mirror of
				https://git.haproxy.org/git/haproxy.git/
				synced 2025-10-31 00:21:00 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			661 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			661 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * HTTP compression.
 | |
|  *
 | |
|  * Copyright 2012 Exceliance, David Du Colombier <dducolombier@exceliance.fr>
 | |
|  *                            William Lallemand <wlallemand@exceliance.fr>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| 
 | |
| #ifdef USE_ZLIB
 | |
| /* Note: the crappy zlib and openssl libs both define the "free_func" type.
 | |
|  * That's a very clever idea to use such a generic name in general purpose
 | |
|  * libraries, really... The zlib one is easier to redefine than openssl's,
 | |
|  * so let's only fix this one.
 | |
|  */
 | |
| #define free_func zlib_free_func
 | |
| #include <zlib.h>
 | |
| #undef free_func
 | |
| #endif /* USE_ZLIB */
 | |
| 
 | |
| #include <common/compat.h>
 | |
| #include <common/memory.h>
 | |
| 
 | |
| #include <types/global.h>
 | |
| #include <types/compression.h>
 | |
| 
 | |
| #include <proto/acl.h>
 | |
| #include <proto/compression.h>
 | |
| #include <proto/freq_ctr.h>
 | |
| #include <proto/proto_http.h>
 | |
| 
 | |
| 
 | |
| #ifdef USE_ZLIB
 | |
| 
 | |
| static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size);
 | |
| static void free_zlib(void *opaque, void *ptr);
 | |
| 
 | |
| /* zlib allocation  */
 | |
| static struct pool_head *zlib_pool_deflate_state = NULL;
 | |
| static struct pool_head *zlib_pool_window = NULL;
 | |
| static struct pool_head *zlib_pool_prev = NULL;
 | |
| static struct pool_head *zlib_pool_head = NULL;
 | |
| static struct pool_head *zlib_pool_pending_buf = NULL;
 | |
| 
 | |
| long zlib_used_memory = 0;
 | |
| 
 | |
| #endif
 | |
| 
 | |
| unsigned int compress_min_idle = 0;
 | |
| static struct pool_head *pool_comp_ctx = NULL;
 | |
| 
 | |
| 
 | |
| const struct comp_algo comp_algos[] =
 | |
| {
 | |
| 	{ "identity", 8, identity_init, identity_add_data, identity_flush, identity_reset, identity_end },
 | |
| #ifdef USE_ZLIB
 | |
| 	{ "deflate",  7, deflate_init,  deflate_add_data,  deflate_flush,  deflate_reset,  deflate_end },
 | |
| 	{ "gzip",     4, gzip_init,     deflate_add_data,  deflate_flush,  deflate_reset,  deflate_end },
 | |
| #endif /* USE_ZLIB */
 | |
| 	{ NULL,       0, NULL ,         NULL,              NULL,           NULL,           NULL }
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Add a content-type in the configuration
 | |
|  */
 | |
| int comp_append_type(struct comp *comp, const char *type)
 | |
| {
 | |
| 	struct comp_type *comp_type;
 | |
| 
 | |
| 	comp_type = calloc(1, sizeof(struct comp_type));
 | |
| 	comp_type->name_len = strlen(type);
 | |
| 	comp_type->name = strdup(type);
 | |
| 	comp_type->next = comp->types;
 | |
| 	comp->types = comp_type;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add an algorithm in the configuration
 | |
|  */
 | |
| int comp_append_algo(struct comp *comp, const char *algo)
 | |
| {
 | |
| 	struct comp_algo *comp_algo;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; comp_algos[i].name; i++) {
 | |
| 		if (!strcmp(algo, comp_algos[i].name)) {
 | |
| 			comp_algo = calloc(1, sizeof(struct comp_algo));
 | |
| 			memmove(comp_algo, &comp_algos[i], sizeof(struct comp_algo));
 | |
| 			comp_algo->next = comp->algos;
 | |
| 			comp->algos = comp_algo;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* emit the chunksize followed by a CRLF on the output and return the number of
 | |
|  * bytes written. Appends <add_crlf> additional CRLF after the first one. Chunk
 | |
|  * sizes are truncated to 6 hex digits (16 MB) and padded left. The caller is
 | |
|  * responsible for ensuring there is enough room left in the output buffer for
 | |
|  * the string (8 bytes * add_crlf*2).
 | |
|  */
 | |
| int http_emit_chunk_size(char *out, unsigned int chksz, int add_crlf)
 | |
| {
 | |
| 	int shift;
 | |
| 	int pos = 0;
 | |
| 
 | |
| 	for (shift = 20; shift >= 0; shift -= 4)
 | |
| 		out[pos++] = hextab[(chksz >> shift) & 0xF];
 | |
| 
 | |
| 	do {
 | |
| 		out[pos++] = '\r';
 | |
| 		out[pos++] = '\n';
 | |
| 	} while (--add_crlf >= 0);
 | |
| 
 | |
| 	return pos;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Init HTTP compression
 | |
|  */
 | |
| int http_compression_buffer_init(struct session *s, struct buffer *in, struct buffer *out)
 | |
| {
 | |
| 	int left;
 | |
| 
 | |
| 	/* not enough space */
 | |
| 	if (in->size - buffer_len(in) < 40)
 | |
| 	    return -1;
 | |
| 
 | |
| 	/* We start by copying the current buffer's pending outgoing data into
 | |
| 	 * a new temporary buffer that we initialize with a new empty chunk.
 | |
| 	 */
 | |
| 	b_reset(out);
 | |
| 
 | |
| 	if (in->o > 0) {
 | |
| 		left = in->o - bo_contig_data(in);
 | |
| 		memcpy(out->data, bo_ptr(in), bo_contig_data(in));
 | |
| 		out->p += bo_contig_data(in);
 | |
| 		if (left > 0) { /* second part of the buffer */
 | |
| 			memcpy(out->p, in->data, left);
 | |
| 			out->p += left;
 | |
| 		}
 | |
| 		out->o = in->o;
 | |
| 	}
 | |
| 	out->i += http_emit_chunk_size(out->p, 0, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add data to compress
 | |
|  */
 | |
| int http_compression_buffer_add_data(struct session *s, struct buffer *in, struct buffer *out)
 | |
| {
 | |
| 	struct http_msg *msg = &s->txn.rsp;
 | |
| 	int consumed_data = 0;
 | |
| 	int data_process_len;
 | |
| 	int block1, block2;
 | |
| 
 | |
| 	/*
 | |
| 	 * Temporarily skip already parsed data and chunks to jump to the
 | |
| 	 * actual data block. It is fixed before leaving.
 | |
| 	 */
 | |
| 	b_adv(in, msg->next);
 | |
| 
 | |
| 	/*
 | |
| 	 * select the smallest size between the announced chunk size, the input
 | |
| 	 * data, and the available output buffer size. The compressors are
 | |
| 	 * assumed to be able to process all the bytes we pass to them at once.
 | |
| 	 */
 | |
| 	data_process_len = MIN(in->i, msg->chunk_len);
 | |
| 	data_process_len = MIN(out->size - buffer_len(out), data_process_len);
 | |
| 
 | |
| 	block1 = data_process_len;
 | |
| 	if (block1 > bi_contig_data(in))
 | |
| 		block1 = bi_contig_data(in);
 | |
| 	block2 = data_process_len - block1;
 | |
| 
 | |
| 	/* compressors return < 0 upon error or the amount of bytes read */
 | |
| 	consumed_data = s->comp_algo->add_data(s->comp_ctx, bi_ptr(in), block1, out);
 | |
| 	if (consumed_data >= 0 && block2 > 0) {
 | |
| 		consumed_data = s->comp_algo->add_data(s->comp_ctx, in->data, block2, out);
 | |
| 		if (consumed_data >= 0)
 | |
| 			consumed_data += block1;
 | |
| 	}
 | |
| 
 | |
| 	/* restore original buffer pointer */
 | |
| 	b_rew(in, msg->next);
 | |
| 
 | |
| 	if (consumed_data > 0) {
 | |
| 		msg->next += consumed_data;
 | |
| 		msg->chunk_len -= consumed_data;
 | |
| 	}
 | |
| 	return consumed_data;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush data in process, and write the header and footer of the chunk. Upon
 | |
|  * success, in and out buffers are swapped to avoid a copy.
 | |
|  */
 | |
| int http_compression_buffer_end(struct session *s, struct buffer **in, struct buffer **out, int end)
 | |
| {
 | |
| 	int to_forward;
 | |
| 	int left;
 | |
| 	struct http_msg *msg = &s->txn.rsp;
 | |
| 	struct buffer *ib = *in, *ob = *out;
 | |
| 
 | |
| #ifdef USE_ZLIB
 | |
| 	int ret;
 | |
| 
 | |
| 	/* flush data here */
 | |
| 
 | |
| 	if (end)
 | |
| 		ret = s->comp_algo->flush(s->comp_ctx, ob, Z_FINISH); /* end of data */
 | |
| 	else
 | |
| 		ret = s->comp_algo->flush(s->comp_ctx, ob, Z_SYNC_FLUSH); /* end of buffer */
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		return -1; /* flush failed */
 | |
| 
 | |
| #endif /* USE_ZLIB */
 | |
| 
 | |
| 	if (ob->i > 8) {
 | |
| 		/* more than a chunk size => some data were emitted */
 | |
| 		char *tail = ob->p + ob->i;
 | |
| 
 | |
| 		/* write real size at the begining of the chunk, no need of wrapping */
 | |
| 		http_emit_chunk_size(ob->p, ob->i - 8, 0);
 | |
| 
 | |
| 		/* chunked encoding requires CRLF after data */
 | |
| 		*tail++ = '\r';
 | |
| 		*tail++ = '\n';
 | |
| 
 | |
| 		/* At the end of data, we must write the empty chunk 0<CRLF>,
 | |
| 		 * and terminate the trailers section with a last <CRLF>. If
 | |
| 		 * we're forwarding a chunked-encoded response, we'll have a
 | |
| 		 * trailers section after the empty chunk which needs to be
 | |
| 		 * forwarded and which will provide the last CRLF. Otherwise
 | |
| 		 * we write it ourselves.
 | |
| 		 */
 | |
| 		if (msg->msg_state >= HTTP_MSG_TRAILERS) {
 | |
| 			memcpy(tail, "0\r\n", 3);
 | |
| 			tail += 3;
 | |
| 			if (msg->msg_state >= HTTP_MSG_DONE) {
 | |
| 				memcpy(tail, "\r\n", 2);
 | |
| 				tail += 2;
 | |
| 			}
 | |
| 		}
 | |
| 		ob->i = tail - ob->p;
 | |
| 	} else {
 | |
| 		/* no data were sent, cancel the chunk size */
 | |
| 		ob->i = 0;
 | |
| 	}
 | |
| 
 | |
| 	to_forward = ob->i;
 | |
| 
 | |
| 	/* update input rate */
 | |
| 	if (s->comp_ctx && s->comp_ctx->cur_lvl > 0) {
 | |
| 		update_freq_ctr(&global.comp_bps_in, msg->next);
 | |
| 		s->fe->fe_counters.comp_in += msg->next;
 | |
| 		s->be->be_counters.comp_in += msg->next;
 | |
| 	} else {
 | |
| 		s->fe->fe_counters.comp_byp += msg->next;
 | |
| 		s->be->be_counters.comp_byp += msg->next;
 | |
| 	}
 | |
| 
 | |
| 	/* copy the remaining data in the tmp buffer. */
 | |
| 	b_adv(ib, msg->next);
 | |
| 	msg->next = 0;
 | |
| 
 | |
| 	if (ib->i > 0) {
 | |
| 		left = ib->i - bi_contig_data(ib);
 | |
| 		memcpy(bi_end(ob), bi_ptr(ib), bi_contig_data(ib));
 | |
| 		ob->i += bi_contig_data(ib);
 | |
| 		if (left > 0) {
 | |
| 			memcpy(bi_end(ob), ib->data, left);
 | |
| 			ob->i += left;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* swap the buffers */
 | |
| 	*in = ob;
 | |
| 	*out = ib;
 | |
| 
 | |
| 	if (s->comp_ctx && s->comp_ctx->cur_lvl > 0) {
 | |
| 		update_freq_ctr(&global.comp_bps_out, to_forward);
 | |
| 		s->fe->fe_counters.comp_out += to_forward;
 | |
| 		s->be->be_counters.comp_out += to_forward;
 | |
| 	}
 | |
| 
 | |
| 	/* forward the new chunk without remaining data */
 | |
| 	b_adv(ob, to_forward);
 | |
| 
 | |
| 	return to_forward;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Alloc the comp_ctx
 | |
|  */
 | |
| static inline int init_comp_ctx(struct comp_ctx **comp_ctx)
 | |
| {
 | |
| #ifdef USE_ZLIB
 | |
| 	z_stream *strm;
 | |
| 
 | |
| 	if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < sizeof(struct comp_ctx))
 | |
| 		return -1;
 | |
| #endif
 | |
| 
 | |
| 	if (unlikely(pool_comp_ctx == NULL))
 | |
| 		pool_comp_ctx = create_pool("comp_ctx", sizeof(struct comp_ctx), MEM_F_SHARED);
 | |
| 
 | |
| 	*comp_ctx = pool_alloc2(pool_comp_ctx);
 | |
| 	if (*comp_ctx == NULL)
 | |
| 		return -1;
 | |
| #ifdef USE_ZLIB
 | |
| 	zlib_used_memory += sizeof(struct comp_ctx);
 | |
| 
 | |
| 	strm = &(*comp_ctx)->strm;
 | |
| 	strm->zalloc = alloc_zlib;
 | |
| 	strm->zfree = free_zlib;
 | |
| 	strm->opaque = *comp_ctx;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Dealloc the comp_ctx
 | |
|  */
 | |
| static inline int deinit_comp_ctx(struct comp_ctx **comp_ctx)
 | |
| {
 | |
| 	if (!*comp_ctx)
 | |
| 		return 0;
 | |
| 
 | |
| 	pool_free2(pool_comp_ctx, *comp_ctx);
 | |
| 	*comp_ctx = NULL;
 | |
| 
 | |
| #ifdef USE_ZLIB
 | |
| 	zlib_used_memory -= sizeof(struct comp_ctx);
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************
 | |
|  **** Identity algorithm ****
 | |
|  ****************************/
 | |
| 
 | |
| /*
 | |
|  * Init the identity algorithm
 | |
|  */
 | |
| int identity_init(struct comp_ctx **comp_ctx, int level)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process data
 | |
|  *   Return size of consumed data or -1 on error
 | |
|  */
 | |
| int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
 | |
| {
 | |
| 	char *out_data = bi_end(out);
 | |
| 	int out_len = out->size - buffer_len(out);
 | |
| 
 | |
| 	if (out_len < in_len)
 | |
| 		return -1;
 | |
| 
 | |
| 	memcpy(out_data, in_data, in_len);
 | |
| 
 | |
| 	out->i += in_len;
 | |
| 
 | |
| 	return in_len;
 | |
| }
 | |
| 
 | |
| int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out, int flag)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int identity_reset(struct comp_ctx *comp_ctx)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Deinit the algorithm
 | |
|  */
 | |
| int identity_end(struct comp_ctx **comp_ctx)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #ifdef USE_ZLIB
 | |
| /*
 | |
|  * This is a tricky allocation function using the zlib.
 | |
|  * This is based on the allocation order in deflateInit2.
 | |
|  */
 | |
| static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size)
 | |
| {
 | |
| 	struct comp_ctx *ctx = opaque;
 | |
| 	static char round = 0; /* order in deflateInit2 */
 | |
| 	void *buf = NULL;
 | |
| 	struct pool_head *pool = NULL;
 | |
| 
 | |
| 	if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < (long)(items * size))
 | |
| 		goto end;
 | |
| 
 | |
| 	switch (round) {
 | |
| 		case 0:
 | |
| 			if (zlib_pool_deflate_state == NULL)
 | |
| 				zlib_pool_deflate_state = create_pool("zlib_state", size * items, MEM_F_SHARED);
 | |
| 			pool = zlib_pool_deflate_state;
 | |
| 			ctx->zlib_deflate_state = buf = pool_alloc2(pool);
 | |
| 		break;
 | |
| 
 | |
| 		case 1:
 | |
| 			if (zlib_pool_window == NULL)
 | |
| 				zlib_pool_window = create_pool("zlib_window", size * items, MEM_F_SHARED);
 | |
| 			pool = zlib_pool_window;
 | |
| 			ctx->zlib_window = buf = pool_alloc2(pool);
 | |
| 		break;
 | |
| 
 | |
| 		case 2:
 | |
| 			if (zlib_pool_prev == NULL)
 | |
| 				zlib_pool_prev = create_pool("zlib_prev", size * items, MEM_F_SHARED);
 | |
| 			pool = zlib_pool_prev;
 | |
| 			ctx->zlib_prev = buf = pool_alloc2(pool);
 | |
| 		break;
 | |
| 
 | |
| 		case 3:
 | |
| 			if (zlib_pool_head == NULL)
 | |
| 				zlib_pool_head = create_pool("zlib_head", size * items, MEM_F_SHARED);
 | |
| 			pool = zlib_pool_head;
 | |
| 			ctx->zlib_head = buf = pool_alloc2(pool);
 | |
| 		break;
 | |
| 
 | |
| 		case 4:
 | |
| 			if (zlib_pool_pending_buf == NULL)
 | |
| 				zlib_pool_pending_buf = create_pool("zlib_pending_buf", size * items, MEM_F_SHARED);
 | |
| 			pool = zlib_pool_pending_buf;
 | |
| 			ctx->zlib_pending_buf = buf = pool_alloc2(pool);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (buf != NULL)
 | |
| 		zlib_used_memory += pool->size;
 | |
| 
 | |
| end:
 | |
| 
 | |
| 	/* deflateInit2() first allocates and checks the deflate_state, then if
 | |
| 	 * it succeeds, it allocates all other 4 areas at ones and checks them
 | |
| 	 * at the end. So we want to correctly count the rounds depending on when
 | |
| 	 * zlib is supposed to abort.
 | |
| 	 */
 | |
| 	if (buf || round)
 | |
| 		round = (round + 1) % 5;
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| static void free_zlib(void *opaque, void *ptr)
 | |
| {
 | |
| 	struct comp_ctx *ctx = opaque;
 | |
| 	struct pool_head *pool = NULL;
 | |
| 
 | |
| 	if (ptr == ctx->zlib_window)
 | |
| 		pool = zlib_pool_window;
 | |
| 	else if (ptr == ctx->zlib_deflate_state)
 | |
| 		pool = zlib_pool_deflate_state;
 | |
| 	else if (ptr == ctx->zlib_prev)
 | |
| 		pool = zlib_pool_prev;
 | |
| 	else if (ptr == ctx->zlib_head)
 | |
| 		pool = zlib_pool_head;
 | |
| 	else if (ptr == ctx->zlib_pending_buf)
 | |
| 		pool = zlib_pool_pending_buf;
 | |
| 
 | |
| 	pool_free2(pool, ptr);
 | |
| 	zlib_used_memory -= pool->size;
 | |
| }
 | |
| 
 | |
| /**************************
 | |
| ****  gzip algorithm   ****
 | |
| ***************************/
 | |
| int gzip_init(struct comp_ctx **comp_ctx, int level)
 | |
| {
 | |
| 	z_stream *strm;
 | |
| 
 | |
| 	if (init_comp_ctx(comp_ctx) < 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	strm = &(*comp_ctx)->strm;
 | |
| 
 | |
| 	if (deflateInit2(strm, level, Z_DEFLATED, global.tune.zlibwindowsize + 16, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) {
 | |
| 		deinit_comp_ctx(comp_ctx);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	(*comp_ctx)->cur_lvl = level;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| /**************************
 | |
| **** Deflate algorithm ****
 | |
| ***************************/
 | |
| 
 | |
| int deflate_init(struct comp_ctx **comp_ctx, int level)
 | |
| {
 | |
| 	z_stream *strm;
 | |
| 
 | |
| 	if (init_comp_ctx(comp_ctx) < 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	strm = &(*comp_ctx)->strm;
 | |
| 
 | |
| 	if (deflateInit2(strm, level, Z_DEFLATED, global.tune.zlibwindowsize, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) {
 | |
| 		deinit_comp_ctx(comp_ctx);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	(*comp_ctx)->cur_lvl = level;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Return the size of consumed data or -1 */
 | |
| int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
 | |
| {
 | |
| 	int ret;
 | |
| 	z_stream *strm = &comp_ctx->strm;
 | |
| 	char *out_data = bi_end(out);
 | |
| 	int out_len = out->size - buffer_len(out);
 | |
| 
 | |
| 	if (in_len <= 0)
 | |
| 		return 0;
 | |
| 
 | |
| 
 | |
| 	if (out_len <= 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	strm->next_in = (unsigned char *)in_data;
 | |
| 	strm->avail_in = in_len;
 | |
| 	strm->next_out = (unsigned char *)out_data;
 | |
| 	strm->avail_out = out_len;
 | |
| 
 | |
| 	ret = deflate(strm, Z_NO_FLUSH);
 | |
| 	if (ret != Z_OK)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* deflate update the available data out */
 | |
| 	out->i += out_len - strm->avail_out;
 | |
| 
 | |
| 	return in_len - strm->avail_in;
 | |
| }
 | |
| 
 | |
| int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out, int flag)
 | |
| {
 | |
| 	int ret;
 | |
| 	int out_len = 0;
 | |
| 	z_stream *strm = &comp_ctx->strm;
 | |
| 
 | |
| 	strm->next_out = (unsigned char *)bi_end(out);
 | |
| 	strm->avail_out = out->size - buffer_len(out);
 | |
| 
 | |
| 	ret = deflate(strm, flag);
 | |
| 	if (ret != Z_OK && ret != Z_STREAM_END)
 | |
| 		return -1;
 | |
| 
 | |
| 	out_len = (out->size - buffer_len(out)) - strm->avail_out;
 | |
| 	out->i += out_len;
 | |
| 
 | |
| 	/* compression limit */
 | |
| 	if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) ||    /* rate */
 | |
| 	   (idle_pct < compress_min_idle)) {                                                                     /* idle */
 | |
| 		/* decrease level */
 | |
| 		if (comp_ctx->cur_lvl > 0) {
 | |
| 			comp_ctx->cur_lvl--;
 | |
| 			deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY);
 | |
| 		}
 | |
| 
 | |
| 	} else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel) {
 | |
| 		/* increase level */
 | |
| 		comp_ctx->cur_lvl++ ;
 | |
| 		deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY);
 | |
| 	}
 | |
| 
 | |
| 	return out_len;
 | |
| }
 | |
| 
 | |
| int deflate_reset(struct comp_ctx *comp_ctx)
 | |
| {
 | |
| 	z_stream *strm = &comp_ctx->strm;
 | |
| 
 | |
| 	if (deflateReset(strm) == Z_OK)
 | |
| 		return 0;
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| int deflate_end(struct comp_ctx **comp_ctx)
 | |
| {
 | |
| 	z_stream *strm = &(*comp_ctx)->strm;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = deflateEnd(strm);
 | |
| 
 | |
| 	deinit_comp_ctx(comp_ctx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #endif /* USE_ZLIB */
 | |
| 
 | |
| /* boolean, returns true if compression is used (either gzip or deflate) in the response */
 | |
| static int
 | |
| smp_fetch_res_comp(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
 | |
|                  const struct arg *args, struct sample *smp, const char *kw, void *private)
 | |
| {
 | |
| 	smp->type = SMP_T_BOOL;
 | |
| 	smp->data.uint = (l4->comp_algo != NULL);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* string, returns algo */
 | |
| static int
 | |
| smp_fetch_res_comp_algo(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
 | |
|                  const struct arg *args, struct sample *smp, const char *kw, void *private)
 | |
| {
 | |
| 	if (!l4->comp_algo)
 | |
| 		return 0;
 | |
| 
 | |
| 	smp->type = SMP_T_STR;
 | |
| 	smp->flags = SMP_F_CONST;
 | |
| 	smp->data.str.str = l4->comp_algo->name;
 | |
| 	smp->data.str.len = l4->comp_algo->name_len;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Note: must not be declared <const> as its list will be overwritten */
 | |
| static struct acl_kw_list acl_kws = {ILH, {
 | |
| 	{ /* END */ },
 | |
| }};
 | |
| 
 | |
| /* Note: must not be declared <const> as its list will be overwritten */
 | |
| static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
 | |
| 	{ "res.comp",             smp_fetch_res_comp,      0,                NULL,    SMP_T_BOOL, SMP_USE_HRSHP },
 | |
| 	{ "res.comp_algo",        smp_fetch_res_comp_algo, 0,                NULL,    SMP_T_STR, SMP_USE_HRSHP },
 | |
| 	{ /* END */ },
 | |
| }};
 | |
| 
 | |
| __attribute__((constructor))
 | |
| static void __comp_fetch_init(void)
 | |
| {
 | |
| 	acl_register_keywords(&acl_kws);
 | |
| 	sample_register_fetches(&sample_fetch_keywords);
 | |
| }
 |