
if (!http_process_res_common(s, s->rep, AN_RES_HTTP_PROCESS_BE, s->be))
|
|
break;
|
|
UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE);
|
|
}
|
|
|
|
if (ana_list & AN_RES_HTTP_XFER_BODY) {
|
|
if (!http_response_forward_body(s, s->rep, AN_RES_HTTP_XFER_BODY))
|
|
break;
|
|
UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_HTTP_XFER_BODY);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((s->rep->flags ^ flags) & BF_MASK_STATIC) {
|
|
rpf_last = s->rep->flags;
|
|
goto resync_response;
|
|
}
|
|
}
|
|
|
|
/* maybe someone has added some request analysers, so we must check and loop */
|
|
if (s->req->analysers & ~req_ana_back)
|
|
goto resync_request;
|
|
|
|
/* FIXME: here we should call protocol handlers which rely on
|
|
* both buffers.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Now we propagate unhandled errors to the session
|
|
*/
|
|
if (!(s->flags & SN_ERR_MASK)) {
|
|
if (s->req->flags & (BF_READ_ERROR|BF_READ_TIMEOUT|BF_WRITE_ERROR|BF_WRITE_TIMEOUT)) {
|
|
/* Report it if the client got an error or a read timeout expired */
|
|
s->req->analysers = 0;
|
|
if (s->req->flags & BF_READ_ERROR)
|
|
s->flags |= SN_ERR_CLICL;
|
|
else if (s->req->flags & BF_READ_TIMEOUT)
|
|
s->flags |= SN_ERR_CLITO;
|
|
else if (s->req->flags & BF_WRITE_ERROR)
|
|
s->flags |= SN_ERR_SRVCL;
|
|
else
|
|
s->flags |= SN_ERR_SRVTO;
|
|
sess_set_term_flags(s);
|
|
}
|
|
else if (s->rep->flags & (BF_READ_ERROR|BF_READ_TIMEOUT|BF_WRITE_ERROR|BF_WRITE_TIMEOUT)) {
|
|
/* Report it if the server got an error or a read timeout expired */
|
|
s->rep->analysers = 0;
|
|
if (s->rep->flags & BF_READ_ERROR)
|
|
s->flags |= SN_ERR_SRVCL;
|
|
else if (s->rep->flags & BF_READ_TIMEOUT)
|
|
s->flags |= SN_ERR_SRVTO;
|
|
else if (s->rep->flags & BF_WRITE_ERROR)
|
|
s->flags |= SN_ERR_CLICL;
|
|
else
|
|
s->flags |= SN_ERR_CLITO;
|
|
sess_set_term_flags(s);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Here we take care of forwarding unhandled data. This also includes
|
|
* connection establishments and shutdown requests.
|
|
*/
|
|
|
|
|
|
/* If noone is interested in analysing data, it's time to forward
|
|
* everything. We configure the buffer to forward indefinitely.
|
|
*/
|
|
if (!s->req->analysers &&
|
|
!(s->req->flags & (BF_HIJACK|BF_SHUTW|BF_SHUTW_NOW)) &&
|
|
(s->req->prod->state >= SI_ST_EST) &&
|
|
(s->req->to_forward != BUF_INFINITE_FORWARD)) {
|
|
/* This buffer is freewheeling, there's no analyser nor hijacker
|
|
* attached to it. If any data are left in, we'll permit them to
|
|
* move.
|
|
*/
|
|
buffer_auto_read(s->req);
|
|
buffer_auto_connect(s->req);
|
|
buffer_auto_close(s->req);
|
|
buffer_flush(s->req);
|
|
|
|
/* If the producer is still connected, we'll enable data to flow
|
|
* from the producer to the consumer (which might possibly not be
|
|
* connected yet).
|
|
*/
|
|
if (!(s->req->flags & (BF_SHUTR|BF_SHUTW|BF_SHUTW_NOW)))
|
|
buffer_forward(s->req, BUF_INFINITE_FORWARD);
|
|
}
|
|
|
|
/* check if it is wise to enable kernel splicing to forward request data */
|
|
if (!(s->req->flags & (BF_KERN_SPLICING|BF_SHUTR)) &&
|
|
s->req->to_forward &&
|
|
(global.tune.options & GTUNE_USE_SPLICE) &&
|
|
(s->si[0].flags & s->si[1].flags & SI_FL_CAP_SPLICE) &&
|
|
(pipes_used < global.maxpipes) &&
|
|
(((s->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) ||
|
|
(((s->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
|
|
(s->req->flags & BF_STREAMER_FAST)))) {
|
|
s->req->flags |= BF_KERN_SPLICING;
|
|
}
|
|
|
|
/* reflect what the L7 analysers have seen last */
|
|
rqf_last = s->req->flags;
|
|
|
|
/*
|
|
* Now forward all shutdown requests between both sides of the buffer
|
|
*/
|
|
|
|
/* first, let's check if the request buffer needs to shutdown(write), which may
|
|
* happen either because the input is closed or because we want to force a close
|
|
* once the server has begun to respond.
|
|
*/
|
|
if (unlikely((s->req->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_HIJACK|BF_AUTO_CLOSE|BF_SHUTR)) ==
|
|
(BF_AUTO_CLOSE|BF_SHUTR)))
|
|
buffer_shutw_now(s->req);
|
|
|
|
/* shutdown(write) pending */
|
|
if (unlikely((s->req->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_OUT_EMPTY)) == (BF_SHUTW_NOW|BF_OUT_EMPTY)))
|
|
s->req->cons->shutw(s->req->cons);
|
|
|
|
/* shutdown(write) done on server side, we must stop the client too */
|
|
if (unlikely((s->req->flags & (BF_SHUTW|BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTW &&
|
|
!s->req->analysers))
|
|
buffer_shutr_now(s->req);
|
|
|
|
/* shutdown(read) pending */
|
|
if (unlikely((s->req->flags & (BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTR_NOW))
|
|
s->req->prod->shutr(s->req->prod);
|
|
|
|
/* it's possible that an upper layer has requested a connection setup or abort.
|
|
* There are 2 situations where we decide to establish a new connection :
|
|
* - there are data scheduled for emission in the buffer
|
|
* - the BF_AUTO_CONNECT flag is set (active connection)
|
|
*/
|
|
if (s->req->cons->state == SI_ST_INI) {
|
|
if (!(s->req->flags & (BF_SHUTW|BF_SHUTW_NOW))) {
|
|
if ((s->req->flags & (BF_AUTO_CONNECT|BF_OUT_EMPTY)) != BF_OUT_EMPTY) {
|
|
/* If we have a ->connect method, we need to perform a connection request,
|
|
* otherwise we immediately switch to the connected state.
|
|
*/
|
|
if (s->req->cons->connect)
|
|
s->req->cons->state = SI_ST_REQ; /* new connection requested */
|
|
else
|
|
s->req->cons->state = SI_ST_EST; /* connection established */
|
|
}
|
|
}
|
|
else {
|
|
s->req->cons->state = SI_ST_CLO; /* shutw+ini = abort */
|
|
buffer_shutw_now(s->req); /* fix buffer flags upon abort */
|
|
buffer_shutr_now(s->rep);
|
|
}
|
|
}
|
|
|
|
|
|
/* we may have a pending connection request, or a connection waiting
|
|
* for completion.
|
|
*/
|
|
if (s->si[1].state >= SI_ST_REQ && s->si[1].state < SI_ST_CON) {
|
|
do {
|
|
/* nb: step 1 might switch from QUE to ASS, but we first want
|
|
* to give a chance to step 2 to perform a redirect if needed.
|
|
*/
|
|
if (s->si[1].state != SI_ST_REQ)
|
|
sess_update_stream_int(s, &s->si[1]);
|
|
if (s->si[1].state == SI_ST_REQ)
|
|
sess_prepare_conn_req(s, &s->si[1]);
|
|
|
|
if (s->si[1].state == SI_ST_ASS && s->srv &&
|
|
s->srv->rdr_len && (s->flags & SN_REDIRECTABLE))
|
|
perform_http_redirect(s, &s->si[1]);
|
|
} while (s->si[1].state == SI_ST_ASS);
|
|
}
|
|
|
|
/* Benchmarks have shown that it's optimal to do a full resync now */
|
|
if (s->req->prod->state == SI_ST_DIS || s->req->cons->state == SI_ST_DIS)
|
|
goto resync_stream_interface;
|
|
|
|
/* otherwise wewant to check if we need to resync the req buffer or not */
|
|
if ((s->req->flags ^ rqf_last) & BF_MASK_STATIC)
|
|
goto resync_request;
|
|
|
|
/* perform output updates to the response buffer */
|
|
|
|
/* If noone is interested in analysing data, it's time to forward
|
|
* everything. We configure the buffer to forward indefinitely.
|
|
*/
|
|
if (!s->rep->analysers &&
|
|
!(s->rep->flags & (BF_HIJACK|BF_SHUTW|BF_SHUTW_NOW)) &&
|
|
(s->rep->prod->state >= SI_ST_EST) &&
|
|
(s->rep->to_forward != BUF_INFINITE_FORWARD)) {
|
|
/* This buffer is freewheeling, there's no analyser nor hijacker
|
|
* attached to it. If any data are left in, we'll permit them to
|
|
* move.
|
|
*/
|
|
buffer_auto_read(s->rep);
|
|
buffer_auto_close(s->rep);
|
|
buffer_flush(s->rep);
|
|
if (!(s->rep->flags & (BF_SHUTR|BF_SHUTW|BF_SHUTW_NOW)))
|
|
buffer_forward(s->rep, BUF_INFINITE_FORWARD);
|
|
}
|
|
|
|
/* check if it is wise to enable kernel splicing to forward response data */
|
|
if (!(s->rep->flags & (BF_KERN_SPLICING|BF_SHUTR)) &&
|
|
s->rep->to_forward &&
|
|
(global.tune.options & GTUNE_USE_SPLICE) &&
|
|
(s->si[0].flags & s->si[1].flags & SI_FL_CAP_SPLICE) &&
|
|
(pipes_used < global.maxpipes) &&
|
|
(((s->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) ||
|
|
(((s->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) &&
|
|
(s->rep->flags & BF_STREAMER_FAST)))) {
|
|
s->rep->flags |= BF_KERN_SPLICING;
|
|
}
|
|
|
|
/* reflect what the L7 analysers have seen last */
|
|
rpf_last = s->rep->flags;
|
|
|
|
/*
|
|
* Now forward all shutdown requests between both sides of the buffer
|
|
*/
|
|
|
|
/*
|
|
* FIXME: this is probably where we should produce error responses.
|
|
*/
|
|
|
|
/* first, let's check if the response buffer needs to shutdown(write) */
|
|
if (unlikely((s->rep->flags & (BF_SHUTW|BF_SHUTW_NOW|BF_HIJACK|BF_AUTO_CLOSE|BF_SHUTR)) ==
|
|
(BF_AUTO_CLOSE|BF_SHUTR)))
|
|
buffer_shutw_now(s->rep);
|
|
|
|
/* shutdown(write) pending */
|
|
if (unlikely((s->rep->flags & (BF_SHUTW|BF_OUT_EMPTY|BF_SHUTW_NOW)) == (BF_OUT_EMPTY|BF_SHUTW_NOW)))
|
|
s->rep->cons->shutw(s->rep->cons);
|
|
|
|
/* shutdown(write) done on the client side, we must stop the server too */
|
|
if (unlikely((s->rep->flags & (BF_SHUTW|BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTW) &&
|
|
!s->rep->analysers)
|
|
buffer_shutr_now(s->rep);
|
|
|
|
/* shutdown(read) pending */
|
|
if (unlikely((s->rep->flags & (BF_SHUTR|BF_SHUTR_NOW)) == BF_SHUTR_NOW))
|
|
s->rep->prod->shutr(s->rep->prod);
|
|
|
|
if (s->req->prod->state == SI_ST_DIS || s->req->cons->state == SI_ST_DIS)
|
|
goto resync_stream_interface;
|
|
|
|
if (s->req->flags != rqf_last)
|
|
goto resync_request;
|
|
|
|
if ((s->rep->flags ^ rpf_last) & BF_MASK_STATIC)
|
|
goto resync_response;
|
|
|
|
/* we're interested in getting wakeups again */
|
|
s->req->prod->flags &= ~SI_FL_DONT_WAKE;
|
|
s->req->cons->flags &= ~SI_FL_DONT_WAKE;
|
|
|
|
/* This is needed only when debugging is enabled, to indicate
|
|
* client-side or server-side close. Please note that in the unlikely
|
|
* event where both sides would close at once, the sequence is reported
|
|
* on the server side first.
|
|
*/
|
|
if (unlikely((global.mode & MODE_DEBUG) &&
|
|
(!(global.mode & MODE_QUIET) ||
|
|
(global.mode & MODE_VERBOSE)))) {
|
|
int len;
|
|
|
|
if (s->si[1].state == SI_ST_CLO &&
|
|
s->si[1].prev_state == SI_ST_EST) {
|
|
len = sprintf(trash, "%08x:%s.srvcls[%04x:%04x]\n",
|
|
s->uniq_id, s->be->id,
|
|
(unsigned short)s->si[0].fd,
|
|
(unsigned short)s->si[1].fd);
|
|
write(1, trash, len);
|
|
}
|
|
|
|
if (s->si[0].state == SI_ST_CLO &&
|
|
s->si[0].prev_state == SI_ST_EST) {
|
|
len = sprintf(trash, "%08x:%s.clicls[%04x:%04x]\n",
|
|
s->uniq_id, s->be->id,
|
|
(unsigned short)s->si[0].fd,
|
|
(unsigned short)s->si[1].fd);
|
|
write(1, trash, len);
|
|
}
|
|
}
|
|
|
|
if (likely((s->rep->cons->state != SI_ST_CLO) ||
|
|
(s->req->cons->state > SI_ST_INI && s->req->cons->state < SI_ST_CLO))) {
|
|
|
|
if ((s->fe->options & PR_O_CONTSTATS) && (s->flags & SN_BE_ASSIGNED))
|
|
session_process_counters(s);
|
|
|
|
if (s->rep->cons->state == SI_ST_EST && !s->rep->cons->iohandler)
|
|
s->rep->cons->update(s->rep->cons);
|
|
|
|
if (s->req->cons->state == SI_ST_EST && !s->req->cons->iohandler)
|
|
s->req->cons->update(s->req->cons);
|
|
|
|
s->req->flags &= ~(BF_READ_NULL|BF_READ_PARTIAL|BF_WRITE_NULL|BF_WRITE_PARTIAL);
|
|
s->rep->flags &= ~(BF_READ_NULL|BF_READ_PARTIAL|BF_WRITE_NULL|BF_WRITE_PARTIAL);
|
|
s->si[0].prev_state = s->si[0].state;
|
|
s->si[1].prev_state = s->si[1].state;
|
|
s->si[0].flags &= ~(SI_FL_ERR|SI_FL_EXP);
|
|
s->si[1].flags &= ~(SI_FL_ERR|SI_FL_EXP);
|
|
|
|
/* Trick: if a request is being waiting for the server to respond,
|
|
* and if we know the server can timeout, we don't want the timeout
|
|
* to expire on the client side first, but we're still interested
|
|
* in passing data from the client to the server (eg: POST). Thus,
|
|
* we can cancel the client's request timeout if the server's
|
|
* request timeout is set and the server has not yet sent a response.
|
|
*/
|
|
|
|
if ((s->rep->flags & (BF_AUTO_CLOSE|BF_SHUTR)) == 0 &&
|
|
(tick_isset(s->req->wex) || tick_isset(s->rep->rex))) {
|
|
s->req->flags |= BF_READ_NOEXP;
|
|
s->req->rex = TICK_ETERNITY;
|
|
}
|
|
|
|
/* Call the second stream interface's I/O handler if it's embedded.
|
|
* Note that this one may wake the task up again.
|
|
*/
|
|
if (s->req->cons->iohandler) {
|
|
s->req->cons->iohandler(s->req->cons);
|
|
if (task_in_rq(t)) {
|
|
/* If we woke up, we don't want to requeue the
|
|
* task to the wait queue, but rather requeue
|
|
* it into the runqueue ASAP.
|
|
*/
|
|
t->expire = TICK_ETERNITY;
|
|
return t;
|
|
}
|
|
}
|
|
|
|
t->expire = tick_first(tick_first(s->req->rex, s->req->wex),
|
|
tick_first(s->rep->rex, s->rep->wex));
|
|
if (s->req->analysers)
|
|
t->expire = tick_first(t->expire, s->req->analyse_exp);
|
|
|
|
if (s->si[0].exp)
|
|
t->expire = tick_first(t->expire, s->si[0].exp);
|
|
|
|
if (s->si[1].exp)
|
|
t->expire = tick_first(t->expire, s->si[1].exp);
|
|
|
|
#ifdef DEBUG_FULL
|
|
fprintf(stderr,
|
|
"[%u] queuing with exp=%u req->rex=%u req->wex=%u req->ana_exp=%u"
|
|
" rep->rex=%u rep->wex=%u, si[0].exp=%u, si[1].exp=%u, cs=%d, ss=%d\n",
|
|
now_ms, t->expire, s->req->rex, s->req->wex, s->req->analyse_exp,
|
|
s->rep->rex, s->rep->wex, s->si[0].exp, s->si[1].exp, s->si[0].state, s->si[1].state);
|
|
#endif
|
|
|
|
#ifdef DEBUG_DEV
|
|
/* this may only happen when no timeout is set or in case of an FSM bug */
|
|
if (!tick_isset(t->expire))
|
|
ABORT_NOW();
|
|
#endif
|
|
return t; /* nothing more to do */
|
|
}
|
|
|
|
s->fe->feconn--;
|
|
if (s->flags & SN_BE_ASSIGNED)
|
|
s->be->beconn--;
|
|
actconn--;
|
|
s->listener->nbconn--;
|
|
if (s->listener->state == LI_FULL &&
|
|
s->listener->nbconn < s->listener->maxconn) {
|
|
/* we should reactivate the listener */
|
|
EV_FD_SET(s->listener->fd, DIR_RD);
|
|
s->listener->state = LI_READY;
|
|
}
|
|
|
|
if (unlikely((global.mode & MODE_DEBUG) &&
|
|
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) {
|
|
int len;
|
|
len = sprintf(trash, "%08x:%s.closed[%04x:%04x]\n",
|
|
s->uniq_id, s->be->id,
|
|
(unsigned short)s->req->prod->fd, (unsigned short)s->req->cons->fd);
|
|
write(1, trash, len);
|
|
}
|
|
|
|
s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
session_process_counters(s);
|
|
|
|
if (s->txn.status) {
|
|
int n;
|
|
|
|
n = s->txn.status / 100;
|
|
if (n < 1 || n > 5)
|
|
n = 0;
|
|
|
|
if (s->fe->mode == PR_MODE_HTTP)
|
|
s->fe->counters.p.http.rsp[n]++;
|
|
|
|
if ((s->flags & SN_BE_ASSIGNED) && (s->fe != s->be) &&
|
|
(s->be->mode == PR_MODE_HTTP))
|
|
s->be->counters.p.http.rsp[n]++;
|
|
}
|
|
|
|
/* let's do a final log if we need it */
|
|
if (s->logs.logwait &&
|
|
!(s->flags & SN_MONITOR) &&
|
|
(!(s->fe->options & PR_O_NULLNOLOG) || s->req->total)) {
|
|
s->do_log(s);
|
|
}
|
|
|
|
/* the task MUST not be in the run queue anymore */
|
|
session_free(s);
|
|
task_delete(t);
|
|
task_free(t);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* This function adjusts sess->srv_conn and maintains the previous and new
|
|
* server's served session counts. Setting newsrv to NULL is enough to release
|
|
* current connection slot. This function also notifies any LB algo which might
|
|
* expect to be informed about any change in the number of active sessions on a
|
|
* server.
|
|
*/
|
|
void sess_change_server(struct session *sess, struct server *newsrv)
|
|
{
|
|
if (sess->srv_conn == newsrv)
|
|
return;
|
|
|
|
if (sess->srv_conn) {
|
|
sess->srv_conn->served--;
|
|
if (sess->srv_conn->proxy->lbprm.server_drop_conn)
|
|
sess->srv_conn->proxy->lbprm.server_drop_conn(sess->srv_conn);
|
|
sess->srv_conn = NULL;
|
|
}
|
|
|
|
if (newsrv) {
|
|
newsrv->served++;
|
|
if (newsrv->proxy->lbprm.server_take_conn)
|
|
newsrv->proxy->lbprm.server_take_conn(newsrv);
|
|
sess->srv_conn = newsrv;
|
|
}
|
|
}
|
|
|
|
/* Set correct session termination flags in case no analyser has done it. It
|
|
* also counts a failed request if the server state has not reached the request
|
|
* stage.
|
|
*/
|
|
void sess_set_term_flags(struct session *s)
|
|
{
|
|
if (!(s->flags & SN_FINST_MASK)) {
|
|
if (s->si[1].state < SI_ST_REQ) {
|
|
|
|
s->fe->counters.failed_req++;
|
|
if (s->listener->counters)
|
|
s->listener->counters->failed_req++;
|
|
|
|
s->flags |= SN_FINST_R;
|
|
}
|
|
else if (s->si[1].state == SI_ST_QUE)
|
|
s->flags |= SN_FINST_Q;
|
|
else if (s->si[1].state < SI_ST_EST)
|
|
s->flags |= SN_FINST_C;
|
|
else if (s->si[1].state == SI_ST_EST)
|
|
s->flags |= SN_FINST_D;
|
|
else
|
|
s->flags |= SN_FINST_L;
|
|
}
|
|
}
|
|
|
|
/* Handle server-side errors for default protocols. It is called whenever a a
|
|
* connection setup is aborted or a request is aborted in queue. It sets the
|
|
* session termination flags so that the caller does not have to worry about
|
|
* them. It's installed as ->srv_error for the server-side stream_interface.
|
|
*/
|
|
void default_srv_error(struct session *s, struct stream_interface *si)
|
|
{
|
|
int err_type = si->err_type;
|
|
int err = 0, fin = 0;
|
|
|
|
if (err_type & SI_ET_QUEUE_ABRT) {
|
|
err = SN_ERR_CLICL;
|
|
fin = SN_FINST_Q;
|
|
}
|
|
else if (err_type & SI_ET_CONN_ABRT) {
|
|
err = SN_ERR_CLICL;
|
|
fin = SN_FINST_C;
|
|
}
|
|
else if (err_type & SI_ET_QUEUE_TO) {
|
|
err = SN_ERR_SRVTO;
|
|
fin = SN_FINST_Q;
|
|
}
|
|
else if (err_type & SI_ET_QUEUE_ERR) {
|
|
err = SN_ERR_SRVCL;
|
|
fin = SN_FINST_Q;
|
|
}
|
|
else if (err_type & SI_ET_CONN_TO) {
|
|
err = SN_ERR_SRVTO;
|
|
fin = SN_FINST_C;
|
|
}
|
|
else if (err_type & SI_ET_CONN_ERR) {
|
|
err = SN_ERR_SRVCL;
|
|
fin = SN_FINST_C;
|
|
}
|
|
else /* SI_ET_CONN_OTHER and others */ {
|
|
err = SN_ERR_INTERNAL;
|
|
fin = SN_FINST_C;
|
|
}
|
|
|
|
if (!(s->flags & SN_ERR_MASK))
|
|
s->flags |= err;
|
|
if (!(s->flags & SN_FINST_MASK))
|
|
s->flags |= fin;
|
|
}
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|