mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2025-08-06 15:17:01 +02:00
For now it's the same as abns. We'll need to modify sock_unix_addrcmp(), and a few other ones to support effective path length when dealing with the \0. Let's check with Tristan's patch for this (upcoming patch). Co-authored-by: Aurelien DARRAGON <adarragon@haproxy.com>
4198 lines
138 KiB
C
4198 lines
138 KiB
C
/*
|
|
* Stream management functions.
|
|
*
|
|
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
|
|
#include <import/ebistree.h>
|
|
|
|
#include <haproxy/acl.h>
|
|
#include <haproxy/action.h>
|
|
#include <haproxy/activity.h>
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/applet.h>
|
|
#include <haproxy/arg.h>
|
|
#include <haproxy/backend.h>
|
|
#include <haproxy/capture.h>
|
|
#include <haproxy/cfgparse.h>
|
|
#include <haproxy/channel.h>
|
|
#include <haproxy/check.h>
|
|
#include <haproxy/cli.h>
|
|
#include <haproxy/connection.h>
|
|
#include <haproxy/dict.h>
|
|
#include <haproxy/dynbuf.h>
|
|
#include <haproxy/fd.h>
|
|
#include <haproxy/filters.h>
|
|
#include <haproxy/freq_ctr.h>
|
|
#include <haproxy/frontend.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/hlua.h>
|
|
#include <haproxy/http_ana.h>
|
|
#include <haproxy/http_rules.h>
|
|
#include <haproxy/htx.h>
|
|
#include <haproxy/istbuf.h>
|
|
#include <haproxy/log.h>
|
|
#include <haproxy/pipe.h>
|
|
#include <haproxy/pool.h>
|
|
#include <haproxy/proxy.h>
|
|
#include <haproxy/queue.h>
|
|
#include <haproxy/sc_strm.h>
|
|
#include <haproxy/server.h>
|
|
#include <haproxy/resolvers.h>
|
|
#include <haproxy/sample.h>
|
|
#include <haproxy/session.h>
|
|
#include <haproxy/stats-t.h>
|
|
#include <haproxy/stconn.h>
|
|
#include <haproxy/stick_table.h>
|
|
#include <haproxy/stream.h>
|
|
#include <haproxy/task.h>
|
|
#include <haproxy/tcp_rules.h>
|
|
#include <haproxy/thread.h>
|
|
#include <haproxy/tools.h>
|
|
#include <haproxy/trace.h>
|
|
#include <haproxy/vars.h>
|
|
|
|
|
|
DECLARE_POOL(pool_head_stream, "stream", sizeof(struct stream));
|
|
DECLARE_POOL(pool_head_uniqueid, "uniqueid", UNIQUEID_LEN);
|
|
|
|
/* incremented by each "show sess" to fix a delimiter between streams */
|
|
unsigned stream_epoch = 0;
|
|
|
|
/* List of all use-service keywords. */
|
|
static struct list service_keywords = LIST_HEAD_INIT(service_keywords);
|
|
|
|
|
|
/* trace source and events */
|
|
static void strm_trace(enum trace_level level, uint64_t mask,
|
|
const struct trace_source *src,
|
|
const struct ist where, const struct ist func,
|
|
const void *a1, const void *a2, const void *a3, const void *a4);
|
|
|
|
/* The event representation is split like this :
|
|
* strm - stream
|
|
* sc - stream connector
|
|
* http - http analyzis
|
|
* tcp - tcp analyzis
|
|
*
|
|
* STRM_EV_* macros are defined in <proto/stream.h>
|
|
*/
|
|
static const struct trace_event strm_trace_events[] = {
|
|
{ .mask = STRM_EV_STRM_NEW, .name = "strm_new", .desc = "new stream" },
|
|
{ .mask = STRM_EV_STRM_FREE, .name = "strm_free", .desc = "release stream" },
|
|
{ .mask = STRM_EV_STRM_ERR, .name = "strm_err", .desc = "error during stream processing" },
|
|
{ .mask = STRM_EV_STRM_ANA, .name = "strm_ana", .desc = "stream analyzers" },
|
|
{ .mask = STRM_EV_STRM_PROC, .name = "strm_proc", .desc = "stream processing" },
|
|
|
|
{ .mask = STRM_EV_CS_ST, .name = "sc_state", .desc = "processing connector states" },
|
|
|
|
{ .mask = STRM_EV_HTTP_ANA, .name = "http_ana", .desc = "HTTP analyzers" },
|
|
{ .mask = STRM_EV_HTTP_ERR, .name = "http_err", .desc = "error during HTTP analyzis" },
|
|
|
|
{ .mask = STRM_EV_TCP_ANA, .name = "tcp_ana", .desc = "TCP analyzers" },
|
|
{ .mask = STRM_EV_TCP_ERR, .name = "tcp_err", .desc = "error during TCP analyzis" },
|
|
|
|
{ .mask = STRM_EV_FLT_ANA, .name = "flt_ana", .desc = "Filter analyzers" },
|
|
{ .mask = STRM_EV_FLT_ERR, .name = "flt_err", .desc = "error during filter analyzis" },
|
|
{}
|
|
};
|
|
|
|
static const struct name_desc strm_trace_lockon_args[4] = {
|
|
/* arg1 */ { /* already used by the stream */ },
|
|
/* arg2 */ { },
|
|
/* arg3 */ { },
|
|
/* arg4 */ { }
|
|
};
|
|
|
|
static const struct name_desc strm_trace_decoding[] = {
|
|
#define STRM_VERB_CLEAN 1
|
|
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
|
|
#define STRM_VERB_MINIMAL 2
|
|
{ .name="minimal", .desc="report info on streams and connectors" },
|
|
#define STRM_VERB_SIMPLE 3
|
|
{ .name="simple", .desc="add info on request and response channels" },
|
|
#define STRM_VERB_ADVANCED 4
|
|
{ .name="advanced", .desc="add info on channel's buffer for data and developer levels only" },
|
|
#define STRM_VERB_COMPLETE 5
|
|
{ .name="complete", .desc="add info on channel's buffer" },
|
|
{ /* end */ }
|
|
};
|
|
|
|
struct trace_source trace_strm = {
|
|
.name = IST("stream"),
|
|
.desc = "Applicative stream",
|
|
.arg_def = TRC_ARG1_STRM, // TRACE()'s first argument is always a stream
|
|
.default_cb = strm_trace,
|
|
.known_events = strm_trace_events,
|
|
.lockon_args = strm_trace_lockon_args,
|
|
.decoding = strm_trace_decoding,
|
|
.report_events = ~0, // report everything by default
|
|
};
|
|
|
|
#define TRACE_SOURCE &trace_strm
|
|
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
|
|
|
|
/* the stream traces always expect that arg1, if non-null, is of a stream (from
|
|
* which we can derive everything), that arg2, if non-null, is an http
|
|
* transaction, that arg3, if non-null, is an http message.
|
|
*/
|
|
static void strm_trace(enum trace_level level, uint64_t mask, const struct trace_source *src,
|
|
const struct ist where, const struct ist func,
|
|
const void *a1, const void *a2, const void *a3, const void *a4)
|
|
{
|
|
const struct stream *s = a1;
|
|
const struct http_txn *txn = a2;
|
|
const struct http_msg *msg = a3;
|
|
struct task *task;
|
|
const struct channel *req, *res;
|
|
struct htx *htx;
|
|
|
|
if (!s || src->verbosity < STRM_VERB_CLEAN)
|
|
return;
|
|
|
|
task = s->task;
|
|
req = &s->req;
|
|
res = &s->res;
|
|
htx = (msg ? htxbuf(&msg->chn->buf) : NULL);
|
|
|
|
/* General info about the stream (htx/tcp, id...) */
|
|
chunk_appendf(&trace_buf, " : [%u,%s]",
|
|
s->uniq_id, ((s->flags & SF_HTX) ? "HTX" : "TCP"));
|
|
if (isttest(s->unique_id)) {
|
|
chunk_appendf(&trace_buf, " id=");
|
|
b_putist(&trace_buf, s->unique_id);
|
|
}
|
|
|
|
/* Front and back stream connector state */
|
|
chunk_appendf(&trace_buf, " SC=(%s,%s)",
|
|
sc_state_str(s->scf->state), sc_state_str(s->scb->state));
|
|
|
|
/* If txn is defined, HTTP req/rep states */
|
|
if (txn)
|
|
chunk_appendf(&trace_buf, " HTTP=(%s,%s)",
|
|
h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state));
|
|
if (msg)
|
|
chunk_appendf(&trace_buf, " %s", ((msg->chn->flags & CF_ISRESP) ? "RESPONSE" : "REQUEST"));
|
|
|
|
if (src->verbosity == STRM_VERB_CLEAN)
|
|
return;
|
|
|
|
/* If msg defined, display status-line if possible (verbosity > MINIMAL) */
|
|
if (src->verbosity > STRM_VERB_MINIMAL && htx && htx_nbblks(htx)) {
|
|
const struct htx_blk *blk = __htx_get_head_blk(htx);
|
|
const struct htx_sl *sl = htx_get_blk_ptr(htx, blk);
|
|
enum htx_blk_type type = htx_get_blk_type(blk);
|
|
|
|
if (type == HTX_BLK_REQ_SL || type == HTX_BLK_RES_SL)
|
|
chunk_appendf(&trace_buf, " - \"%.*s %.*s %.*s\"",
|
|
HTX_SL_P1_LEN(sl), HTX_SL_P1_PTR(sl),
|
|
HTX_SL_P2_LEN(sl), HTX_SL_P2_PTR(sl),
|
|
HTX_SL_P3_LEN(sl), HTX_SL_P3_PTR(sl));
|
|
}
|
|
|
|
chunk_appendf(&trace_buf, " - t=%p t.exp=%d s=(%p,0x%08x,0x%x)",
|
|
task, tick_isset(task->expire) ? TICKS_TO_MS(task->expire - now_ms) : TICK_ETERNITY, s, s->flags, s->conn_err_type);
|
|
|
|
/* If txn defined info about HTTP msgs, otherwise info about SI. */
|
|
if (txn) {
|
|
chunk_appendf(&trace_buf, " txn.flags=0x%08x, http.flags=(0x%08x,0x%08x) status=%d",
|
|
txn->flags, txn->req.flags, txn->rsp.flags, txn->status);
|
|
}
|
|
else {
|
|
chunk_appendf(&trace_buf, " scf=(%p,%d,0x%08x,0x%x) scb=(%p,%d,0x%08x,0x%x) scf.exp(r,w)=(%d,%d) scb.exp(r,w)=(%d,%d) retries=%d",
|
|
s->scf, s->scf->state, s->scf->flags, s->scf->sedesc->flags,
|
|
s->scb, s->scb->state, s->scb->flags, s->scb->sedesc->flags,
|
|
tick_isset(sc_ep_rcv_ex(s->scf)) ? TICKS_TO_MS(sc_ep_rcv_ex(s->scf) - now_ms) : TICK_ETERNITY,
|
|
tick_isset(sc_ep_snd_ex(s->scf)) ? TICKS_TO_MS(sc_ep_snd_ex(s->scf) - now_ms) : TICK_ETERNITY,
|
|
tick_isset(sc_ep_rcv_ex(s->scb)) ? TICKS_TO_MS(sc_ep_rcv_ex(s->scb) - now_ms) : TICK_ETERNITY,
|
|
tick_isset(sc_ep_snd_ex(s->scb)) ? TICKS_TO_MS(sc_ep_snd_ex(s->scb) - now_ms) : TICK_ETERNITY,
|
|
s->conn_retries);
|
|
}
|
|
|
|
if (src->verbosity == STRM_VERB_MINIMAL)
|
|
return;
|
|
|
|
|
|
/* If txn defined, don't display all channel info */
|
|
if (src->verbosity == STRM_VERB_SIMPLE || txn) {
|
|
chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .exp=%d)",
|
|
req, req->flags, tick_isset(req->analyse_exp) ? TICKS_TO_MS(req->analyse_exp - now_ms) : TICK_ETERNITY);
|
|
chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .exp=%d)",
|
|
res, res->flags, tick_isset(res->analyse_exp) ? TICKS_TO_MS(res->analyse_exp - now_ms) : TICK_ETERNITY);
|
|
}
|
|
else {
|
|
chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .ana=0x%08x .exp=%u .o=%lu .tot=%llu .to_fwd=%u)",
|
|
req, req->flags, req->analysers, req->analyse_exp,
|
|
(long)req->output, req->total, req->to_forward);
|
|
chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .ana=0x%08x .exp=%u .o=%lu .tot=%llu .to_fwd=%u)",
|
|
res, res->flags, res->analysers, res->analyse_exp,
|
|
(long)res->output, res->total, res->to_forward);
|
|
}
|
|
|
|
if (src->verbosity == STRM_VERB_SIMPLE ||
|
|
(src->verbosity == STRM_VERB_ADVANCED && src->level < TRACE_LEVEL_DATA))
|
|
return;
|
|
|
|
/* channels' buffer info */
|
|
if (s->flags & SF_HTX) {
|
|
struct htx *rqhtx = htxbuf(&req->buf);
|
|
struct htx *rphtx = htxbuf(&res->buf);
|
|
|
|
chunk_appendf(&trace_buf, " htx=(%u/%u#%u, %u/%u#%u)",
|
|
rqhtx->data, rqhtx->size, htx_nbblks(rqhtx),
|
|
rphtx->data, rphtx->size, htx_nbblks(rphtx));
|
|
}
|
|
else {
|
|
chunk_appendf(&trace_buf, " buf=(%u@%p+%u/%u, %u@%p+%u/%u)",
|
|
(unsigned int)b_data(&req->buf), b_orig(&req->buf),
|
|
(unsigned int)b_head_ofs(&req->buf), (unsigned int)b_size(&req->buf),
|
|
(unsigned int)b_data(&res->buf), b_orig(&res->buf),
|
|
(unsigned int)b_head_ofs(&res->buf), (unsigned int)b_size(&res->buf));
|
|
}
|
|
|
|
/* If msg defined, display htx info if defined (level > USER) */
|
|
if (src->level > TRACE_LEVEL_USER && htx && htx_nbblks(htx)) {
|
|
int full = 0;
|
|
|
|
/* Full htx info (level > STATE && verbosity > SIMPLE) */
|
|
if (src->level > TRACE_LEVEL_STATE) {
|
|
if (src->verbosity == STRM_VERB_COMPLETE)
|
|
full = 1;
|
|
}
|
|
|
|
chunk_memcat(&trace_buf, "\n\t", 2);
|
|
htx_dump(&trace_buf, htx, full);
|
|
}
|
|
}
|
|
|
|
/* Upgrade an existing stream for stream connector <sc>. Return < 0 on error. This
|
|
* is only valid right after a TCP to H1 upgrade. The stream should be
|
|
* "reativated" by removing SF_IGNORE flag. And the right mode must be set. On
|
|
* success, <input> buffer is transferred to the stream and thus points to
|
|
* BUF_NULL. On error, it is unchanged and it is the caller responsibility to
|
|
* release it (this never happens for now).
|
|
*/
|
|
int stream_upgrade_from_sc(struct stconn *sc, struct buffer *input)
|
|
{
|
|
struct stream *s = __sc_strm(sc);
|
|
const struct mux_ops *mux = sc_mux_ops(sc);
|
|
|
|
if (mux) {
|
|
if (mux->flags & MX_FL_HTX)
|
|
s->flags |= SF_HTX;
|
|
}
|
|
|
|
if (!b_is_null(input)) {
|
|
/* Xfer the input buffer to the request channel. <input> will
|
|
* than point to BUF_NULL. From this point, it is the stream
|
|
* responsibility to release it.
|
|
*/
|
|
s->req.buf = *input;
|
|
*input = BUF_NULL;
|
|
s->req.total = (IS_HTX_STRM(s) ? htxbuf(&s->req.buf)->data : b_data(&s->req.buf));
|
|
sc_ep_report_read_activity(s->scf);
|
|
}
|
|
|
|
s->req.flags |= CF_READ_EVENT; /* Always report a read event */
|
|
s->flags &= ~SF_IGNORE;
|
|
|
|
task_wakeup(s->task, TASK_WOKEN_INIT);
|
|
return 0;
|
|
}
|
|
|
|
/* Callback used to wake up a stream when an input buffer is available. The
|
|
* stream <s>'s stream connectors are checked for a failed buffer allocation
|
|
* as indicated by the presence of the SC_FL_NEED_BUFF flag and the lack of a
|
|
* buffer, and and input buffer is assigned there (at most one). The function
|
|
* returns 1 and wakes the stream up if a buffer was taken, otherwise zero.
|
|
* It's designed to be called from __offer_buffer().
|
|
*/
|
|
int stream_buf_available(void *arg)
|
|
{
|
|
struct stream *s = arg;
|
|
|
|
if (!s->req.buf.size && !sc_ep_have_ff_data(s->scb) && s->scf->flags & SC_FL_NEED_BUFF)
|
|
sc_have_buff(s->scf);
|
|
|
|
if (!s->res.buf.size && !sc_ep_have_ff_data(s->scf) && s->scb->flags & SC_FL_NEED_BUFF)
|
|
sc_have_buff(s->scb);
|
|
|
|
s->flags |= SF_MAYALLOC;
|
|
task_wakeup(s->task, TASK_WOKEN_RES);
|
|
return 1;
|
|
|
|
}
|
|
|
|
/* This function is called from the session handler which detects the end of
|
|
* handshake, in order to complete initialization of a valid stream. It must be
|
|
* called with a completely initialized session. It returns the pointer to
|
|
* the newly created stream, or NULL in case of fatal error. The client-facing
|
|
* end point is assigned to <origin>, which must be valid. The stream's task
|
|
* is configured with a nice value inherited from the listener's nice if any.
|
|
* The task's context is set to the new stream, and its function is set to
|
|
* process_stream(). Target and analysers are null. <input> is used as input
|
|
* buffer for the request channel and may contain data. On success, it is
|
|
* transfer to the stream and <input> is set to BUF_NULL. On error, <input>
|
|
* buffer is unchanged and it is the caller responsibility to release it.
|
|
*/
|
|
struct stream *stream_new(struct session *sess, struct stconn *sc, struct buffer *input)
|
|
{
|
|
struct stream *s;
|
|
struct task *t;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_NEW);
|
|
if (unlikely((s = pool_alloc(pool_head_stream)) == NULL))
|
|
goto out_fail_alloc;
|
|
|
|
/* minimum stream initialization required for an embryonic stream is
|
|
* fairly low. We need very little to execute L4 ACLs, then we need a
|
|
* task to make the client-side connection live on its own.
|
|
* - flags
|
|
* - stick-entry tracking
|
|
*/
|
|
s->flags = 0;
|
|
s->logs.logwait = sess->fe->to_log;
|
|
s->logs.level = 0;
|
|
s->logs.request_ts = 0;
|
|
s->logs.t_queue = -1;
|
|
s->logs.t_connect = -1;
|
|
s->logs.t_data = -1;
|
|
s->logs.t_close = 0;
|
|
s->logs.bytes_in = s->logs.bytes_out = 0;
|
|
s->logs.prx_queue_pos = 0; /* we get the number of pending conns before us */
|
|
s->logs.srv_queue_pos = 0; /* we will get this number soon */
|
|
s->obj_type = OBJ_TYPE_STREAM;
|
|
|
|
s->logs.accept_date = sess->accept_date;
|
|
s->logs.accept_ts = sess->accept_ts;
|
|
s->logs.t_handshake = sess->t_handshake;
|
|
s->logs.t_idle = sess->t_idle;
|
|
|
|
/* default logging function */
|
|
s->do_log = strm_log;
|
|
|
|
/* default error reporting function, may be changed by analysers */
|
|
s->srv_error = default_srv_error;
|
|
|
|
/* Initialise the current rule list pointer to NULL. We are sure that
|
|
* any rulelist match the NULL pointer.
|
|
*/
|
|
s->current_rule_list = NULL;
|
|
s->current_rule = NULL;
|
|
s->rules_exp = TICK_ETERNITY;
|
|
s->last_rule_file = NULL;
|
|
s->last_rule_line = 0;
|
|
|
|
s->stkctr = NULL;
|
|
if (pool_head_stk_ctr) {
|
|
s->stkctr = pool_alloc(pool_head_stk_ctr);
|
|
if (!s->stkctr)
|
|
goto out_fail_alloc;
|
|
|
|
/* Copy SC counters for the stream. We don't touch refcounts because
|
|
* any reference we have is inherited from the session. Since the stream
|
|
* doesn't exist without the session, the session's existence guarantees
|
|
* we don't lose the entry. During the store operation, the stream won't
|
|
* touch these ones.
|
|
*/
|
|
memcpy(s->stkctr, sess->stkctr, sizeof(s->stkctr[0]) * global.tune.nb_stk_ctr);
|
|
}
|
|
|
|
s->sess = sess;
|
|
|
|
s->stream_epoch = _HA_ATOMIC_LOAD(&stream_epoch);
|
|
s->uniq_id = _HA_ATOMIC_FETCH_ADD(&global.req_count, 1);
|
|
|
|
/* OK, we're keeping the stream, so let's properly initialize the stream */
|
|
LIST_INIT(&s->back_refs);
|
|
|
|
LIST_INIT(&s->buffer_wait.list);
|
|
s->buffer_wait.target = s;
|
|
s->buffer_wait.wakeup_cb = stream_buf_available;
|
|
|
|
s->lat_time = s->cpu_time = 0;
|
|
s->call_rate.curr_tick = s->call_rate.curr_ctr = s->call_rate.prev_ctr = 0;
|
|
s->passes_stconn = s->passes_reqana = s->passes_resana = s->passes_propag = 0;
|
|
s->pcli_next_pid = 0;
|
|
s->pcli_flags = 0;
|
|
s->unique_id = IST_NULL;
|
|
s->parent = NULL;
|
|
if ((t = task_new_here()) == NULL)
|
|
goto out_fail_alloc;
|
|
|
|
s->task = t;
|
|
s->pending_events = 0;
|
|
s->conn_retries = 0;
|
|
s->max_retries = 0;
|
|
s->conn_exp = TICK_ETERNITY;
|
|
s->conn_err_type = STRM_ET_NONE;
|
|
s->prev_conn_state = SC_ST_INI;
|
|
t->process = process_stream;
|
|
t->context = s;
|
|
t->expire = TICK_ETERNITY;
|
|
if (sess->listener)
|
|
t->nice = sess->listener->bind_conf->nice;
|
|
|
|
/* Note: initially, the stream's backend points to the frontend.
|
|
* This changes later when switching rules are executed or
|
|
* when the default backend is assigned.
|
|
*/
|
|
s->be = sess->fe;
|
|
s->req_cap = NULL;
|
|
s->res_cap = NULL;
|
|
|
|
/* Initialize all the variables contexts even if not used.
|
|
* This permits to prune these contexts without errors.
|
|
*
|
|
* We need to make sure that those lists are not re-initialized
|
|
* by stream-dependant underlying code because we could lose
|
|
* track of already defined variables, leading to data inconsistency
|
|
* and memory leaks...
|
|
*
|
|
* For reference: we had a very old bug caused by vars_txn and
|
|
* vars_reqres being accidentally re-initialized in http_create_txn()
|
|
* (https://github.com/haproxy/haproxy/issues/1935)
|
|
*/
|
|
vars_init_head(&s->vars_txn, SCOPE_TXN);
|
|
vars_init_head(&s->vars_reqres, SCOPE_REQ);
|
|
|
|
/* Set SF_HTX flag for HTTP frontends. */
|
|
if (sess->fe->mode == PR_MODE_HTTP)
|
|
s->flags |= SF_HTX;
|
|
|
|
s->scf = sc;
|
|
if (sc_attach_strm(s->scf, s) < 0)
|
|
goto out_fail_attach_scf;
|
|
|
|
s->scb = sc_new_from_strm(s, SC_FL_ISBACK);
|
|
if (!s->scb)
|
|
goto out_fail_alloc_scb;
|
|
|
|
sc_set_state(s->scf, SC_ST_EST);
|
|
|
|
if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
|
|
s->scf->flags |= SC_FL_INDEP_STR;
|
|
|
|
if (likely(sess->fe->options2 & PR_O2_INDEPSTR))
|
|
s->scb->flags |= SC_FL_INDEP_STR;
|
|
|
|
if (sc_ep_test(sc, SE_FL_WEBSOCKET))
|
|
s->flags |= SF_WEBSOCKET;
|
|
if (sc_conn(sc)) {
|
|
const struct mux_ops *mux = sc_mux_ops(sc);
|
|
|
|
if (mux && mux->flags & MX_FL_HTX)
|
|
s->flags |= SF_HTX;
|
|
}
|
|
|
|
stream_init_srv_conn(s);
|
|
s->target = sess->fe->default_target;
|
|
|
|
s->pend_pos = NULL;
|
|
s->priority_class = 0;
|
|
s->priority_offset = 0;
|
|
|
|
/* init store persistence */
|
|
s->store_count = 0;
|
|
|
|
channel_init(&s->req);
|
|
s->req.flags |= CF_READ_EVENT; /* the producer is already connected */
|
|
s->req.analysers = sess->listener ? sess->listener->bind_conf->analysers : sess->fe->fe_req_ana;
|
|
|
|
if (IS_HTX_STRM(s)) {
|
|
/* Be sure to have HTTP analysers because in case of
|
|
* "destructive" stream upgrade, they may be missing (e.g
|
|
* TCP>H2)
|
|
*/
|
|
s->req.analysers |= AN_REQ_WAIT_HTTP|AN_REQ_HTTP_PROCESS_FE;
|
|
}
|
|
|
|
if (!sess->fe->fe_req_ana) {
|
|
channel_auto_connect(&s->req); /* don't wait to establish connection */
|
|
channel_auto_close(&s->req); /* let the producer forward close requests */
|
|
}
|
|
|
|
s->scf->ioto = sess->fe->timeout.client;
|
|
s->req.analyse_exp = TICK_ETERNITY;
|
|
|
|
channel_init(&s->res);
|
|
s->res.flags |= CF_ISRESP;
|
|
s->res.analysers = 0;
|
|
|
|
if (sess->fe->options2 & PR_O2_NODELAY) {
|
|
s->scf->flags |= SC_FL_SND_NEVERWAIT;
|
|
s->scb->flags |= SC_FL_SND_NEVERWAIT;
|
|
}
|
|
|
|
s->scb->ioto = TICK_ETERNITY;
|
|
s->res.analyse_exp = TICK_ETERNITY;
|
|
|
|
s->txn = NULL;
|
|
s->hlua[0] = s->hlua[1] = NULL;
|
|
|
|
s->resolv_ctx.requester = NULL;
|
|
s->resolv_ctx.hostname_dn = NULL;
|
|
s->resolv_ctx.hostname_dn_len = 0;
|
|
s->resolv_ctx.parent = NULL;
|
|
|
|
s->tunnel_timeout = TICK_ETERNITY;
|
|
|
|
LIST_APPEND(&th_ctx->streams, &s->list);
|
|
_HA_ATOMIC_INC(&th_ctx->total_streams);
|
|
_HA_ATOMIC_INC(&th_ctx->stream_cnt);
|
|
|
|
if (flt_stream_init(s) < 0 || flt_stream_start(s) < 0)
|
|
goto out_fail_accept;
|
|
|
|
/* just in case the caller would have pre-disabled it */
|
|
se_will_consume(s->scf->sedesc);
|
|
|
|
if (sess->fe->accept && sess->fe->accept(s) < 0)
|
|
goto out_fail_accept;
|
|
|
|
if (!b_is_null(input)) {
|
|
/* Xfer the input buffer to the request channel. <input> will
|
|
* than point to BUF_NULL. From this point, it is the stream
|
|
* responsibility to release it.
|
|
*/
|
|
s->req.buf = *input;
|
|
*input = BUF_NULL;
|
|
s->req.total = (IS_HTX_STRM(s) ? htxbuf(&s->req.buf)->data : b_data(&s->req.buf));
|
|
sc_ep_report_read_activity(s->scf);
|
|
}
|
|
|
|
/* it is important not to call the wakeup function directly but to
|
|
* pass through task_wakeup(), because this one knows how to apply
|
|
* priorities to tasks. Using multi thread we must be sure that
|
|
* stream is fully initialized before calling task_wakeup. So
|
|
* the caller must handle the task_wakeup
|
|
*/
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_NEW, s);
|
|
task_wakeup(s->task, TASK_WOKEN_INIT);
|
|
return s;
|
|
|
|
/* Error unrolling */
|
|
out_fail_accept:
|
|
flt_stream_release(s, 0);
|
|
LIST_DELETE(&s->list);
|
|
sc_free(s->scb);
|
|
out_fail_alloc_scb:
|
|
out_fail_attach_scf:
|
|
task_destroy(t);
|
|
out_fail_alloc:
|
|
if (s)
|
|
pool_free(pool_head_stk_ctr, s->stkctr);
|
|
pool_free(pool_head_stream, s);
|
|
DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_NEW|STRM_EV_STRM_ERR);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* frees the context associated to a stream. It must have been removed first.
|
|
*/
|
|
void stream_free(struct stream *s)
|
|
{
|
|
struct session *sess = strm_sess(s);
|
|
struct proxy *fe = sess->fe;
|
|
struct bref *bref, *back;
|
|
int i;
|
|
|
|
DBG_TRACE_POINT(STRM_EV_STRM_FREE, s);
|
|
|
|
/* detach the stream from its own task before even releasing it so
|
|
* that walking over a task list never exhibits a dying stream.
|
|
*/
|
|
s->task->context = NULL;
|
|
__ha_barrier_store();
|
|
|
|
pendconn_free(s);
|
|
|
|
if (objt_server(s->target)) { /* there may be requests left pending in queue */
|
|
if (s->flags & SF_CURR_SESS) {
|
|
s->flags &= ~SF_CURR_SESS;
|
|
_HA_ATOMIC_DEC(&__objt_server(s->target)->cur_sess);
|
|
}
|
|
if (may_dequeue_tasks(__objt_server(s->target), s->be))
|
|
process_srv_queue(__objt_server(s->target));
|
|
}
|
|
|
|
if (unlikely(s->srv_conn)) {
|
|
/* the stream still has a reserved slot on a server, but
|
|
* it should normally be only the same as the one above,
|
|
* so this should not happen in fact.
|
|
*/
|
|
sess_change_server(s, NULL);
|
|
}
|
|
|
|
/* We may still be present in the buffer wait queue */
|
|
b_dequeue(&s->buffer_wait);
|
|
|
|
if (s->req.buf.size || s->res.buf.size) {
|
|
int count = !!s->req.buf.size + !!s->res.buf.size;
|
|
|
|
b_free(&s->req.buf);
|
|
b_free(&s->res.buf);
|
|
offer_buffers(NULL, count);
|
|
}
|
|
|
|
pool_free(pool_head_uniqueid, s->unique_id.ptr);
|
|
s->unique_id = IST_NULL;
|
|
|
|
flt_stream_stop(s);
|
|
flt_stream_release(s, 0);
|
|
|
|
hlua_ctx_destroy(s->hlua[0]);
|
|
hlua_ctx_destroy(s->hlua[1]);
|
|
s->hlua[0] = s->hlua[1] = NULL;
|
|
|
|
if (s->txn)
|
|
http_destroy_txn(s);
|
|
|
|
/* ensure the client-side transport layer is destroyed */
|
|
/* Be sure it is useless !! */
|
|
/* if (cli_cs) */
|
|
/* cs_close(cli_cs); */
|
|
|
|
for (i = 0; i < s->store_count; i++) {
|
|
if (!s->store[i].ts)
|
|
continue;
|
|
stksess_free(s->store[i].table, s->store[i].ts);
|
|
s->store[i].ts = NULL;
|
|
}
|
|
|
|
if (s->resolv_ctx.requester) {
|
|
__decl_thread(struct resolvers *resolvers = s->resolv_ctx.parent->arg.resolv.resolvers);
|
|
|
|
HA_SPIN_LOCK(DNS_LOCK, &resolvers->lock);
|
|
ha_free(&s->resolv_ctx.hostname_dn);
|
|
s->resolv_ctx.hostname_dn_len = 0;
|
|
resolv_unlink_resolution(s->resolv_ctx.requester);
|
|
HA_SPIN_UNLOCK(DNS_LOCK, &resolvers->lock);
|
|
|
|
pool_free(resolv_requester_pool, s->resolv_ctx.requester);
|
|
s->resolv_ctx.requester = NULL;
|
|
}
|
|
|
|
if (fe) {
|
|
if (s->req_cap) {
|
|
struct cap_hdr *h;
|
|
for (h = fe->req_cap; h; h = h->next)
|
|
pool_free(h->pool, s->req_cap[h->index]);
|
|
pool_free(fe->req_cap_pool, s->req_cap);
|
|
}
|
|
|
|
if (s->res_cap) {
|
|
struct cap_hdr *h;
|
|
for (h = fe->rsp_cap; h; h = h->next)
|
|
pool_free(h->pool, s->res_cap[h->index]);
|
|
pool_free(fe->rsp_cap_pool, s->res_cap);
|
|
}
|
|
}
|
|
|
|
/* Cleanup all variable contexts. */
|
|
vars_prune(&s->vars_txn, s->sess, s);
|
|
vars_prune(&s->vars_reqres, s->sess, s);
|
|
|
|
stream_store_counters(s);
|
|
pool_free(pool_head_stk_ctr, s->stkctr);
|
|
|
|
list_for_each_entry_safe(bref, back, &s->back_refs, users) {
|
|
/* we have to unlink all watchers. We must not relink them if
|
|
* this stream was the last one in the list. This is safe to do
|
|
* here because we're touching our thread's list so we know
|
|
* that other streams are not active, and the watchers will
|
|
* only touch their node under thread isolation.
|
|
*/
|
|
LIST_DEL_INIT(&bref->users);
|
|
if (s->list.n != &th_ctx->streams)
|
|
LIST_APPEND(&LIST_ELEM(s->list.n, struct stream *, list)->back_refs, &bref->users);
|
|
bref->ref = s->list.n;
|
|
__ha_barrier_store();
|
|
}
|
|
LIST_DELETE(&s->list);
|
|
_HA_ATOMIC_DEC(&th_ctx->stream_cnt);
|
|
|
|
sc_destroy(s->scb);
|
|
sc_destroy(s->scf);
|
|
|
|
pool_free(pool_head_stream, s);
|
|
|
|
/* We may want to free the maximum amount of pools if the proxy is stopping */
|
|
if (fe && unlikely(fe->flags & (PR_FL_DISABLED|PR_FL_STOPPED))) {
|
|
pool_flush(pool_head_buffer);
|
|
pool_flush(pool_head_http_txn);
|
|
pool_flush(pool_head_requri);
|
|
pool_flush(pool_head_capture);
|
|
pool_flush(pool_head_stream);
|
|
pool_flush(pool_head_session);
|
|
pool_flush(pool_head_connection);
|
|
pool_flush(pool_head_pendconn);
|
|
pool_flush(fe->req_cap_pool);
|
|
pool_flush(fe->rsp_cap_pool);
|
|
}
|
|
}
|
|
|
|
|
|
/* Allocates a work buffer for stream <s>. It is meant to be called inside
|
|
* process_stream(). It will only allocate the side needed for the function
|
|
* to work fine, which is the response buffer so that an error message may be
|
|
* built and returned. Response buffers may be allocated from the reserve, this
|
|
* is critical to ensure that a response may always flow and will never block a
|
|
* server from releasing a connection. Returns 0 in case of failure, non-zero
|
|
* otherwise.
|
|
*/
|
|
static int stream_alloc_work_buffer(struct stream *s)
|
|
{
|
|
if (b_alloc(&s->res.buf, DB_CHANNEL | ((s->flags & SF_MAYALLOC) ? DB_F_NOQUEUE : 0))) {
|
|
s->flags &= ~SF_MAYALLOC;
|
|
return 1;
|
|
}
|
|
|
|
b_requeue(DB_CHANNEL, &s->buffer_wait);
|
|
return 0;
|
|
}
|
|
|
|
/* releases unused buffers after processing. Typically used at the end of the
|
|
* update() functions. It will try to wake up as many tasks/applets as the
|
|
* number of buffers that it releases. In practice, most often streams are
|
|
* blocked on a single buffer, so it makes sense to try to wake two up when two
|
|
* buffers are released at once.
|
|
*/
|
|
void stream_release_buffers(struct stream *s)
|
|
{
|
|
int offer = 0;
|
|
|
|
if (c_size(&s->req) && c_empty(&s->req)) {
|
|
offer++;
|
|
b_free(&s->req.buf);
|
|
}
|
|
if (c_size(&s->res) && c_empty(&s->res)) {
|
|
offer++;
|
|
b_free(&s->res.buf);
|
|
}
|
|
|
|
/* if we're certain to have at least 1 buffer available, and there is
|
|
* someone waiting, we can wake up a waiter and offer them.
|
|
*/
|
|
if (offer)
|
|
offer_buffers(s, offer);
|
|
}
|
|
|
|
void stream_process_counters(struct stream *s)
|
|
{
|
|
struct session *sess = s->sess;
|
|
unsigned long long bytes;
|
|
int i;
|
|
|
|
bytes = s->req.total - s->logs.bytes_in;
|
|
s->logs.bytes_in = s->req.total;
|
|
if (bytes) {
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_in, bytes);
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.bytes_in, bytes);
|
|
|
|
if (objt_server(s->target))
|
|
_HA_ATOMIC_ADD(&__objt_server(s->target)->counters.bytes_in, bytes);
|
|
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->bytes_in, bytes);
|
|
|
|
for (i = 0; i < global.tune.nb_stk_ctr; i++) {
|
|
if (!stkctr_inc_bytes_in_ctr(&s->stkctr[i], bytes))
|
|
stkctr_inc_bytes_in_ctr(&sess->stkctr[i], bytes);
|
|
}
|
|
}
|
|
|
|
bytes = s->res.total - s->logs.bytes_out;
|
|
s->logs.bytes_out = s->res.total;
|
|
if (bytes) {
|
|
_HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_out, bytes);
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.bytes_out, bytes);
|
|
|
|
if (objt_server(s->target))
|
|
_HA_ATOMIC_ADD(&__objt_server(s->target)->counters.bytes_out, bytes);
|
|
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_ADD(&sess->listener->counters->bytes_out, bytes);
|
|
|
|
for (i = 0; i < global.tune.nb_stk_ctr; i++) {
|
|
if (!stkctr_inc_bytes_out_ctr(&s->stkctr[i], bytes))
|
|
stkctr_inc_bytes_out_ctr(&sess->stkctr[i], bytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Abort processing on the both channels in same time */
|
|
void stream_abort(struct stream *s)
|
|
{
|
|
channel_abort(&s->req);
|
|
channel_abort(&s->res);
|
|
}
|
|
|
|
/*
|
|
* Returns a message to the client ; the connection is shut down for read,
|
|
* and the request is cleared so that no server connection can be initiated.
|
|
* The buffer is marked for read shutdown on the other side to protect the
|
|
* message, and the buffer write is enabled. The message is contained in a
|
|
* "chunk". If it is null, then an empty message is used. The reply buffer does
|
|
* not need to be empty before this, and its contents will not be overwritten.
|
|
* The primary goal of this function is to return error messages to a client.
|
|
*/
|
|
void stream_retnclose(struct stream *s, const struct buffer *msg)
|
|
{
|
|
struct channel *ic = &s->req;
|
|
struct channel *oc = &s->res;
|
|
|
|
channel_auto_read(ic);
|
|
channel_abort(ic);
|
|
channel_erase(ic);
|
|
channel_truncate(oc);
|
|
|
|
if (likely(msg && msg->data))
|
|
co_inject(oc, msg->area, msg->data);
|
|
|
|
channel_auto_read(oc);
|
|
channel_auto_close(oc);
|
|
sc_schedule_abort(s->scb);
|
|
}
|
|
|
|
int stream_set_timeout(struct stream *s, enum act_timeout_name name, int timeout)
|
|
{
|
|
switch (name) {
|
|
case ACT_TIMEOUT_CLIENT:
|
|
s->scf->ioto = timeout;
|
|
return 1;
|
|
|
|
case ACT_TIMEOUT_SERVER:
|
|
s->scb->ioto = timeout;
|
|
return 1;
|
|
|
|
case ACT_TIMEOUT_TUNNEL:
|
|
s->tunnel_timeout = timeout;
|
|
return 1;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function handles the transition between the SC_ST_CON state and the
|
|
* SC_ST_EST state. It must only be called after switching from SC_ST_CON (or
|
|
* SC_ST_INI or SC_ST_RDY) to SC_ST_EST, but only when a ->proto is defined.
|
|
* Note that it will switch the interface to SC_ST_DIS if we already have
|
|
* the SC_FL_ABRT_DONE flag, it means we were able to forward the request, and
|
|
* receive the response, before process_stream() had the opportunity to
|
|
* make the switch from SC_ST_CON to SC_ST_EST. When that happens, we want
|
|
* to go through back_establish() anyway, to make sure the analysers run.
|
|
* Timeouts are cleared. Error are reported on the channel so that analysers
|
|
* can handle them.
|
|
*/
|
|
void back_establish(struct stream *s)
|
|
{
|
|
struct connection *conn = sc_conn(s->scb);
|
|
struct channel *req = &s->req;
|
|
struct channel *rep = &s->res;
|
|
uint8_t do_log = 0;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
|
|
/* First, centralize the timers information, and clear any irrelevant
|
|
* timeout.
|
|
*/
|
|
s->logs.t_connect = ns_to_ms(now_ns - s->logs.accept_ts);
|
|
s->conn_exp = TICK_ETERNITY;
|
|
s->flags &= ~SF_CONN_EXP;
|
|
|
|
/* errors faced after sending data need to be reported */
|
|
if ((s->scb->flags & SC_FL_ERROR) && req->flags & CF_WROTE_DATA) {
|
|
s->req.flags |= CF_WRITE_EVENT;
|
|
s->res.flags |= CF_READ_EVENT;
|
|
s->conn_err_type = STRM_ET_DATA_ERR;
|
|
DBG_TRACE_STATE("read/write error", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
|
|
}
|
|
|
|
if (objt_server(s->target))
|
|
health_adjust(__objt_server(s->target), HANA_STATUS_L4_OK);
|
|
|
|
if (strm_fe(s)->to_log == LW_LOGSTEPS) {
|
|
if (log_orig_proxy(LOG_ORIG_TXN_CONNECT, strm_fe(s)))
|
|
do_log = 1;
|
|
}
|
|
|
|
if (!IS_HTX_STRM(s)) { /* let's allow immediate data connection in this case */
|
|
/* if the user wants to log as soon as possible, without counting
|
|
* bytes from the server, then this is the right moment. */
|
|
if (strm_fe(s)->to_log != LW_LOGSTEPS &&
|
|
!lf_expr_isempty(&strm_fe(s)->logformat) && !(s->logs.logwait & LW_BYTES))
|
|
do_log = 1;
|
|
}
|
|
else {
|
|
s->scb->flags |= SC_FL_RCV_ONCE; /* a single read is enough to get response headers */
|
|
}
|
|
|
|
if (do_log) {
|
|
/* note: no pend_pos here, session is established */
|
|
s->logs.t_close = s->logs.t_connect; /* to get a valid end date */
|
|
s->do_log(s, log_orig(LOG_ORIG_TXN_CONNECT, LOG_ORIG_FL_NONE));
|
|
}
|
|
|
|
rep->analysers |= strm_fe(s)->fe_rsp_ana | s->be->be_rsp_ana;
|
|
|
|
se_have_more_data(s->scb->sedesc);
|
|
rep->flags |= CF_READ_EVENT; /* producer is now attached */
|
|
sc_ep_report_read_activity(s->scb);
|
|
if (conn) {
|
|
/* real connections have timeouts
|
|
* if already defined, it means that a set-timeout rule has
|
|
* been executed so do not overwrite them
|
|
*/
|
|
if (!tick_isset(s->scb->ioto))
|
|
s->scb->ioto = s->be->timeout.server;
|
|
if (!tick_isset(s->tunnel_timeout))
|
|
s->tunnel_timeout = s->be->timeout.tunnel;
|
|
|
|
/* The connection is now established, try to read data from the
|
|
* underlying layer, and subscribe to recv events. We use a
|
|
* delayed recv here to give a chance to the data to flow back
|
|
* by the time we process other tasks.
|
|
*/
|
|
sc_chk_rcv(s->scb);
|
|
}
|
|
/* If we managed to get the whole response, and we don't have anything
|
|
* left to send, or can't, switch to SC_ST_DIS now. */
|
|
if ((s->scb->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) || (s->scf->flags & SC_FL_SHUT_DONE)) {
|
|
s->scb->state = SC_ST_DIS;
|
|
DBG_TRACE_STATE("response channel shutdwn for read/write", STRM_EV_STRM_PROC|STRM_EV_CS_ST|STRM_EV_STRM_ERR, s);
|
|
}
|
|
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_CS_ST, s);
|
|
}
|
|
|
|
/* Set correct stream termination flags in case no analyser has done it. It
|
|
* also counts a failed request if the server state has not reached the request
|
|
* stage.
|
|
*/
|
|
void sess_set_term_flags(struct stream *s)
|
|
{
|
|
if (!(s->flags & SF_FINST_MASK)) {
|
|
if (s->scb->state == SC_ST_INI) {
|
|
/* anything before REQ in fact */
|
|
_HA_ATOMIC_INC(&strm_fe(s)->fe_counters.failed_req);
|
|
if (strm_li(s) && strm_li(s)->counters)
|
|
_HA_ATOMIC_INC(&strm_li(s)->counters->failed_req);
|
|
|
|
s->flags |= SF_FINST_R;
|
|
}
|
|
else if (s->scb->state == SC_ST_QUE)
|
|
s->flags |= SF_FINST_Q;
|
|
else if (sc_state_in(s->scb->state, SC_SB_REQ|SC_SB_TAR|SC_SB_ASS|SC_SB_CON|SC_SB_CER|SC_SB_RDY))
|
|
s->flags |= SF_FINST_C;
|
|
else if (s->scb->state == SC_ST_EST || s->prev_conn_state == SC_ST_EST)
|
|
s->flags |= SF_FINST_D;
|
|
else
|
|
s->flags |= SF_FINST_L;
|
|
}
|
|
}
|
|
|
|
/* This function parses the use-service action ruleset. It executes
|
|
* the associated ACL and set an applet as a stream or txn final node.
|
|
* it returns ACT_RET_ERR if an error occurs, the proxy left in
|
|
* consistent state. It returns ACT_RET_STOP in success case because
|
|
* use-service must be a terminal action. Returns ACT_RET_YIELD
|
|
* if the initialisation function require more data.
|
|
*/
|
|
enum act_return process_use_service(struct act_rule *rule, struct proxy *px,
|
|
struct session *sess, struct stream *s, int flags)
|
|
|
|
{
|
|
struct appctx *appctx;
|
|
|
|
/* Initialises the applet if it is required. */
|
|
if (flags & ACT_OPT_FIRST) {
|
|
/* Register applet. this function schedules the applet. */
|
|
s->target = &rule->applet.obj_type;
|
|
appctx = sc_applet_create(s->scb, objt_applet(s->target));
|
|
if (unlikely(!appctx))
|
|
return ACT_RET_ERR;
|
|
|
|
/* Finish initialisation of the context. */
|
|
appctx->rule = rule;
|
|
if (appctx_init(appctx) == -1)
|
|
return ACT_RET_ERR;
|
|
}
|
|
else
|
|
appctx = __sc_appctx(s->scb);
|
|
|
|
if (rule->from != ACT_F_HTTP_REQ) {
|
|
if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */
|
|
_HA_ATOMIC_INC(&sess->fe->fe_counters.intercepted_req);
|
|
|
|
/* The flag SF_ASSIGNED prevent from server assignment. */
|
|
s->flags |= SF_ASSIGNED;
|
|
}
|
|
|
|
/* Now we can schedule the applet. */
|
|
applet_need_more_data(appctx);
|
|
appctx_wakeup(appctx);
|
|
return ACT_RET_STOP;
|
|
}
|
|
|
|
/* This stream analyser checks the switching rules and changes the backend
|
|
* if appropriate. The default_backend rule is also considered, then the
|
|
* target backend's forced persistence rules are also evaluated last if any.
|
|
* It returns 1 if the processing can continue on next analysers, or zero if it
|
|
* either needs more data or wants to immediately abort the request.
|
|
*/
|
|
static int process_switching_rules(struct stream *s, struct channel *req, int an_bit)
|
|
{
|
|
struct persist_rule *prst_rule;
|
|
struct session *sess = s->sess;
|
|
struct proxy *fe = sess->fe;
|
|
|
|
req->analysers &= ~an_bit;
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
|
|
|
|
/* now check whether we have some switching rules for this request */
|
|
if (!(s->flags & SF_BE_ASSIGNED)) {
|
|
struct switching_rule *rule;
|
|
|
|
list_for_each_entry(rule, &fe->switching_rules, list) {
|
|
int ret = 1;
|
|
|
|
if (rule->cond) {
|
|
ret = acl_exec_cond(rule->cond, fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
/* If the backend name is dynamic, try to resolve the name.
|
|
* If we can't resolve the name, or if any error occurs, break
|
|
* the loop and fallback to the default backend.
|
|
*/
|
|
struct proxy *backend = NULL;
|
|
|
|
if (rule->dynamic) {
|
|
struct buffer *tmp;
|
|
|
|
tmp = alloc_trash_chunk();
|
|
if (!tmp)
|
|
goto sw_failed;
|
|
|
|
if (build_logline(s, tmp->area, tmp->size, &rule->be.expr))
|
|
backend = proxy_be_by_name(tmp->area);
|
|
|
|
free_trash_chunk(tmp);
|
|
tmp = NULL;
|
|
|
|
if (!backend)
|
|
break;
|
|
}
|
|
else
|
|
backend = rule->be.backend;
|
|
|
|
if (!stream_set_backend(s, backend))
|
|
goto sw_failed;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* To ensure correct connection accounting on the backend, we
|
|
* have to assign one if it was not set (eg: a listen). This
|
|
* measure also takes care of correctly setting the default
|
|
* backend if any. Don't do anything if an upgrade is already in
|
|
* progress.
|
|
*/
|
|
if (!(s->flags & (SF_BE_ASSIGNED|SF_IGNORE)))
|
|
if (!stream_set_backend(s, fe->defbe.be ? fe->defbe.be : s->be))
|
|
goto sw_failed;
|
|
|
|
/* No backend assigned but no error reported. It happens when a
|
|
* TCP stream is upgraded to HTTP/2.
|
|
*/
|
|
if ((s->flags & (SF_BE_ASSIGNED|SF_IGNORE)) == SF_IGNORE) {
|
|
DBG_TRACE_DEVEL("leaving with no backend because of a destructive upgrade", STRM_EV_STRM_ANA, s);
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
|
|
/* Se the max connection retries for the stream. may be overwriten later */
|
|
s->max_retries = s->be->conn_retries;
|
|
|
|
/* we don't want to run the TCP or HTTP filters again if the backend has not changed */
|
|
if (fe == s->be) {
|
|
s->req.analysers &= ~AN_REQ_INSPECT_BE;
|
|
s->req.analysers &= ~AN_REQ_HTTP_PROCESS_BE;
|
|
s->req.analysers &= ~AN_REQ_FLT_START_BE;
|
|
}
|
|
|
|
/* as soon as we know the backend, we must check if we have a matching forced or ignored
|
|
* persistence rule, and report that in the stream.
|
|
*/
|
|
list_for_each_entry(prst_rule, &s->be->persist_rules, list) {
|
|
int ret = 1;
|
|
|
|
if (prst_rule->cond) {
|
|
ret = acl_exec_cond(prst_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (prst_rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
/* no rule, or the rule matches */
|
|
if (prst_rule->type == PERSIST_TYPE_FORCE) {
|
|
s->flags |= SF_FORCE_PRST;
|
|
} else {
|
|
s->flags |= SF_IGNORE_PRST;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
|
|
return 1;
|
|
|
|
sw_failed:
|
|
/* immediately abort this request in case of allocation failure */
|
|
stream_abort(s);
|
|
|
|
if (!(s->flags & SF_ERR_MASK))
|
|
s->flags |= SF_ERR_RESOURCE;
|
|
if (!(s->flags & SF_FINST_MASK))
|
|
s->flags |= SF_FINST_R;
|
|
|
|
if (s->txn)
|
|
s->txn->status = 500;
|
|
s->req.analysers &= AN_REQ_FLT_END;
|
|
s->req.analyse_exp = TICK_ETERNITY;
|
|
DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_STRM_ERR, s);
|
|
return 0;
|
|
}
|
|
|
|
/* This stream analyser works on a request. It applies all use-server rules on
|
|
* it then returns 1. The data must already be present in the buffer otherwise
|
|
* they won't match. It always returns 1.
|
|
*/
|
|
static int process_server_rules(struct stream *s, struct channel *req, int an_bit)
|
|
{
|
|
struct proxy *px = s->be;
|
|
struct session *sess = s->sess;
|
|
struct server_rule *rule;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
|
|
|
|
if (!(s->flags & SF_ASSIGNED)) {
|
|
list_for_each_entry(rule, &px->server_rules, list) {
|
|
int ret;
|
|
|
|
ret = acl_exec_cond(rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
|
|
if (ret) {
|
|
struct server *srv;
|
|
|
|
if (rule->dynamic) {
|
|
struct buffer *tmp = get_trash_chunk();
|
|
|
|
if (!build_logline(s, tmp->area, tmp->size, &rule->expr))
|
|
break;
|
|
|
|
srv = findserver(s->be, tmp->area);
|
|
if (!srv)
|
|
break;
|
|
}
|
|
else
|
|
srv = rule->srv.ptr;
|
|
|
|
if ((srv->cur_state != SRV_ST_STOPPED) ||
|
|
(px->options & PR_O_PERSIST) ||
|
|
(s->flags & SF_FORCE_PRST)) {
|
|
s->flags |= SF_DIRECT | SF_ASSIGNED;
|
|
s->target = &srv->obj_type;
|
|
break;
|
|
}
|
|
/* if the server is not UP, let's go on with next rules
|
|
* just in case another one is suited.
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
req->analysers &= ~an_bit;
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
|
|
return 1;
|
|
}
|
|
|
|
static inline void sticking_rule_find_target(struct stream *s,
|
|
struct stktable *t, struct stksess *ts)
|
|
{
|
|
struct proxy *px = s->be;
|
|
struct eb32_node *node;
|
|
struct dict_entry *de;
|
|
void *ptr;
|
|
struct server *srv;
|
|
|
|
/* Look for the server name previously stored in <t> stick-table */
|
|
HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
|
|
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_KEY);
|
|
de = stktable_data_cast(ptr, std_t_dict);
|
|
HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
|
|
|
|
if (de) {
|
|
struct ebpt_node *node;
|
|
|
|
if (t->server_key_type == STKTABLE_SRV_NAME) {
|
|
node = ebis_lookup(&px->conf.used_server_name, de->value.key);
|
|
if (node) {
|
|
srv = container_of(node, struct server, conf.name);
|
|
goto found;
|
|
}
|
|
} else if (t->server_key_type == STKTABLE_SRV_ADDR) {
|
|
HA_RWLOCK_RDLOCK(PROXY_LOCK, &px->lock);
|
|
node = ebis_lookup(&px->used_server_addr, de->value.key);
|
|
HA_RWLOCK_RDUNLOCK(PROXY_LOCK, &px->lock);
|
|
if (node) {
|
|
srv = container_of(node, struct server, addr_node);
|
|
goto found;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Look for the server ID */
|
|
HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
|
|
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_ID);
|
|
node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, std_t_sint));
|
|
HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
|
|
|
|
if (!node)
|
|
return;
|
|
|
|
srv = container_of(node, struct server, conf.id);
|
|
found:
|
|
if ((srv->cur_state != SRV_ST_STOPPED) ||
|
|
(px->options & PR_O_PERSIST) || (s->flags & SF_FORCE_PRST)) {
|
|
s->flags |= SF_DIRECT | SF_ASSIGNED;
|
|
s->target = &srv->obj_type;
|
|
}
|
|
}
|
|
|
|
/* This stream analyser works on a request. It applies all sticking rules on
|
|
* it then returns 1. The data must already be present in the buffer otherwise
|
|
* they won't match. It always returns 1.
|
|
*/
|
|
static int process_sticking_rules(struct stream *s, struct channel *req, int an_bit)
|
|
{
|
|
struct proxy *px = s->be;
|
|
struct session *sess = s->sess;
|
|
struct sticking_rule *rule;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
|
|
|
|
list_for_each_entry(rule, &px->sticking_rules, list) {
|
|
int ret = 1 ;
|
|
int i;
|
|
|
|
/* Only the first stick store-request of each table is applied
|
|
* and other ones are ignored. The purpose is to allow complex
|
|
* configurations which look for multiple entries by decreasing
|
|
* order of precision and to stop at the first which matches.
|
|
* An example could be a store of the IP address from an HTTP
|
|
* header first, then from the source if not found.
|
|
*/
|
|
if (rule->flags & STK_IS_STORE) {
|
|
for (i = 0; i < s->store_count; i++) {
|
|
if (rule->table.t == s->store[i].table)
|
|
break;
|
|
}
|
|
|
|
if (i != s->store_count)
|
|
continue;
|
|
}
|
|
|
|
if (rule->cond) {
|
|
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
struct stktable_key *key;
|
|
|
|
key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr, NULL);
|
|
if (!key)
|
|
continue;
|
|
|
|
if (rule->flags & STK_IS_MATCH) {
|
|
struct stksess *ts;
|
|
|
|
if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) {
|
|
if (!(s->flags & SF_ASSIGNED))
|
|
sticking_rule_find_target(s, rule->table.t, ts);
|
|
stktable_touch_local(rule->table.t, ts, 1);
|
|
}
|
|
}
|
|
if (rule->flags & STK_IS_STORE) {
|
|
if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
|
|
struct stksess *ts;
|
|
|
|
ts = stksess_new(rule->table.t, key);
|
|
if (ts) {
|
|
s->store[s->store_count].table = rule->table.t;
|
|
s->store[s->store_count++].ts = ts;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
req->analysers &= ~an_bit;
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
|
|
return 1;
|
|
}
|
|
|
|
/* This stream analyser works on a response. It applies all store rules on it
|
|
* then returns 1. The data must already be present in the buffer otherwise
|
|
* they won't match. It always returns 1.
|
|
*/
|
|
static int process_store_rules(struct stream *s, struct channel *rep, int an_bit)
|
|
{
|
|
struct proxy *px = s->be;
|
|
struct session *sess = s->sess;
|
|
struct sticking_rule *rule;
|
|
int i;
|
|
int nbreq = s->store_count;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s);
|
|
|
|
list_for_each_entry(rule, &px->storersp_rules, list) {
|
|
int ret = 1 ;
|
|
|
|
/* Only the first stick store-response of each table is applied
|
|
* and other ones are ignored. The purpose is to allow complex
|
|
* configurations which look for multiple entries by decreasing
|
|
* order of precision and to stop at the first which matches.
|
|
* An example could be a store of a set-cookie value, with a
|
|
* fallback to a parameter found in a 302 redirect.
|
|
*
|
|
* The store-response rules are not allowed to override the
|
|
* store-request rules for the same table, but they may coexist.
|
|
* Thus we can have up to one store-request entry and one store-
|
|
* response entry for the same table at any time.
|
|
*/
|
|
for (i = nbreq; i < s->store_count; i++) {
|
|
if (rule->table.t == s->store[i].table)
|
|
break;
|
|
}
|
|
|
|
/* skip existing entries for this table */
|
|
if (i < s->store_count)
|
|
continue;
|
|
|
|
if (rule->cond) {
|
|
ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL);
|
|
ret = acl_pass(ret);
|
|
if (rule->cond->pol == ACL_COND_UNLESS)
|
|
ret = !ret;
|
|
}
|
|
|
|
if (ret) {
|
|
struct stktable_key *key;
|
|
|
|
key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr, NULL);
|
|
if (!key)
|
|
continue;
|
|
|
|
if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) {
|
|
struct stksess *ts;
|
|
|
|
ts = stksess_new(rule->table.t, key);
|
|
if (ts) {
|
|
s->store[s->store_count].table = rule->table.t;
|
|
s->store[s->store_count++].ts = ts;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* process store request and store response */
|
|
for (i = 0; i < s->store_count; i++) {
|
|
struct stksess *ts;
|
|
void *ptr;
|
|
char *key;
|
|
struct dict_entry *de;
|
|
struct stktable *t = s->store[i].table;
|
|
|
|
if (!objt_server(s->target) || (__objt_server(s->target)->flags & SRV_F_NON_STICK)) {
|
|
stksess_free(s->store[i].table, s->store[i].ts);
|
|
s->store[i].ts = NULL;
|
|
continue;
|
|
}
|
|
|
|
ts = stktable_set_entry(t, s->store[i].ts);
|
|
if (ts != s->store[i].ts) {
|
|
/* the entry already existed, we can free ours */
|
|
stksess_free(t, s->store[i].ts);
|
|
}
|
|
s->store[i].ts = NULL;
|
|
|
|
if (t->server_key_type == STKTABLE_SRV_NAME)
|
|
key = __objt_server(s->target)->id;
|
|
else if (t->server_key_type == STKTABLE_SRV_ADDR)
|
|
key = __objt_server(s->target)->addr_node.key;
|
|
else
|
|
key = NULL;
|
|
|
|
HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
|
|
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_ID);
|
|
stktable_data_cast(ptr, std_t_sint) = __objt_server(s->target)->puid;
|
|
|
|
if (key) {
|
|
de = dict_insert(&server_key_dict, key);
|
|
if (de) {
|
|
ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_KEY);
|
|
stktable_data_cast(ptr, std_t_dict) = de;
|
|
}
|
|
}
|
|
|
|
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
|
|
|
|
stktable_touch_local(t, ts, 1);
|
|
}
|
|
s->store_count = 0; /* everything is stored */
|
|
|
|
rep->analysers &= ~an_bit;
|
|
rep->analyse_exp = TICK_ETERNITY;
|
|
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s);
|
|
return 1;
|
|
}
|
|
|
|
/* Set the stream to HTTP mode, if necessary. The minimal request HTTP analysers
|
|
* are set and the client mux is upgraded. It returns 1 if the stream processing
|
|
* may continue or 0 if it should be stopped. It happens on error or if the
|
|
* upgrade required a new stream. The mux protocol may be specified.
|
|
*/
|
|
int stream_set_http_mode(struct stream *s, const struct mux_proto_list *mux_proto)
|
|
{
|
|
struct stconn *sc = s->scf;
|
|
struct connection *conn;
|
|
|
|
/* Already an HTTP stream */
|
|
if (IS_HTX_STRM(s))
|
|
return 1;
|
|
|
|
s->req.analysers |= AN_REQ_WAIT_HTTP|AN_REQ_HTTP_PROCESS_FE;
|
|
|
|
if (unlikely(!s->txn && !http_create_txn(s)))
|
|
return 0;
|
|
|
|
conn = sc_conn(sc);
|
|
|
|
if (!sc_conn_ready(sc))
|
|
return 0;
|
|
|
|
if (conn) {
|
|
se_have_more_data(s->scf->sedesc);
|
|
/* Make sure we're unsubscribed, the the new
|
|
* mux will probably want to subscribe to
|
|
* the underlying XPRT
|
|
*/
|
|
if (s->scf->wait_event.events)
|
|
conn->mux->unsubscribe(sc, s->scf->wait_event.events, &(s->scf->wait_event));
|
|
|
|
if (conn->mux->flags & MX_FL_NO_UPG)
|
|
return 0;
|
|
|
|
sc_conn_prepare_endp_upgrade(sc);
|
|
if (conn_upgrade_mux_fe(conn, sc, &s->req.buf,
|
|
(mux_proto ? mux_proto->token : ist("")),
|
|
PROTO_MODE_HTTP) == -1) {
|
|
sc_conn_abort_endp_upgrade(sc);
|
|
return 0;
|
|
}
|
|
sc_conn_commit_endp_upgrade(sc);
|
|
|
|
s->req.flags &= ~(CF_READ_EVENT|CF_AUTO_CONNECT);
|
|
s->req.total = 0;
|
|
s->flags |= SF_IGNORE;
|
|
if (sc_ep_test(sc, SE_FL_DETACHED)) {
|
|
/* If stream connector is detached, it means it was not
|
|
* reused by the new mux. Son destroy it, disable
|
|
* logging, and abort the stream process. Thus the
|
|
* stream will be silently destroyed. The new mux will
|
|
* create new streams.
|
|
*/
|
|
s->logs.logwait = 0;
|
|
s->logs.level = 0;
|
|
stream_abort(s);
|
|
s->req.analysers &= AN_REQ_FLT_END;
|
|
s->req.analyse_exp = TICK_ETERNITY;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Updates at once the channel flags, and timers of both stream connectors of a
|
|
* same stream, to complete the work after the analysers, then updates the data
|
|
* layer below. This will ensure that any synchronous update performed at the
|
|
* data layer will be reflected in the channel flags and/or stream connector.
|
|
* Note that this does not change the stream connector's current state, though
|
|
* it updates the previous state to the current one.
|
|
*/
|
|
void stream_update_both_sc(struct stream *s)
|
|
{
|
|
struct stconn *scf = s->scf;
|
|
struct stconn *scb = s->scb;
|
|
struct channel *req = &s->req;
|
|
struct channel *res = &s->res;
|
|
|
|
req->flags &= ~(CF_READ_EVENT|CF_WRITE_EVENT);
|
|
res->flags &= ~(CF_READ_EVENT|CF_WRITE_EVENT);
|
|
|
|
s->prev_conn_state = scb->state;
|
|
|
|
/* let's recompute both sides states */
|
|
if (sc_state_in(scf->state, SC_SB_RDY|SC_SB_EST))
|
|
sc_update(scf);
|
|
|
|
if (sc_state_in(scb->state, SC_SB_RDY|SC_SB_EST))
|
|
sc_update(scb);
|
|
|
|
/* stream connectors are processed outside of process_stream() and must be
|
|
* handled at the latest moment.
|
|
*/
|
|
if (sc_appctx(scf)) {
|
|
if (sc_is_recv_allowed(scf) || sc_is_send_allowed(scf))
|
|
appctx_wakeup(__sc_appctx(scf));
|
|
}
|
|
if (sc_appctx(scb)) {
|
|
if (sc_is_recv_allowed(scb) || sc_is_send_allowed(scb))
|
|
appctx_wakeup(__sc_appctx(scb));
|
|
}
|
|
}
|
|
|
|
/* check SC and channel timeouts, and close the corresponding stream connectors
|
|
* for future reads or writes.
|
|
* Note: this will also concern upper layers but we do not touch any other
|
|
* flag. We must be careful and correctly detect state changes when calling
|
|
* them.
|
|
*/
|
|
static void stream_handle_timeouts(struct stream *s)
|
|
{
|
|
stream_check_conn_timeout(s);
|
|
|
|
sc_check_timeouts(s->scf);
|
|
channel_check_timeout(&s->req);
|
|
sc_check_timeouts(s->scb);
|
|
channel_check_timeout(&s->res);
|
|
|
|
if (unlikely(!(s->scb->flags & SC_FL_SHUT_DONE) && (s->req.flags & CF_WRITE_TIMEOUT))) {
|
|
s->scb->flags |= SC_FL_NOLINGER;
|
|
sc_shutdown(s->scb);
|
|
}
|
|
|
|
if (unlikely(!(s->scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) && (s->req.flags & CF_READ_TIMEOUT))) {
|
|
if (s->scf->flags & SC_FL_NOHALF)
|
|
s->scf->flags |= SC_FL_NOLINGER;
|
|
sc_abort(s->scf);
|
|
}
|
|
if (unlikely(!(s->scf->flags & SC_FL_SHUT_DONE) && (s->res.flags & CF_WRITE_TIMEOUT))) {
|
|
s->scf->flags |= SC_FL_NOLINGER;
|
|
sc_shutdown(s->scf);
|
|
}
|
|
|
|
if (unlikely(!(s->scb->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) && (s->res.flags & CF_READ_TIMEOUT))) {
|
|
if (s->scb->flags & SC_FL_NOHALF)
|
|
s->scb->flags |= SC_FL_NOLINGER;
|
|
sc_abort(s->scb);
|
|
}
|
|
|
|
if (HAS_FILTERS(s))
|
|
flt_stream_check_timeouts(s);
|
|
}
|
|
|
|
/* if the current task's wake_date was set, it's being profiled, thus we may
|
|
* report latencies and CPU usages in logs, so it's desirable to update the
|
|
* latency when entering process_stream().
|
|
*/
|
|
static void stream_cond_update_cpu_latency(struct stream *s)
|
|
{
|
|
uint32_t lat = th_ctx->sched_call_date - th_ctx->sched_wake_date;
|
|
|
|
s->lat_time += lat;
|
|
}
|
|
|
|
/* if the current task's wake_date was set, it's being profiled, thus we may
|
|
* report latencies and CPU usages in logs, so it's desirable to do that before
|
|
* logging in order to report accurate CPU usage. In this case we count that
|
|
* final part and reset the wake date so that the scheduler doesn't do it a
|
|
* second time, and by doing so we also avoid an extra call to clock_gettime().
|
|
* The CPU usage will be off by the little time needed to run over stream_free()
|
|
* but that's only marginal.
|
|
*/
|
|
static void stream_cond_update_cpu_usage(struct stream *s)
|
|
{
|
|
uint32_t cpu;
|
|
|
|
/* stats are only registered for non-zero wake dates */
|
|
if (likely(!th_ctx->sched_wake_date))
|
|
return;
|
|
|
|
cpu = (uint32_t)now_mono_time() - th_ctx->sched_call_date;
|
|
s->cpu_time += cpu;
|
|
HA_ATOMIC_ADD(&th_ctx->sched_profile_entry->cpu_time, cpu);
|
|
th_ctx->sched_wake_date = 0;
|
|
}
|
|
|
|
/* this functions is called directly by the scheduler for tasks whose
|
|
* ->process points to process_stream(), and is used to keep latencies
|
|
* and CPU usage measurements accurate.
|
|
*/
|
|
void stream_update_timings(struct task *t, uint64_t lat, uint64_t cpu)
|
|
{
|
|
struct stream *s = t->context;
|
|
s->lat_time += lat;
|
|
s->cpu_time += cpu;
|
|
}
|
|
|
|
|
|
/* This macro is very specific to the function below. See the comments in
|
|
* process_stream() below to understand the logic and the tests.
|
|
*/
|
|
#define UPDATE_ANALYSERS(real, list, back, flag) { \
|
|
list = (((list) & ~(flag)) | ~(back)) & (real); \
|
|
back = real; \
|
|
if (!(list)) \
|
|
break; \
|
|
if (((list) ^ ((list) & ((list) - 1))) < (flag)) \
|
|
continue; \
|
|
}
|
|
|
|
/* These 2 following macros call an analayzer for the specified channel if the
|
|
* right flag is set. The first one is used for "filterable" analyzers. If a
|
|
* stream has some registered filters, pre and post analyaze callbacks are
|
|
* called. The second are used for other analyzers (AN_REQ/RES_FLT_* and
|
|
* AN_REQ/RES_HTTP_XFER_BODY) */
|
|
#define FLT_ANALYZE(strm, chn, fun, list, back, flag, ...) \
|
|
{ \
|
|
if ((list) & (flag)) { \
|
|
if (HAS_FILTERS(strm)) { \
|
|
if (!flt_pre_analyze((strm), (chn), (flag))) \
|
|
break; \
|
|
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
|
|
break; \
|
|
if (!flt_post_analyze((strm), (chn), (flag))) \
|
|
break; \
|
|
} \
|
|
else { \
|
|
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
|
|
break; \
|
|
} \
|
|
UPDATE_ANALYSERS((chn)->analysers, (list), \
|
|
(back), (flag)); \
|
|
} \
|
|
}
|
|
|
|
#define ANALYZE(strm, chn, fun, list, back, flag, ...) \
|
|
{ \
|
|
if ((list) & (flag)) { \
|
|
if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \
|
|
break; \
|
|
UPDATE_ANALYSERS((chn)->analysers, (list), \
|
|
(back), (flag)); \
|
|
} \
|
|
}
|
|
|
|
/* Processes the client, server, request and response jobs of a stream task,
|
|
* then puts it back to the wait queue in a clean state, or cleans up its
|
|
* resources if it must be deleted. Returns in <next> the date the task wants
|
|
* to be woken up, or TICK_ETERNITY. In order not to call all functions for
|
|
* nothing too many times, the request and response buffers flags are monitored
|
|
* and each function is called only if at least another function has changed at
|
|
* least one flag it is interested in.
|
|
*
|
|
* This task handler understands a few wake up reasons:
|
|
* - TASK_WOKEN_MSG forces analysers to be re-evaluated
|
|
* - TASK_WOKEN_OTHER+TASK_F_UEVT1 shuts the stream down on server down
|
|
* - TASK_WOKEN_OTHER+TASK_F_UEVT2 shuts the stream down on active kill
|
|
* - TASK_WOKEN_OTHER alone has no effect
|
|
*/
|
|
struct task *process_stream(struct task *t, void *context, unsigned int state)
|
|
{
|
|
struct server *srv;
|
|
struct stream *s = context;
|
|
struct session *sess = s->sess;
|
|
unsigned int scf_flags, scb_flags;
|
|
unsigned int rqf_last, rpf_last;
|
|
unsigned int rq_prod_last, rq_cons_last;
|
|
unsigned int rp_cons_last, rp_prod_last;
|
|
unsigned int req_ana_back, res_ana_back;
|
|
struct channel *req, *res;
|
|
struct stconn *scf, *scb;
|
|
unsigned int rate;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_PROC, s);
|
|
|
|
activity[tid].stream_calls++;
|
|
stream_cond_update_cpu_latency(s);
|
|
|
|
if ((state & TASK_WOKEN_OTHER) && (state & (TASK_F_UEVT1 | TASK_F_UEVT2))) {
|
|
/* that an instant kill message, the reason is in _UEVT* */
|
|
stream_shutdown_self(s, (state & TASK_F_UEVT2) ? SF_ERR_KILLED : SF_ERR_DOWN);
|
|
}
|
|
|
|
req = &s->req;
|
|
res = &s->res;
|
|
|
|
scf = s->scf;
|
|
scb = s->scb;
|
|
|
|
/* First, attempt to receive pending data from I/O layers */
|
|
sc_sync_recv(scf);
|
|
sc_sync_recv(scb);
|
|
|
|
/* Let's check if we're looping without making any progress, e.g. due
|
|
* to a bogus analyser or the fact that we're ignoring a read0. The
|
|
* call_rate counter only counts calls with no progress made.
|
|
*/
|
|
if (!((req->flags | res->flags) & (CF_READ_EVENT|CF_WRITE_EVENT))) {
|
|
rate = update_freq_ctr(&s->call_rate, 1);
|
|
if (rate >= 100000 && s->call_rate.prev_ctr) // make sure to wait at least a full second
|
|
stream_dump_and_crash(&s->obj_type, read_freq_ctr(&s->call_rate));
|
|
}
|
|
|
|
/* this data may be no longer valid, clear it */
|
|
if (s->txn)
|
|
memset(&s->txn->auth, 0, sizeof(s->txn->auth));
|
|
|
|
/* This flag must explicitly be set every time */
|
|
req->flags &= ~CF_WAKE_WRITE;
|
|
res->flags &= ~CF_WAKE_WRITE;
|
|
|
|
/* Keep a copy of req/rep flags so that we can detect shutdowns */
|
|
rqf_last = req->flags & ~CF_MASK_ANALYSER;
|
|
rpf_last = res->flags & ~CF_MASK_ANALYSER;
|
|
|
|
/* we don't want the stream connector functions to recursively wake us up */
|
|
scf->flags |= SC_FL_DONT_WAKE;
|
|
scb->flags |= SC_FL_DONT_WAKE;
|
|
|
|
/* Keep a copy of SC flags */
|
|
scf_flags = scf->flags;
|
|
scb_flags = scb->flags;
|
|
|
|
/* update pending events */
|
|
s->pending_events |= (state & TASK_WOKEN_ANY);
|
|
|
|
/* 1a: Check for low level timeouts if needed. We just set a flag on
|
|
* stream connectors when their timeouts have expired.
|
|
*/
|
|
if (unlikely(s->pending_events & TASK_WOKEN_TIMER)) {
|
|
stream_handle_timeouts(s);
|
|
|
|
/* Once in a while we're woken up because the task expires. But
|
|
* this does not necessarily mean that a timeout has been reached.
|
|
* So let's not run a whole stream processing if only an expiration
|
|
* timeout needs to be refreshed.
|
|
*/
|
|
if (!((scf->flags | scb->flags) & (SC_FL_ERROR|SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_SHUT_DONE)) &&
|
|
!((req->flags | res->flags) & (CF_READ_EVENT|CF_READ_TIMEOUT|CF_WRITE_EVENT|CF_WRITE_TIMEOUT)) &&
|
|
!(s->flags & SF_CONN_EXP) &&
|
|
((s->pending_events & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER)) {
|
|
scf->flags &= ~SC_FL_DONT_WAKE;
|
|
scb->flags &= ~SC_FL_DONT_WAKE;
|
|
goto update_exp_and_leave;
|
|
}
|
|
}
|
|
|
|
resync_stconns:
|
|
if (!stream_alloc_work_buffer(s)) {
|
|
scf->flags &= ~SC_FL_DONT_WAKE;
|
|
scb->flags &= ~SC_FL_DONT_WAKE;
|
|
/* we're stuck for now */
|
|
t->expire = TICK_ETERNITY;
|
|
goto leave;
|
|
}
|
|
|
|
/* 1b: check for low-level errors reported at the stream connector.
|
|
* First we check if it's a retryable error (in which case we don't
|
|
* want to tell the buffer). Otherwise we report the error one level
|
|
* upper by setting flags into the buffers. Note that the side towards
|
|
* the client cannot have connect (hence retryable) errors. Also, the
|
|
* connection setup code must be able to deal with any type of abort.
|
|
*/
|
|
s->passes_stconn++;
|
|
srv = objt_server(s->target);
|
|
if (unlikely(scf->flags & SC_FL_ERROR)) {
|
|
if (sc_state_in(scf->state, SC_SB_EST|SC_SB_DIS)) {
|
|
sc_abort(scf);
|
|
sc_shutdown(scf);
|
|
if (!(req->analysers) && !(res->analysers)) {
|
|
COUNT_IF(1, "Report a client abort (no analysers)");
|
|
_HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
|
|
_HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
|
|
if (srv)
|
|
_HA_ATOMIC_INC(&srv->counters.cli_aborts);
|
|
if (!(s->flags & SF_ERR_MASK))
|
|
s->flags |= SF_ERR_CLICL;
|
|
if (!(s->flags & SF_FINST_MASK))
|
|
s->flags |= SF_FINST_D;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (unlikely(scb->flags & SC_FL_ERROR)) {
|
|
if (sc_state_in(scb->state, SC_SB_EST|SC_SB_DIS)) {
|
|
sc_abort(scb);
|
|
sc_shutdown(scb);
|
|
_HA_ATOMIC_INC(&s->be->be_counters.failed_resp);
|
|
if (srv)
|
|
_HA_ATOMIC_INC(&srv->counters.failed_resp);
|
|
if (!(req->analysers) && !(res->analysers)) {
|
|
COUNT_IF(1, "Report a client abort (no analysers)");
|
|
_HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
|
|
_HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
|
|
if (srv)
|
|
_HA_ATOMIC_INC(&srv->counters.srv_aborts);
|
|
if (!(s->flags & SF_ERR_MASK))
|
|
s->flags |= SF_ERR_SRVCL;
|
|
if (!(s->flags & SF_FINST_MASK))
|
|
s->flags |= SF_FINST_D;
|
|
}
|
|
}
|
|
/* note: maybe we should process connection errors here ? */
|
|
}
|
|
|
|
if (sc_state_in(scb->state, SC_SB_CON|SC_SB_RDY)) {
|
|
/* we were trying to establish a connection on the server side,
|
|
* maybe it succeeded, maybe it failed, maybe we timed out, ...
|
|
*/
|
|
if (scb->state == SC_ST_RDY)
|
|
back_handle_st_rdy(s);
|
|
else if (s->scb->state == SC_ST_CON)
|
|
back_handle_st_con(s);
|
|
|
|
if (scb->state == SC_ST_CER)
|
|
back_handle_st_cer(s);
|
|
else if (scb->state == SC_ST_EST)
|
|
back_establish(s);
|
|
|
|
/* state is now one of SC_ST_CON (still in progress), SC_ST_EST
|
|
* (established), SC_ST_DIS (abort), SC_ST_CLO (last error),
|
|
* SC_ST_ASS/SC_ST_TAR/SC_ST_REQ for retryable errors.
|
|
*/
|
|
}
|
|
|
|
rq_prod_last = scf->state;
|
|
rq_cons_last = scb->state;
|
|
rp_cons_last = scf->state;
|
|
rp_prod_last = scb->state;
|
|
|
|
/* Check for connection closure */
|
|
DBG_TRACE_POINT(STRM_EV_STRM_PROC, s);
|
|
|
|
/* nothing special to be done on client side */
|
|
if (unlikely(scf->state == SC_ST_DIS)) {
|
|
scf->state = SC_ST_CLO;
|
|
|
|
/* This is needed only when debugging is enabled, to indicate
|
|
* client-side close.
|
|
*/
|
|
if (unlikely((global.mode & MODE_DEBUG) &&
|
|
(!(global.mode & MODE_QUIET) ||
|
|
(global.mode & MODE_VERBOSE)))) {
|
|
chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n",
|
|
s->uniq_id, s->be->id,
|
|
(unsigned short)conn_fd(sc_conn(scf)),
|
|
(unsigned short)conn_fd(sc_conn(scb)));
|
|
DISGUISE(write(1, trash.area, trash.data));
|
|
}
|
|
}
|
|
|
|
/* When a server-side connection is released, we have to count it and
|
|
* check for pending connections on this server.
|
|
*/
|
|
if (unlikely(scb->state == SC_ST_DIS)) {
|
|
scb->state = SC_ST_CLO;
|
|
srv = objt_server(s->target);
|
|
if (srv) {
|
|
if (s->flags & SF_CURR_SESS) {
|
|
s->flags &= ~SF_CURR_SESS;
|
|
_HA_ATOMIC_DEC(&srv->cur_sess);
|
|
}
|
|
sess_change_server(s, NULL);
|
|
if (may_dequeue_tasks(srv, s->be))
|
|
process_srv_queue(srv);
|
|
}
|
|
|
|
/* This is needed only when debugging is enabled, to indicate
|
|
* server-side close.
|
|
*/
|
|
if (unlikely((global.mode & MODE_DEBUG) &&
|
|
(!(global.mode & MODE_QUIET) ||
|
|
(global.mode & MODE_VERBOSE)))) {
|
|
if (s->prev_conn_state == SC_ST_EST) {
|
|
chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n",
|
|
s->uniq_id, s->be->id,
|
|
(unsigned short)conn_fd(sc_conn(scf)),
|
|
(unsigned short)conn_fd(sc_conn(scb)));
|
|
DISGUISE(write(1, trash.area, trash.data));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note: of the transient states (REQ, CER, DIS), only REQ may remain
|
|
* at this point.
|
|
*/
|
|
|
|
resync_request:
|
|
s->passes_reqana++;
|
|
/* Analyse request */
|
|
if (((req->flags & ~rqf_last) & CF_MASK_ANALYSER) ||
|
|
((scf->flags ^ scf_flags) & (SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED)) ||
|
|
((scb->flags ^ scb_flags) & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) ||
|
|
(req->analysers && (scb->flags & SC_FL_SHUT_DONE)) ||
|
|
scf->state != rq_prod_last ||
|
|
scb->state != rq_cons_last ||
|
|
s->pending_events & TASK_WOKEN_MSG) {
|
|
unsigned int scf_flags_ana = scf->flags;
|
|
unsigned int scb_flags_ana = scb->flags;
|
|
|
|
if (sc_state_in(scf->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO)) {
|
|
int max_loops = global.tune.maxpollevents;
|
|
unsigned int ana_list;
|
|
unsigned int ana_back;
|
|
|
|
/* it's up to the analysers to stop new connections,
|
|
* disable reading or closing. Note: if an analyser
|
|
* disables any of these bits, it is responsible for
|
|
* enabling them again when it disables itself, so
|
|
* that other analysers are called in similar conditions.
|
|
*/
|
|
channel_auto_read(req);
|
|
channel_auto_connect(req);
|
|
channel_auto_close(req);
|
|
|
|
/* We will call all analysers for which a bit is set in
|
|
* req->analysers, following the bit order from LSB
|
|
* to MSB. The analysers must remove themselves from
|
|
* the list when not needed. Any analyser may return 0
|
|
* to break out of the loop, either because of missing
|
|
* data to take a decision, or because it decides to
|
|
* kill the stream. We loop at least once through each
|
|
* analyser, and we may loop again if other analysers
|
|
* are added in the middle.
|
|
*
|
|
* We build a list of analysers to run. We evaluate all
|
|
* of these analysers in the order of the lower bit to
|
|
* the higher bit. This ordering is very important.
|
|
* An analyser will often add/remove other analysers,
|
|
* including itself. Any changes to itself have no effect
|
|
* on the loop. If it removes any other analysers, we
|
|
* want those analysers not to be called anymore during
|
|
* this loop. If it adds an analyser that is located
|
|
* after itself, we want it to be scheduled for being
|
|
* processed during the loop. If it adds an analyser
|
|
* which is located before it, we want it to switch to
|
|
* it immediately, even if it has already been called
|
|
* once but removed since.
|
|
*
|
|
* In order to achieve this, we compare the analyser
|
|
* list after the call with a copy of it before the
|
|
* call. The work list is fed with analyser bits that
|
|
* appeared during the call. Then we compare previous
|
|
* work list with the new one, and check the bits that
|
|
* appeared. If the lowest of these bits is lower than
|
|
* the current bit, it means we have enabled a previous
|
|
* analyser and must immediately loop again.
|
|
*/
|
|
|
|
ana_list = ana_back = req->analysers;
|
|
while (ana_list && max_loops--) {
|
|
/* Warning! ensure that analysers are always placed in ascending order! */
|
|
ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_FE);
|
|
FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_FE);
|
|
FLT_ANALYZE(s, req, http_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_HTTP);
|
|
FLT_ANALYZE(s, req, http_wait_for_request_body, ana_list, ana_back, AN_REQ_HTTP_BODY);
|
|
FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE, sess->fe);
|
|
FLT_ANALYZE(s, req, process_switching_rules, ana_list, ana_back, AN_REQ_SWITCHING_RULES);
|
|
ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_BE);
|
|
FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_BE);
|
|
FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE, s->be);
|
|
FLT_ANALYZE(s, req, http_process_tarpit, ana_list, ana_back, AN_REQ_HTTP_TARPIT);
|
|
FLT_ANALYZE(s, req, process_server_rules, ana_list, ana_back, AN_REQ_SRV_RULES);
|
|
FLT_ANALYZE(s, req, http_process_request, ana_list, ana_back, AN_REQ_HTTP_INNER);
|
|
FLT_ANALYZE(s, req, tcp_persist_rdp_cookie, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE);
|
|
FLT_ANALYZE(s, req, process_sticking_rules, ana_list, ana_back, AN_REQ_STICKING_RULES);
|
|
ANALYZE (s, req, flt_analyze_http_headers, ana_list, ana_back, AN_REQ_FLT_HTTP_HDRS);
|
|
ANALYZE (s, req, http_request_forward_body, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY);
|
|
ANALYZE (s, req, pcli_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_CLI);
|
|
ANALYZE (s, req, flt_xfer_data, ana_list, ana_back, AN_REQ_FLT_XFER_DATA);
|
|
ANALYZE (s, req, flt_end_analyze, ana_list, ana_back, AN_REQ_FLT_END);
|
|
break;
|
|
}
|
|
}
|
|
|
|
rq_prod_last = scf->state;
|
|
rq_cons_last = scb->state;
|
|
req->flags &= ~CF_WAKE_ONCE;
|
|
rqf_last = req->flags;
|
|
scf_flags = (scf_flags & ~(SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED)) | (scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED));
|
|
scb_flags = (scb_flags & ~(SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) | (scb->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED));
|
|
|
|
if (((scf->flags ^ scf_flags_ana) & (SC_FL_EOS|SC_FL_ABRT_DONE)) || ((scb->flags ^ scb_flags_ana) & SC_FL_SHUT_DONE))
|
|
goto resync_request;
|
|
}
|
|
|
|
/* we'll monitor the request analysers while parsing the response,
|
|
* because some response analysers may indirectly enable new request
|
|
* analysers (eg: HTTP keep-alive).
|
|
*/
|
|
req_ana_back = req->analysers;
|
|
|
|
resync_response:
|
|
s->passes_resana++;
|
|
/* Analyse response */
|
|
|
|
if (((res->flags & ~rpf_last) & CF_MASK_ANALYSER) ||
|
|
((scb->flags ^ scb_flags) & (SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED)) ||
|
|
((scf->flags ^ scf_flags) & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) ||
|
|
(res->analysers && (scf->flags & SC_FL_SHUT_DONE)) ||
|
|
scf->state != rp_cons_last ||
|
|
scb->state != rp_prod_last ||
|
|
s->pending_events & TASK_WOKEN_MSG) {
|
|
unsigned int scb_flags_ana = scb->flags;
|
|
unsigned int scf_flags_ana = scf->flags;
|
|
|
|
if (sc_state_in(scb->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO)) {
|
|
int max_loops = global.tune.maxpollevents;
|
|
unsigned int ana_list;
|
|
unsigned int ana_back;
|
|
|
|
/* it's up to the analysers to stop disable reading or
|
|
* closing. Note: if an analyser disables any of these
|
|
* bits, it is responsible for enabling them again when
|
|
* it disables itself, so that other analysers are called
|
|
* in similar conditions.
|
|
*/
|
|
channel_auto_read(res);
|
|
channel_auto_close(res);
|
|
|
|
/* We will call all analysers for which a bit is set in
|
|
* res->analysers, following the bit order from LSB
|
|
* to MSB. The analysers must remove themselves from
|
|
* the list when not needed. Any analyser may return 0
|
|
* to break out of the loop, either because of missing
|
|
* data to take a decision, or because it decides to
|
|
* kill the stream. We loop at least once through each
|
|
* analyser, and we may loop again if other analysers
|
|
* are added in the middle.
|
|
*/
|
|
|
|
ana_list = ana_back = res->analysers;
|
|
while (ana_list && max_loops--) {
|
|
/* Warning! ensure that analysers are always placed in ascending order! */
|
|
ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_FE);
|
|
ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_BE);
|
|
FLT_ANALYZE(s, res, tcp_inspect_response, ana_list, ana_back, AN_RES_INSPECT);
|
|
FLT_ANALYZE(s, res, http_wait_for_response, ana_list, ana_back, AN_RES_WAIT_HTTP);
|
|
FLT_ANALYZE(s, res, process_store_rules, ana_list, ana_back, AN_RES_STORE_RULES);
|
|
FLT_ANALYZE(s, res, http_process_res_common, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE, s->be);
|
|
ANALYZE (s, res, flt_analyze_http_headers, ana_list, ana_back, AN_RES_FLT_HTTP_HDRS);
|
|
ANALYZE (s, res, http_response_forward_body, ana_list, ana_back, AN_RES_HTTP_XFER_BODY);
|
|
ANALYZE (s, res, pcli_wait_for_response, ana_list, ana_back, AN_RES_WAIT_CLI);
|
|
ANALYZE (s, res, flt_xfer_data, ana_list, ana_back, AN_RES_FLT_XFER_DATA);
|
|
ANALYZE (s, res, flt_end_analyze, ana_list, ana_back, AN_RES_FLT_END);
|
|
break;
|
|
}
|
|
}
|
|
|
|
rp_cons_last = scf->state;
|
|
rp_prod_last = scb->state;
|
|
res->flags &= ~CF_WAKE_ONCE;
|
|
rpf_last = res->flags;
|
|
scb_flags = (scb_flags & ~(SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED)) | (scb->flags & (SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED));
|
|
scf_flags = (scf_flags & ~(SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) | (scf->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED));
|
|
|
|
if (((scb->flags ^ scb_flags_ana) & (SC_FL_EOS|SC_FL_ABRT_DONE)) || ((scf->flags ^ scf_flags_ana) & SC_FL_SHUT_DONE))
|
|
goto resync_response;
|
|
}
|
|
|
|
/* we'll monitor the response analysers because some response analysers
|
|
* may be enabled/disabled later
|
|
*/
|
|
res_ana_back = res->analysers;
|
|
|
|
/* maybe someone has added some request analysers, so we must check and loop */
|
|
if (req->analysers & ~req_ana_back)
|
|
goto resync_request;
|
|
|
|
if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER)
|
|
goto resync_request;
|
|
|
|
/* FIXME: here we should call protocol handlers which rely on
|
|
* both buffers.
|
|
*/
|
|
|
|
s->passes_propag++;
|
|
/*
|
|
* Now we propagate unhandled errors to the stream. Normally
|
|
* we're just in a data phase here since it means we have not
|
|
* seen any analyser who could set an error status.
|
|
*/
|
|
srv = objt_server(s->target);
|
|
if (unlikely(!(s->flags & SF_ERR_MASK))) {
|
|
if ((scf->flags & SC_FL_ERROR) || req->flags & (CF_READ_TIMEOUT|CF_WRITE_TIMEOUT)) {
|
|
/* Report it if the client got an error or a read timeout expired */
|
|
req->analysers &= AN_REQ_FLT_END;
|
|
channel_auto_close(req);
|
|
if (scf->flags & SC_FL_ERROR) {
|
|
_HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
|
|
_HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
|
|
if (srv)
|
|
_HA_ATOMIC_INC(&srv->counters.cli_aborts);
|
|
s->flags |= SF_ERR_CLICL;
|
|
COUNT_IF(1, "Report unhandled client error");
|
|
}
|
|
else if (req->flags & CF_READ_TIMEOUT) {
|
|
_HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
|
|
_HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
|
|
if (srv)
|
|
_HA_ATOMIC_INC(&srv->counters.cli_aborts);
|
|
s->flags |= SF_ERR_CLITO;
|
|
COUNT_IF(1, "Report unhandled client timeout (RD)");
|
|
}
|
|
else {
|
|
_HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
|
|
_HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
|
|
if (srv)
|
|
_HA_ATOMIC_INC(&srv->counters.srv_aborts);
|
|
s->flags |= SF_ERR_SRVTO;
|
|
COUNT_IF(1, "Report unhandled server timeout (WR)");
|
|
}
|
|
sess_set_term_flags(s);
|
|
|
|
/* Abort the request if a client error occurred while
|
|
* the backend stream connector is in the SC_ST_INI
|
|
* state. It is switched into the SC_ST_CLO state and
|
|
* the request channel is erased. */
|
|
if (scb->state == SC_ST_INI) {
|
|
s->scb->state = SC_ST_CLO;
|
|
channel_abort(req);
|
|
if (IS_HTX_STRM(s))
|
|
channel_htx_erase(req, htxbuf(&req->buf));
|
|
else
|
|
channel_erase(req);
|
|
}
|
|
}
|
|
else if ((scb->flags & SC_FL_ERROR) || res->flags & (CF_READ_TIMEOUT|CF_WRITE_TIMEOUT)) {
|
|
/* Report it if the server got an error or a read timeout expired */
|
|
res->analysers &= AN_RES_FLT_END;
|
|
channel_auto_close(res);
|
|
if (scb->flags & SC_FL_ERROR) {
|
|
_HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
|
|
_HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
|
|
if (srv)
|
|
_HA_ATOMIC_INC(&srv->counters.srv_aborts);
|
|
s->flags |= SF_ERR_SRVCL;
|
|
COUNT_IF(1, "Report unhandled server error");
|
|
}
|
|
else if (res->flags & CF_READ_TIMEOUT) {
|
|
_HA_ATOMIC_INC(&s->be->be_counters.srv_aborts);
|
|
_HA_ATOMIC_INC(&sess->fe->fe_counters.srv_aborts);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_INC(&sess->listener->counters->srv_aborts);
|
|
if (srv)
|
|
_HA_ATOMIC_INC(&srv->counters.srv_aborts);
|
|
s->flags |= SF_ERR_SRVTO;
|
|
COUNT_IF(1, "Report unhandled server timeout (RD)");
|
|
}
|
|
else {
|
|
_HA_ATOMIC_INC(&s->be->be_counters.cli_aborts);
|
|
_HA_ATOMIC_INC(&sess->fe->fe_counters.cli_aborts);
|
|
if (sess->listener && sess->listener->counters)
|
|
_HA_ATOMIC_INC(&sess->listener->counters->cli_aborts);
|
|
if (srv)
|
|
_HA_ATOMIC_INC(&srv->counters.cli_aborts);
|
|
s->flags |= SF_ERR_CLITO;
|
|
COUNT_IF(1, "Report unhandled client timeout (WR)");
|
|
}
|
|
sess_set_term_flags(s);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Here we take care of forwarding unhandled data. This also includes
|
|
* connection establishments and shutdown requests.
|
|
*/
|
|
|
|
|
|
/* If no one is interested in analysing data, it's time to forward
|
|
* everything. We configure the buffer to forward indefinitely.
|
|
* Note that we're checking SC_FL_ABRT_WANTED as an indication of a possible
|
|
* recent call to channel_abort().
|
|
*/
|
|
if (unlikely((!req->analysers || (req->analysers == AN_REQ_FLT_END && !(req->flags & CF_FLT_ANALYZE))) &&
|
|
!(scf->flags & SC_FL_ABRT_WANTED) && !(scb->flags & SC_FL_SHUT_DONE) &&
|
|
(sc_state_in(scf->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO)) &&
|
|
(req->to_forward != CHN_INFINITE_FORWARD))) {
|
|
/* This buffer is freewheeling, there's no analyser
|
|
* attached to it. If any data are left in, we'll permit them to
|
|
* move.
|
|
*/
|
|
channel_auto_read(req);
|
|
channel_auto_connect(req);
|
|
channel_auto_close(req);
|
|
|
|
if (IS_HTX_STRM(s)) {
|
|
struct htx *htx = htxbuf(&req->buf);
|
|
|
|
/* We'll let data flow between the producer (if still connected)
|
|
* to the consumer.
|
|
*/
|
|
co_set_data(req, htx->data);
|
|
if ((global.tune.options & GTUNE_USE_FAST_FWD) &&
|
|
!(scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) && !(scb->flags & SC_FL_SHUT_WANTED))
|
|
channel_htx_forward_forever(req, htx);
|
|
}
|
|
else {
|
|
/* We'll let data flow between the producer (if still connected)
|
|
* to the consumer (which might possibly not be connected yet).
|
|
*/
|
|
c_adv(req, ci_data(req));
|
|
if ((global.tune.options & GTUNE_USE_FAST_FWD) &&
|
|
!(scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) && !(scb->flags & SC_FL_SHUT_WANTED))
|
|
channel_forward_forever(req);
|
|
}
|
|
}
|
|
|
|
/* reflect what the L7 analysers have seen last */
|
|
rqf_last = req->flags;
|
|
scf_flags = (scf_flags & ~(SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED)) | (scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED));
|
|
scb_flags = (scb_flags & ~(SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) | (scb->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED));
|
|
|
|
/* it's possible that an upper layer has requested a connection setup or abort.
|
|
* There are 2 situations where we decide to establish a new connection :
|
|
* - there are data scheduled for emission in the buffer
|
|
* - the CF_AUTO_CONNECT flag is set (active connection)
|
|
*/
|
|
if (scb->state == SC_ST_INI) {
|
|
if (!(scb->flags & SC_FL_SHUT_DONE)) {
|
|
if ((req->flags & CF_AUTO_CONNECT) || co_data(req)) {
|
|
/* If we have an appctx, there is no connect method, so we
|
|
* immediately switch to the connected state, otherwise we
|
|
* perform a connection request.
|
|
*/
|
|
scb->state = SC_ST_REQ; /* new connection requested */
|
|
s->conn_retries = 0;
|
|
if ((s->be->retry_type &~ PR_RE_CONN_FAILED) &&
|
|
(s->be->mode == PR_MODE_HTTP) &&
|
|
!(s->txn->flags & TX_D_L7_RETRY))
|
|
s->txn->flags |= TX_L7_RETRY;
|
|
|
|
if (s->be->options & PR_O_ABRT_CLOSE) {
|
|
struct connection *conn = sc_conn(scf);
|
|
|
|
se_have_more_data(scf->sedesc);
|
|
if (conn && conn->mux && conn->mux->ctl)
|
|
conn->mux->ctl(conn, MUX_CTL_SUBS_RECV, NULL);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
s->scb->state = SC_ST_CLO; /* shutw+ini = abort */
|
|
sc_schedule_shutdown(scb);
|
|
sc_schedule_abort(scb);
|
|
}
|
|
}
|
|
|
|
|
|
/* we may have a pending connection request, or a connection waiting
|
|
* for completion.
|
|
*/
|
|
if (sc_state_in(scb->state, SC_SB_REQ|SC_SB_QUE|SC_SB_TAR|SC_SB_ASS)) {
|
|
/* prune the request variables and swap to the response variables. */
|
|
if (s->vars_reqres.scope != SCOPE_RES) {
|
|
vars_prune(&s->vars_reqres, s->sess, s);
|
|
vars_init_head(&s->vars_reqres, SCOPE_RES);
|
|
}
|
|
|
|
do {
|
|
/* nb: step 1 might switch from QUE to ASS, but we first want
|
|
* to give a chance to step 2 to perform a redirect if needed.
|
|
*/
|
|
if (scb->state != SC_ST_REQ)
|
|
back_try_conn_req(s);
|
|
if (scb->state == SC_ST_REQ)
|
|
back_handle_st_req(s);
|
|
|
|
/* get a chance to complete an immediate connection setup */
|
|
if (scb->state == SC_ST_RDY)
|
|
goto resync_stconns;
|
|
|
|
/* applets directly go to the ESTABLISHED state. Similarly,
|
|
* servers experience the same fate when their connection
|
|
* is reused.
|
|
*/
|
|
if (unlikely(scb->state == SC_ST_EST))
|
|
back_establish(s);
|
|
|
|
srv = objt_server(s->target);
|
|
if (scb->state == SC_ST_ASS && srv && srv->rdr_len && (s->flags & SF_REDIRECTABLE))
|
|
http_perform_server_redirect(s, scb);
|
|
} while (scb->state == SC_ST_ASS);
|
|
}
|
|
|
|
/* Let's see if we can send the pending request now */
|
|
sc_sync_send(scb);
|
|
|
|
/*
|
|
* Now forward all shutdown requests between both sides of the request buffer
|
|
*/
|
|
|
|
/* first, let's check if the request buffer needs to shutdown(write), which may
|
|
* happen either because the input is closed or because we want to force a close
|
|
* once the server has begun to respond. If a half-closed timeout is set, we adjust
|
|
* the other side's timeout as well. However this doesn't have effect during the
|
|
* connection setup unless the backend has abortonclose set.
|
|
*/
|
|
if (unlikely((req->flags & CF_AUTO_CLOSE) && (scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) &&
|
|
!(scb->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) &&
|
|
(scb->state != SC_ST_CON || (s->be->options & PR_O_ABRT_CLOSE)))) {
|
|
sc_schedule_shutdown(scb);
|
|
}
|
|
|
|
/* shutdown(write) pending */
|
|
if (unlikely((scb->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) == SC_FL_SHUT_WANTED &&
|
|
((!co_data(req) && !sc_ep_have_ff_data(scb)) || (req->flags & CF_WRITE_TIMEOUT)))) {
|
|
if (scf->flags & SC_FL_ERROR)
|
|
scb->flags |= SC_FL_NOLINGER;
|
|
sc_shutdown(scb);
|
|
}
|
|
|
|
/* shutdown(write) done on server side, we must stop the client too */
|
|
if (unlikely((scb->flags & SC_FL_SHUT_DONE) && !(scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED))) &&
|
|
!req->analysers)
|
|
sc_schedule_abort(scf);
|
|
|
|
/* shutdown(read) pending */
|
|
if (unlikely((scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED)) == SC_FL_ABRT_WANTED)) {
|
|
if (scf->flags & SC_FL_NOHALF)
|
|
scf->flags |= SC_FL_NOLINGER;
|
|
sc_abort(scf);
|
|
}
|
|
|
|
/* Benchmarks have shown that it's optimal to do a full resync now */
|
|
if (scf->state == SC_ST_DIS ||
|
|
sc_state_in(scb->state, SC_SB_RDY|SC_SB_DIS) ||
|
|
((scf->flags & SC_FL_ERROR) && scf->state != SC_ST_CLO) ||
|
|
((scb->flags & SC_FL_ERROR) && scb->state != SC_ST_CLO))
|
|
goto resync_stconns;
|
|
|
|
/* otherwise we want to check if we need to resync the req buffer or not */
|
|
if (((scf->flags ^ scf_flags) & (SC_FL_EOS|SC_FL_ABRT_DONE)) || ((scb->flags ^ scb_flags) & SC_FL_SHUT_DONE))
|
|
goto resync_request;
|
|
|
|
/* perform output updates to the response buffer */
|
|
|
|
/* If no one is interested in analysing data, it's time to forward
|
|
* everything. We configure the buffer to forward indefinitely.
|
|
* Note that we're checking SC_FL_ABRT_WANTED as an indication of a possible
|
|
* recent call to channel_abort().
|
|
*/
|
|
if (unlikely((!res->analysers || (res->analysers == AN_RES_FLT_END && !(res->flags & CF_FLT_ANALYZE))) &&
|
|
!(scf->flags & SC_FL_ABRT_WANTED) && !(scb->flags & SC_FL_SHUT_WANTED) &&
|
|
sc_state_in(scb->state, SC_SB_EST|SC_SB_DIS|SC_SB_CLO) &&
|
|
(res->to_forward != CHN_INFINITE_FORWARD))) {
|
|
/* This buffer is freewheeling, there's no analyser
|
|
* attached to it. If any data are left in, we'll permit them to
|
|
* move.
|
|
*/
|
|
channel_auto_read(res);
|
|
channel_auto_close(res);
|
|
|
|
if (IS_HTX_STRM(s)) {
|
|
struct htx *htx = htxbuf(&res->buf);
|
|
|
|
/* We'll let data flow between the producer (if still connected)
|
|
* to the consumer.
|
|
*/
|
|
co_set_data(res, htx->data);
|
|
if ((global.tune.options & GTUNE_USE_FAST_FWD) &&
|
|
!(scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) && !(scb->flags & SC_FL_SHUT_WANTED))
|
|
channel_htx_forward_forever(res, htx);
|
|
}
|
|
else {
|
|
/* We'll let data flow between the producer (if still connected)
|
|
* to the consumer.
|
|
*/
|
|
c_adv(res, ci_data(res));
|
|
if ((global.tune.options & GTUNE_USE_FAST_FWD) &&
|
|
!(scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) && !(scb->flags & SC_FL_SHUT_WANTED))
|
|
channel_forward_forever(res);
|
|
}
|
|
|
|
/* if we have no analyser anymore in any direction and have a
|
|
* tunnel timeout set, use it now. Note that we must respect
|
|
* the half-closed timeouts as well.
|
|
*/
|
|
if (!req->analysers && s->tunnel_timeout) {
|
|
scf->ioto = scb->ioto = s->tunnel_timeout;
|
|
|
|
if (!IS_HTX_STRM(s)) {
|
|
if ((scf->flags & (SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_SHUT_DONE)) && tick_isset(sess->fe->timeout.clientfin))
|
|
scf->ioto = sess->fe->timeout.clientfin;
|
|
if ((scb->flags & (SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_SHUT_DONE)) && tick_isset(s->be->timeout.serverfin))
|
|
scb->ioto = s->be->timeout.serverfin;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* reflect what the L7 analysers have seen last */
|
|
rpf_last = res->flags;
|
|
scb_flags = (scb_flags & ~(SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED)) | (scb->flags & (SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED));
|
|
scf_flags = (scf_flags & ~(SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) | (scf->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED));
|
|
|
|
/* Let's see if we can send the pending response now */
|
|
sc_sync_send(scf);
|
|
|
|
/*
|
|
* Now forward all shutdown requests between both sides of the buffer
|
|
*/
|
|
|
|
/*
|
|
* FIXME: this is probably where we should produce error responses.
|
|
*/
|
|
|
|
/* first, let's check if the response buffer needs to shutdown(write) */
|
|
if (unlikely((res->flags & CF_AUTO_CLOSE) && (scb->flags & (SC_FL_EOS|SC_FL_ABRT_DONE)) &&
|
|
!(scf->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)))) {
|
|
sc_schedule_shutdown(scf);
|
|
}
|
|
|
|
/* shutdown(write) pending */
|
|
if (unlikely((scf->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) == SC_FL_SHUT_WANTED &&
|
|
((!co_data(res) && !sc_ep_have_ff_data(scf)) || (res->flags & CF_WRITE_TIMEOUT)))) {
|
|
sc_shutdown(scf);
|
|
}
|
|
|
|
/* shutdown(write) done on the client side, we must stop the server too */
|
|
if (unlikely((scf->flags & SC_FL_SHUT_DONE) && !(scb->flags & (SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED))) &&
|
|
!res->analysers)
|
|
sc_schedule_abort(scb);
|
|
|
|
/* shutdown(read) pending */
|
|
if (unlikely((scb->flags & (SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED)) == SC_FL_ABRT_WANTED)) {
|
|
if (scb->flags & SC_FL_NOHALF)
|
|
scb->flags |= SC_FL_NOLINGER;
|
|
sc_abort(scb);
|
|
}
|
|
|
|
if (scf->state == SC_ST_DIS ||
|
|
sc_state_in(scb->state, SC_SB_RDY|SC_SB_DIS) ||
|
|
((scf->flags & SC_FL_ERROR) && scf->state != SC_ST_CLO) ||
|
|
((scb->flags & SC_FL_ERROR) && scb->state != SC_ST_CLO))
|
|
goto resync_stconns;
|
|
|
|
if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER)
|
|
goto resync_request;
|
|
|
|
if (((scb->flags ^ scb_flags) & (SC_FL_EOS|SC_FL_ABRT_DONE|SC_FL_ABRT_WANTED)) ||
|
|
((scf->flags ^ scf_flags) & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED)) ||
|
|
(res->analysers ^ res_ana_back))
|
|
goto resync_response;
|
|
|
|
if ((((req->flags ^ rqf_last) | (res->flags ^ rpf_last)) & CF_MASK_ANALYSER) ||
|
|
(req->analysers ^ req_ana_back))
|
|
goto resync_request;
|
|
|
|
/* we're interested in getting wakeups again */
|
|
scf->flags &= ~SC_FL_DONT_WAKE;
|
|
scb->flags &= ~SC_FL_DONT_WAKE;
|
|
|
|
if (likely((scf->state != SC_ST_CLO) || !sc_state_in(scb->state, SC_SB_INI|SC_SB_CLO) ||
|
|
(req->analysers & AN_REQ_FLT_END) || (res->analysers & AN_RES_FLT_END))) {
|
|
if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) && !(s->flags & SF_IGNORE))
|
|
stream_process_counters(s);
|
|
|
|
stream_update_both_sc(s);
|
|
|
|
/* Reset pending events now */
|
|
s->pending_events = 0;
|
|
|
|
update_exp_and_leave:
|
|
/* Note: please ensure that if you branch here you disable SC_FL_DONT_WAKE */
|
|
if (!req->analysers)
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
if (!res->analysers)
|
|
res->analyse_exp = TICK_ETERNITY;
|
|
|
|
if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) &&
|
|
(!tick_isset(req->analyse_exp) || tick_is_expired(req->analyse_exp, now_ms)))
|
|
req->analyse_exp = tick_add(now_ms, 5000);
|
|
|
|
t->expire = (tick_is_expired(t->expire, now_ms) ? 0 : t->expire);
|
|
t->expire = tick_first(t->expire, sc_ep_rcv_ex(scf));
|
|
t->expire = tick_first(t->expire, sc_ep_snd_ex(scf));
|
|
t->expire = tick_first(t->expire, sc_ep_rcv_ex(scb));
|
|
t->expire = tick_first(t->expire, sc_ep_snd_ex(scb));
|
|
t->expire = tick_first(t->expire, req->analyse_exp);
|
|
t->expire = tick_first(t->expire, res->analyse_exp);
|
|
t->expire = tick_first(t->expire, s->conn_exp);
|
|
|
|
if (unlikely(tick_is_expired(t->expire, now_ms))) {
|
|
/* Some events prevented the timeouts to be handled but nothing evolved.
|
|
So do it now and resyunc the stconns
|
|
*/
|
|
stream_handle_timeouts(s);
|
|
goto resync_stconns;
|
|
}
|
|
leave:
|
|
s->pending_events &= ~(TASK_WOKEN_TIMER | TASK_WOKEN_RES);
|
|
stream_release_buffers(s);
|
|
|
|
DBG_TRACE_DEVEL("queuing", STRM_EV_STRM_PROC, s);
|
|
return t; /* nothing more to do */
|
|
}
|
|
|
|
DBG_TRACE_DEVEL("releasing", STRM_EV_STRM_PROC, s);
|
|
|
|
if (s->flags & SF_BE_ASSIGNED)
|
|
_HA_ATOMIC_DEC(&s->be->beconn);
|
|
|
|
if (unlikely((global.mode & MODE_DEBUG) &&
|
|
(!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) {
|
|
chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n",
|
|
s->uniq_id, s->be->id,
|
|
(unsigned short)conn_fd(sc_conn(scf)),
|
|
(unsigned short)conn_fd(sc_conn(scb)));
|
|
DISGUISE(write(1, trash.area, trash.data));
|
|
}
|
|
|
|
if (!(s->flags & SF_IGNORE)) {
|
|
uint8_t do_log = 0;
|
|
|
|
s->logs.t_close = ns_to_ms(now_ns - s->logs.accept_ts);
|
|
|
|
stream_process_counters(s);
|
|
|
|
if (s->txn && s->txn->status) {
|
|
int n;
|
|
|
|
n = s->txn->status / 100;
|
|
if (n < 1 || n > 5)
|
|
n = 0;
|
|
|
|
if (sess->fe->mode == PR_MODE_HTTP) {
|
|
_HA_ATOMIC_INC(&sess->fe->fe_counters.p.http.rsp[n]);
|
|
}
|
|
if ((s->flags & SF_BE_ASSIGNED) &&
|
|
(s->be->mode == PR_MODE_HTTP)) {
|
|
_HA_ATOMIC_INC(&s->be->be_counters.p.http.rsp[n]);
|
|
_HA_ATOMIC_INC(&s->be->be_counters.p.http.cum_req);
|
|
}
|
|
}
|
|
|
|
/* let's do a final log if we need it */
|
|
if (sess->fe->to_log == LW_LOGSTEPS) {
|
|
if (log_orig_proxy(LOG_ORIG_TXN_CLOSE, sess->fe))
|
|
do_log = 1;
|
|
}
|
|
else if (!lf_expr_isempty(&sess->fe->logformat) && s->logs.logwait)
|
|
do_log = 1;
|
|
|
|
if (do_log &&
|
|
!(s->flags & SF_MONITOR) &&
|
|
(!(sess->fe->options & PR_O_NULLNOLOG) || req->total)) {
|
|
/* we may need to know the position in the queue */
|
|
pendconn_free(s);
|
|
|
|
stream_cond_update_cpu_usage(s);
|
|
s->do_log(s, log_orig(LOG_ORIG_TXN_CLOSE, LOG_ORIG_FL_NONE));
|
|
}
|
|
|
|
/* update time stats for this stream */
|
|
stream_update_time_stats(s);
|
|
}
|
|
|
|
/* the task MUST not be in the run queue anymore */
|
|
stream_free(s);
|
|
task_destroy(t);
|
|
return NULL;
|
|
}
|
|
|
|
/* Update the stream's backend and server time stats */
|
|
void stream_update_time_stats(struct stream *s)
|
|
{
|
|
int t_request;
|
|
int t_queue;
|
|
int t_connect;
|
|
int t_data;
|
|
int t_close;
|
|
struct server *srv;
|
|
unsigned int samples_window;
|
|
|
|
t_request = 0;
|
|
t_queue = s->logs.t_queue;
|
|
t_connect = s->logs.t_connect;
|
|
t_close = s->logs.t_close;
|
|
t_data = s->logs.t_data;
|
|
|
|
if (s->be->mode != PR_MODE_HTTP)
|
|
t_data = t_connect;
|
|
|
|
if (t_connect < 0 || t_data < 0)
|
|
return;
|
|
|
|
if ((llong)(s->logs.request_ts - s->logs.accept_ts) >= 0)
|
|
t_request = ns_to_ms(s->logs.request_ts - s->logs.accept_ts);
|
|
|
|
t_data -= t_connect;
|
|
t_connect -= t_queue;
|
|
t_queue -= t_request;
|
|
|
|
srv = objt_server(s->target);
|
|
if (srv) {
|
|
samples_window = (((s->be->mode == PR_MODE_HTTP) ?
|
|
srv->counters.p.http.cum_req : srv->counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0;
|
|
swrate_add_dynamic(&srv->counters.q_time, samples_window, t_queue);
|
|
swrate_add_dynamic(&srv->counters.c_time, samples_window, t_connect);
|
|
swrate_add_dynamic(&srv->counters.d_time, samples_window, t_data);
|
|
swrate_add_dynamic(&srv->counters.t_time, samples_window, t_close);
|
|
HA_ATOMIC_UPDATE_MAX(&srv->counters.qtime_max, t_queue);
|
|
HA_ATOMIC_UPDATE_MAX(&srv->counters.ctime_max, t_connect);
|
|
HA_ATOMIC_UPDATE_MAX(&srv->counters.dtime_max, t_data);
|
|
HA_ATOMIC_UPDATE_MAX(&srv->counters.ttime_max, t_close);
|
|
}
|
|
samples_window = (((s->be->mode == PR_MODE_HTTP) ?
|
|
s->be->be_counters.p.http.cum_req : s->be->be_counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0;
|
|
swrate_add_dynamic(&s->be->be_counters.q_time, samples_window, t_queue);
|
|
swrate_add_dynamic(&s->be->be_counters.c_time, samples_window, t_connect);
|
|
swrate_add_dynamic(&s->be->be_counters.d_time, samples_window, t_data);
|
|
swrate_add_dynamic(&s->be->be_counters.t_time, samples_window, t_close);
|
|
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.qtime_max, t_queue);
|
|
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ctime_max, t_connect);
|
|
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.dtime_max, t_data);
|
|
HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ttime_max, t_close);
|
|
}
|
|
|
|
/*
|
|
* This function adjusts sess->srv_conn and maintains the previous and new
|
|
* server's served stream counts. Setting newsrv to NULL is enough to release
|
|
* current connection slot. This function also notifies any LB algo which might
|
|
* expect to be informed about any change in the number of active streams on a
|
|
* server.
|
|
*/
|
|
void sess_change_server(struct stream *strm, struct server *newsrv)
|
|
{
|
|
struct server *oldsrv = strm->srv_conn;
|
|
|
|
/* Dynamic servers may be deleted during process lifetime. This
|
|
* operation is always conducted under thread isolation. Several
|
|
* conditions prevent deletion, one of them is if server streams list
|
|
* is not empty. sess_change_server() uses stream_add_srv_conn() to
|
|
* ensure the latter condition.
|
|
*
|
|
* A race condition could exist for stream which referenced a server
|
|
* instance (s->target) without registering itself in its server list.
|
|
* This is notably the case for SF_DIRECT streams which referenced a
|
|
* server earlier during process_stream(). However at this time the
|
|
* code is deemed safe as process_stream() cannot be rescheduled before
|
|
* invocation of sess_change_server().
|
|
*/
|
|
|
|
if (oldsrv == newsrv)
|
|
return;
|
|
|
|
if (oldsrv) {
|
|
_HA_ATOMIC_DEC(&oldsrv->served);
|
|
_HA_ATOMIC_DEC(&oldsrv->proxy->served);
|
|
__ha_barrier_atomic_store();
|
|
if (oldsrv->proxy->lbprm.server_drop_conn)
|
|
oldsrv->proxy->lbprm.server_drop_conn(oldsrv);
|
|
stream_del_srv_conn(strm);
|
|
}
|
|
|
|
if (newsrv) {
|
|
_HA_ATOMIC_INC(&newsrv->served);
|
|
_HA_ATOMIC_INC(&newsrv->proxy->served);
|
|
__ha_barrier_atomic_store();
|
|
if (newsrv->proxy->lbprm.server_take_conn)
|
|
newsrv->proxy->lbprm.server_take_conn(newsrv);
|
|
stream_add_srv_conn(strm, newsrv);
|
|
}
|
|
}
|
|
|
|
/* Handle server-side errors for default protocols. It is called whenever a a
|
|
* connection setup is aborted or a request is aborted in queue. It sets the
|
|
* stream termination flags so that the caller does not have to worry about
|
|
* them. It's installed as ->srv_error for the server-side stream connector.
|
|
*/
|
|
void default_srv_error(struct stream *s, struct stconn *sc)
|
|
{
|
|
int err_type = s->conn_err_type;
|
|
int err = 0, fin = 0;
|
|
|
|
if (err_type & STRM_ET_QUEUE_ABRT) {
|
|
err = SF_ERR_CLICL;
|
|
fin = SF_FINST_Q;
|
|
}
|
|
else if (err_type & STRM_ET_CONN_ABRT) {
|
|
err = SF_ERR_CLICL;
|
|
fin = SF_FINST_C;
|
|
}
|
|
else if (err_type & STRM_ET_QUEUE_TO) {
|
|
err = SF_ERR_SRVTO;
|
|
fin = SF_FINST_Q;
|
|
}
|
|
else if (err_type & STRM_ET_QUEUE_ERR) {
|
|
err = SF_ERR_SRVCL;
|
|
fin = SF_FINST_Q;
|
|
}
|
|
else if (err_type & STRM_ET_CONN_TO) {
|
|
err = SF_ERR_SRVTO;
|
|
fin = SF_FINST_C;
|
|
}
|
|
else if (err_type & STRM_ET_CONN_ERR) {
|
|
err = SF_ERR_SRVCL;
|
|
fin = SF_FINST_C;
|
|
}
|
|
else if (err_type & STRM_ET_CONN_RES) {
|
|
err = SF_ERR_RESOURCE;
|
|
fin = SF_FINST_C;
|
|
}
|
|
else /* STRM_ET_CONN_OTHER and others */ {
|
|
err = SF_ERR_INTERNAL;
|
|
fin = SF_FINST_C;
|
|
}
|
|
|
|
if (!(s->flags & SF_ERR_MASK))
|
|
s->flags |= err;
|
|
if (!(s->flags & SF_FINST_MASK))
|
|
s->flags |= fin;
|
|
}
|
|
|
|
/* shutdown the stream from itself. It's also possible for another one from the
|
|
* same thread but then an explicit wakeup will be needed since this function
|
|
* does not perform it. <why> is a set of SF_ERR_* flags to pass as the cause
|
|
* for shutting down.
|
|
*/
|
|
void stream_shutdown_self(struct stream *stream, int why)
|
|
{
|
|
if (stream->scb->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED))
|
|
return;
|
|
|
|
sc_schedule_shutdown(stream->scb);
|
|
sc_schedule_abort(stream->scb);
|
|
stream->task->nice = 1024;
|
|
if (!(stream->flags & SF_ERR_MASK))
|
|
stream->flags |= why;
|
|
}
|
|
|
|
/* dumps an error message for type <type> at ptr <ptr> related to stream <s>,
|
|
* having reached loop rate <rate>, then aborts hoping to retrieve a core.
|
|
*/
|
|
void stream_dump_and_crash(enum obj_type *obj, int rate)
|
|
{
|
|
struct stream *s;
|
|
char *msg = NULL;
|
|
const void *ptr;
|
|
|
|
ptr = s = objt_stream(obj);
|
|
if (!s) {
|
|
const struct appctx *appctx = objt_appctx(obj);
|
|
if (!appctx)
|
|
return;
|
|
ptr = appctx;
|
|
s = appctx_strm(appctx);
|
|
if (!s)
|
|
return;
|
|
}
|
|
|
|
chunk_reset(&trash);
|
|
chunk_printf(&trash, " ");
|
|
strm_dump_to_buffer(&trash, s, " ", HA_ATOMIC_LOAD(&global.anon_key));
|
|
|
|
if (ptr != s) { // that's an appctx
|
|
const struct appctx *appctx = ptr;
|
|
|
|
chunk_appendf(&trash, " applet=%p(", appctx->applet);
|
|
resolve_sym_name(&trash, NULL, appctx->applet);
|
|
chunk_appendf(&trash, ")");
|
|
|
|
chunk_appendf(&trash, " handler=%p(", appctx->applet->fct);
|
|
resolve_sym_name(&trash, NULL, appctx->applet->fct);
|
|
chunk_appendf(&trash, ")");
|
|
}
|
|
|
|
memprintf(&msg,
|
|
"A bogus %s [%p] is spinning at %d calls per second and refuses to die, "
|
|
"aborting now! Please report this error to developers:\n"
|
|
"%s\n",
|
|
obj_type_name(obj), ptr, rate, trash.area);
|
|
|
|
ha_alert("%s", msg);
|
|
send_log(NULL, LOG_EMERG, "%s", msg);
|
|
ABORT_NOW();
|
|
}
|
|
|
|
/* initialize the require structures */
|
|
static void init_stream()
|
|
{
|
|
int thr;
|
|
|
|
for (thr = 0; thr < MAX_THREADS; thr++)
|
|
LIST_INIT(&ha_thread_ctx[thr].streams);
|
|
}
|
|
INITCALL0(STG_INIT, init_stream);
|
|
|
|
/* Generates a unique ID based on the given <format>, stores it in the given <strm> and
|
|
* returns the unique ID.
|
|
*
|
|
* If this function fails to allocate memory IST_NULL is returned.
|
|
*
|
|
* If an ID is already stored within the stream nothing happens existing unique ID is
|
|
* returned.
|
|
*/
|
|
struct ist stream_generate_unique_id(struct stream *strm, struct lf_expr *format)
|
|
{
|
|
if (isttest(strm->unique_id)) {
|
|
return strm->unique_id;
|
|
}
|
|
else {
|
|
char *unique_id;
|
|
int length;
|
|
if ((unique_id = pool_alloc(pool_head_uniqueid)) == NULL)
|
|
return IST_NULL;
|
|
|
|
length = build_logline(strm, unique_id, UNIQUEID_LEN, format);
|
|
strm->unique_id = ist2(unique_id, length);
|
|
|
|
return strm->unique_id;
|
|
}
|
|
}
|
|
|
|
/************************************************************************/
|
|
/* All supported ACL keywords must be declared here. */
|
|
/************************************************************************/
|
|
static enum act_return stream_action_set_retries(struct act_rule *rule, struct proxy *px,
|
|
struct session *sess, struct stream *s, int flags)
|
|
{
|
|
struct sample *smp;
|
|
|
|
if (!rule->arg.expr_int.expr)
|
|
s->max_retries = rule->arg.expr_int.value;
|
|
else {
|
|
smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr_int.expr, SMP_T_SINT);
|
|
if (!smp || smp->data.u.sint < 0 || smp->data.u.sint > 100)
|
|
goto end;
|
|
s->max_retries = smp->data.u.sint;
|
|
}
|
|
|
|
end:
|
|
return ACT_RET_CONT;
|
|
}
|
|
|
|
|
|
/* Parse a "set-retries" action. It takes the level value as argument. It
|
|
* returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
|
|
*/
|
|
static enum act_parse_ret stream_parse_set_retries(const char **args, int *cur_arg, struct proxy *px,
|
|
struct act_rule *rule, char **err)
|
|
{
|
|
struct sample_expr *expr;
|
|
char *endp;
|
|
unsigned int where;
|
|
|
|
if (!*args[*cur_arg]) {
|
|
bad_retries:
|
|
memprintf(err, "expects exactly 1 argument (an expression or an integer between 1 and 100)");
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
if (!(px->cap & PR_CAP_BE)) {
|
|
memprintf(err, "'%s' only available in backend or listen section", args[0]);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
if (px->cap & PR_CAP_DEF) {
|
|
memprintf(err, "'%s' is not allowed in 'defaults' sections", args[0]);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
|
|
/* value may be either an unsigned integer or an expression */
|
|
rule->arg.expr_int.expr = NULL;
|
|
rule->arg.expr_int.value = strtol(args[*cur_arg], &endp, 0);
|
|
if (*endp == '\0') {
|
|
if (rule->arg.expr_int.value < 0 || rule->arg.expr_int.value > 100) {
|
|
memprintf(err, "expects an expression or an integer between 1 and 100");
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
/* valid unsigned integer */
|
|
(*cur_arg)++;
|
|
}
|
|
else { /* invalid unsigned integer, fallback to expr */
|
|
expr = sample_parse_expr((char **)args, cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args, NULL);
|
|
if (!expr)
|
|
return ACT_RET_PRS_ERR;
|
|
where = 0;
|
|
if (px->cap & PR_CAP_FE)
|
|
where |= SMP_VAL_FE_HRQ_HDR;
|
|
if (px->cap & PR_CAP_BE)
|
|
where |= SMP_VAL_BE_HRQ_HDR;
|
|
|
|
if (!(expr->fetch->val & where)) {
|
|
memprintf(err,
|
|
"fetch method '%s' extracts information from '%s', none of which is available here",
|
|
args[*cur_arg-1], sample_src_names(expr->fetch->use));
|
|
free(expr);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
rule->arg.expr_int.expr = expr;
|
|
}
|
|
|
|
/* Register processing function. */
|
|
rule->action = ACT_CUSTOM;
|
|
rule->action_ptr = stream_action_set_retries;
|
|
rule->release_ptr = release_expr_int_action;
|
|
return ACT_RET_PRS_OK;
|
|
}
|
|
|
|
static enum act_return stream_action_set_log_level(struct act_rule *rule, struct proxy *px,
|
|
struct session *sess, struct stream *s, int flags)
|
|
{
|
|
s->logs.level = (uintptr_t)rule->arg.act.p[0];
|
|
return ACT_RET_CONT;
|
|
}
|
|
|
|
|
|
/* Parse a "set-log-level" action. It takes the level value as argument. It
|
|
* returns ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
|
|
*/
|
|
static enum act_parse_ret stream_parse_set_log_level(const char **args, int *cur_arg, struct proxy *px,
|
|
struct act_rule *rule, char **err)
|
|
{
|
|
int level;
|
|
|
|
if (!*args[*cur_arg]) {
|
|
bad_log_level:
|
|
memprintf(err, "expects exactly 1 argument (log level name or 'silent')");
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
if (strcmp(args[*cur_arg], "silent") == 0)
|
|
level = -1;
|
|
else if ((level = get_log_level(args[*cur_arg]) + 1) == 0)
|
|
goto bad_log_level;
|
|
|
|
(*cur_arg)++;
|
|
|
|
/* Register processing function. */
|
|
rule->action_ptr = stream_action_set_log_level;
|
|
rule->action = ACT_CUSTOM;
|
|
rule->arg.act.p[0] = (void *)(uintptr_t)level;
|
|
return ACT_RET_PRS_OK;
|
|
}
|
|
|
|
static enum act_return stream_action_set_nice(struct act_rule *rule, struct proxy *px,
|
|
struct session *sess, struct stream *s, int flags)
|
|
{
|
|
s->task->nice = (uintptr_t)rule->arg.act.p[0];
|
|
return ACT_RET_CONT;
|
|
}
|
|
|
|
|
|
/* Parse a "set-nice" action. It takes the nice value as argument. It returns
|
|
* ACT_RET_PRS_OK on success, ACT_RET_PRS_ERR on error.
|
|
*/
|
|
static enum act_parse_ret stream_parse_set_nice(const char **args, int *cur_arg, struct proxy *px,
|
|
struct act_rule *rule, char **err)
|
|
{
|
|
int nice;
|
|
|
|
if (!*args[*cur_arg]) {
|
|
bad_log_level:
|
|
memprintf(err, "expects exactly 1 argument (integer value)");
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
|
|
nice = atoi(args[*cur_arg]);
|
|
if (nice < -1024)
|
|
nice = -1024;
|
|
else if (nice > 1024)
|
|
nice = 1024;
|
|
|
|
(*cur_arg)++;
|
|
|
|
/* Register processing function. */
|
|
rule->action_ptr = stream_action_set_nice;
|
|
rule->action = ACT_CUSTOM;
|
|
rule->arg.act.p[0] = (void *)(uintptr_t)nice;
|
|
return ACT_RET_PRS_OK;
|
|
}
|
|
|
|
|
|
static enum act_return tcp_action_switch_stream_mode(struct act_rule *rule, struct proxy *px,
|
|
struct session *sess, struct stream *s, int flags)
|
|
{
|
|
enum pr_mode mode = (uintptr_t)rule->arg.act.p[0];
|
|
const struct mux_proto_list *mux_proto = rule->arg.act.p[1];
|
|
|
|
if (!IS_HTX_STRM(s) && mode == PR_MODE_HTTP) {
|
|
if (!stream_set_http_mode(s, mux_proto)) {
|
|
stream_abort(s);
|
|
return ACT_RET_ABRT;
|
|
}
|
|
}
|
|
return ACT_RET_STOP;
|
|
}
|
|
|
|
|
|
static int check_tcp_switch_stream_mode(struct act_rule *rule, struct proxy *px, char **err)
|
|
{
|
|
const struct mux_proto_list *mux_ent;
|
|
const struct mux_proto_list *mux_proto = rule->arg.act.p[1];
|
|
enum pr_mode pr_mode = (uintptr_t)rule->arg.act.p[0];
|
|
enum proto_proxy_mode mode = conn_pr_mode_to_proto_mode(pr_mode);
|
|
|
|
if (pr_mode == PR_MODE_HTTP)
|
|
px->options |= PR_O_HTTP_UPG;
|
|
|
|
if (mux_proto) {
|
|
mux_ent = conn_get_best_mux_entry(mux_proto->token, PROTO_SIDE_FE, mode);
|
|
if (!mux_ent || !isteq(mux_ent->token, mux_proto->token)) {
|
|
memprintf(err, "MUX protocol '%.*s' is not compatible with the selected mode",
|
|
(int)mux_proto->token.len, mux_proto->token.ptr);
|
|
return 0;
|
|
}
|
|
}
|
|
else {
|
|
mux_ent = conn_get_best_mux_entry(IST_NULL, PROTO_SIDE_FE, mode);
|
|
if (!mux_ent) {
|
|
memprintf(err, "Unable to find compatible MUX protocol with the selected mode");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Update the mux */
|
|
rule->arg.act.p[1] = (void *)mux_ent;
|
|
return 1;
|
|
|
|
}
|
|
|
|
static enum act_parse_ret stream_parse_switch_mode(const char **args, int *cur_arg,
|
|
struct proxy *px, struct act_rule *rule,
|
|
char **err)
|
|
{
|
|
const struct mux_proto_list *mux_proto = NULL;
|
|
struct ist proto;
|
|
enum pr_mode mode;
|
|
|
|
/* must have at least the mode */
|
|
if (*(args[*cur_arg]) == 0) {
|
|
memprintf(err, "'%s %s' expects a mode as argument.", args[0], args[*cur_arg-1]);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
|
|
if (!(px->cap & PR_CAP_FE)) {
|
|
memprintf(err, "'%s %s' not allowed because %s '%s' has no frontend capability",
|
|
args[0], args[*cur_arg-1], proxy_type_str(px), px->id);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
/* Check if the mode. For now "tcp" is disabled because downgrade is not
|
|
* supported and PT is the only TCP mux.
|
|
*/
|
|
if (strcmp(args[*cur_arg], "http") == 0)
|
|
mode = PR_MODE_HTTP;
|
|
else {
|
|
memprintf(err, "'%s %s' expects a valid mode (got '%s').", args[0], args[*cur_arg-1], args[*cur_arg]);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
|
|
/* check the proto, if specified */
|
|
if (*(args[*cur_arg+1]) && strcmp(args[*cur_arg+1], "proto") == 0) {
|
|
if (*(args[*cur_arg+2]) == 0) {
|
|
memprintf(err, "'%s %s': '%s' expects a protocol as argument.",
|
|
args[0], args[*cur_arg-1], args[*cur_arg+1]);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
|
|
proto = ist(args[*cur_arg + 2]);
|
|
mux_proto = get_mux_proto(proto);
|
|
if (!mux_proto) {
|
|
memprintf(err, "'%s %s': '%s' expects a valid MUX protocol, if specified (got '%s')",
|
|
args[0], args[*cur_arg-1], args[*cur_arg+1], args[*cur_arg+2]);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
*cur_arg += 2;
|
|
}
|
|
|
|
(*cur_arg)++;
|
|
|
|
/* Register processing function. */
|
|
rule->action_ptr = tcp_action_switch_stream_mode;
|
|
rule->check_ptr = check_tcp_switch_stream_mode;
|
|
rule->action = ACT_CUSTOM;
|
|
rule->arg.act.p[0] = (void *)(uintptr_t)mode;
|
|
rule->arg.act.p[1] = (void *)mux_proto;
|
|
return ACT_RET_PRS_OK;
|
|
}
|
|
|
|
/* 0=OK, <0=Alert, >0=Warning */
|
|
static enum act_parse_ret stream_parse_use_service(const char **args, int *cur_arg,
|
|
struct proxy *px, struct act_rule *rule,
|
|
char **err)
|
|
{
|
|
struct action_kw *kw;
|
|
|
|
/* Check if the service name exists. */
|
|
if (*(args[*cur_arg]) == 0) {
|
|
memprintf(err, "'%s' expects a service name.", args[0]);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
|
|
/* lookup for keyword corresponding to a service. */
|
|
kw = action_lookup(&service_keywords, args[*cur_arg]);
|
|
if (!kw) {
|
|
memprintf(err, "'%s' unknown service name.", args[1]);
|
|
return ACT_RET_PRS_ERR;
|
|
}
|
|
(*cur_arg)++;
|
|
|
|
/* executes specific rule parser. */
|
|
rule->kw = kw;
|
|
if (kw->parse((const char **)args, cur_arg, px, rule, err) == ACT_RET_PRS_ERR)
|
|
return ACT_RET_PRS_ERR;
|
|
|
|
/* Register processing function. */
|
|
rule->action_ptr = process_use_service;
|
|
rule->action = ACT_CUSTOM;
|
|
|
|
return ACT_RET_PRS_OK;
|
|
}
|
|
|
|
void service_keywords_register(struct action_kw_list *kw_list)
|
|
{
|
|
LIST_APPEND(&service_keywords, &kw_list->list);
|
|
}
|
|
|
|
struct action_kw *service_find(const char *kw)
|
|
{
|
|
return action_lookup(&service_keywords, kw);
|
|
}
|
|
|
|
/* Lists the known services on <out>. If <out> is null, emit them on stdout one
|
|
* per line.
|
|
*/
|
|
void list_services(FILE *out)
|
|
{
|
|
const struct action_kw *akwp, *akwn;
|
|
struct action_kw_list *kw_list;
|
|
int found = 0;
|
|
int i;
|
|
|
|
if (out)
|
|
fprintf(out, "Available services :");
|
|
|
|
for (akwn = akwp = NULL;; akwp = akwn) {
|
|
list_for_each_entry(kw_list, &service_keywords, list) {
|
|
for (i = 0; kw_list->kw[i].kw != NULL; i++) {
|
|
if (strordered(akwp ? akwp->kw : NULL,
|
|
kw_list->kw[i].kw,
|
|
akwn != akwp ? akwn->kw : NULL))
|
|
akwn = &kw_list->kw[i];
|
|
found = 1;
|
|
}
|
|
}
|
|
if (akwn == akwp)
|
|
break;
|
|
if (out)
|
|
fprintf(out, " %s", akwn->kw);
|
|
else
|
|
printf("%s\n", akwn->kw);
|
|
}
|
|
if (!found && out)
|
|
fprintf(out, " none\n");
|
|
}
|
|
|
|
/* appctx context used by the "show sess" command */
|
|
/* flags used for show_sess_ctx.flags */
|
|
#define CLI_SHOWSESS_F_SUSP 0x00000001 /* show only suspicious streams */
|
|
|
|
struct show_sess_ctx {
|
|
struct bref bref; /* back-reference from the session being dumped */
|
|
void *target; /* session we want to dump, or NULL for all */
|
|
unsigned int thr; /* the thread number being explored (0..MAX_THREADS-1) */
|
|
unsigned int uid; /* if non-null, the uniq_id of the session being dumped */
|
|
unsigned int min_age; /* minimum age of streams to dump */
|
|
unsigned int flags; /* CLI_SHOWSESS_* */
|
|
int section; /* section of the session being dumped */
|
|
int pos; /* last position of the current session's buffer */
|
|
};
|
|
|
|
/* This function appends a complete dump of a stream state onto the buffer,
|
|
* possibly anonymizing using the specified anon_key. The caller is responsible
|
|
* for ensuring that enough room remains in the buffer to dump a complete
|
|
* stream at once. Each new output line will be prefixed with <pfx> if non-null,
|
|
* which is used to preserve indenting.
|
|
*/
|
|
void strm_dump_to_buffer(struct buffer *buf, const struct stream *strm, const char *pfx, uint32_t anon_key)
|
|
{
|
|
struct stconn *scf, *scb;
|
|
struct tm tm;
|
|
extern const char *monthname[12];
|
|
char pn[INET6_ADDRSTRLEN];
|
|
struct connection *conn;
|
|
struct appctx *tmpctx;
|
|
|
|
pfx = pfx ? pfx : "";
|
|
|
|
get_localtime(strm->logs.accept_date.tv_sec, &tm);
|
|
chunk_appendf(buf,
|
|
"%p: [%02d/%s/%04d:%02d:%02d:%02d.%06d] id=%u proto=%s",
|
|
strm,
|
|
tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
|
|
tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(strm->logs.accept_date.tv_usec),
|
|
strm->uniq_id,
|
|
strm_li(strm) ? strm_li(strm)->rx.proto->name : "?");
|
|
|
|
conn = objt_conn(strm_orig(strm));
|
|
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
|
|
case AF_INET:
|
|
case AF_INET6:
|
|
chunk_appendf(buf, " source=%s:%d\n",
|
|
HA_ANON_STR(anon_key, pn), get_host_port(conn->src));
|
|
break;
|
|
case AF_UNIX:
|
|
case AF_CUST_ABNS:
|
|
case AF_CUST_ABNSZ:
|
|
chunk_appendf(buf, " source=unix:%d\n", strm_li(strm)->luid);
|
|
break;
|
|
default:
|
|
/* no more information to print right now */
|
|
chunk_appendf(buf, "\n");
|
|
break;
|
|
}
|
|
|
|
chunk_appendf(buf,
|
|
"%s flags=0x%x, conn_retries=%d, conn_exp=%s conn_et=0x%03x srv_conn=%p, pend_pos=%p waiting=%d epoch=%#x\n", pfx,
|
|
strm->flags, strm->conn_retries,
|
|
strm->conn_exp ?
|
|
tick_is_expired(strm->conn_exp, now_ms) ? "<PAST>" :
|
|
human_time(TICKS_TO_MS(strm->conn_exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>",
|
|
strm->conn_err_type, strm->srv_conn, strm->pend_pos,
|
|
LIST_INLIST(&strm->buffer_wait.list), strm->stream_epoch);
|
|
|
|
chunk_appendf(buf, "%s p_stc=%u p_req=%u p_res=%u p_prp=%u\n", pfx,
|
|
strm->passes_stconn, strm->passes_reqana, strm->passes_resana, strm->passes_propag);
|
|
|
|
chunk_appendf(buf,
|
|
"%s frontend=%s (id=%u mode=%s), listener=%s (id=%u)", pfx,
|
|
HA_ANON_STR(anon_key, strm_fe(strm)->id), strm_fe(strm)->uuid, proxy_mode_str(strm_fe(strm)->mode),
|
|
strm_li(strm) ? strm_li(strm)->name ? strm_li(strm)->name : "?" : "?",
|
|
strm_li(strm) ? strm_li(strm)->luid : 0);
|
|
|
|
switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
|
|
case AF_INET:
|
|
case AF_INET6:
|
|
chunk_appendf(buf, " addr=%s:%d\n",
|
|
HA_ANON_STR(anon_key, pn), get_host_port(conn->dst));
|
|
break;
|
|
case AF_UNIX:
|
|
case AF_CUST_ABNS:
|
|
case AF_CUST_ABNSZ:
|
|
chunk_appendf(buf, " addr=unix:%d\n", strm_li(strm)->luid);
|
|
break;
|
|
default:
|
|
/* no more information to print right now */
|
|
chunk_appendf(buf, "\n");
|
|
break;
|
|
}
|
|
|
|
if (strm->be->cap & PR_CAP_BE)
|
|
chunk_appendf(buf,
|
|
"%s backend=%s (id=%u mode=%s)", pfx,
|
|
HA_ANON_STR(anon_key, strm->be->id),
|
|
strm->be->uuid, proxy_mode_str(strm->be->mode));
|
|
else
|
|
chunk_appendf(buf, "%s backend=<NONE> (id=-1 mode=-)", pfx);
|
|
|
|
conn = sc_conn(strm->scb);
|
|
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
|
|
case AF_INET:
|
|
case AF_INET6:
|
|
chunk_appendf(buf, " addr=%s:%d\n",
|
|
HA_ANON_STR(anon_key, pn), get_host_port(conn->src));
|
|
break;
|
|
case AF_UNIX:
|
|
case AF_CUST_ABNS:
|
|
case AF_CUST_ABNSZ:
|
|
chunk_appendf(buf, " addr=unix\n");
|
|
break;
|
|
default:
|
|
/* no more information to print right now */
|
|
chunk_appendf(buf, "\n");
|
|
break;
|
|
}
|
|
|
|
if (strm->be->cap & PR_CAP_BE)
|
|
chunk_appendf(buf,
|
|
"%s server=%s (id=%u)", pfx,
|
|
objt_server(strm->target) ? HA_ANON_STR(anon_key, __objt_server(strm->target)->id) : "<none>",
|
|
objt_server(strm->target) ? __objt_server(strm->target)->puid : 0);
|
|
else
|
|
chunk_appendf(buf, "%s server=<NONE> (id=-1)", pfx);
|
|
|
|
switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
|
|
case AF_INET:
|
|
case AF_INET6:
|
|
chunk_appendf(buf, " addr=%s:%d\n",
|
|
HA_ANON_STR(anon_key, pn), get_host_port(conn->dst));
|
|
break;
|
|
case AF_UNIX:
|
|
case AF_CUST_ABNS:
|
|
case AF_CUST_ABNSZ:
|
|
chunk_appendf(buf, " addr=unix\n");
|
|
break;
|
|
default:
|
|
/* no more information to print right now */
|
|
chunk_appendf(buf, "\n");
|
|
break;
|
|
}
|
|
|
|
chunk_appendf(buf,
|
|
"%s task=%p (state=0x%02x nice=%d calls=%u rate=%u exp=%s tid=%d(%d/%d)%s", pfx,
|
|
strm->task,
|
|
strm->task->state,
|
|
strm->task->nice, strm->task->calls, read_freq_ctr(&strm->call_rate),
|
|
strm->task->expire ?
|
|
tick_is_expired(strm->task->expire, now_ms) ? "<PAST>" :
|
|
human_time(TICKS_TO_MS(strm->task->expire - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>",
|
|
strm->task->tid,
|
|
ha_thread_info[strm->task->tid].tgid,
|
|
ha_thread_info[strm->task->tid].ltid,
|
|
task_in_rq(strm->task) ? ", running" : "");
|
|
|
|
chunk_appendf(buf,
|
|
" age=%s)\n",
|
|
human_time(ns_to_sec(now_ns) - ns_to_sec(strm->logs.request_ts), 1));
|
|
|
|
if (strm->txn)
|
|
chunk_appendf(buf,
|
|
"%s txn=%p flags=0x%x meth=%d status=%d req.st=%s rsp.st=%s req.f=0x%02x rsp.f=0x%02x\n", pfx,
|
|
strm->txn, strm->txn->flags, strm->txn->meth, strm->txn->status,
|
|
h1_msg_state_str(strm->txn->req.msg_state), h1_msg_state_str(strm->txn->rsp.msg_state),
|
|
strm->txn->req.flags, strm->txn->rsp.flags);
|
|
|
|
scf = strm->scf;
|
|
chunk_appendf(buf, "%s scf=%p flags=0x%08x ioto=%s state=%s endp=%s,%p,0x%08x sub=%d", pfx,
|
|
scf, scf->flags, human_time(scf->ioto, TICKS_TO_MS(1000)), sc_state_str(scf->state),
|
|
(sc_ep_test(scf, SE_FL_T_MUX) ? "CONN" : (sc_ep_test(scf, SE_FL_T_APPLET) ? "APPCTX" : "NONE")),
|
|
scf->sedesc->se, sc_ep_get(scf), scf->wait_event.events);
|
|
chunk_appendf(buf, " rex=%s",
|
|
sc_ep_rcv_ex(scf) ? human_time(TICKS_TO_MS(sc_ep_rcv_ex(scf) - now_ms), TICKS_TO_MS(1000)) : "<NEVER>");
|
|
chunk_appendf(buf, " wex=%s",
|
|
sc_ep_snd_ex(scf) ? human_time(TICKS_TO_MS(sc_ep_snd_ex(scf) - now_ms), TICKS_TO_MS(1000)) : "<NEVER>");
|
|
chunk_appendf(buf, " rto=%s",
|
|
tick_isset(scf->sedesc->lra) ? human_time(TICKS_TO_MS(tick_add(scf->sedesc->lra, scf->ioto) - now_ms), TICKS_TO_MS(1000)) : "<NEVER>");
|
|
chunk_appendf(buf, " wto=%s\n",
|
|
tick_isset(scf->sedesc->fsb) ? human_time(TICKS_TO_MS(tick_add(scf->sedesc->fsb, scf->ioto) - now_ms), TICKS_TO_MS(1000)) : "<NEVER>");
|
|
|
|
chunk_appendf(&trash, "%s iobuf.flags=0x%08x .pipe=%d .buf=%u@%p+%u/%u\n", pfx,
|
|
scf->sedesc->iobuf.flags,
|
|
scf->sedesc->iobuf.pipe ? scf->sedesc->iobuf.pipe->data : 0,
|
|
scf->sedesc->iobuf.buf ? (unsigned int)b_data(scf->sedesc->iobuf.buf): 0,
|
|
scf->sedesc->iobuf.buf ? b_orig(scf->sedesc->iobuf.buf): NULL,
|
|
scf->sedesc->iobuf.buf ? (unsigned int)b_head_ofs(scf->sedesc->iobuf.buf): 0,
|
|
scf->sedesc->iobuf.buf ? (unsigned int)b_size(scf->sedesc->iobuf.buf): 0);
|
|
|
|
if ((conn = sc_conn(scf)) != NULL) {
|
|
if (conn->mux && conn->mux->show_sd) {
|
|
char muxpfx[100] = "";
|
|
|
|
snprintf(muxpfx, sizeof(muxpfx), "%s ", pfx);
|
|
chunk_appendf(buf, "%s ", pfx);
|
|
conn->mux->show_sd(buf, scf->sedesc, muxpfx);
|
|
chunk_appendf(buf, "\n");
|
|
}
|
|
|
|
chunk_appendf(buf,
|
|
"%s co0=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n", pfx,
|
|
conn,
|
|
conn_get_ctrl_name(conn),
|
|
conn_get_xprt_name(conn),
|
|
conn_get_mux_name(conn),
|
|
sc_get_data_name(scf),
|
|
obj_type_name(conn->target),
|
|
obj_base_ptr(conn->target));
|
|
|
|
chunk_appendf(buf,
|
|
"%s flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n", pfx,
|
|
conn->flags,
|
|
conn_fd(conn),
|
|
conn_fd(conn) >= 0 ? fdtab[conn->handle.fd].state : 0,
|
|
conn_fd(conn) >= 0 ? !!(fdtab[conn->handle.fd].update_mask & ti->ltid_bit) : 0,
|
|
conn_fd(conn) >= 0 ? fdtab[conn->handle.fd].thread_mask: 0);
|
|
}
|
|
else if ((tmpctx = sc_appctx(scf)) != NULL) {
|
|
chunk_appendf(buf,
|
|
"%s app0=%p st0=%d st1=%d applet=%s tid=%d nice=%d calls=%u rate=%u\n", pfx,
|
|
tmpctx,
|
|
tmpctx->st0,
|
|
tmpctx->st1,
|
|
tmpctx->applet->name,
|
|
tmpctx->t->tid,
|
|
tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate));
|
|
}
|
|
|
|
scb = strm->scb;
|
|
chunk_appendf(buf, "%s scb=%p flags=0x%08x ioto=%s state=%s endp=%s,%p,0x%08x sub=%d", pfx,
|
|
scb, scb->flags, human_time(scb->ioto, TICKS_TO_MS(1000)), sc_state_str(scb->state),
|
|
(sc_ep_test(scb, SE_FL_T_MUX) ? "CONN" : (sc_ep_test(scb, SE_FL_T_APPLET) ? "APPCTX" : "NONE")),
|
|
scb->sedesc->se, sc_ep_get(scb), scb->wait_event.events);
|
|
chunk_appendf(buf, " rex=%s",
|
|
sc_ep_rcv_ex(scb) ? human_time(TICKS_TO_MS(sc_ep_rcv_ex(scb) - now_ms), TICKS_TO_MS(1000)) : "<NEVER>");
|
|
chunk_appendf(buf, " wex=%s",
|
|
sc_ep_snd_ex(scb) ? human_time(TICKS_TO_MS(sc_ep_snd_ex(scb) - now_ms), TICKS_TO_MS(1000)) : "<NEVER>");
|
|
chunk_appendf(buf, " rto=%s",
|
|
tick_isset(scb->sedesc->lra) ? human_time(TICKS_TO_MS(tick_add(scb->sedesc->lra, scb->ioto) - now_ms), TICKS_TO_MS(1000)) : "<NEVER>");
|
|
chunk_appendf(buf, " wto=%s\n",
|
|
tick_isset(scb->sedesc->fsb) ? human_time(TICKS_TO_MS(tick_add(scb->sedesc->fsb, scb->ioto) - now_ms), TICKS_TO_MS(1000)) : "<NEVER>");
|
|
|
|
chunk_appendf(&trash, "%s iobuf.flags=0x%08x .pipe=%d .buf=%u@%p+%u/%u\n", pfx,
|
|
scb->sedesc->iobuf.flags,
|
|
scb->sedesc->iobuf.pipe ? scb->sedesc->iobuf.pipe->data : 0,
|
|
scb->sedesc->iobuf.buf ? (unsigned int)b_data(scb->sedesc->iobuf.buf): 0,
|
|
scb->sedesc->iobuf.buf ? b_orig(scb->sedesc->iobuf.buf): NULL,
|
|
scb->sedesc->iobuf.buf ? (unsigned int)b_head_ofs(scb->sedesc->iobuf.buf): 0,
|
|
scb->sedesc->iobuf.buf ? (unsigned int)b_size(scb->sedesc->iobuf.buf): 0);
|
|
|
|
if ((conn = sc_conn(scb)) != NULL) {
|
|
if (conn->mux && conn->mux->show_sd) {
|
|
char muxpfx[100] = "";
|
|
|
|
snprintf(muxpfx, sizeof(muxpfx), "%s ", pfx);
|
|
chunk_appendf(buf, "%s ", pfx);
|
|
conn->mux->show_sd(buf, scb->sedesc, muxpfx);
|
|
chunk_appendf(buf, "\n");
|
|
}
|
|
|
|
chunk_appendf(buf,
|
|
"%s co1=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n", pfx,
|
|
conn,
|
|
conn_get_ctrl_name(conn),
|
|
conn_get_xprt_name(conn),
|
|
conn_get_mux_name(conn),
|
|
sc_get_data_name(scb),
|
|
obj_type_name(conn->target),
|
|
obj_base_ptr(conn->target));
|
|
|
|
chunk_appendf(buf,
|
|
"%s flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n", pfx,
|
|
conn->flags,
|
|
conn_fd(conn),
|
|
conn_fd(conn) >= 0 ? fdtab[conn->handle.fd].state : 0,
|
|
conn_fd(conn) >= 0 ? !!(fdtab[conn->handle.fd].update_mask & ti->ltid_bit) : 0,
|
|
conn_fd(conn) >= 0 ? fdtab[conn->handle.fd].thread_mask: 0);
|
|
}
|
|
else if ((tmpctx = sc_appctx(scb)) != NULL) {
|
|
chunk_appendf(buf,
|
|
"%s app1=%p st0=%d st1=%d applet=%s tid=%d nice=%d calls=%u rate=%u\n", pfx,
|
|
tmpctx,
|
|
tmpctx->st0,
|
|
tmpctx->st1,
|
|
tmpctx->applet->name,
|
|
tmpctx->t->tid,
|
|
tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate));
|
|
}
|
|
|
|
if (HAS_FILTERS(strm)) {
|
|
const struct filter *flt;
|
|
|
|
chunk_appendf(buf, "%s filters={", pfx);
|
|
list_for_each_entry(flt, &strm->strm_flt.filters, list) {
|
|
if (flt->list.p != &strm->strm_flt.filters)
|
|
chunk_appendf(buf, ", ");
|
|
chunk_appendf(buf, "%p=\"%s\" [%u]", flt, FLT_ID(flt), flt->calls);
|
|
}
|
|
chunk_appendf(buf, "}\n");
|
|
}
|
|
|
|
chunk_appendf(buf,
|
|
"%s req=%p (f=0x%06x an=0x%x tofwd=%d total=%lld)\n"
|
|
"%s an_exp=%s buf=%p data=%p o=%u p=%u i=%u size=%u\n",
|
|
pfx,
|
|
&strm->req,
|
|
strm->req.flags, strm->req.analysers,
|
|
strm->req.to_forward, strm->req.total,
|
|
pfx,
|
|
strm->req.analyse_exp ?
|
|
human_time(TICKS_TO_MS(strm->req.analyse_exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>",
|
|
&strm->req.buf,
|
|
b_orig(&strm->req.buf), (unsigned int)co_data(&strm->req),
|
|
(unsigned int)ci_head_ofs(&strm->req), (unsigned int)ci_data(&strm->req),
|
|
(unsigned int)strm->req.buf.size);
|
|
|
|
if (IS_HTX_STRM(strm)) {
|
|
struct htx *htx = htxbuf(&strm->req.buf);
|
|
|
|
chunk_appendf(buf,
|
|
"%s htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n", pfx,
|
|
htx, htx->flags, htx->size, htx->data, htx_nbblks(htx),
|
|
(htx->tail >= htx->head) ? "NO" : "YES",
|
|
(unsigned long long)htx->extra);
|
|
}
|
|
if (HAS_FILTERS(strm) && strm->strm_flt.current[0]) {
|
|
const struct filter *flt = strm->strm_flt.current[0];
|
|
|
|
chunk_appendf(buf, "%s current_filter=%p (id=\"%s\" flags=0x%x pre=0x%x post=0x%x) \n", pfx,
|
|
flt, flt->config->id, flt->flags, flt->pre_analyzers, flt->post_analyzers);
|
|
}
|
|
|
|
chunk_appendf(buf,
|
|
"%s res=%p (f=0x%06x an=0x%x tofwd=%d total=%lld)\n"
|
|
"%s an_exp=%s buf=%p data=%p o=%u p=%u i=%u size=%u\n",
|
|
pfx,
|
|
&strm->res,
|
|
strm->res.flags, strm->res.analysers,
|
|
strm->res.to_forward, strm->res.total,
|
|
pfx,
|
|
strm->res.analyse_exp ?
|
|
human_time(TICKS_TO_MS(strm->res.analyse_exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>",
|
|
&strm->res.buf,
|
|
b_orig(&strm->res.buf), (unsigned int)co_data(&strm->res),
|
|
(unsigned int)ci_head_ofs(&strm->res), (unsigned int)ci_data(&strm->res),
|
|
(unsigned int)strm->res.buf.size);
|
|
|
|
if (IS_HTX_STRM(strm)) {
|
|
struct htx *htx = htxbuf(&strm->res.buf);
|
|
|
|
chunk_appendf(buf,
|
|
"%s htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n", pfx,
|
|
htx, htx->flags, htx->size, htx->data, htx_nbblks(htx),
|
|
(htx->tail >= htx->head) ? "NO" : "YES",
|
|
(unsigned long long)htx->extra);
|
|
}
|
|
|
|
if (HAS_FILTERS(strm) && strm->strm_flt.current[1]) {
|
|
const struct filter *flt = strm->strm_flt.current[1];
|
|
|
|
chunk_appendf(buf, "%s current_filter=%p (id=\"%s\" flags=0x%x pre=0x%x post=0x%x) \n", pfx,
|
|
flt, flt->config->id, flt->flags, flt->pre_analyzers, flt->post_analyzers);
|
|
}
|
|
|
|
if (strm->current_rule_list && strm->current_rule) {
|
|
const struct act_rule *rule = strm->current_rule;
|
|
chunk_appendf(buf, "%s current_rule=\"%s\" [%s:%d]\n", pfx, rule->kw->kw, rule->conf.file, rule->conf.line);
|
|
}
|
|
}
|
|
|
|
/* This function dumps a complete stream state onto the stream connector's
|
|
* read buffer. The stream has to be set in strm. It returns 0 if the output
|
|
* buffer is full and it needs to be called again, otherwise non-zero. It is
|
|
* designed to be called from stats_dump_strm_to_buffer() below.
|
|
*/
|
|
static int stats_dump_full_strm_to_buffer(struct appctx *appctx, struct stream *strm)
|
|
{
|
|
struct show_sess_ctx *ctx = appctx->svcctx;
|
|
|
|
chunk_reset(&trash);
|
|
|
|
if (ctx->section > 0 && ctx->uid != strm->uniq_id) {
|
|
/* stream changed, no need to go any further */
|
|
chunk_appendf(&trash, " *** session terminated while we were watching it ***\n");
|
|
if (applet_putchk(appctx, &trash) == -1)
|
|
goto full;
|
|
goto done;
|
|
}
|
|
|
|
switch (ctx->section) {
|
|
case 0: /* main status of the stream */
|
|
ctx->uid = strm->uniq_id;
|
|
ctx->section = 1;
|
|
__fallthrough;
|
|
|
|
case 1:
|
|
strm_dump_to_buffer(&trash, strm, "", appctx->cli_anon_key);
|
|
if (applet_putchk(appctx, &trash) == -1)
|
|
goto full;
|
|
|
|
/* use other states to dump the contents */
|
|
}
|
|
/* end of dump */
|
|
done:
|
|
ctx->uid = 0;
|
|
ctx->section = 0;
|
|
return 1;
|
|
full:
|
|
return 0;
|
|
}
|
|
|
|
static int cli_parse_show_sess(char **args, char *payload, struct appctx *appctx, void *private)
|
|
{
|
|
struct show_sess_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
|
|
|
|
if (!cli_has_level(appctx, ACCESS_LVL_OPER))
|
|
return 1;
|
|
|
|
/* now all sessions by default */
|
|
ctx->target = NULL;
|
|
ctx->min_age = 0;
|
|
ctx->section = 0; /* start with stream status */
|
|
ctx->pos = 0;
|
|
ctx->thr = 0;
|
|
|
|
if (*args[2] && strcmp(args[2], "older") == 0) {
|
|
unsigned timeout;
|
|
const char *res;
|
|
|
|
if (!*args[3])
|
|
return cli_err(appctx, "Expects a minimum age (in seconds by default).\n");
|
|
|
|
res = parse_time_err(args[3], &timeout, TIME_UNIT_S);
|
|
if (res != 0)
|
|
return cli_err(appctx, "Invalid age.\n");
|
|
|
|
ctx->min_age = timeout;
|
|
ctx->target = (void *)-1; /* show all matching entries */
|
|
}
|
|
else if (*args[2] && strcmp(args[2], "susp") == 0) {
|
|
ctx->flags |= CLI_SHOWSESS_F_SUSP;
|
|
ctx->target = (void *)-1; /* show all matching entries */
|
|
}
|
|
else if (*args[2] && strcmp(args[2], "all") == 0)
|
|
ctx->target = (void *)-1;
|
|
else if (*args[2])
|
|
ctx->target = (void *)strtoul(args[2], NULL, 0);
|
|
|
|
/* The back-ref must be reset, it will be detected and set by
|
|
* the dump code upon first invocation.
|
|
*/
|
|
LIST_INIT(&ctx->bref.users);
|
|
|
|
/* let's set our own stream's epoch to the current one and increment
|
|
* it so that we know which streams were already there before us.
|
|
*/
|
|
appctx_strm(appctx)->stream_epoch = _HA_ATOMIC_FETCH_ADD(&stream_epoch, 1);
|
|
return 0;
|
|
}
|
|
|
|
/* This function dumps all streams' states onto the stream connector's
|
|
* read buffer. It returns 0 if the output buffer is full and it needs
|
|
* to be called again, otherwise non-zero. It proceeds in an isolated
|
|
* thread so there is no thread safety issue here.
|
|
*/
|
|
static int cli_io_handler_dump_sess(struct appctx *appctx)
|
|
{
|
|
struct show_sess_ctx *ctx = appctx->svcctx;
|
|
struct connection *conn;
|
|
|
|
thread_isolate();
|
|
|
|
if (ctx->thr >= global.nbthread) {
|
|
/* already terminated */
|
|
goto done;
|
|
}
|
|
|
|
chunk_reset(&trash);
|
|
|
|
/* first, let's detach the back-ref from a possible previous stream */
|
|
if (!LIST_ISEMPTY(&ctx->bref.users)) {
|
|
LIST_DELETE(&ctx->bref.users);
|
|
LIST_INIT(&ctx->bref.users);
|
|
} else if (!ctx->bref.ref) {
|
|
/* first call, start with first stream */
|
|
ctx->bref.ref = ha_thread_ctx[ctx->thr].streams.n;
|
|
}
|
|
|
|
/* and start from where we stopped */
|
|
while (1) {
|
|
char pn[INET6_ADDRSTRLEN];
|
|
struct stream *curr_strm;
|
|
int done= 0;
|
|
|
|
if (ctx->bref.ref == &ha_thread_ctx[ctx->thr].streams)
|
|
done = 1;
|
|
else {
|
|
/* check if we've found a stream created after issuing the "show sess" */
|
|
curr_strm = LIST_ELEM(ctx->bref.ref, struct stream *, list);
|
|
if ((int)(curr_strm->stream_epoch - appctx_strm(appctx)->stream_epoch) > 0)
|
|
done = 1;
|
|
}
|
|
|
|
if (done) {
|
|
ctx->thr++;
|
|
if (ctx->thr >= global.nbthread)
|
|
break;
|
|
ctx->bref.ref = ha_thread_ctx[ctx->thr].streams.n;
|
|
continue;
|
|
}
|
|
|
|
if (ctx->min_age) {
|
|
uint age = ns_to_sec(now_ns) - ns_to_sec(curr_strm->logs.request_ts);
|
|
if (age < ctx->min_age)
|
|
goto next_sess;
|
|
}
|
|
|
|
if (ctx->flags & CLI_SHOWSESS_F_SUSP) {
|
|
/* only show suspicious streams. Non-suspicious ones have a valid
|
|
* expiration date in the future and a valid front endpoint.
|
|
*/
|
|
if (curr_strm->task->expire &&
|
|
!tick_is_expired(curr_strm->task->expire, now_ms) &&
|
|
curr_strm->scf && curr_strm->scf->sedesc && curr_strm->scf->sedesc->se)
|
|
goto next_sess;
|
|
}
|
|
|
|
if (ctx->target) {
|
|
if (ctx->target != (void *)-1 && ctx->target != curr_strm)
|
|
goto next_sess;
|
|
|
|
LIST_APPEND(&curr_strm->back_refs, &ctx->bref.users);
|
|
/* call the proper dump() function and return if we're missing space */
|
|
if (!stats_dump_full_strm_to_buffer(appctx, curr_strm))
|
|
goto full;
|
|
|
|
/* stream dump complete */
|
|
LIST_DELETE(&ctx->bref.users);
|
|
LIST_INIT(&ctx->bref.users);
|
|
if (ctx->target != (void *)-1) {
|
|
ctx->target = NULL;
|
|
break;
|
|
}
|
|
else
|
|
goto next_sess;
|
|
}
|
|
|
|
chunk_appendf(&trash,
|
|
"%p: proto=%s",
|
|
curr_strm,
|
|
strm_li(curr_strm) ? strm_li(curr_strm)->rx.proto->name : "?");
|
|
|
|
conn = objt_conn(strm_orig(curr_strm));
|
|
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
|
|
case AF_INET:
|
|
case AF_INET6:
|
|
chunk_appendf(&trash,
|
|
" src=%s:%d fe=%s be=%s srv=%s",
|
|
HA_ANON_CLI(pn),
|
|
get_host_port(conn->src),
|
|
HA_ANON_CLI(strm_fe(curr_strm)->id),
|
|
(curr_strm->be->cap & PR_CAP_BE) ? HA_ANON_CLI(curr_strm->be->id) : "<NONE>",
|
|
objt_server(curr_strm->target) ? HA_ANON_CLI(__objt_server(curr_strm->target)->id) : "<none>"
|
|
);
|
|
break;
|
|
case AF_UNIX:
|
|
case AF_CUST_ABNS:
|
|
case AF_CUST_ABNSZ:
|
|
chunk_appendf(&trash,
|
|
" src=unix:%d fe=%s be=%s srv=%s",
|
|
strm_li(curr_strm)->luid,
|
|
HA_ANON_CLI(strm_fe(curr_strm)->id),
|
|
(curr_strm->be->cap & PR_CAP_BE) ? HA_ANON_CLI(curr_strm->be->id) : "<NONE>",
|
|
objt_server(curr_strm->target) ? HA_ANON_CLI(__objt_server(curr_strm->target)->id) : "<none>"
|
|
);
|
|
break;
|
|
}
|
|
|
|
chunk_appendf(&trash,
|
|
" ts=%02x epoch=%#x age=%s calls=%u rate=%u cpu=%llu lat=%llu",
|
|
curr_strm->task->state, curr_strm->stream_epoch,
|
|
human_time(ns_to_sec(now_ns) - ns_to_sec(curr_strm->logs.request_ts), 1),
|
|
curr_strm->task->calls, read_freq_ctr(&curr_strm->call_rate),
|
|
(unsigned long long)curr_strm->cpu_time, (unsigned long long)curr_strm->lat_time);
|
|
|
|
chunk_appendf(&trash,
|
|
" rq[f=%06xh,i=%u,an=%02xh",
|
|
curr_strm->req.flags,
|
|
(unsigned int)ci_data(&curr_strm->req),
|
|
curr_strm->req.analysers);
|
|
|
|
chunk_appendf(&trash,
|
|
",ax=%s]",
|
|
curr_strm->req.analyse_exp ?
|
|
human_time(TICKS_TO_MS(curr_strm->req.analyse_exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
|
|
chunk_appendf(&trash,
|
|
" rp[f=%06xh,i=%u,an=%02xh",
|
|
curr_strm->res.flags,
|
|
(unsigned int)ci_data(&curr_strm->res),
|
|
curr_strm->res.analysers);
|
|
chunk_appendf(&trash,
|
|
",ax=%s]",
|
|
curr_strm->res.analyse_exp ?
|
|
human_time(TICKS_TO_MS(curr_strm->res.analyse_exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
|
|
conn = sc_conn(curr_strm->scf);
|
|
chunk_appendf(&trash," scf=[%d,%1xh,fd=%d",
|
|
curr_strm->scf->state, curr_strm->scf->flags, conn_fd(conn));
|
|
chunk_appendf(&trash, ",rex=%s",
|
|
sc_ep_rcv_ex(curr_strm->scf) ?
|
|
human_time(TICKS_TO_MS(sc_ep_rcv_ex(curr_strm->scf) - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
chunk_appendf(&trash,",wex=%s]",
|
|
sc_ep_snd_ex(curr_strm->scf) ?
|
|
human_time(TICKS_TO_MS(sc_ep_snd_ex(curr_strm->scf) - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
|
|
conn = sc_conn(curr_strm->scb);
|
|
chunk_appendf(&trash, " scb=[%d,%1xh,fd=%d",
|
|
curr_strm->scb->state, curr_strm->scb->flags, conn_fd(conn));
|
|
chunk_appendf(&trash, ",rex=%s",
|
|
sc_ep_rcv_ex(curr_strm->scb) ?
|
|
human_time(TICKS_TO_MS(sc_ep_rcv_ex(curr_strm->scb) - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
chunk_appendf(&trash, ",wex=%s]",
|
|
sc_ep_snd_ex(curr_strm->scb) ?
|
|
human_time(TICKS_TO_MS(sc_ep_snd_ex(curr_strm->scb) - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
|
|
chunk_appendf(&trash,
|
|
" exp=%s rc=%d c_exp=%s",
|
|
curr_strm->task->expire ?
|
|
human_time(TICKS_TO_MS(curr_strm->task->expire - now_ms),
|
|
TICKS_TO_MS(1000)) : "",
|
|
curr_strm->conn_retries,
|
|
curr_strm->conn_exp ?
|
|
human_time(TICKS_TO_MS(curr_strm->conn_exp - now_ms),
|
|
TICKS_TO_MS(1000)) : "");
|
|
if (task_in_rq(curr_strm->task))
|
|
chunk_appendf(&trash, " run(nice=%d)", curr_strm->task->nice);
|
|
|
|
chunk_appendf(&trash, "\n");
|
|
|
|
if (applet_putchk(appctx, &trash) == -1) {
|
|
/* let's try again later from this stream. We add ourselves into
|
|
* this stream's users so that it can remove us upon termination.
|
|
*/
|
|
LIST_APPEND(&curr_strm->back_refs, &ctx->bref.users);
|
|
goto full;
|
|
}
|
|
|
|
next_sess:
|
|
ctx->bref.ref = curr_strm->list.n;
|
|
}
|
|
|
|
if (ctx->target && ctx->target != (void *)-1) {
|
|
/* specified stream not found */
|
|
if (ctx->section > 0)
|
|
chunk_appendf(&trash, " *** session terminated while we were watching it ***\n");
|
|
else
|
|
chunk_appendf(&trash, "Session not found.\n");
|
|
|
|
if (applet_putchk(appctx, &trash) == -1)
|
|
goto full;
|
|
|
|
ctx->target = NULL;
|
|
ctx->uid = 0;
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
thread_release();
|
|
return 1;
|
|
full:
|
|
thread_release();
|
|
return 0;
|
|
}
|
|
|
|
static void cli_release_show_sess(struct appctx *appctx)
|
|
{
|
|
struct show_sess_ctx *ctx = appctx->svcctx;
|
|
|
|
if (ctx->thr < global.nbthread) {
|
|
/* a dump was aborted, either in error or timeout. We need to
|
|
* safely detach from the target stream's list. It's mandatory
|
|
* to lock because a stream on the target thread could be moving
|
|
* our node.
|
|
*/
|
|
thread_isolate();
|
|
if (!LIST_ISEMPTY(&ctx->bref.users))
|
|
LIST_DELETE(&ctx->bref.users);
|
|
thread_release();
|
|
}
|
|
}
|
|
|
|
/* Parses the "shutdown session" directive, it always returns 1 */
|
|
static int cli_parse_shutdown_session(char **args, char *payload, struct appctx *appctx, void *private)
|
|
{
|
|
struct stream *strm, *ptr;
|
|
int thr;
|
|
|
|
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
|
|
return 1;
|
|
|
|
ptr = (void *)strtoul(args[2], NULL, 0);
|
|
if (!ptr)
|
|
return cli_err(appctx, "Session pointer expected (use 'show sess').\n");
|
|
|
|
strm = NULL;
|
|
|
|
thread_isolate();
|
|
|
|
/* first, look for the requested stream in the stream table */
|
|
for (thr = 0; strm != ptr && thr < global.nbthread; thr++) {
|
|
list_for_each_entry(strm, &ha_thread_ctx[thr].streams, list) {
|
|
if (strm == ptr) {
|
|
stream_shutdown(strm, SF_ERR_KILLED);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
thread_release();
|
|
|
|
/* do we have the stream ? */
|
|
if (strm != ptr)
|
|
return cli_err(appctx, "No such session (use 'show sess').\n");
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Parses the "shutdown session server" directive, it always returns 1 */
|
|
static int cli_parse_shutdown_sessions_server(char **args, char *payload, struct appctx *appctx, void *private)
|
|
{
|
|
struct server *sv;
|
|
|
|
if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
|
|
return 1;
|
|
|
|
sv = cli_find_server(appctx, args[3]);
|
|
if (!sv)
|
|
return 1;
|
|
|
|
/* kill all the stream that are on this server */
|
|
HA_SPIN_LOCK(SERVER_LOCK, &sv->lock);
|
|
srv_shutdown_streams(sv, SF_ERR_KILLED);
|
|
HA_SPIN_UNLOCK(SERVER_LOCK, &sv->lock);
|
|
return 1;
|
|
}
|
|
|
|
/* register cli keywords */
|
|
static struct cli_kw_list cli_kws = {{ },{
|
|
{ { "show", "sess", NULL }, "show sess [<id>|all|susp|older <age>] : report the list of current sessions or dump this exact session", cli_parse_show_sess, cli_io_handler_dump_sess, cli_release_show_sess },
|
|
{ { "shutdown", "session", NULL }, "shutdown session [id] : kill a specific session", cli_parse_shutdown_session, NULL, NULL },
|
|
{ { "shutdown", "sessions", "server" }, "shutdown sessions server <bk>/<srv> : kill sessions on a server", cli_parse_shutdown_sessions_server, NULL, NULL },
|
|
{{},}
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
|
|
|
|
/* main configuration keyword registration. */
|
|
static struct action_kw_list stream_tcp_req_keywords = { ILH, {
|
|
{ "set-retries", stream_parse_set_retries },
|
|
{ "set-log-level", stream_parse_set_log_level },
|
|
{ "set-nice", stream_parse_set_nice },
|
|
{ "switch-mode", stream_parse_switch_mode },
|
|
{ "use-service", stream_parse_use_service },
|
|
{ /* END */ }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, tcp_req_cont_keywords_register, &stream_tcp_req_keywords);
|
|
|
|
/* main configuration keyword registration. */
|
|
static struct action_kw_list stream_tcp_res_keywords = { ILH, {
|
|
{ "set-log-level", stream_parse_set_log_level },
|
|
{ "set-nice", stream_parse_set_nice },
|
|
{ /* END */ }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, tcp_res_cont_keywords_register, &stream_tcp_res_keywords);
|
|
|
|
static struct action_kw_list stream_http_req_keywords = { ILH, {
|
|
{ "set-retries", stream_parse_set_retries },
|
|
{ "set-log-level", stream_parse_set_log_level },
|
|
{ "set-nice", stream_parse_set_nice },
|
|
{ "use-service", stream_parse_use_service },
|
|
{ /* END */ }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, http_req_keywords_register, &stream_http_req_keywords);
|
|
|
|
static struct action_kw_list stream_http_res_keywords = { ILH, {
|
|
{ "set-log-level", stream_parse_set_log_level },
|
|
{ "set-nice", stream_parse_set_nice },
|
|
{ /* END */ }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, http_res_keywords_register, &stream_http_res_keywords);
|
|
|
|
static struct action_kw_list stream_http_after_res_actions = { ILH, {
|
|
{ "set-log-level", stream_parse_set_log_level },
|
|
{ /* END */ }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, http_after_res_keywords_register, &stream_http_after_res_actions);
|
|
|
|
static int smp_fetch_cur_client_timeout(const struct arg *args, struct sample *smp, const char *km, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TXN;
|
|
smp->data.type = SMP_T_SINT;
|
|
if (!smp->strm)
|
|
return 0;
|
|
|
|
smp->data.u.sint = TICKS_TO_MS(smp->strm->scf->ioto);
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_cur_server_timeout(const struct arg *args, struct sample *smp, const char *km, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TXN;
|
|
smp->data.type = SMP_T_SINT;
|
|
if (!smp->strm)
|
|
return 0;
|
|
|
|
smp->data.u.sint = TICKS_TO_MS(smp->strm->scb->ioto);
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_cur_tunnel_timeout(const struct arg *args, struct sample *smp, const char *km, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TXN;
|
|
smp->data.type = SMP_T_SINT;
|
|
if (!smp->strm)
|
|
return 0;
|
|
|
|
smp->data.u.sint = TICKS_TO_MS(smp->strm->tunnel_timeout);
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_last_rule_file(const struct arg *args, struct sample *smp, const char *km, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TXN;
|
|
smp->data.type = SMP_T_STR;
|
|
if (!smp->strm || !smp->strm->last_rule_file)
|
|
return 0;
|
|
|
|
smp->flags |= SMP_F_CONST;
|
|
smp->data.u.str.area = (char *)smp->strm->last_rule_file;
|
|
smp->data.u.str.data = strlen(smp->strm->last_rule_file);
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_last_rule_line(const struct arg *args, struct sample *smp, const char *km, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TXN;
|
|
smp->data.type = SMP_T_SINT;
|
|
if (!smp->strm || !smp->strm->last_rule_line)
|
|
return 0;
|
|
|
|
smp->data.u.sint = smp->strm->last_rule_line;
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_sess_term_state(const struct arg *args, struct sample *smp, const char *km, void *private)
|
|
{
|
|
struct buffer *trash = get_trash_chunk();
|
|
|
|
smp->flags = SMP_F_VOLATILE;
|
|
smp->data.type = SMP_T_STR;
|
|
if (!smp->strm)
|
|
return 0;
|
|
|
|
trash->area[trash->data++] = sess_term_cond[(smp->strm->flags & SF_ERR_MASK) >> SF_ERR_SHIFT];
|
|
trash->area[trash->data++] = sess_fin_state[(smp->strm->flags & SF_FINST_MASK) >> SF_FINST_SHIFT];
|
|
|
|
smp->data.u.str = *trash;
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags &= ~SMP_F_CONST;
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_conn_retries(const struct arg *args, struct sample *smp, const char *km, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TXN;
|
|
smp->data.type = SMP_T_SINT;
|
|
if (!smp->strm)
|
|
return 0;
|
|
|
|
if (!sc_state_in(smp->strm->scb->state, SC_SB_DIS|SC_SB_CLO))
|
|
smp->flags |= SMP_F_VOL_TEST;
|
|
smp->data.u.sint = smp->strm->conn_retries;
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_id32(const struct arg *args, struct sample *smp, const char *km, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TXN;
|
|
smp->data.type = SMP_T_SINT;
|
|
if (!smp->strm)
|
|
return 0;
|
|
smp->data.u.sint = smp->strm->uniq_id;
|
|
return 1;
|
|
}
|
|
|
|
static int smp_fetch_redispatched(const struct arg *args, struct sample *smp, const char *km, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TXN;
|
|
smp->data.type = SMP_T_BOOL;
|
|
if (!smp->strm)
|
|
return 0;
|
|
|
|
if (!sc_state_in(smp->strm->scb->state, SC_SB_DIS|SC_SB_CLO))
|
|
smp->flags |= SMP_F_VOL_TEST;
|
|
smp->data.u.sint = !!(smp->strm->flags & SF_REDISP);
|
|
return 1;
|
|
}
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten.
|
|
* Please take care of keeping this list alphabetically sorted.
|
|
*/
|
|
static struct sample_fetch_kw_list smp_kws = {ILH, {
|
|
{ "cur_client_timeout", smp_fetch_cur_client_timeout, 0, NULL, SMP_T_SINT, SMP_USE_FTEND, },
|
|
{ "cur_server_timeout", smp_fetch_cur_server_timeout, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, },
|
|
{ "cur_tunnel_timeout", smp_fetch_cur_tunnel_timeout, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, },
|
|
{ "last_rule_file", smp_fetch_last_rule_file, 0, NULL, SMP_T_STR, SMP_USE_INTRN, },
|
|
{ "last_rule_line", smp_fetch_last_rule_line, 0, NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "txn.conn_retries", smp_fetch_conn_retries, 0, NULL, SMP_T_SINT, SMP_USE_L4SRV, },
|
|
{ "txn.id32", smp_fetch_id32, 0, NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "txn.redispatched", smp_fetch_redispatched, 0, NULL, SMP_T_BOOL, SMP_USE_L4SRV, },
|
|
{ "txn.sess_term_state",smp_fetch_sess_term_state, 0, NULL, SMP_T_STR, SMP_USE_INTRN, },
|
|
{ NULL, NULL, 0, 0, 0 },
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|