mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2026-01-14 13:21:00 +01:00
542 lines
14 KiB
C
542 lines
14 KiB
C
/*
|
|
* FD polling functions for Speculative I/O combined with Linux epoll()
|
|
*
|
|
* Copyright 2000-2007 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <unistd.h>
|
|
#include <sys/time.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <common/compat.h>
|
|
#include <common/config.h>
|
|
#include <common/standard.h>
|
|
#include <common/time.h>
|
|
|
|
#include <types/fd.h>
|
|
#include <types/global.h>
|
|
|
|
#include <proto/fd.h>
|
|
#include <proto/task.h>
|
|
|
|
#if defined(USE_MY_EPOLL)
|
|
#include <common/epoll.h>
|
|
#include <errno.h>
|
|
#include <sys/syscall.h>
|
|
static _syscall1 (int, epoll_create, int, size);
|
|
static _syscall4 (int, epoll_ctl, int, epfd, int, op, int, fd, struct epoll_event *, event);
|
|
static _syscall4 (int, epoll_wait, int, epfd, struct epoll_event *, events, int, maxevents, int, timeout);
|
|
#else
|
|
#include <sys/epoll.h>
|
|
#endif
|
|
|
|
/*
|
|
* We define 4 states for each direction of a file descriptor, which we store
|
|
* as 2 bits :
|
|
*
|
|
* 00 = IDLE : we're not interested in this event
|
|
* 01 = SPEC : perform speculative I/O on this FD
|
|
* 10 = WAIT : really wait for an availability event on this FD (poll)
|
|
* 11 = STOP : was marked WAIT, but disabled. It can switch back to WAIT if
|
|
* the application changes its mind, otherwise disable FD polling
|
|
* and switch back to IDLE.
|
|
*
|
|
* Since we do not want to scan all the FD list to find speculative I/O events,
|
|
* we store them in a list consisting in a linear array holding only the FD
|
|
* indexes right now.
|
|
*
|
|
* The STOP state requires the event to be present in the spec list so that
|
|
* it can be detected and flushed upon next scan without having to scan the
|
|
* whole FD list.
|
|
*
|
|
* This translates like this :
|
|
*
|
|
* EVENT_IN_SPEC_LIST = 01
|
|
* EVENT_IN_POLL_LIST = 10
|
|
*
|
|
* IDLE = 0
|
|
* SPEC = (EVENT_IN_SPEC_LIST)
|
|
* WAIT = (EVENT_IN_POLL_LIST)
|
|
* STOP = (EVENT_IN_SPEC_LIST|EVENT_IN_POLL_LIST)
|
|
*
|
|
* fd_is_set() just consists in checking that the status is 01 or 10.
|
|
*
|
|
* For efficiency reasons, we will store the Read and Write bits interlaced to
|
|
* form a 4-bit field, so that we can simply shift the value right by 0/1 and
|
|
* get what we want :
|
|
* 3 2 1 0
|
|
* Wp Rp Ws Rs
|
|
*
|
|
* The FD array has to hold a back reference to the speculative list. This
|
|
* reference is only valid if at least one of the directions is marked SPEC.
|
|
*
|
|
*/
|
|
|
|
#define FD_EV_IN_SL 1
|
|
#define FD_EV_IN_PL 4
|
|
|
|
#define FD_EV_IDLE 0
|
|
#define FD_EV_SPEC (FD_EV_IN_SL)
|
|
#define FD_EV_WAIT (FD_EV_IN_PL)
|
|
#define FD_EV_STOP (FD_EV_IN_SL|FD_EV_IN_PL)
|
|
|
|
/* Those match any of R or W for Spec list or Poll list */
|
|
#define FD_EV_RW_SL (FD_EV_IN_SL | (FD_EV_IN_SL << 1))
|
|
#define FD_EV_RW_PL (FD_EV_IN_PL | (FD_EV_IN_PL << 1))
|
|
#define FD_EV_MASK_DIR (FD_EV_IN_SL|FD_EV_IN_PL)
|
|
|
|
#define FD_EV_IDLE_R 0
|
|
#define FD_EV_SPEC_R (FD_EV_IN_SL)
|
|
#define FD_EV_WAIT_R (FD_EV_IN_PL)
|
|
#define FD_EV_STOP_R (FD_EV_IN_SL|FD_EV_IN_PL)
|
|
#define FD_EV_MASK_R (FD_EV_IN_SL|FD_EV_IN_PL)
|
|
|
|
#define FD_EV_IDLE_W (FD_EV_IDLE_R << 1)
|
|
#define FD_EV_SPEC_W (FD_EV_SPEC_R << 1)
|
|
#define FD_EV_WAIT_W (FD_EV_WAIT_R << 1)
|
|
#define FD_EV_STOP_W (FD_EV_STOP_R << 1)
|
|
#define FD_EV_MASK_W (FD_EV_MASK_R << 1)
|
|
|
|
#define FD_EV_MASK (FD_EV_MASK_W | FD_EV_MASK_R)
|
|
|
|
/* This is the minimum number of events successfully processed in speculative
|
|
* mode above which we agree to return without checking epoll() (1/2 times).
|
|
*/
|
|
#define MIN_RETURN_EVENTS 25
|
|
|
|
/* descriptor of one FD.
|
|
* FIXME: should be a bit field */
|
|
struct fd_status {
|
|
unsigned int e:4; // read and write events status.
|
|
unsigned int s:28; // Position in spec list. Should be last.
|
|
};
|
|
|
|
static int nbspec = 0; // current size of the spec list
|
|
|
|
static struct fd_status *fd_list = NULL; // list of FDs
|
|
static unsigned int *spec_list = NULL; // speculative I/O list
|
|
|
|
/* private data */
|
|
static struct epoll_event *epoll_events;
|
|
static int epoll_fd;
|
|
|
|
/* This structure may be used for any purpose. Warning! do not use it in
|
|
* recursive functions !
|
|
*/
|
|
static struct epoll_event ev;
|
|
|
|
|
|
REGPRM1 static void alloc_spec_entry(const int fd)
|
|
{
|
|
if (fd_list[fd].e & FD_EV_RW_SL)
|
|
return;
|
|
fd_list[fd].s = nbspec;
|
|
spec_list[nbspec++] = fd;
|
|
}
|
|
|
|
/* removes entry <pos> from the spec list and replaces it with the last one.
|
|
* The fd_list is adjusted to match the back reference if needed.
|
|
*/
|
|
REGPRM1 static void delete_spec_entry(const int pos)
|
|
{
|
|
int fd;
|
|
|
|
nbspec--;
|
|
if (pos == nbspec)
|
|
return;
|
|
|
|
/* we replace current FD by the highest one */
|
|
fd = spec_list[nbspec];
|
|
spec_list[pos] = fd;
|
|
fd_list[fd].s = pos;
|
|
}
|
|
|
|
/*
|
|
* Returns non-zero if <fd> is already monitored for events in direction <dir>.
|
|
*/
|
|
REGPRM2 static int __fd_is_set(const int fd, int dir)
|
|
{
|
|
int ret;
|
|
|
|
ret = ((unsigned)fd_list[fd].e >> dir) & FD_EV_MASK_DIR;
|
|
return (ret == FD_EV_SPEC || ret == FD_EV_WAIT);
|
|
}
|
|
|
|
/*
|
|
* Don't worry about the strange constructs in __fd_set/__fd_clr, they are
|
|
* designed like this in order to reduce the number of jumps (verified).
|
|
*/
|
|
REGPRM2 static int __fd_set(const int fd, int dir)
|
|
{
|
|
__label__ switch_state;
|
|
unsigned int i;
|
|
|
|
i = ((unsigned)fd_list[fd].e >> dir) & FD_EV_MASK_DIR;
|
|
|
|
if (i == FD_EV_IDLE) {
|
|
// switch to SPEC state and allocate a SPEC entry.
|
|
alloc_spec_entry(fd);
|
|
switch_state:
|
|
fd_list[fd].e ^= (unsigned int)(FD_EV_IN_SL << dir);
|
|
return 1;
|
|
}
|
|
else if (i == FD_EV_STOP) {
|
|
// switch to WAIT state
|
|
goto switch_state;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
REGPRM2 static int __fd_clr(const int fd, int dir)
|
|
{
|
|
__label__ switch_state;
|
|
unsigned int i;
|
|
|
|
i = ((unsigned)fd_list[fd].e >> dir) & FD_EV_MASK_DIR;
|
|
|
|
if (i == FD_EV_SPEC) {
|
|
// switch to IDLE state
|
|
goto switch_state;
|
|
}
|
|
else if (likely(i == FD_EV_WAIT)) {
|
|
// switch to STOP state
|
|
/* We will create a queue entry for this one because we want to
|
|
* process it later in order to merge it with other events on
|
|
* the same FD.
|
|
*/
|
|
alloc_spec_entry(fd);
|
|
switch_state:
|
|
fd_list[fd].e ^= (unsigned int)(FD_EV_IN_SL << dir);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* normally unused */
|
|
REGPRM1 static void __fd_rem(int fd)
|
|
{
|
|
__fd_clr(fd, DIR_RD);
|
|
__fd_clr(fd, DIR_WR);
|
|
}
|
|
|
|
/*
|
|
* On valid epoll() implementations, a call to close() automatically removes
|
|
* the fds. This means that the FD will appear as previously unset.
|
|
*/
|
|
REGPRM1 static void __fd_clo(int fd)
|
|
{
|
|
if (fd_list[fd].e & FD_EV_RW_SL)
|
|
delete_spec_entry(fd_list[fd].s);
|
|
fd_list[fd].e &= ~(FD_EV_MASK);
|
|
}
|
|
|
|
/*
|
|
* speculative epoll() poller
|
|
*/
|
|
REGPRM2 static void _do_poll(struct poller *p, struct timeval *exp)
|
|
{
|
|
static unsigned int last_skipped;
|
|
int status, eo;
|
|
int fd, opcode;
|
|
int count;
|
|
int spec_idx;
|
|
int wait_time;
|
|
|
|
|
|
/* Here we have two options :
|
|
* - either walk the list forwards and hope to match more events
|
|
* - or walk it backwards to minimize the number of changes and
|
|
* to make better use of the cache.
|
|
* Tests have shown that walking backwards improves perf by 0.2%.
|
|
*/
|
|
|
|
status = 0;
|
|
spec_idx = nbspec;
|
|
while (likely(spec_idx > 0)) {
|
|
spec_idx--;
|
|
fd = spec_list[spec_idx];
|
|
eo = fd_list[fd].e; /* save old events */
|
|
|
|
/*
|
|
* Process the speculative events.
|
|
*
|
|
* Principle: events which are marked FD_EV_SPEC are processed
|
|
* with their assigned function. If the function returns 0, it
|
|
* means there is nothing doable without polling first. We will
|
|
* then convert the event to a pollable one by assigning them
|
|
* the WAIT status.
|
|
*/
|
|
|
|
fdtab[fd].ev = 0;
|
|
if ((eo & FD_EV_MASK_R) == FD_EV_SPEC_R) {
|
|
/* The owner is interested in reading from this FD */
|
|
if (fdtab[fd].state != FD_STCLOSE && fdtab[fd].state != FD_STERROR) {
|
|
/* Pretend there is something to read */
|
|
fdtab[fd].ev |= FD_POLL_IN;
|
|
if (!fdtab[fd].cb[DIR_RD].f(fd))
|
|
fd_list[fd].e ^= (FD_EV_WAIT_R ^ FD_EV_SPEC_R);
|
|
else
|
|
status++;
|
|
}
|
|
}
|
|
else if ((eo & FD_EV_MASK_R) == FD_EV_STOP_R) {
|
|
/* This FD was being polled and is now being removed. */
|
|
fd_list[fd].e &= ~FD_EV_MASK_R;
|
|
}
|
|
|
|
if ((eo & FD_EV_MASK_W) == FD_EV_SPEC_W) {
|
|
/* The owner is interested in writing to this FD */
|
|
if (fdtab[fd].state != FD_STCLOSE && fdtab[fd].state != FD_STERROR) {
|
|
/* Pretend there is something to write */
|
|
fdtab[fd].ev |= FD_POLL_OUT;
|
|
if (!fdtab[fd].cb[DIR_WR].f(fd))
|
|
fd_list[fd].e ^= (FD_EV_WAIT_W ^ FD_EV_SPEC_W);
|
|
else
|
|
status++;
|
|
}
|
|
}
|
|
else if ((eo & FD_EV_MASK_W) == FD_EV_STOP_W) {
|
|
/* This FD was being polled and is now being removed. */
|
|
fd_list[fd].e &= ~FD_EV_MASK_W;
|
|
}
|
|
|
|
/* Now, we will adjust the event in the poll list. Indeed, it
|
|
* is possible that an event which was previously in the poll
|
|
* list now goes out, and the opposite is possible too. We can
|
|
* have opposite changes for READ and WRITE too.
|
|
*/
|
|
|
|
if ((eo ^ fd_list[fd].e) & FD_EV_RW_PL) {
|
|
/* poll status changed*/
|
|
if ((fd_list[fd].e & FD_EV_RW_PL) == 0) {
|
|
/* fd removed from poll list */
|
|
opcode = EPOLL_CTL_DEL;
|
|
}
|
|
else if ((eo & FD_EV_RW_PL) == 0) {
|
|
/* new fd in the poll list */
|
|
opcode = EPOLL_CTL_ADD;
|
|
}
|
|
else {
|
|
/* fd status changed */
|
|
opcode = EPOLL_CTL_MOD;
|
|
}
|
|
|
|
/* construct the epoll events based on new state */
|
|
ev.events = 0;
|
|
if (fd_list[fd].e & FD_EV_WAIT_R)
|
|
ev.events |= EPOLLIN;
|
|
|
|
if (fd_list[fd].e & FD_EV_WAIT_W)
|
|
ev.events |= EPOLLOUT;
|
|
|
|
ev.data.fd = fd;
|
|
epoll_ctl(epoll_fd, opcode, fd, &ev);
|
|
}
|
|
|
|
|
|
if (!(fd_list[fd].e & FD_EV_RW_SL)) {
|
|
/* This fd switched to combinations of either WAIT or
|
|
* IDLE. It must be removed from the spec list.
|
|
*/
|
|
delete_spec_entry(spec_idx);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* It may make sense to immediately return here if there are enough
|
|
* processed events, without passing through epoll_wait() because we
|
|
* have exactly done a poll.
|
|
* Measures have shown a great performance increase if we call the
|
|
* epoll_wait() only the second time after speculative accesses have
|
|
* succeeded. This reduces the number of unsucessful calls to
|
|
* epoll_wait() by a factor of about 3, and the total number of calls
|
|
* by about 2.
|
|
*/
|
|
|
|
if (status >= MIN_RETURN_EVENTS) {
|
|
/* We have processed at least MIN_RETURN_EVENTS, it's worth
|
|
* returning now without checking epoll_wait().
|
|
*/
|
|
if (++last_skipped <= 1) {
|
|
tv_now(&now);
|
|
return;
|
|
}
|
|
}
|
|
last_skipped = 0;
|
|
|
|
if (nbspec || status) {
|
|
/* Maybe we have processed some events that we must report, or
|
|
* maybe we still have events in the spec list, so we must not
|
|
* wait in epoll() otherwise we will delay their delivery by
|
|
* the next timeout.
|
|
*/
|
|
wait_time = 0;
|
|
}
|
|
else {
|
|
if (tv_isset(exp))
|
|
wait_time = tv_ms_remain(&now, exp);
|
|
else
|
|
wait_time = -1;
|
|
}
|
|
|
|
/* now let's wait for real events */
|
|
status = epoll_wait(epoll_fd, epoll_events, maxfd, wait_time);
|
|
|
|
tv_now(&now);
|
|
|
|
for (count = 0; count < status; count++) {
|
|
int e = epoll_events[count].events;
|
|
fd = epoll_events[count].data.fd;
|
|
|
|
/* it looks complicated but gcc can optimize it away when constants
|
|
* have same values.
|
|
*/
|
|
fdtab[fd].ev =
|
|
((e & EPOLLIN ) ? FD_POLL_IN : 0) |
|
|
((e & EPOLLPRI) ? FD_POLL_PRI : 0) |
|
|
((e & EPOLLOUT) ? FD_POLL_OUT : 0) |
|
|
((e & EPOLLERR) ? FD_POLL_ERR : 0) |
|
|
((e & EPOLLHUP) ? FD_POLL_HUP : 0);
|
|
|
|
if ((fd_list[fd].e & FD_EV_MASK_R) == FD_EV_WAIT_R) {
|
|
if (fdtab[fd].state == FD_STCLOSE || fdtab[fd].state == FD_STERROR)
|
|
continue;
|
|
if (fdtab[fd].ev & (FD_POLL_RD|FD_POLL_HUP|FD_POLL_ERR))
|
|
fdtab[fd].cb[DIR_RD].f(fd);
|
|
}
|
|
|
|
if ((fd_list[fd].e & FD_EV_MASK_W) == FD_EV_WAIT_W) {
|
|
if (fdtab[fd].state == FD_STCLOSE || fdtab[fd].state == FD_STERROR)
|
|
continue;
|
|
if (fdtab[fd].ev & (FD_POLL_WR|FD_POLL_ERR))
|
|
fdtab[fd].cb[DIR_WR].f(fd);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialization of the speculative epoll() poller.
|
|
* Returns 0 in case of failure, non-zero in case of success. If it fails, it
|
|
* disables the poller by setting its pref to 0.
|
|
*/
|
|
REGPRM1 static int _do_init(struct poller *p)
|
|
{
|
|
__label__ fail_fd_list, fail_spec, fail_ee, fail_fd;
|
|
|
|
p->private = NULL;
|
|
|
|
epoll_fd = epoll_create(global.maxsock + 1);
|
|
if (epoll_fd < 0)
|
|
goto fail_fd;
|
|
|
|
epoll_events = (struct epoll_event*)
|
|
calloc(1, sizeof(struct epoll_event) * global.maxsock);
|
|
|
|
if (epoll_events == NULL)
|
|
goto fail_ee;
|
|
|
|
if ((spec_list = (uint32_t *)calloc(1, sizeof(uint32_t) * global.maxsock)) == NULL)
|
|
goto fail_spec;
|
|
|
|
fd_list = (struct fd_status *)calloc(1, sizeof(struct fd_status) * global.maxsock);
|
|
if (fd_list == NULL)
|
|
goto fail_fd_list;
|
|
|
|
return 1;
|
|
|
|
fail_fd_list:
|
|
free(spec_list);
|
|
fail_spec:
|
|
free(epoll_events);
|
|
fail_ee:
|
|
close(epoll_fd);
|
|
epoll_fd = 0;
|
|
fail_fd:
|
|
p->pref = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Termination of the speculative epoll() poller.
|
|
* Memory is released and the poller is marked as unselectable.
|
|
*/
|
|
REGPRM1 static void _do_term(struct poller *p)
|
|
{
|
|
if (fd_list)
|
|
free(fd_list);
|
|
if (spec_list)
|
|
free(spec_list);
|
|
if (epoll_events)
|
|
free(epoll_events);
|
|
|
|
close(epoll_fd);
|
|
epoll_fd = 0;
|
|
|
|
fd_list = NULL;
|
|
spec_list = NULL;
|
|
epoll_events = NULL;
|
|
|
|
p->private = NULL;
|
|
p->pref = 0;
|
|
}
|
|
|
|
/*
|
|
* Check that the poller works.
|
|
* Returns 1 if OK, otherwise 0.
|
|
*/
|
|
REGPRM1 static int _do_test(struct poller *p)
|
|
{
|
|
int fd;
|
|
|
|
fd = epoll_create(global.maxsock + 1);
|
|
if (fd < 0)
|
|
return 0;
|
|
close(fd);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* It is a constructor, which means that it will automatically be called before
|
|
* main(). This is GCC-specific but it works at least since 2.95.
|
|
* Special care must be taken so that it does not need any uninitialized data.
|
|
*/
|
|
__attribute__((constructor))
|
|
static void _do_register(void)
|
|
{
|
|
struct poller *p;
|
|
|
|
if (nbpollers >= MAX_POLLERS)
|
|
return;
|
|
p = &pollers[nbpollers++];
|
|
|
|
p->name = "sepoll";
|
|
p->pref = 400;
|
|
p->private = NULL;
|
|
|
|
p->test = _do_test;
|
|
p->init = _do_init;
|
|
p->term = _do_term;
|
|
p->poll = _do_poll;
|
|
|
|
p->is_set = __fd_is_set;
|
|
p->cond_s = p->set = __fd_set;
|
|
p->cond_c = p->clr = __fd_clr;
|
|
p->rem = __fd_rem;
|
|
p->clo = __fd_clo;
|
|
}
|
|
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|