haproxy/src/sample.c
Willy Tarreau b74fb1325e MINOR: sample: add the "when" converter to condition some expressions
Sometimes it would be desirable to include some debugging output only
under certain conditions, but the end of the transfer is too late to
apply some rules.

Here we take the approach of making a converter ("when") that takes a
condition among an arbitrary list, and decides whether or not to let
the input sample pass through or not based on the condition. This
allows for example to log debugging information only when an error
was encountered during the processing (sort of an extension of
dontlog-normal). The conditions are quite limited (stopping, error,
normal, toapplet, forwarded, processed) and can be negated. The
converter can also be chained to use more complex conditions.

A suggested example will be:

    # log "dbg={-}" when fine, or "dbg={... debug info ...}" on error:
    log-format "$HAPROXY_HTTP_LOG_FMT dbg={%[bs.debug_str,when(!normal)]}"
2024-10-22 20:13:00 +02:00

5394 lines
161 KiB
C

/*
* Sample management functions.
*
* Copyright 2009-2010 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr>
* Copyright (C) 2012 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <string.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <import/mjson.h>
#include <import/sha1.h>
#include <haproxy/api.h>
#include <haproxy/arg.h>
#include <haproxy/auth.h>
#include <haproxy/base64.h>
#include <haproxy/buf.h>
#include <haproxy/chunk.h>
#include <haproxy/clock.h>
#include <haproxy/errors.h>
#include <haproxy/fix.h>
#include <haproxy/global.h>
#include <haproxy/hash.h>
#include <haproxy/http.h>
#include <haproxy/http_ana-t.h>
#include <haproxy/istbuf.h>
#include <haproxy/mqtt.h>
#include <haproxy/net_helper.h>
#include <haproxy/protobuf.h>
#include <haproxy/proxy.h>
#include <haproxy/regex.h>
#include <haproxy/sample.h>
#include <haproxy/sc_strm.h>
#include <haproxy/sink.h>
#include <haproxy/stick_table.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
#include <haproxy/uri_auth-t.h>
#include <haproxy/vars.h>
#include <haproxy/xxhash.h>
#include <haproxy/jwt.h>
/* sample type names */
const char *smp_to_type[SMP_TYPES] = {
[SMP_T_ANY] = "any",
[SMP_T_SAME] = "same",
[SMP_T_BOOL] = "bool",
[SMP_T_SINT] = "sint",
[SMP_T_ADDR] = "addr",
[SMP_T_IPV4] = "ipv4",
[SMP_T_IPV6] = "ipv6",
[SMP_T_STR] = "str",
[SMP_T_BIN] = "bin",
[SMP_T_METH] = "meth",
};
/* Returns SMP_T_* smp matching with <type> name or SMP_TYPES if
* not found.
*/
int type_to_smp(const char *type)
{
int it = 0;
while (it < SMP_TYPES) {
if (strcmp(type, smp_to_type[it]) == 0)
break; // found
it += 1;
}
return it;
}
/* static sample used in sample_process() when <p> is NULL */
static THREAD_LOCAL struct sample temp_smp;
/* list head of all known sample fetch keywords */
static struct sample_fetch_kw_list sample_fetches = {
.list = LIST_HEAD_INIT(sample_fetches.list)
};
/* list head of all known sample format conversion keywords */
static struct sample_conv_kw_list sample_convs = {
.list = LIST_HEAD_INIT(sample_convs.list)
};
const unsigned int fetch_cap[SMP_SRC_ENTRIES] = {
[SMP_SRC_CONST] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL_CFG_PARSER |
SMP_VAL_CLI_PARSER ),
[SMP_SRC_INTRN] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
SMP_VAL_CLI_PARSER ),
[SMP_SRC_LISTN] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_FTEND] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_L4CLI] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_L5CLI] = (SMP_VAL___________ | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_TRACK] = (SMP_VAL_FE_CON_ACC | SMP_VAL_FE_SES_ACC | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_L6REQ] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_HRQHV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_HRQHP] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_FE_REQ_CNT |
SMP_VAL_FE_HRQ_HDR | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_HRQBO] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL_FE_HRQ_BDY | SMP_VAL_FE_SET_BCK |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_BKEND] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL_BE_REQ_CNT | SMP_VAL_BE_HRQ_HDR | SMP_VAL_BE_HRQ_BDY |
SMP_VAL_BE_SET_SRV | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_SERVR] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL_BE_SRV_CON | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_L4SRV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_L5SRV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_L6RES] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL___________ | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_HRSHV] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL___________ | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_HRSHP] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL_BE_RES_CNT |
SMP_VAL_BE_HRS_HDR | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL_FE_LOG_END | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_HRSBO] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL_BE_HRS_BDY | SMP_VAL_BE_STO_RUL |
SMP_VAL_FE_RES_CNT | SMP_VAL_FE_HRS_HDR | SMP_VAL_FE_HRS_BDY |
SMP_VAL___________ | SMP_VAL_BE_CHK_RUL | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_RQFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_RSFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_TXFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ ),
[SMP_SRC_SSFIN] = (SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL_FE_LOG_END | SMP_VAL___________ | SMP_VAL___________ |
SMP_VAL___________ ),
};
static const char *fetch_src_names[SMP_SRC_ENTRIES] = {
[SMP_SRC_INTRN] = "internal state",
[SMP_SRC_LISTN] = "listener",
[SMP_SRC_FTEND] = "frontend",
[SMP_SRC_L4CLI] = "client address",
[SMP_SRC_L5CLI] = "client-side connection",
[SMP_SRC_TRACK] = "track counters",
[SMP_SRC_L6REQ] = "request buffer",
[SMP_SRC_HRQHV] = "HTTP request headers",
[SMP_SRC_HRQHP] = "HTTP request",
[SMP_SRC_HRQBO] = "HTTP request body",
[SMP_SRC_BKEND] = "backend",
[SMP_SRC_SERVR] = "server",
[SMP_SRC_L4SRV] = "server address",
[SMP_SRC_L5SRV] = "server-side connection",
[SMP_SRC_L6RES] = "response buffer",
[SMP_SRC_HRSHV] = "HTTP response headers",
[SMP_SRC_HRSHP] = "HTTP response",
[SMP_SRC_HRSBO] = "HTTP response body",
[SMP_SRC_RQFIN] = "request buffer statistics",
[SMP_SRC_RSFIN] = "response buffer statistics",
[SMP_SRC_TXFIN] = "transaction statistics",
[SMP_SRC_SSFIN] = "session statistics",
};
static const char *fetch_ckp_names[SMP_CKP_ENTRIES] = {
[SMP_CKP_FE_CON_ACC] = "frontend tcp-request connection rule",
[SMP_CKP_FE_SES_ACC] = "frontend tcp-request session rule",
[SMP_CKP_FE_REQ_CNT] = "frontend tcp-request content rule",
[SMP_CKP_FE_HRQ_HDR] = "frontend http-request header rule",
[SMP_CKP_FE_HRQ_BDY] = "frontend http-request body rule",
[SMP_CKP_FE_SET_BCK] = "frontend use-backend rule",
[SMP_CKP_BE_REQ_CNT] = "backend tcp-request content rule",
[SMP_CKP_BE_HRQ_HDR] = "backend http-request header rule",
[SMP_CKP_BE_HRQ_BDY] = "backend http-request body rule",
[SMP_CKP_BE_SET_SRV] = "backend use-server, balance or stick-match rule",
[SMP_CKP_BE_SRV_CON] = "server source selection",
[SMP_CKP_BE_RES_CNT] = "backend tcp-response content rule",
[SMP_CKP_BE_HRS_HDR] = "backend http-response header rule",
[SMP_CKP_BE_HRS_BDY] = "backend http-response body rule",
[SMP_CKP_BE_STO_RUL] = "backend stick-store rule",
[SMP_CKP_FE_RES_CNT] = "frontend tcp-response content rule",
[SMP_CKP_FE_HRS_HDR] = "frontend http-response header rule",
[SMP_CKP_FE_HRS_BDY] = "frontend http-response body rule",
[SMP_CKP_FE_LOG_END] = "logs",
[SMP_CKP_BE_CHK_RUL] = "backend tcp-check rule",
[SMP_CKP_CFG_PARSER] = "configuration parser",
[SMP_CKP_CLI_PARSER] = "CLI parser",
};
/* This function returns the most accurate expected type of the data returned
* by the sample_expr. It assumes that the <expr> and all of its converters are
* properly initialized.
*/
int smp_expr_output_type(struct sample_expr *expr)
{
struct sample_conv_expr *cur_smp = NULL;
int cur_type = SMP_T_ANY; /* current type in the chain */
int next_type = SMP_T_ANY; /* next type in the chain */
if (!LIST_ISEMPTY(&expr->conv_exprs)) {
/* Ignore converters that output SMP_T_SAME if switching to them is
* conversion-free. (such converter's output match with input, thus only
* their input is considered)
*
* We start looking at the end of conv list and then loop back until the
* sample fetch for better performance (it is more likely to find the last
* effective output type near the end of the chain)
*/
do {
struct list *cur_head = (cur_smp) ? &cur_smp->list : &expr->conv_exprs;
cur_smp = LIST_PREV(cur_head, struct sample_conv_expr *, list);
if (cur_smp->conv->out_type != SMP_T_SAME) {
/* current converter has effective out_type */
cur_type = cur_smp->conv->out_type;
goto out;
}
else if (sample_casts[cur_type][next_type] != c_none)
return next_type; /* switching to next type is not conversion-free */
next_type = cur_smp->conv->in_type;
} while (cur_smp != LIST_NEXT(&expr->conv_exprs, struct sample_conv_expr *, list));
}
/* conv list empty or doesn't have effective out_type,
* falling back to sample fetch out_type
*/
cur_type = expr->fetch->out_type;
out:
if (sample_casts[cur_type][next_type] != c_none)
return next_type; /* switching to next type is not conversion-free */
return cur_type;
}
/* fill the trash with a comma-delimited list of source names for the <use> bit
* field which must be composed of a non-null set of SMP_USE_* flags. The return
* value is the pointer to the string in the trash buffer.
*/
const char *sample_src_names(unsigned int use)
{
int bit;
trash.data = 0;
trash.area[0] = '\0';
for (bit = 0; bit < SMP_SRC_ENTRIES; bit++) {
if (!(use & ~((1 << bit) - 1)))
break; /* no more bits */
if (!(use & (1 << bit)))
continue; /* bit not set */
trash.data += snprintf(trash.area + trash.data,
trash.size - trash.data, "%s%s",
(use & ((1 << bit) - 1)) ? "," : "",
fetch_src_names[bit]);
}
return trash.area;
}
/* return a pointer to the correct sample checkpoint name, or "unknown" when
* the flags are invalid. Only the lowest bit is used, higher bits are ignored
* if set.
*/
const char *sample_ckp_names(unsigned int use)
{
int bit;
for (bit = 0; bit < SMP_CKP_ENTRIES; bit++)
if (use & (1 << bit))
return fetch_ckp_names[bit];
return "unknown sample check place, please report this bug";
}
/*
* Registers the sample fetch keyword list <kwl> as a list of valid keywords
* for next parsing sessions. The fetch keywords capabilities are also computed
* from their ->use field.
*/
void sample_register_fetches(struct sample_fetch_kw_list *kwl)
{
struct sample_fetch *sf;
int bit;
for (sf = kwl->kw; sf->kw != NULL; sf++) {
for (bit = 0; bit < SMP_SRC_ENTRIES; bit++)
if (sf->use & (1 << bit))
sf->val |= fetch_cap[bit];
}
LIST_APPEND(&sample_fetches.list, &kwl->list);
}
/*
* Registers the sample format coverstion keyword list <pckl> as a list of valid keywords for next
* parsing sessions.
*/
void sample_register_convs(struct sample_conv_kw_list *pckl)
{
LIST_APPEND(&sample_convs.list, &pckl->list);
}
/*
* Returns the pointer on sample fetch keyword structure identified by
* string of <len> in buffer <kw>.
*
*/
struct sample_fetch *find_sample_fetch(const char *kw, int len)
{
int index;
struct sample_fetch_kw_list *kwl;
list_for_each_entry(kwl, &sample_fetches.list, list) {
for (index = 0; kwl->kw[index].kw != NULL; index++) {
if (strncmp(kwl->kw[index].kw, kw, len) == 0 &&
kwl->kw[index].kw[len] == '\0')
return &kwl->kw[index];
}
}
return NULL;
}
/* dump list of registered sample fetch keywords on stdout */
void smp_dump_fetch_kw(void)
{
struct sample_fetch_kw_list *kwl;
struct sample_fetch *kwp, *kw;
uint64_t mask;
int index;
int arg;
int bit;
for (bit = 0; bit <= SMP_CKP_ENTRIES + 1; bit++) {
putchar('#');
for (index = 0; bit + index <= SMP_CKP_ENTRIES; index++)
putchar(' ');
for (index = 0; index < bit && index < SMP_CKP_ENTRIES; index++)
printf((bit <= SMP_CKP_ENTRIES) ? "/ " : " |");
for (index = bit; bit < SMP_CKP_ENTRIES && index < SMP_CKP_ENTRIES + 2; index++)
if (index == bit)
putchar('_');
else if (index == bit + 1)
putchar('.');
else
putchar('-');
printf(" %s\n", (bit < SMP_CKP_ENTRIES) ? fetch_ckp_names[bit] : "");
}
for (kw = kwp = NULL;; kwp = kw) {
list_for_each_entry(kwl, &sample_fetches.list, list) {
for (index = 0; kwl->kw[index].kw != NULL; index++) {
if (strordered(kwp ? kwp->kw : NULL,
kwl->kw[index].kw,
kw != kwp ? kw->kw : NULL))
kw = &kwl->kw[index];
}
}
if (kw == kwp)
break;
printf("[ ");
for (bit = 0; bit < SMP_CKP_ENTRIES; bit++)
printf("%s", (kw->val & (1 << bit)) ? "Y " : ". ");
printf("] %s", kw->kw);
if (kw->arg_mask) {
mask = kw->arg_mask >> ARGM_BITS;
printf("(");
for (arg = 0;
arg < ARGM_NBARGS && ((mask >> (arg * ARGT_BITS)) & ARGT_MASK);
arg++) {
if (arg == (kw->arg_mask & ARGM_MASK)) {
/* now dumping extra args */
printf("[");
}
if (arg)
printf(",");
printf("%s", arg_type_names[(mask >> (arg * ARGT_BITS)) & ARGT_MASK]);
}
if (arg > (kw->arg_mask & ARGM_MASK)) {
/* extra args were dumped */
printf("]");
}
printf(")");
}
printf(": %s", smp_to_type[kw->out_type]);
printf("\n");
}
}
/* dump list of registered sample converter keywords on stdout */
void smp_dump_conv_kw(void)
{
struct sample_conv_kw_list *kwl;
struct sample_conv *kwp, *kw;
uint64_t mask;
int index;
int arg;
for (kw = kwp = NULL;; kwp = kw) {
list_for_each_entry(kwl, &sample_convs.list, list) {
for (index = 0; kwl->kw[index].kw != NULL; index++) {
if (strordered(kwp ? kwp->kw : NULL,
kwl->kw[index].kw,
kw != kwp ? kw->kw : NULL))
kw = &kwl->kw[index];
}
}
if (kw == kwp)
break;
printf("%s", kw->kw);
if (kw->arg_mask) {
mask = kw->arg_mask >> ARGM_BITS;
printf("(");
for (arg = 0;
arg < ARGM_NBARGS && ((mask >> (arg * ARGT_BITS)) & ARGT_MASK);
arg++) {
if (arg == (kw->arg_mask & ARGM_MASK)) {
/* now dumping extra args */
printf("[");
}
if (arg)
printf(",");
printf("%s", arg_type_names[(mask >> (arg * ARGT_BITS)) & ARGT_MASK]);
}
if (arg > (kw->arg_mask & ARGM_MASK)) {
/* extra args were dumped */
printf("]");
}
printf(")");
}
printf(": %s => %s", smp_to_type[kw->out_type], smp_to_type[kw->in_type]);
printf("\n");
}
}
/* This function browses the list of available sample fetches. <current> is
* the last used sample fetch. If it is the first call, it must set to NULL.
* <idx> is the index of the next sample fetch entry. It is used as private
* value. It is useless to initiate it.
*
* It returns always the new fetch_sample entry, and NULL when the end of
* the list is reached.
*/
struct sample_fetch *sample_fetch_getnext(struct sample_fetch *current, int *idx)
{
struct sample_fetch_kw_list *kwl;
struct sample_fetch *base;
if (!current) {
/* Get first kwl entry. */
kwl = LIST_NEXT(&sample_fetches.list, struct sample_fetch_kw_list *, list);
(*idx) = 0;
} else {
/* Get kwl corresponding to the current entry. */
base = current + 1 - (*idx);
kwl = container_of(base, struct sample_fetch_kw_list, kw);
}
while (1) {
/* Check if kwl is the last entry. */
if (&kwl->list == &sample_fetches.list)
return NULL;
/* idx contain the next keyword. If it is available, return it. */
if (kwl->kw[*idx].kw) {
(*idx)++;
return &kwl->kw[(*idx)-1];
}
/* get next entry in the main list, and return NULL if the end is reached. */
kwl = LIST_NEXT(&kwl->list, struct sample_fetch_kw_list *, list);
/* Set index to 0, ans do one other loop. */
(*idx) = 0;
}
}
/* This function browses the list of available converters. <current> is
* the last used converter. If it is the first call, it must set to NULL.
* <idx> is the index of the next converter entry. It is used as private
* value. It is useless to initiate it.
*
* It returns always the next sample_conv entry, and NULL when the end of
* the list is reached.
*/
struct sample_conv *sample_conv_getnext(struct sample_conv *current, int *idx)
{
struct sample_conv_kw_list *kwl;
struct sample_conv *base;
if (!current) {
/* Get first kwl entry. */
kwl = LIST_NEXT(&sample_convs.list, struct sample_conv_kw_list *, list);
(*idx) = 0;
} else {
/* Get kwl corresponding to the current entry. */
base = current + 1 - (*idx);
kwl = container_of(base, struct sample_conv_kw_list, kw);
}
while (1) {
/* Check if kwl is the last entry. */
if (&kwl->list == &sample_convs.list)
return NULL;
/* idx contain the next keyword. If it is available, return it. */
if (kwl->kw[*idx].kw) {
(*idx)++;
return &kwl->kw[(*idx)-1];
}
/* get next entry in the main list, and return NULL if the end is reached. */
kwl = LIST_NEXT(&kwl->list, struct sample_conv_kw_list *, list);
/* Set index to 0, ans do one other loop. */
(*idx) = 0;
}
}
/*
* Returns the pointer on sample format conversion keyword structure identified by
* string of <len> in buffer <kw>.
*
*/
struct sample_conv *find_sample_conv(const char *kw, int len)
{
int index;
struct sample_conv_kw_list *kwl;
list_for_each_entry(kwl, &sample_convs.list, list) {
for (index = 0; kwl->kw[index].kw != NULL; index++) {
if (strncmp(kwl->kw[index].kw, kw, len) == 0 &&
kwl->kw[index].kw[len] == '\0')
return &kwl->kw[index];
}
}
return NULL;
}
/******************************************************************/
/* Sample casts functions */
/******************************************************************/
static int c_ip2int(struct sample *smp)
{
smp->data.u.sint = ntohl(smp->data.u.ipv4.s_addr);
smp->data.type = SMP_T_SINT;
return 1;
}
static int c_ip2str(struct sample *smp)
{
struct buffer *trash = get_trash_chunk();
if (!inet_ntop(AF_INET, (void *)&smp->data.u.ipv4, trash->area, trash->size))
return 0;
trash->data = strlen(trash->area);
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int c_ip2ipv6(struct sample *smp)
{
v4tov6(&smp->data.u.ipv6, &smp->data.u.ipv4);
smp->data.type = SMP_T_IPV6;
return 1;
}
static int c_ipv62ip(struct sample *smp)
{
if (!v6tov4(&smp->data.u.ipv4, &smp->data.u.ipv6))
return 0;
smp->data.type = SMP_T_IPV4;
return 1;
}
static int c_ipv62str(struct sample *smp)
{
struct buffer *trash = get_trash_chunk();
if (!inet_ntop(AF_INET6, (void *)&smp->data.u.ipv6, trash->area, trash->size))
return 0;
trash->data = strlen(trash->area);
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
/*
static int c_ipv62ip(struct sample *smp)
{
return v6tov4(&smp->data.u.ipv4, &smp->data.u.ipv6);
}
*/
static int c_int2ip(struct sample *smp)
{
smp->data.u.ipv4.s_addr = htonl((unsigned int)smp->data.u.sint);
smp->data.type = SMP_T_IPV4;
return 1;
}
static int c_int2ipv6(struct sample *smp)
{
smp->data.u.ipv4.s_addr = htonl((unsigned int)smp->data.u.sint);
v4tov6(&smp->data.u.ipv6, &smp->data.u.ipv4);
smp->data.type = SMP_T_IPV6;
return 1;
}
static int c_str2addr(struct sample *smp)
{
if (!buf2ip(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv4)) {
if (!buf2ip6(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv6))
return 0;
smp->data.type = SMP_T_IPV6;
smp->flags &= ~SMP_F_CONST;
return 1;
}
smp->data.type = SMP_T_IPV4;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int c_str2ip(struct sample *smp)
{
if (!buf2ip(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv4))
return 0;
smp->data.type = SMP_T_IPV4;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int c_str2ipv6(struct sample *smp)
{
if (!buf2ip6(smp->data.u.str.area, smp->data.u.str.data, &smp->data.u.ipv6))
return 0;
smp->data.type = SMP_T_IPV6;
smp->flags &= ~SMP_F_CONST;
return 1;
}
/*
* The NULL char always enforces the end of string if it is met.
* Data is never changed, so we can ignore the CONST case
*/
static int c_bin2str(struct sample *smp)
{
int i;
for (i = 0; i < smp->data.u.str.data; i++) {
if (!smp->data.u.str.area[i]) {
smp->data.u.str.data = i;
break;
}
}
smp->data.type = SMP_T_STR;
return 1;
}
static int c_int2str(struct sample *smp)
{
struct buffer *trash = get_trash_chunk();
char *pos;
pos = lltoa_r(smp->data.u.sint, trash->area, trash->size);
if (!pos)
return 0;
trash->size = trash->size - (pos - trash->area);
trash->area = pos;
trash->data = strlen(pos);
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
/* This function unconditionally duplicates data and removes the "const" flag.
* For strings and binary blocks, it also provides a known allocated size with
* a length that is capped to the size, and ensures a trailing zero is always
* appended for strings. This is necessary for some operations which may
* require to extend the length. It returns 0 if it fails, 1 on success.
*/
int smp_dup(struct sample *smp)
{
struct buffer *trash;
switch (smp->data.type) {
case SMP_T_BOOL:
case SMP_T_SINT:
case SMP_T_ADDR:
case SMP_T_IPV4:
case SMP_T_IPV6:
/* These type are not const. */
break;
case SMP_T_METH:
if (smp->data.u.meth.meth != HTTP_METH_OTHER)
break;
__fallthrough;
case SMP_T_STR:
trash = get_trash_chunk();
trash->data = smp->data.type == SMP_T_STR ?
smp->data.u.str.data : smp->data.u.meth.str.data;
if (trash->data > trash->size - 1)
trash->data = trash->size - 1;
memcpy(trash->area, smp->data.type == SMP_T_STR ?
smp->data.u.str.area : smp->data.u.meth.str.area,
trash->data);
trash->area[trash->data] = 0;
smp->data.u.str = *trash;
break;
case SMP_T_BIN:
trash = get_trash_chunk();
trash->data = smp->data.u.str.data;
if (trash->data > trash->size)
trash->data = trash->size;
memcpy(trash->area, smp->data.u.str.area, trash->data);
smp->data.u.str = *trash;
break;
default:
/* Other cases are unexpected. */
return 0;
}
/* remove const flag */
smp->flags &= ~SMP_F_CONST;
return 1;
}
int c_none(struct sample *smp)
{
return 1;
}
/* special converter function used by pseudo types in the compatibility matrix
* to inform that the conversion is theoretically allowed at parsing time.
*
* However, being a pseudo type, it may not be emitted by fetches or converters
* so this function should never be called. If this is the case, then it means
* that a pseudo type has been used as a final output type at runtime, which is
* considered as a bug and should be fixed. To help spot this kind of bug, the
* process will crash in this case.
*/
int c_pseudo(struct sample *smp)
{
ABORT_NOW(); // die loudly
/* never reached */
return 0;
}
static int c_str2int(struct sample *smp)
{
const char *str;
const char *end;
if (smp->data.u.str.data == 0)
return 0;
str = smp->data.u.str.area;
end = smp->data.u.str.area + smp->data.u.str.data;
smp->data.u.sint = read_int64(&str, end);
smp->data.type = SMP_T_SINT;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int c_str2meth(struct sample *smp)
{
enum http_meth_t meth;
int len;
meth = find_http_meth(smp->data.u.str.area, smp->data.u.str.data);
if (meth == HTTP_METH_OTHER) {
len = smp->data.u.str.data;
smp->data.u.meth.str.area = smp->data.u.str.area;
smp->data.u.meth.str.data = len;
}
else
smp->flags &= ~SMP_F_CONST;
smp->data.u.meth.meth = meth;
smp->data.type = SMP_T_METH;
return 1;
}
static int c_meth2str(struct sample *smp)
{
int len;
enum http_meth_t meth;
if (smp->data.u.meth.meth == HTTP_METH_OTHER) {
/* The method is unknown. Copy the original pointer. */
len = smp->data.u.meth.str.data;
smp->data.u.str.area = smp->data.u.meth.str.area;
smp->data.u.str.data = len;
smp->data.type = SMP_T_STR;
}
else if (smp->data.u.meth.meth < HTTP_METH_OTHER) {
/* The method is known, copy the pointer containing the string. */
meth = smp->data.u.meth.meth;
smp->data.u.str.area = http_known_methods[meth].ptr;
smp->data.u.str.data = http_known_methods[meth].len;
smp->flags |= SMP_F_CONST;
smp->data.type = SMP_T_STR;
}
else {
/* Unknown method */
return 0;
}
return 1;
}
static int c_addr2bin(struct sample *smp)
{
struct buffer *chk = get_trash_chunk();
if (smp->data.type == SMP_T_IPV4) {
chk->data = 4;
memcpy(chk->area, &smp->data.u.ipv4, chk->data);
}
else if (smp->data.type == SMP_T_IPV6) {
chk->data = 16;
memcpy(chk->area, &smp->data.u.ipv6, chk->data);
}
else
return 0;
smp->data.u.str = *chk;
smp->data.type = SMP_T_BIN;
return 1;
}
static int c_int2bin(struct sample *smp)
{
struct buffer *chk = get_trash_chunk();
*(unsigned long long int *) chk->area = my_htonll(smp->data.u.sint);
chk->data = 8;
smp->data.u.str = *chk;
smp->data.type = SMP_T_BIN;
return 1;
}
static int c_bool2bin(struct sample *smp)
{
struct buffer *chk = get_trash_chunk();
*(unsigned long long int *)chk->area = my_htonll(!!smp->data.u.sint);
chk->data = 8;
smp->data.u.str = *chk;
smp->data.type = SMP_T_BIN;
return 1;
}
/*****************************************************************/
/* Sample casts matrix: */
/* sample_casts[from type][to type] */
/* NULL pointer used for impossible sample casts */
/*****************************************************************/
sample_cast_fct sample_casts[SMP_TYPES][SMP_TYPES] = {
/* to: ANY SAME BOOL SINT ADDR IPV4 IPV6 STR BIN METH */
/* from: ANY */ { c_none, NULL, c_pseudo, c_pseudo, c_pseudo, c_pseudo, c_pseudo, c_pseudo, c_pseudo, c_pseudo },
/* SAME */ { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL },
/* BOOL */ { c_none, NULL, c_none, c_none, NULL, NULL, NULL, c_int2str, c_bool2bin, NULL },
/* SINT */ { c_none, NULL, c_none, c_none, c_int2ip, c_int2ip, c_int2ipv6, c_int2str, c_int2bin, NULL },
/* ADDR */ { c_none, NULL, NULL, NULL, c_pseudo, c_pseudo, c_pseudo, c_pseudo, c_pseudo, NULL },
/* IPV4 */ { c_none, NULL, NULL, c_ip2int, c_none, c_none, c_ip2ipv6, c_ip2str, c_addr2bin, NULL },
/* IPV6 */ { c_none, NULL, NULL, NULL, c_none, c_ipv62ip, c_none, c_ipv62str, c_addr2bin, NULL },
/* STR */ { c_none, NULL, c_str2int, c_str2int, c_str2addr, c_str2ip, c_str2ipv6, c_none, c_none, c_str2meth },
/* BIN */ { c_none, NULL, NULL, NULL, NULL, NULL, NULL, c_bin2str, c_none, c_str2meth },
/* METH */ { c_none, NULL, NULL, NULL, NULL, NULL, NULL, c_meth2str, c_meth2str, c_none }
};
/* Process the converters (if any) for a sample expr after the first fetch
* keyword. We have two supported syntaxes for the converters, which can be
* combined:
* - comma-delimited list of converters just after the keyword and args ;
* - one converter per keyword (if <idx> != NULL)
* FIXME: should we continue to support this old syntax?
* The combination allows to have each keyword being a comma-delimited
* series of converters.
*
* We want to process the former first, then the latter. For this we start
* from the beginning of the supposed place in the exiting conv chain, which
* starts at the last comma (<start> which is then referred to as endt).
*
* If <endptr> is non-nul, it will be set to the first unparsed character
* (which may be the final '\0') on success. If it is nul, the expression
* must be properly terminated by a '\0' otherwise an error is reported.
*
* <expr> should point the the sample expression that is already initialized
* with the sample fetch that precedes the converters chain.
*
* The function returns a positive value for success and 0 for failure, in which
* case <err_msg> will point to an allocated string that brings some info
* about the failure. It is the caller's responsibility to free it.
*/
int sample_parse_expr_cnv(char **str, int *idx, char **endptr, char **err_msg, struct arg_list *al, const char *file, int line,
struct sample_expr *expr, const char *start)
{
struct sample_conv *conv;
const char *endt = start; /* end of term */
const char *begw; /* beginning of word */
const char *endw; /* end of word */
char *ckw = NULL;
unsigned long prev_type = expr->fetch->out_type;
int success = 1;
while (1) {
struct sample_conv_expr *conv_expr;
int err_arg;
int argcnt;
if (*endt && *endt != ',') {
if (endptr) {
/* end found, let's stop here */
break;
}
if (ckw)
memprintf(err_msg, "missing comma after converter '%s'", ckw);
else
memprintf(err_msg, "missing comma after fetch keyword");
goto out_error;
}
/* FIXME: how long should we support such idiocies ? Maybe we
* should already warn ?
*/
while (*endt == ',') /* then trailing commas */
endt++;
begw = endt; /* start of converter */
if (!*begw) {
/* none ? skip to next string if idx is set */
if (!idx)
break; /* end of converters */
(*idx)++;
begw = str[*idx];
if (!begw || !*begw)
break;
}
for (endw = begw; is_idchar(*endw); endw++)
;
ha_free(&ckw);
ckw = my_strndup(begw, endw - begw);
conv = find_sample_conv(begw, endw - begw);
if (!conv) {
/* we found an isolated keyword that we don't know, it's not ours */
if (idx && begw == str[*idx]) {
endt = begw;
break;
}
memprintf(err_msg, "unknown converter '%s'", ckw);
goto out_error;
}
if (conv->in_type >= SMP_TYPES || conv->out_type >= SMP_TYPES) {
memprintf(err_msg, "return type of converter '%s' is unknown", ckw);
goto out_error;
}
/* If impossible type conversion */
if (!sample_casts[prev_type][conv->in_type]) {
memprintf(err_msg, "converter '%s' cannot be applied", ckw);
goto out_error;
}
/* Ignore converters that output SMP_T_SAME if switching to them is
* conversion-free. (such converter's output match with input, thus only
* their input is considered)
*/
if (conv->out_type != SMP_T_SAME)
prev_type = conv->out_type;
else if (sample_casts[prev_type][conv->in_type] != c_none)
prev_type = conv->in_type;
conv_expr = calloc(1, sizeof(*conv_expr));
if (!conv_expr)
goto out_error;
LIST_APPEND(&(expr->conv_exprs), &(conv_expr->list));
conv_expr->conv = conv;
if (al) {
al->kw = expr->fetch->kw;
al->conv = conv_expr->conv->kw;
}
argcnt = make_arg_list(endw, -1, conv->arg_mask, &conv_expr->arg_p, err_msg, &endt, &err_arg, al);
if (argcnt < 0) {
memprintf(err_msg, "invalid arg %d in converter '%s' : %s", err_arg+1, ckw, *err_msg);
goto out_error;
}
if (argcnt && !conv->arg_mask) {
memprintf(err_msg, "converter '%s' does not support any args", ckw);
goto out_error;
}
if (!conv_expr->arg_p)
conv_expr->arg_p = empty_arg_list;
if (conv->val_args && !conv->val_args(conv_expr->arg_p, conv, file, line, err_msg)) {
memprintf(err_msg, "invalid args in converter '%s' : %s", ckw, *err_msg);
goto out_error;
}
}
if (endptr) {
/* end found, let's stop here */
*endptr = (char *)endt;
}
out:
free(ckw);
return success;
out_error:
success = 0;
goto out;
}
/*
* Parse a sample expression configuration:
* fetch keyword followed by format conversion keywords.
*
* <al> is an arg_list serving as a list head to report missing dependencies.
* It may be NULL if such dependencies are not allowed. Otherwise, the caller
* must have set al->ctx if al is set.
*
* Returns a pointer on allocated sample expression structure or NULL in case
* of error, in which case <err_msg> will point to an allocated string that
* brings some info about the failure. It is the caller's responsibility to
* free it.
*/
struct sample_expr *sample_parse_expr(char **str, int *idx, const char *file, int line, char **err_msg, struct arg_list *al, char **endptr)
{
const char *begw; /* beginning of word */
const char *endw; /* end of word */
const char *endt; /* end of term */
struct sample_expr *expr = NULL;
struct sample_fetch *fetch;
char *fkw = NULL;
int err_arg;
begw = str[*idx];
for (endw = begw; is_idchar(*endw); endw++)
;
if (endw == begw) {
memprintf(err_msg, "missing fetch method");
goto out_error;
}
/* keep a copy of the current fetch keyword for error reporting */
fkw = my_strndup(begw, endw - begw);
fetch = find_sample_fetch(begw, endw - begw);
if (!fetch) {
memprintf(err_msg, "unknown fetch method '%s'", fkw);
goto out_error;
}
/* At this point, we have :
* - begw : beginning of the keyword
* - endw : end of the keyword, first character not part of keyword
*/
if (fetch->out_type >= SMP_TYPES) {
memprintf(err_msg, "returns type of fetch method '%s' is unknown", fkw);
goto out_error;
}
expr = calloc(1, sizeof(*expr));
if (!expr)
goto out_error;
LIST_INIT(&(expr->conv_exprs));
expr->fetch = fetch;
expr->arg_p = empty_arg_list;
/* Note that we call the argument parser even with an empty string,
* this allows it to automatically create entries for mandatory
* implicit arguments (eg: local proxy name).
*/
if (al) {
al->kw = expr->fetch->kw;
al->conv = NULL;
}
if (make_arg_list(endw, -1, fetch->arg_mask, &expr->arg_p, err_msg, &endt, &err_arg, al) < 0) {
memprintf(err_msg, "fetch method '%s' : %s", fkw, *err_msg);
goto out_error;
}
/* now endt is our first char not part of the arg list, typically the
* comma after the sample fetch name or after the closing parenthesis,
* or the NUL char.
*/
if (!expr->arg_p) {
expr->arg_p = empty_arg_list;
}
else if (fetch->val_args && !fetch->val_args(expr->arg_p, err_msg)) {
memprintf(err_msg, "invalid args in fetch method '%s' : %s", fkw, *err_msg);
goto out_error;
}
if (!sample_parse_expr_cnv(str, idx, endptr, err_msg, al, file, line, expr, endt))
goto out_error;
out:
free(fkw);
return expr;
out_error:
release_sample_expr(expr);
expr = NULL;
goto out;
}
/*
* Helper function to process the converter list of a given sample expression
* <expr> using the sample <p> (which is assumed to be properly initialized)
* as input.
*
* Returns 1 on success and 0 on failure.
*/
int sample_process_cnv(struct sample_expr *expr, struct sample *p)
{
struct sample_conv_expr *conv_expr;
list_for_each_entry(conv_expr, &expr->conv_exprs, list) {
/* we want to ensure that p->type can be casted into
* conv_expr->conv->in_type. We have 3 possibilities :
* - NULL => not castable.
* - c_none => nothing to do (let's optimize it)
* - other => apply cast and prepare to fail
*/
if (p->data.type != conv_expr->conv->in_type) {
if (!sample_casts[p->data.type][conv_expr->conv->in_type])
return 0;
if (sample_casts[p->data.type][conv_expr->conv->in_type] != c_none &&
!sample_casts[p->data.type][conv_expr->conv->in_type](p))
return 0;
}
/* OK cast succeeded */
if (!conv_expr->conv->process(conv_expr->arg_p, p, conv_expr->conv->private))
return 0;
}
return 1;
}
/*
* Process a fetch + format conversion of defined by the sample expression <expr>
* on request or response considering the <opt> parameter.
* Returns a pointer on a typed sample structure containing the result or NULL if
* sample is not found or when format conversion failed.
* If <p> is not null, function returns results in structure pointed by <p>.
* If <p> is null, functions returns a pointer on a static sample structure.
*
* Note: the fetch functions are required to properly set the return type. The
* conversion functions must do so too. However the cast functions do not need
* to since they're made to cast multiple types according to what is required.
*
* The caller may indicate in <opt> if it considers the result final or not.
* The caller needs to check the SMP_F_MAY_CHANGE flag in p->flags to verify
* if the result is stable or not, according to the following table :
*
* return MAY_CHANGE FINAL Meaning for the sample
* NULL 0 * Not present and will never be (eg: header)
* NULL 1 0 Not present yet, could change (eg: POST param)
* NULL 1 1 Not present yet, will not change anymore
* smp 0 * Present and will not change (eg: header)
* smp 1 0 Present, may change (eg: request length)
* smp 1 1 Present, last known value (eg: request length)
*/
struct sample *sample_process(struct proxy *px, struct session *sess,
struct stream *strm, unsigned int opt,
struct sample_expr *expr, struct sample *p)
{
if (p == NULL) {
p = &temp_smp;
memset(p, 0, sizeof(*p));
}
smp_set_owner(p, px, sess, strm, opt);
if (!expr->fetch->process(expr->arg_p, p, expr->fetch->kw, expr->fetch->private))
return NULL;
if (!sample_process_cnv(expr, p))
return NULL;
return p;
}
/*
* Resolve all remaining arguments in proxy <p>. Returns the number of
* errors or 0 if everything is fine. If at least one error is met, it will
* be appended to *err. If *err==NULL it will be allocated first.
*/
int smp_resolve_args(struct proxy *p, char **err)
{
struct arg_list *cur, *bak;
const char *ctx, *where;
const char *conv_ctx, *conv_pre, *conv_pos;
struct userlist *ul;
struct my_regex *reg;
struct arg *arg;
int cfgerr = 0;
int rflags;
list_for_each_entry_safe(cur, bak, &p->conf.args.list, list) {
struct proxy *px;
struct server *srv;
struct stktable *t;
char *pname, *sname, *stktname;
char *err2;
arg = cur->arg;
/* prepare output messages */
conv_pre = conv_pos = conv_ctx = "";
if (cur->conv) {
conv_ctx = cur->conv;
conv_pre = "conversion keyword '";
conv_pos = "' for ";
}
where = "in";
ctx = "sample fetch keyword";
switch (cur->ctx) {
case ARGC_STK: where = "in stick rule in"; break;
case ARGC_TRK: where = "in tracking rule in"; break;
case ARGC_LOG: where = "in log-format string in"; break;
case ARGC_LOGSD: where = "in log-format-sd string in"; break;
case ARGC_HRQ: where = "in http-request expression in"; break;
case ARGC_HRS: where = "in http-response response in"; break;
case ARGC_UIF: where = "in unique-id-format string in"; break;
case ARGC_RDR: where = "in redirect format string in"; break;
case ARGC_CAP: where = "in capture rule in"; break;
case ARGC_ACL: ctx = "ACL keyword"; break;
case ARGC_SRV: where = "in server directive in"; break;
case ARGC_SPOE: where = "in spoe-message directive in"; break;
case ARGC_UBK: where = "in use_backend expression in"; break;
case ARGC_USRV: where = "in use-server or balance expression in"; break;
case ARGC_HERR: where = "in http-error directive in"; break;
case ARGC_OT: where = "in ot-scope directive in"; break;
case ARGC_OPT: where = "in option directive in"; break;
case ARGC_TCO: where = "in tcp-request connection expression in"; break;
case ARGC_TSE: where = "in tcp-request session expression in"; break;
case ARGC_TRQ: where = "in tcp-request content expression in"; break;
case ARGC_TRS: where = "in tcp-response content expression in"; break;
case ARGC_TCK: where = "in tcp-check expression in"; break;
case ARGC_CFG: where = "in configuration expression in"; break;
case ARGC_CLI: where = "in CLI expression in"; break;
}
/* set a few default settings */
px = p;
pname = p->id;
switch (arg->type) {
case ARGT_ID:
err2 = NULL;
if (arg->resolve_ptr && !arg->resolve_ptr(arg, &err2)) {
memprintf(err, "%sparsing [%s:%d]: error in identifier '%s' in arg %d of %s%s%s%s '%s' %s proxy '%s' : %s.\n",
*err ? *err : "", cur->file, cur->line,
arg->data.str.area,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id, err2);
ha_free(&err2);
cfgerr++;
continue;
}
break;
case ARGT_SRV:
if (!arg->data.str.data) {
memprintf(err, "%sparsing [%s:%d]: missing server name in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
*err ? *err : "", cur->file, cur->line,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
continue;
}
/* we support two formats : "bck/srv" and "srv" */
sname = strrchr(arg->data.str.area, '/');
if (sname) {
*sname++ = '\0';
pname = arg->data.str.area;
px = proxy_be_by_name(pname);
if (!px) {
memprintf(err, "%sparsing [%s:%d]: unable to find proxy '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
*err ? *err : "", cur->file, cur->line, pname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
}
else {
if (px->cap & PR_CAP_DEF) {
memprintf(err, "%sparsing [%s:%d]: backend name must be set in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
*err ? *err : "", cur->file, cur->line,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
sname = arg->data.str.area;
}
srv = findserver(px, sname);
if (!srv) {
memprintf(err, "%sparsing [%s:%d]: unable to find server '%s' in proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
*err ? *err : "", cur->file, cur->line, sname, pname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
srv->flags |= SRV_F_NON_PURGEABLE;
chunk_destroy(&arg->data.str);
arg->unresolved = 0;
arg->data.srv = srv;
break;
case ARGT_FE:
if (arg->data.str.data) {
pname = arg->data.str.area;
px = proxy_fe_by_name(pname);
}
if (!px) {
memprintf(err, "%sparsing [%s:%d]: unable to find frontend '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
*err ? *err : "", cur->file, cur->line, pname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
if (!(px->cap & PR_CAP_FE)) {
memprintf(err, "%sparsing [%s:%d]: proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s', has not frontend capability.\n",
*err ? *err : "", cur->file, cur->line, pname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
chunk_destroy(&arg->data.str);
arg->unresolved = 0;
arg->data.prx = px;
break;
case ARGT_BE:
if (arg->data.str.data) {
pname = arg->data.str.area;
px = proxy_be_by_name(pname);
}
if (!px) {
memprintf(err, "%sparsing [%s:%d]: unable to find backend '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
*err ? *err : "", cur->file, cur->line, pname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
if (!(px->cap & PR_CAP_BE)) {
memprintf(err, "%sparsing [%s:%d]: proxy '%s', referenced in arg %d of %s%s%s%s '%s' %s proxy '%s', has not backend capability.\n",
*err ? *err : "", cur->file, cur->line, pname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
chunk_destroy(&arg->data.str);
arg->unresolved = 0;
arg->data.prx = px;
break;
case ARGT_TAB:
if (arg->data.str.data)
stktname = arg->data.str.area;
else {
if (px->cap & PR_CAP_DEF) {
memprintf(err, "%sparsing [%s:%d]: table name must be set in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
*err ? *err : "", cur->file, cur->line,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
stktname = px->id;
}
t = stktable_find_by_name(stktname);
if (!t) {
memprintf(err, "%sparsing [%s:%d]: unable to find table '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
*err ? *err : "", cur->file, cur->line, stktname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
if (!t->size) {
memprintf(err, "%sparsing [%s:%d]: no table in proxy '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
*err ? *err : "", cur->file, cur->line, stktname,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
if (!in_proxies_list(t->proxies_list, p)) {
p->next_stkt_ref = t->proxies_list;
t->proxies_list = p;
}
chunk_destroy(&arg->data.str);
arg->unresolved = 0;
arg->data.t = t;
break;
case ARGT_USR:
if (!arg->data.str.data) {
memprintf(err, "%sparsing [%s:%d]: missing userlist name in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
*err ? *err : "", cur->file, cur->line,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
if (p->uri_auth && p->uri_auth->userlist &&
strcmp(p->uri_auth->userlist->name, arg->data.str.area) == 0)
ul = p->uri_auth->userlist;
else
ul = auth_find_userlist(arg->data.str.area);
if (!ul) {
memprintf(err, "%sparsing [%s:%d]: unable to find userlist '%s' referenced in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
*err ? *err : "", cur->file, cur->line,
arg->data.str.area,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
break;
}
chunk_destroy(&arg->data.str);
arg->unresolved = 0;
arg->data.usr = ul;
break;
case ARGT_REG:
if (!arg->data.str.data) {
memprintf(err, "%sparsing [%s:%d]: missing regex in arg %d of %s%s%s%s '%s' %s proxy '%s'.\n",
*err ? *err : "", cur->file, cur->line,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id);
cfgerr++;
continue;
}
rflags = 0;
rflags |= (arg->type_flags & ARGF_REG_ICASE) ? REG_ICASE : 0;
err2 = NULL;
if (!(reg = regex_comp(arg->data.str.area, !(rflags & REG_ICASE), 1 /* capture substr */, &err2))) {
memprintf(err, "%sparsing [%s:%d]: error in regex '%s' in arg %d of %s%s%s%s '%s' %s proxy '%s' : %s.\n",
*err ? *err : "", cur->file, cur->line,
arg->data.str.area,
cur->arg_pos + 1, conv_pre, conv_ctx, conv_pos, ctx, cur->kw, where, p->id, err2);
ha_free(&err2);
cfgerr++;
continue;
}
chunk_destroy(&arg->data.str);
arg->unresolved = 0;
arg->data.reg = reg;
break;
}
LIST_DELETE(&cur->list);
free(cur);
} /* end of args processing */
return cfgerr;
}
/*
* Process a fetch + format conversion as defined by the sample expression
* <expr> on request or response considering the <opt> parameter. The output is
* not explicitly set to <smp_type>, but shall be compatible with it as
* specified by 'sample_casts' table. If a stable sample can be fetched, or an
* unstable one when <opt> contains SMP_OPT_FINAL, the sample is converted and
* returned without the SMP_F_MAY_CHANGE flag. If an unstable sample is found
* and <opt> does not contain SMP_OPT_FINAL, then the sample is returned as-is
* with its SMP_F_MAY_CHANGE flag so that the caller can check it and decide to
* take actions (eg: wait longer). If a sample could not be found or could not
* be converted, NULL is returned. The caller MUST NOT use the sample if the
* SMP_F_MAY_CHANGE flag is present, as it is used only as a hint that there is
* still hope to get it after waiting longer, and is not converted to string.
* The possible output combinations are the following :
*
* return MAY_CHANGE FINAL Meaning for the sample
* NULL * * Not present and will never be (eg: header)
* smp 0 * Final value converted (eg: header)
* smp 1 0 Not present yet, may appear later (eg: header)
* smp 1 1 never happens (either flag is cleared on output)
*/
struct sample *sample_fetch_as_type(struct proxy *px, struct session *sess,
struct stream *strm, unsigned int opt,
struct sample_expr *expr, int smp_type)
{
struct sample *smp = &temp_smp;
memset(smp, 0, sizeof(*smp));
if (!sample_process(px, sess, strm, opt, expr, smp)) {
if ((smp->flags & SMP_F_MAY_CHANGE) && !(opt & SMP_OPT_FINAL))
return smp;
return NULL;
}
if (smp->data.type != smp_type) {
if (!sample_casts[smp->data.type][smp_type])
return NULL;
if (sample_casts[smp->data.type][smp_type] != c_none &&
!sample_casts[smp->data.type][smp_type](smp))
return NULL;
}
smp->flags &= ~SMP_F_MAY_CHANGE;
return smp;
}
static void release_sample_arg(struct arg *p)
{
struct arg *p_back = p;
if (!p)
return;
while (p->type != ARGT_STOP) {
if (p->type == ARGT_STR || p->unresolved) {
chunk_destroy(&p->data.str);
p->unresolved = 0;
}
else if (p->type == ARGT_REG) {
regex_free(p->data.reg);
p->data.reg = NULL;
}
p++;
}
if (p_back != empty_arg_list)
free(p_back);
}
void release_sample_expr(struct sample_expr *expr)
{
struct sample_conv_expr *conv_expr, *conv_exprb;
if (!expr)
return;
list_for_each_entry_safe(conv_expr, conv_exprb, &expr->conv_exprs, list) {
LIST_DELETE(&conv_expr->list);
release_sample_arg(conv_expr->arg_p);
free(conv_expr);
}
release_sample_arg(expr->arg_p);
free(expr);
}
/*****************************************************************/
/* Sample format convert functions */
/* These functions set the data type on return. */
/*****************************************************************/
static int sample_conv_debug(const struct arg *arg_p, struct sample *smp, void *private)
{
int i;
struct sample tmp;
struct buffer *buf;
struct sink *sink;
struct ist line;
char *pfx;
buf = alloc_trash_chunk();
if (!buf)
goto end;
sink = (struct sink *)arg_p[1].data.ptr;
BUG_ON(!sink);
pfx = arg_p[0].data.str.area;
BUG_ON(!pfx);
chunk_printf(buf, "[debug] %s: type=%s ", pfx, smp_to_type[smp->data.type]);
if (!sample_casts[smp->data.type][SMP_T_STR])
goto nocast;
/* Copy sample fetch. This puts the sample as const, the
* cast will copy data if a transformation is required.
*/
memcpy(&tmp, smp, sizeof(struct sample));
tmp.flags = SMP_F_CONST;
if (!sample_casts[smp->data.type][SMP_T_STR](&tmp))
goto nocast;
/* Display the displayable chars*. */
b_putchr(buf, '<');
for (i = 0; i < tmp.data.u.str.data; i++) {
if (isprint((unsigned char)tmp.data.u.str.area[i]))
b_putchr(buf, tmp.data.u.str.area[i]);
else
b_putchr(buf, '.');
}
b_putchr(buf, '>');
done:
line = ist2(buf->area, buf->data);
sink_write(sink, LOG_HEADER_NONE, 0, &line, 1);
end:
free_trash_chunk(buf);
return 1;
nocast:
chunk_appendf(buf, "(undisplayable)");
goto done;
}
// This function checks the "debug" converter's arguments.
static int smp_check_debug(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
const char *name = "buf0";
struct sink *sink = NULL;
if (args[0].type != ARGT_STR) {
/* optional prefix */
args[0].data.str.area = "";
args[0].data.str.data = 0;
}
if (args[1].type == ARGT_STR)
name = args[1].data.str.area;
sink = sink_find_early(name, "debug converter", file, line);
if (!sink) {
memprintf(err, "Memory error while setting up sink '%s'", name);
return 0;
}
chunk_destroy(&args[1].data.str);
args[1].type = ARGT_PTR;
args[1].data.ptr = sink;
return 1;
}
static int sample_conv_base642bin(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
int bin_len;
trash->data = 0;
bin_len = base64dec(smp->data.u.str.area, smp->data.u.str.data,
trash->area, trash->size);
if (bin_len < 0)
return 0;
trash->data = bin_len;
smp->data.u.str = *trash;
smp->data.type = SMP_T_BIN;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int sample_conv_base64url2bin(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
int bin_len;
trash->data = 0;
bin_len = base64urldec(smp->data.u.str.area, smp->data.u.str.data,
trash->area, trash->size);
if (bin_len < 0)
return 0;
trash->data = bin_len;
smp->data.u.str = *trash;
smp->data.type = SMP_T_BIN;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int sample_conv_bin2base64(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
int b64_len;
trash->data = 0;
b64_len = a2base64(smp->data.u.str.area, smp->data.u.str.data,
trash->area, trash->size);
if (b64_len < 0)
return 0;
trash->data = b64_len;
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int sample_conv_bin2base64url(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
int b64_len;
trash->data = 0;
b64_len = a2base64url(smp->data.u.str.area, smp->data.u.str.data,
trash->area, trash->size);
if (b64_len < 0)
return 0;
trash->data = b64_len;
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
/* This function returns a sample struct filled with the conversion of variable
* <var> to sample type <type> (SMP_T_*), via a cast to the target type. If the
* variable cannot be retrieved or casted, 0 is returned, otherwise 1.
*
* Keep in mind that the sample content may be written to a pre-allocated
* trash chunk as returned by get_trash_chunk().
*/
int sample_conv_var2smp(const struct var_desc *var, struct sample *smp, int type)
{
if (!vars_get_by_desc(var, smp, NULL))
return 0;
if (!sample_casts[smp->data.type][type])
return 0;
if (!sample_casts[smp->data.type][type](smp))
return 0;
return 1;
}
static int sample_conv_sha1(const struct arg *arg_p, struct sample *smp, void *private)
{
blk_SHA_CTX ctx;
struct buffer *trash = get_trash_chunk();
memset(&ctx, 0, sizeof(ctx));
blk_SHA1_Init(&ctx);
blk_SHA1_Update(&ctx, smp->data.u.str.area, smp->data.u.str.data);
blk_SHA1_Final((unsigned char *) trash->area, &ctx);
trash->data = 20;
smp->data.u.str = *trash;
smp->data.type = SMP_T_BIN;
smp->flags &= ~SMP_F_CONST;
return 1;
}
/* This function returns a sample struct filled with an <arg> content.
* If the <arg> contains a string, it is returned in the sample flagged as
* SMP_F_CONST. If the <arg> contains a variable descriptor, the sample is
* filled with the content of the variable by using vars_get_by_desc().
*
* Keep in mind that the sample content may be written to a pre-allocated
* trash chunk as returned by get_trash_chunk().
*
* This function returns 0 if an error occurs, otherwise it returns 1.
*/
int sample_conv_var2smp_str(const struct arg *arg, struct sample *smp)
{
switch (arg->type) {
case ARGT_STR:
smp->data.type = SMP_T_STR;
smp->data.u.str = arg->data.str;
smp->flags = SMP_F_CONST;
return 1;
case ARGT_VAR:
return sample_conv_var2smp(&arg->data.var, smp, SMP_T_STR);
default:
return 0;
}
}
static int sample_conv_be2dec_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
if (args[1].data.sint <= 0 || args[1].data.sint > sizeof(unsigned long long)) {
memprintf(err, "chunk_size out of [1..%u] range (%lld)", (uint)sizeof(unsigned long long), args[1].data.sint);
return 0;
}
if (args[2].data.sint != 0 && args[2].data.sint != 1) {
memprintf(err, "Unsupported truncate value (%lld)", args[2].data.sint);
return 0;
}
return 1;
}
/* Converts big-endian binary input sample to a string containing an unsigned
* integer number per <chunk_size> input bytes separated with <separator>.
* Optional <truncate> flag indicates if input is truncated at <chunk_size>
* boundaries.
* Arguments: separator (string), chunk_size (integer), truncate (0,1)
*/
static int sample_conv_be2dec(const struct arg *args, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
const int last = args[2].data.sint ? smp->data.u.str.data - args[1].data.sint + 1 : smp->data.u.str.data;
int max_size = trash->size - 2;
int i;
int start;
int ptr = 0;
unsigned long long number;
char *pos;
trash->data = 0;
while (ptr < last && trash->data <= max_size) {
start = trash->data;
if (ptr) {
/* Add separator */
memcpy(trash->area + trash->data, args[0].data.str.area, args[0].data.str.data);
trash->data += args[0].data.str.data;
}
else
max_size -= args[0].data.str.data;
/* Add integer */
for (number = 0, i = 0; i < args[1].data.sint && ptr < smp->data.u.str.data; i++)
number = (number << 8) + (unsigned char)smp->data.u.str.area[ptr++];
pos = ulltoa(number, trash->area + trash->data, trash->size - trash->data);
if (pos)
trash->data = pos - trash->area;
else {
trash->data = start;
break;
}
}
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int sample_conv_be2hex_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
if (args[1].data.sint <= 0 && (args[0].data.str.data > 0 || args[2].data.sint != 0)) {
memprintf(err, "chunk_size needs to be positive (%lld)", args[1].data.sint);
return 0;
}
if (args[2].data.sint != 0 && args[2].data.sint != 1) {
memprintf(err, "Unsupported truncate value (%lld)", args[2].data.sint);
return 0;
}
return 1;
}
/* Converts big-endian binary input sample to a hex string containing two hex
* digits per input byte. <separator> is put every <chunk_size> binary input
* bytes if specified. Optional <truncate> flag indicates if input is truncated
* at <chunk_size> boundaries.
* Arguments: separator (string), chunk_size (integer), truncate (0,1)
*/
static int sample_conv_be2hex(const struct arg *args, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
int chunk_size = args[1].data.sint;
const int last = args[2].data.sint ? smp->data.u.str.data - chunk_size + 1 : smp->data.u.str.data;
int i;
int max_size;
int ptr = 0;
unsigned char c;
trash->data = 0;
if (args[0].data.str.data == 0 && args[2].data.sint == 0)
chunk_size = smp->data.u.str.data;
max_size = trash->size - 2 * chunk_size;
while (ptr < last && trash->data <= max_size) {
if (ptr) {
/* Add separator */
memcpy(trash->area + trash->data, args[0].data.str.area, args[0].data.str.data);
trash->data += args[0].data.str.data;
}
else
max_size -= args[0].data.str.data;
/* Add hex */
for (i = 0; i < chunk_size && ptr < smp->data.u.str.data; i++) {
c = smp->data.u.str.area[ptr++];
trash->area[trash->data++] = hextab[(c >> 4) & 0xF];
trash->area[trash->data++] = hextab[c & 0xF];
}
}
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int sample_conv_bin2hex(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
unsigned char c;
int ptr = 0;
trash->data = 0;
while (ptr < smp->data.u.str.data && trash->data <= trash->size - 2) {
c = smp->data.u.str.area[ptr++];
trash->area[trash->data++] = hextab[(c >> 4) & 0xF];
trash->area[trash->data++] = hextab[c & 0xF];
}
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp->flags &= ~SMP_F_CONST;
return 1;
}
static int sample_conv_hex2int(const struct arg *arg_p, struct sample *smp, void *private)
{
long long int n = 0;
int i, c;
for (i = 0; i < smp->data.u.str.data; i++) {
if ((c = hex2i(smp->data.u.str.area[i])) < 0)
return 0;
n = (n << 4) + c;
}
smp->data.u.sint = n;
smp->data.type = SMP_T_SINT;
smp->flags &= ~SMP_F_CONST;
return 1;
}
/* hashes the binary input into a 32-bit unsigned int */
static int sample_conv_djb2(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.u.sint = hash_djb2(smp->data.u.str.area,
smp->data.u.str.data);
if (arg_p->data.sint)
smp->data.u.sint = full_hash(smp->data.u.sint);
smp->data.type = SMP_T_SINT;
return 1;
}
static int sample_conv_length(const struct arg *arg_p, struct sample *smp, void *private)
{
int i = smp->data.u.str.data;
smp->data.u.sint = i;
smp->data.type = SMP_T_SINT;
return 1;
}
static int sample_conv_str2lower(const struct arg *arg_p, struct sample *smp, void *private)
{
int i;
if (!smp_make_rw(smp))
return 0;
for (i = 0; i < smp->data.u.str.data; i++) {
if ((smp->data.u.str.area[i] >= 'A') && (smp->data.u.str.area[i] <= 'Z'))
smp->data.u.str.area[i] += 'a' - 'A';
}
return 1;
}
static int sample_conv_str2upper(const struct arg *arg_p, struct sample *smp, void *private)
{
int i;
if (!smp_make_rw(smp))
return 0;
for (i = 0; i < smp->data.u.str.data; i++) {
if ((smp->data.u.str.area[i] >= 'a') && (smp->data.u.str.area[i] <= 'z'))
smp->data.u.str.area[i] += 'A' - 'a';
}
return 1;
}
/* takes the IPv4 mask in args[0] and an optional IPv6 mask in args[1] */
static int sample_conv_ipmask(const struct arg *args, struct sample *smp, void *private)
{
/* Attempt to convert to IPv4 to apply the correct mask. */
c_ipv62ip(smp);
if (smp->data.type == SMP_T_IPV4) {
smp->data.u.ipv4.s_addr &= args[0].data.ipv4.s_addr;
smp->data.type = SMP_T_IPV4;
}
else if (smp->data.type == SMP_T_IPV6) {
/* IPv6 cannot be converted without an IPv6 mask. */
if (args[1].type != ARGT_IPV6)
return 0;
write_u64(&smp->data.u.ipv6.s6_addr[0],
read_u64(&smp->data.u.ipv6.s6_addr[0]) & read_u64(&args[1].data.ipv6.s6_addr[0]));
write_u64(&smp->data.u.ipv6.s6_addr[8],
read_u64(&smp->data.u.ipv6.s6_addr[8]) & read_u64(&args[1].data.ipv6.s6_addr[8]));
smp->data.type = SMP_T_IPV6;
}
return 1;
}
/*
* This function implement a conversion specifier seeker for %N so it could be
* replaced before doing strftime.
*
* <format> is the input format string which is used as a haystack
*
* The function fills multiple variables:
* <skip> is the len of the conversion specifier string which was found (ex: strlen(%N):2, strlen(%3N):3 strlen(%123N): 5)
* <width> is the width argument, default width is 9 (ex: %3N: 3, %4N: 4: %N: 9, %5N: 5)
*
* Returns a ptr to the first character of the conversion specifier or NULL if not found
*/
static const char *lookup_convspec_N(const char *format, int *skip, int *width)
{
const char *p, *needle;
const char *digits;
int state;
p = format;
/* this looks for % in loop. The iteration stops when a %N conversion
* specifier was found or there is no '%' anymore */
lookagain:
while (p && *p) {
state = 0;
digits = NULL;
p = needle = strchr(p, '%');
/* Once we find a % we try to move forward in the string
*
* state 0: found %
* state 1: digits (precision)
* state 2: N
*/
while (p && *p) {
switch (state) {
case 0:
state = 1;
break;
case 1:
if (isdigit((unsigned char)*p) && !digits) /* set the start of the digits */
digits = p;
if (isdigit((unsigned char)*p))
break;
else
state = 2;
/* if this is not a number anymore, we
* don't want to increment p but try the
* next state directly */
__fallthrough;
case 2:
if (*p == 'N')
goto found;
else
/* this was not a %N, start again */
goto lookagain;
break;
}
p++;
}
}
*skip = 0;
*width = 0;
return NULL;
found:
*skip = p - needle + 1;
if (digits)
*width = atoi(digits);
else
*width = 9;
return needle;
}
/*
* strftime(3) does not implement nanoseconds, but we still want them in our
* date format.
*
* This function implements %N like in date(1) which gives you the nanoseconds part of the timestamp
* An optional field width can be specified, a maximum width of 9 is supported (ex: %3N %6N %9N)
*
* <format> is the format string
* <curr_date> in seconds since epoch
* <ns> only the nanoseconds part of the timestamp
* <local> chose the localtime instead of UTC time
*
* Return the results of strftime in the trash buffer
*/
static struct buffer *conv_time_common(const char *format, time_t curr_date, uint64_t ns, int local)
{
struct buffer *tmp_format = NULL;
struct buffer *res = NULL;
struct tm tm;
const char *p;
char ns_str[10] = {};
int set = 0;
if (local)
get_localtime(curr_date, &tm);
else
get_gmtime(curr_date, &tm);
/* we need to iterate in order to replace all the %N in the string */
p = format;
while (*p) {
const char *needle;
int skip = 0;
int cpy = 0;
int width = 0;
/* look for the next %N onversion specifier */
if (!(needle = lookup_convspec_N(p, &skip, &width)))
break;
if (width > 9) /* we don't handle more that 9 */
width = 9;
cpy = needle - p;
if (!tmp_format)
tmp_format = alloc_trash_chunk();
if (!tmp_format)
goto error;
if (set != 9) /* if the snprintf wasn't done yet */
set = snprintf(ns_str, sizeof(ns_str), "%.9llu", (unsigned long long)ns);
if (chunk_istcat(tmp_format, ist2(p, cpy)) == 0) /* copy before the %N */
goto error;
if (chunk_istcat(tmp_format, ist2(ns_str, width)) == 0) /* copy the %N result with the right precision */
goto error;
p += skip + cpy; /* skip the %N */
}
if (tmp_format) { /* %N was found */
if (chunk_strcat(tmp_format, p) == 0) /* copy the end of the string if needed or just the \0 */
goto error;
res = get_trash_chunk();
res->data = strftime(res->area, res->size, tmp_format->area , &tm);
} else {
res = get_trash_chunk();
res->data = strftime(res->area, res->size, format, &tm);
}
error:
free_trash_chunk(tmp_format);
return res;
}
/*
* same as sample_conv_ltime but input is us and %N is supported
*/
static int sample_conv_us_ltime(const struct arg *args, struct sample *smp, void *private)
{
struct buffer *temp;
time_t curr_date = smp->data.u.sint / 1000000; /* convert us to s */
uint64_t ns = (smp->data.u.sint % 1000000) * 1000; /* us part to ns */
/* add offset */
if (args[1].type == ARGT_SINT)
curr_date += args[1].data.sint;
temp = conv_time_common(args[0].data.str.area, curr_date, ns, 1);
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
return 1;
}
/*
* same as sample_conv_ltime but input is ms and %N is supported
*/
static int sample_conv_ms_ltime(const struct arg *args, struct sample *smp, void *private)
{
struct buffer *temp;
time_t curr_date = smp->data.u.sint / 1000; /* convert ms to s */
uint64_t ns = (smp->data.u.sint % 1000) * 1000000; /* ms part to ns */
/* add offset */
if (args[1].type == ARGT_SINT)
curr_date += args[1].data.sint;
temp = conv_time_common(args[0].data.str.area, curr_date, ns, 1);
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
return 1;
}
/* takes an UINT value on input supposed to represent the time since EPOCH,
* adds an optional offset found in args[1] and emits a string representing
* the local time in the format specified in args[1] using strftime().
*/
static int sample_conv_ltime(const struct arg *args, struct sample *smp, void *private)
{
struct buffer *temp;
/* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */
time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL;
struct tm tm;
/* add offset */
if (args[1].type == ARGT_SINT)
curr_date += args[1].data.sint;
get_localtime(curr_date, &tm);
temp = get_trash_chunk();
temp->data = strftime(temp->area, temp->size, args[0].data.str.area, &tm);
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
return 1;
}
/* hashes the binary input into a 32-bit unsigned int */
static int sample_conv_sdbm(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.u.sint = hash_sdbm(smp->data.u.str.area,
smp->data.u.str.data);
if (arg_p->data.sint)
smp->data.u.sint = full_hash(smp->data.u.sint);
smp->data.type = SMP_T_SINT;
return 1;
}
/*
* same as sample_conv_utime but input is us and %N is supported
*/
static int sample_conv_us_utime(const struct arg *args, struct sample *smp, void *private)
{
struct buffer *temp;
time_t curr_date = smp->data.u.sint / 1000000; /* convert us to s */
uint64_t ns = (smp->data.u.sint % 1000000) * 1000; /* us part to ns */
/* add offset */
if (args[1].type == ARGT_SINT)
curr_date += args[1].data.sint;
temp = conv_time_common(args[0].data.str.area, curr_date, ns, 0);
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
return 1;
}
/*
* same as sample_conv_utime but input is ms and %N is supported
*/
static int sample_conv_ms_utime(const struct arg *args, struct sample *smp, void *private)
{
struct buffer *temp;
time_t curr_date = smp->data.u.sint / 1000; /* convert ms to s */
uint64_t ns = (smp->data.u.sint % 1000) * 1000000; /* ms part to ns */
/* add offset */
if (args[1].type == ARGT_SINT)
curr_date += args[1].data.sint;
temp = conv_time_common(args[0].data.str.area, curr_date, ns, 0);
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
return 1;
}
/* takes an UINT value on input supposed to represent the time since EPOCH,
* adds an optional offset found in args[1] and emits a string representing
* the UTC date in the format specified in args[1] using strftime().
*/
static int sample_conv_utime(const struct arg *args, struct sample *smp, void *private)
{
struct buffer *temp;
/* With high numbers, the date returned can be negative, the 55 bits mask prevent this. */
time_t curr_date = smp->data.u.sint & 0x007fffffffffffffLL;
struct tm tm;
/* add offset */
if (args[1].type == ARGT_SINT)
curr_date += args[1].data.sint;
get_gmtime(curr_date, &tm);
temp = get_trash_chunk();
temp->data = strftime(temp->area, temp->size, args[0].data.str.area, &tm);
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
return 1;
}
/* hashes the binary input into a 32-bit unsigned int */
static int sample_conv_wt6(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.u.sint = hash_wt6(smp->data.u.str.area,
smp->data.u.str.data);
if (arg_p->data.sint)
smp->data.u.sint = full_hash(smp->data.u.sint);
smp->data.type = SMP_T_SINT;
return 1;
}
/* hashes the binary input into a 32-bit unsigned int using xxh.
* The seed of the hash defaults to 0 but can be changd in argument 1.
*/
static int sample_conv_xxh32(const struct arg *arg_p, struct sample *smp, void *private)
{
unsigned int seed;
if (arg_p->data.sint)
seed = arg_p->data.sint;
else
seed = 0;
smp->data.u.sint = XXH32(smp->data.u.str.area, smp->data.u.str.data,
seed);
smp->data.type = SMP_T_SINT;
return 1;
}
/* hashes the binary input into a 64-bit unsigned int using xxh.
* In fact, the function returns a 64 bit unsigned, but the sample
* storage of haproxy only proposes 64-bits signed, so the value is
* cast as signed. This cast doesn't impact the hash repartition.
* The seed of the hash defaults to 0 but can be changd in argument 1.
*/
static int sample_conv_xxh64(const struct arg *arg_p, struct sample *smp, void *private)
{
unsigned long long int seed;
if (arg_p->data.sint)
seed = (unsigned long long int)arg_p->data.sint;
else
seed = 0;
smp->data.u.sint = (long long int)XXH64(smp->data.u.str.area,
smp->data.u.str.data, seed);
smp->data.type = SMP_T_SINT;
return 1;
}
static int sample_conv_xxh3(const struct arg *arg_p, struct sample *smp, void *private)
{
unsigned long long int seed;
if (arg_p->data.sint)
seed = (unsigned long long int)arg_p->data.sint;
else
seed = 0;
smp->data.u.sint = (long long int)XXH3(smp->data.u.str.area,
smp->data.u.str.data, seed);
smp->data.type = SMP_T_SINT;
return 1;
}
/* hashes the binary input into a 32-bit unsigned int */
static int sample_conv_crc32(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.u.sint = hash_crc32(smp->data.u.str.area,
smp->data.u.str.data);
if (arg_p->data.sint)
smp->data.u.sint = full_hash(smp->data.u.sint);
smp->data.type = SMP_T_SINT;
return 1;
}
/* hashes the binary input into crc32c (RFC4960, Appendix B [8].) */
static int sample_conv_crc32c(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.u.sint = hash_crc32c(smp->data.u.str.area,
smp->data.u.str.data);
if (arg_p->data.sint)
smp->data.u.sint = full_hash(smp->data.u.sint);
smp->data.type = SMP_T_SINT;
return 1;
}
/* This function escape special json characters. The returned string can be
* safely set between two '"' and used as json string. The json string is
* defined like this:
*
* any Unicode character except '"' or '\' or control character
* \", \\, \/, \b, \f, \n, \r, \t, \u + four-hex-digits
*
* The enum input_type contain all the allowed mode for decoding the input
* string.
*/
enum input_type {
IT_ASCII = 0,
IT_UTF8,
IT_UTF8S,
IT_UTF8P,
IT_UTF8PS,
};
static int sample_conv_json_check(struct arg *arg, struct sample_conv *conv,
const char *file, int line, char **err)
{
enum input_type type;
if (strcmp(arg->data.str.area, "") == 0)
type = IT_ASCII;
else if (strcmp(arg->data.str.area, "ascii") == 0)
type = IT_ASCII;
else if (strcmp(arg->data.str.area, "utf8") == 0)
type = IT_UTF8;
else if (strcmp(arg->data.str.area, "utf8s") == 0)
type = IT_UTF8S;
else if (strcmp(arg->data.str.area, "utf8p") == 0)
type = IT_UTF8P;
else if (strcmp(arg->data.str.area, "utf8ps") == 0)
type = IT_UTF8PS;
else {
memprintf(err, "Unexpected input code type. "
"Allowed value are 'ascii', 'utf8', 'utf8s', 'utf8p' and 'utf8ps'");
return 0;
}
chunk_destroy(&arg->data.str);
arg->type = ARGT_SINT;
arg->data.sint = type;
return 1;
}
static int sample_conv_json(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *temp;
char _str[7]; /* \u + 4 hex digit + null char for sprintf. */
const char *str;
int len;
enum input_type input_type = IT_ASCII;
unsigned int c;
unsigned int ret;
char *p;
input_type = arg_p->data.sint;
temp = get_trash_chunk();
temp->data = 0;
p = smp->data.u.str.area;
while (p < smp->data.u.str.area + smp->data.u.str.data) {
if (input_type == IT_ASCII) {
/* Read input as ASCII. */
c = *(unsigned char *)p;
p++;
}
else {
/* Read input as UTF8. */
ret = utf8_next(p,
smp->data.u.str.data - ( p - smp->data.u.str.area),
&c);
p += utf8_return_length(ret);
if (input_type == IT_UTF8 && utf8_return_code(ret) != UTF8_CODE_OK)
return 0;
if (input_type == IT_UTF8S && utf8_return_code(ret) != UTF8_CODE_OK)
continue;
if (input_type == IT_UTF8P && utf8_return_code(ret) & (UTF8_CODE_INVRANGE|UTF8_CODE_BADSEQ))
return 0;
if (input_type == IT_UTF8PS && utf8_return_code(ret) & (UTF8_CODE_INVRANGE|UTF8_CODE_BADSEQ))
continue;
/* Check too big values. */
if ((unsigned int)c > 0xffff) {
if (input_type == IT_UTF8 || input_type == IT_UTF8P)
return 0;
continue;
}
}
/* Convert character. */
if (c == '"') {
len = 2;
str = "\\\"";
}
else if (c == '\\') {
len = 2;
str = "\\\\";
}
else if (c == '/') {
len = 2;
str = "\\/";
}
else if (c == '\b') {
len = 2;
str = "\\b";
}
else if (c == '\f') {
len = 2;
str = "\\f";
}
else if (c == '\r') {
len = 2;
str = "\\r";
}
else if (c == '\n') {
len = 2;
str = "\\n";
}
else if (c == '\t') {
len = 2;
str = "\\t";
}
else if (c > 0xff || !isprint((unsigned char)c)) {
/* isprint generate a segfault if c is too big. The man says that
* c must have the value of an unsigned char or EOF.
*/
len = 6;
_str[0] = '\\';
_str[1] = 'u';
snprintf(&_str[2], 5, "%04x", (unsigned short)c);
str = _str;
}
else {
len = 1;
_str[0] = c;
str = _str;
}
/* Check length */
if (temp->data + len > temp->size)
return 0;
/* Copy string. */
memcpy(temp->area + temp->data, str, len);
temp->data += len;
}
smp->flags &= ~SMP_F_CONST;
smp->data.u.str = *temp;
smp->data.type = SMP_T_STR;
return 1;
}
/* This sample function is designed to extract some bytes from an input buffer.
* First arg is the offset.
* Optional second arg is the length to truncate */
static int sample_conv_bytes(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample smp_arg0, smp_arg1;
long long start_idx, length;
// determine the start_idx and length of the output
smp_set_owner(&smp_arg0, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_sint(&arg_p[0], &smp_arg0) || smp_arg0.data.u.sint < 0) {
/* invalid or negative value */
goto fail;
}
if (smp_arg0.data.u.sint >= smp->data.u.str.data) {
// arg0 >= the input length
if (smp->opt & SMP_OPT_FINAL) {
// empty output value on final smp
smp->data.u.str.data = 0;
goto end;
}
goto wait;
}
start_idx = smp_arg0.data.u.sint;
// length comes from arg1 if present, otherwise it's the remaining length
length = smp->data.u.str.data - start_idx;
if (arg_p[1].type != ARGT_STOP) {
smp_set_owner(&smp_arg1, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_sint(&arg_p[1], &smp_arg1) || smp_arg1.data.u.sint < 0) {
// invalid or negative value
goto fail;
}
if (smp_arg1.data.u.sint > (smp->data.u.str.data - start_idx)) {
// arg1 value is greater than the remaining length
if (smp->opt & SMP_OPT_FINAL) {
// truncate to remaining length
length = smp->data.u.str.data - start_idx;
goto end;
}
goto wait;
}
length = smp_arg1.data.u.sint;
}
// update the output using the start_idx and length
smp->data.u.str.area += start_idx;
smp->data.u.str.data = length;
end:
return 1;
fail:
smp->flags &= ~SMP_F_MAY_CHANGE;
wait:
smp->data.u.str.data = 0;
return 0;
}
static int sample_conv_field_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
struct arg *arg = args;
if (arg->type != ARGT_SINT) {
memprintf(err, "Unexpected arg type");
return 0;
}
if (!arg->data.sint) {
memprintf(err, "Unexpected value 0 for index");
return 0;
}
arg++;
if (arg->type != ARGT_STR) {
memprintf(err, "Unexpected arg type");
return 0;
}
if (!arg->data.str.data) {
memprintf(err, "Empty separators list");
return 0;
}
return 1;
}
/* This sample function is designed to a return selected part of a string (field).
* First arg is the index of the field (start at 1)
* Second arg is a char list of separators (type string)
*/
static int sample_conv_field(const struct arg *arg_p, struct sample *smp, void *private)
{
int field;
char *start, *end;
int i;
int count = (arg_p[2].type == ARGT_SINT) ? arg_p[2].data.sint : 1;
if (!arg_p[0].data.sint)
return 0;
if (arg_p[0].data.sint < 0) {
field = -1;
end = start = smp->data.u.str.area + smp->data.u.str.data;
while (start > smp->data.u.str.area) {
for (i = 0 ; i < arg_p[1].data.str.data; i++) {
if (*(start-1) == arg_p[1].data.str.area[i]) {
if (field == arg_p[0].data.sint) {
if (count == 1)
goto found;
else if (count > 1)
count--;
} else {
end = start-1;
field--;
}
break;
}
}
start--;
}
} else {
field = 1;
end = start = smp->data.u.str.area;
while (end - smp->data.u.str.area < smp->data.u.str.data) {
for (i = 0 ; i < arg_p[1].data.str.data; i++) {
if (*end == arg_p[1].data.str.area[i]) {
if (field == arg_p[0].data.sint) {
if (count == 1)
goto found;
else if (count > 1)
count--;
} else {
start = end+1;
field++;
}
break;
}
}
end++;
}
}
/* Field not found */
if (field != arg_p[0].data.sint) {
smp->data.u.str.data = 0;
return 0;
}
found:
smp->data.u.str.data = end - start;
/* If ret string is len 0, no need to
change pointers or to update size */
if (!smp->data.u.str.data)
return 1;
/* Compute remaining size if needed
Note: smp->data.u.str.size cannot be set to 0 */
if (smp->data.u.str.size)
smp->data.u.str.size -= start - smp->data.u.str.area;
smp->data.u.str.area = start;
return 1;
}
/* This sample function is designed to return a word from a string.
* First arg is the index of the word (start at 1)
* Second arg is a char list of words separators (type string)
*/
static int sample_conv_word(const struct arg *arg_p, struct sample *smp, void *private)
{
int word;
char *start, *end;
int i, issep, inword;
int count = (arg_p[2].type == ARGT_SINT) ? arg_p[2].data.sint : 1;
if (!arg_p[0].data.sint)
return 0;
word = 0;
inword = 0;
if (arg_p[0].data.sint < 0) {
end = start = smp->data.u.str.area + smp->data.u.str.data;
while (start > smp->data.u.str.area) {
issep = 0;
for (i = 0 ; i < arg_p[1].data.str.data; i++) {
if (*(start-1) == arg_p[1].data.str.area[i]) {
issep = 1;
break;
}
}
if (!inword) {
if (!issep) {
if (word != arg_p[0].data.sint) {
word--;
end = start;
}
inword = 1;
}
}
else if (issep) {
if (word == arg_p[0].data.sint) {
if (count == 1)
goto found;
else if (count > 1)
count--;
}
inword = 0;
}
start--;
}
} else {
end = start = smp->data.u.str.area;
while (end - smp->data.u.str.area < smp->data.u.str.data) {
issep = 0;
for (i = 0 ; i < arg_p[1].data.str.data; i++) {
if (*end == arg_p[1].data.str.area[i]) {
issep = 1;
break;
}
}
if (!inword) {
if (!issep) {
if (word != arg_p[0].data.sint) {
word++;
start = end;
}
inword = 1;
}
}
else if (issep) {
if (word == arg_p[0].data.sint) {
if (count == 1)
goto found;
else if (count > 1)
count--;
}
inword = 0;
}
end++;
}
}
/* Field not found */
if (word != arg_p[0].data.sint) {
smp->data.u.str.data = 0;
return 0;
}
found:
smp->data.u.str.data = end - start;
/* If ret string is len 0, no need to
change pointers or to update size */
if (!smp->data.u.str.data)
return 1;
/* Compute remaining size if needed
Note: smp->data.u.str.size cannot be set to 0 */
if (smp->data.u.str.size)
smp->data.u.str.size -= start - smp->data.u.str.area;
smp->data.u.str.area = start;
return 1;
}
static int sample_conv_param_check(struct arg *arg, struct sample_conv *conv,
const char *file, int line, char **err)
{
if (arg[1].type == ARGT_STR && arg[1].data.str.data != 1) {
memprintf(err, "Delimiter must be exactly 1 character.");
return 0;
}
return 1;
}
static int sample_conv_param(const struct arg *arg_p, struct sample *smp, void *private)
{
char *pos, *end, *pend, *equal;
char delim = '&';
const char *name = arg_p[0].data.str.area;
size_t name_l = arg_p[0].data.str.data;
if (arg_p[1].type == ARGT_STR)
delim = *arg_p[1].data.str.area;
pos = smp->data.u.str.area;
end = pos + smp->data.u.str.data;
while (pos < end) {
equal = pos + name_l;
/* Parameter not found */
if (equal > end)
break;
if (equal == end || *equal == delim) {
if (memcmp(pos, name, name_l) == 0) {
/* input contains parameter, but no value is supplied */
smp->data.u.str.data = 0;
return 1;
}
pos = equal + 1;
continue;
}
if (*equal == '=' && memcmp(pos, name, name_l) == 0) {
pos = equal + 1;
pend = memchr(pos, delim, end - pos);
if (pend == NULL)
pend = end;
if (smp->data.u.str.size)
smp->data.u.str.size -= pos - smp->data.u.str.area;
smp->data.u.str.area = pos;
smp->data.u.str.data = pend - pos;
return 1;
}
/* find the next delimiter and set position to character after that */
pos = memchr(pos, delim, end - pos);
if (pos == NULL)
pos = end;
else
pos++;
}
/* Parameter not found */
smp->data.u.str.data = 0;
return 0;
}
static int sample_conv_regsub_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
struct arg *arg = args;
char *p;
int len;
/* arg0 is a regex, it uses type_flag for ICASE and global match */
arg[0].type_flags = 0;
if (arg[2].type != ARGT_STR)
return 1;
p = arg[2].data.str.area;
len = arg[2].data.str.data;
while (len) {
if (*p == 'i') {
arg[0].type_flags |= ARGF_REG_ICASE;
}
else if (*p == 'g') {
arg[0].type_flags |= ARGF_REG_GLOB;
}
else {
memprintf(err, "invalid regex flag '%c', only 'i' and 'g' are supported", *p);
return 0;
}
p++;
len--;
}
return 1;
}
/* This sample function is designed to do the equivalent of s/match/replace/ on
* the input string. It applies a regex and restarts from the last matched
* location until nothing matches anymore. First arg is the regex to apply to
* the input string, second arg is the replacement expression.
*/
static int sample_conv_regsub(const struct arg *arg_p, struct sample *smp, void *private)
{
char *start, *end;
struct my_regex *reg = arg_p[0].data.reg;
regmatch_t pmatch[MAX_MATCH];
struct buffer *trash = get_trash_chunk();
struct buffer *output;
int flag, max;
int found;
start = smp->data.u.str.area;
end = start + smp->data.u.str.data;
flag = 0;
while (1) {
/* check for last round which is used to copy remaining parts
* when not running in global replacement mode.
*/
found = 0;
if ((arg_p[0].type_flags & ARGF_REG_GLOB) || !(flag & REG_NOTBOL)) {
/* Note: we can have start == end on empty strings or at the end */
found = regex_exec_match2(reg, start, end - start, MAX_MATCH, pmatch, flag);
}
if (!found)
pmatch[0].rm_so = end - start;
/* copy the heading non-matching part (which may also be the tail if nothing matches) */
max = trash->size - trash->data;
if (max && pmatch[0].rm_so > 0) {
if (max > pmatch[0].rm_so)
max = pmatch[0].rm_so;
memcpy(trash->area + trash->data, start, max);
trash->data += max;
}
if (!found)
break;
output = alloc_trash_chunk();
if (!output)
break;
output->data = exp_replace(output->area, output->size, start, arg_p[1].data.str.area, pmatch);
/* replace the matching part */
max = output->size - output->data;
if (max) {
if (max > output->data)
max = output->data;
memcpy(trash->area + trash->data,
output->area, max);
trash->data += max;
}
free_trash_chunk(output);
/* stop here if we're done with this string */
if (start >= end)
break;
/* We have a special case for matches of length 0 (eg: "x*y*").
* These ones are considered to match in front of a character,
* so we have to copy that character and skip to the next one.
*/
if (!pmatch[0].rm_eo) {
if (trash->data < trash->size)
trash->area[trash->data++] = start[pmatch[0].rm_eo];
pmatch[0].rm_eo++;
}
start += pmatch[0].rm_eo;
flag |= REG_NOTBOL;
}
smp->data.u.str = *trash;
return 1;
}
/* This function check an operator entry. It expects a string.
* The string can be an integer or a variable name.
*/
static int check_operator(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
const char *str;
const char *end;
long long int i;
/* Try to decode a variable. The 'err' variable is intentionnaly left
* NULL since the operators accept an integer as argument in which case
* vars_check_arg call will fail.
*/
if (vars_check_arg(&args[0], NULL))
return 1;
/* Try to convert an integer */
str = args[0].data.str.area;
end = str + strlen(str);
i = read_int64(&str, end);
if (*str != '\0') {
memprintf(err, "expects an integer or a variable name");
return 0;
}
chunk_destroy(&args[0].data.str);
args[0].type = ARGT_SINT;
args[0].data.sint = i;
return 1;
}
/* This function returns a sample struct filled with an arg content.
* If the arg contain an integer, the integer is returned in the
* sample. If the arg contains a variable descriptor, it returns the
* variable value.
*
* This function returns 0 if an error occurs, otherwise it returns 1.
*/
int sample_conv_var2smp_sint(const struct arg *arg, struct sample *smp)
{
switch (arg->type) {
case ARGT_SINT:
smp->data.type = SMP_T_SINT;
smp->data.u.sint = arg->data.sint;
return 1;
case ARGT_VAR:
return sample_conv_var2smp(&arg->data.var, smp, SMP_T_SINT);
default:
return 0;
}
}
/* Takes a SINT on input, applies a binary twos complement and returns the SINT
* result.
*/
static int sample_conv_binary_cpl(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.u.sint = ~smp->data.u.sint;
return 1;
}
/* Takes a SINT on input, applies a binary "and" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
*/
static int sample_conv_binary_and(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_sint(arg_p, &tmp))
return 0;
smp->data.u.sint &= tmp.data.u.sint;
return 1;
}
/* Takes a SINT on input, applies a binary "or" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
*/
static int sample_conv_binary_or(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_sint(arg_p, &tmp))
return 0;
smp->data.u.sint |= tmp.data.u.sint;
return 1;
}
/* Takes a SINT on input, applies a binary "xor" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
*/
static int sample_conv_binary_xor(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_sint(arg_p, &tmp))
return 0;
smp->data.u.sint ^= tmp.data.u.sint;
return 1;
}
static inline long long int arith_add(long long int a, long long int b)
{
/* Prevent overflow and makes capped calculus.
* We must ensure that the check calculus doesn't
* exceed the signed 64 bits limits.
*
* +----------+----------+
* | a<0 | a>=0 |
* +------+----------+----------+
* | b<0 | MIN-a>b | no check |
* +------+----------+----------+
* | b>=0 | no check | MAX-a<b |
* +------+----------+----------+
*/
if ((a ^ b) >= 0) {
/* signs are same. */
if (a < 0) {
if (LLONG_MIN - a > b)
return LLONG_MIN;
}
else if (LLONG_MAX - a < b)
return LLONG_MAX;
}
return a + b;
}
/* Takes a SINT on input, applies an arithmetic "add" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
*/
static int sample_conv_arith_add(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_sint(arg_p, &tmp))
return 0;
smp->data.u.sint = arith_add(smp->data.u.sint, tmp.data.u.sint);
return 1;
}
/* Takes a SINT on input, applies an arithmetic "sub" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
*/
static int sample_conv_arith_sub(const struct arg *arg_p,
struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_sint(arg_p, &tmp))
return 0;
/* We cannot represent -LLONG_MIN because abs(LLONG_MIN) is greater
* than abs(LLONG_MAX). So, the following code use LLONG_MAX in place
* of -LLONG_MIN and correct the result.
*/
if (tmp.data.u.sint == LLONG_MIN) {
smp->data.u.sint = arith_add(smp->data.u.sint, LLONG_MAX);
if (smp->data.u.sint < LLONG_MAX)
smp->data.u.sint++;
return 1;
}
/* standard subtraction: we use the "add" function and negate
* the second operand.
*/
smp->data.u.sint = arith_add(smp->data.u.sint, -tmp.data.u.sint);
return 1;
}
/* Takes a SINT on input, applies an arithmetic "mul" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
* If the result makes an overflow, then the largest possible quantity is
* returned.
*/
static int sample_conv_arith_mul(const struct arg *arg_p,
struct sample *smp, void *private)
{
struct sample tmp;
long long int c;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_sint(arg_p, &tmp))
return 0;
/* prevent divide by 0 during the check */
if (!smp->data.u.sint || !tmp.data.u.sint) {
smp->data.u.sint = 0;
return 1;
}
/* The multiply between LLONG_MIN and -1 returns a
* "floating point exception".
*/
if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) {
smp->data.u.sint = LLONG_MAX;
return 1;
}
/* execute standard multiplication. */
c = smp->data.u.sint * tmp.data.u.sint;
/* check for overflow and makes capped multiply. */
if (smp->data.u.sint != c / tmp.data.u.sint) {
if ((smp->data.u.sint < 0) == (tmp.data.u.sint < 0)) {
smp->data.u.sint = LLONG_MAX;
return 1;
}
smp->data.u.sint = LLONG_MIN;
return 1;
}
smp->data.u.sint = c;
return 1;
}
/* Takes a SINT on input, applies an arithmetic "div" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
* If arg_p makes the result overflow, then the largest possible quantity is
* returned.
*/
static int sample_conv_arith_div(const struct arg *arg_p,
struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_sint(arg_p, &tmp))
return 0;
if (tmp.data.u.sint) {
/* The divide between LLONG_MIN and -1 returns a
* "floating point exception".
*/
if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) {
smp->data.u.sint = LLONG_MAX;
return 1;
}
smp->data.u.sint /= tmp.data.u.sint;
return 1;
}
smp->data.u.sint = LLONG_MAX;
return 1;
}
/* Takes a SINT on input, applies an arithmetic "mod" with the SINT directly in
* arg_p or in the variable described in arg_p, and returns the SINT result.
* If arg_p makes the result overflow, then 0 is returned.
*/
static int sample_conv_arith_mod(const struct arg *arg_p,
struct sample *smp, void *private)
{
struct sample tmp;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_sint(arg_p, &tmp))
return 0;
if (tmp.data.u.sint) {
/* The divide between LLONG_MIN and -1 returns a
* "floating point exception".
*/
if (smp->data.u.sint == LLONG_MIN && tmp.data.u.sint == -1) {
smp->data.u.sint = 0;
return 1;
}
smp->data.u.sint %= tmp.data.u.sint;
return 1;
}
smp->data.u.sint = 0;
return 1;
}
/* Takes an SINT on input, applies an arithmetic "neg" and returns the SINT
* result.
*/
static int sample_conv_arith_neg(const struct arg *arg_p,
struct sample *smp, void *private)
{
if (smp->data.u.sint == LLONG_MIN)
smp->data.u.sint = LLONG_MAX;
else
smp->data.u.sint = -smp->data.u.sint;
return 1;
}
/* Takes a SINT on input, returns true is the value is non-null, otherwise
* false. The output is a BOOL.
*/
static int sample_conv_arith_bool(const struct arg *arg_p,
struct sample *smp, void *private)
{
smp->data.u.sint = !!smp->data.u.sint;
smp->data.type = SMP_T_BOOL;
return 1;
}
/* Takes a SINT on input, returns false is the value is non-null, otherwise
* truee. The output is a BOOL.
*/
static int sample_conv_arith_not(const struct arg *arg_p,
struct sample *smp, void *private)
{
smp->data.u.sint = !smp->data.u.sint;
smp->data.type = SMP_T_BOOL;
return 1;
}
/* Takes a SINT on input, returns true is the value is odd, otherwise false.
* The output is a BOOL.
*/
static int sample_conv_arith_odd(const struct arg *arg_p,
struct sample *smp, void *private)
{
smp->data.u.sint = smp->data.u.sint & 1;
smp->data.type = SMP_T_BOOL;
return 1;
}
/* Takes a SINT on input, returns true is the value is even, otherwise false.
* The output is a BOOL.
*/
static int sample_conv_arith_even(const struct arg *arg_p,
struct sample *smp, void *private)
{
smp->data.u.sint = !(smp->data.u.sint & 1);
smp->data.type = SMP_T_BOOL;
return 1;
}
/* appends an optional const string, an optional variable contents and another
* optional const string to an existing string.
*/
static int sample_conv_concat(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *trash;
struct sample tmp;
int max;
trash = alloc_trash_chunk();
if (!trash)
return 0;
trash->data = smp->data.u.str.data;
if (trash->data > trash->size - 1)
trash->data = trash->size - 1;
memcpy(trash->area, smp->data.u.str.area, trash->data);
trash->area[trash->data] = 0;
/* append first string */
max = arg_p[0].data.str.data;
if (max > trash->size - 1 - trash->data)
max = trash->size - 1 - trash->data;
if (max) {
memcpy(trash->area + trash->data, arg_p[0].data.str.area, max);
trash->data += max;
trash->area[trash->data] = 0;
}
/* append second string (variable) if it's found and we can turn it
* into a string.
*/
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (arg_p[1].type == ARGT_VAR && vars_get_by_desc(&arg_p[1].data.var, &tmp, NULL) &&
(sample_casts[tmp.data.type][SMP_T_STR] == c_none ||
sample_casts[tmp.data.type][SMP_T_STR](&tmp))) {
max = tmp.data.u.str.data;
if (max > trash->size - 1 - trash->data)
max = trash->size - 1 - trash->data;
if (max) {
memcpy(trash->area + trash->data, tmp.data.u.str.area,
max);
trash->data += max;
trash->area[trash->data] = 0;
}
}
/* append third string */
max = arg_p[2].data.str.data;
if (max > trash->size - 1 - trash->data)
max = trash->size - 1 - trash->data;
if (max) {
memcpy(trash->area + trash->data, arg_p[2].data.str.area, max);
trash->data += max;
trash->area[trash->data] = 0;
}
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
smp_dup(smp);
free_trash_chunk(trash);
return 1;
}
/* This function checks the "concat" converter's arguments and extracts the
* variable name and its scope.
*/
static int smp_check_concat(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
/* Try to decode a variable. */
if (args[1].data.str.data > 0 && !vars_check_arg(&args[1], NULL)) {
memprintf(err, "failed to register variable name '%s'",
args[1].data.str.area);
return 0;
}
return 1;
}
/* Append delimiter (only to a non empty input) followed by the optional
* variable contents concatenated with the optional sufix.
*/
static int sample_conv_add_item(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *tmpbuf;
struct sample tmp;
size_t max;
int var_available;
tmpbuf = alloc_trash_chunk();
if (!tmpbuf)
return 0;
tmpbuf->data = smp->data.u.str.data;
if (tmpbuf->data > tmpbuf->size - 1)
tmpbuf->data = tmpbuf->size - 1;
memcpy(tmpbuf->area, smp->data.u.str.area, tmpbuf->data);
tmpbuf->area[tmpbuf->data] = 0;
/* Check if variable is found and we can turn into a string. */
var_available = 0;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (arg_p[1].type == ARGT_VAR && vars_get_by_desc(&arg_p[1].data.var, &tmp, NULL) &&
(sample_casts[tmp.data.type][SMP_T_STR] == c_none ||
sample_casts[tmp.data.type][SMP_T_STR](&tmp)))
var_available = 1;
/* Append delimiter only if input is not empty and either
* the variable or the suffix are not empty
*/
if (smp->data.u.str.data && ((var_available && tmp.data.u.str.data) ||
arg_p[2].data.str.data)) {
max = arg_p[0].data.str.data;
if (max > tmpbuf->size - 1 - tmpbuf->data)
max = tmpbuf->size - 1 - tmpbuf->data;
if (max) {
memcpy(tmpbuf->area + tmpbuf->data, arg_p[0].data.str.area, max);
tmpbuf->data += max;
tmpbuf->area[tmpbuf->data] = 0;
}
}
/* Append variable contents if variable is found and turned into string. */
if (var_available) {
max = tmp.data.u.str.data;
if (max > tmpbuf->size - 1 - tmpbuf->data)
max = tmpbuf->size - 1 - tmpbuf->data;
if (max) {
memcpy(tmpbuf->area + tmpbuf->data, tmp.data.u.str.area, max);
tmpbuf->data += max;
tmpbuf->area[tmpbuf->data] = 0;
}
}
/* Append optional suffix. */
max = arg_p[2].data.str.data;
if (max > tmpbuf->size - 1 - tmpbuf->data)
max = tmpbuf->size - 1 - tmpbuf->data;
if (max) {
memcpy(tmpbuf->area + tmpbuf->data, arg_p[2].data.str.area, max);
tmpbuf->data += max;
tmpbuf->area[tmpbuf->data] = 0;
}
smp->data.u.str = *tmpbuf;
smp->data.type = SMP_T_STR;
smp_dup(smp);
free_trash_chunk(tmpbuf);
return 1;
}
/* Check the "add_item" converter's arguments and extracts the
* variable name and its scope.
*/
static int smp_check_add_item(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
/* Try to decode a variable. */
if (args[1].data.str.data > 0 && !vars_check_arg(&args[1], NULL)) {
memprintf(err, "failed to register variable name '%s'",
args[1].data.str.area);
return 0;
}
if (args[1].data.str.data == 0 && args[2].data.str.data == 0) {
memprintf(err, "one of the optional arguments has to be nonempty");
return 0;
}
return 1;
}
/* Compares string with a variable containing a string. Return value
* is compatible with strcmp(3)'s return value.
*/
static int sample_conv_strcmp(const struct arg *arg_p, struct sample *smp, void *private)
{
struct sample tmp;
int max, result;
smp_set_owner(&tmp, smp->px, smp->sess, smp->strm, smp->opt);
if (arg_p[0].type != ARGT_VAR)
return 0;
if (!sample_conv_var2smp(&arg_p[0].data.var, &tmp, SMP_T_STR))
return 0;
max = MIN(smp->data.u.str.data, tmp.data.u.str.data);
result = strncmp(smp->data.u.str.area, tmp.data.u.str.area, max);
if (result == 0) {
if (smp->data.u.str.data != tmp.data.u.str.data) {
if (smp->data.u.str.data < tmp.data.u.str.data) {
result = -1;
}
else {
result = 1;
}
}
}
smp->data.u.sint = result;
smp->data.type = SMP_T_SINT;
return 1;
}
/*
* This converter can takes a Host header value as defined by rfc9110#section-7.2
* Host = uri-host [ ":" port ] ;
* It returns the uri-host value in lowecase with the port stripped.
*/
static int sample_conv_host_only(const struct arg *arg_p, struct sample *smp, void *private)
{
/* Working cases: hostname00, hostname00:80, 127.0.0.1, 127.0.0.1:80, [::1], [::1]:80 */
char *beg = smp->data.u.str.area;
char *end = smp->data.u.str.area + smp->data.u.str.data - 1;
char *p;
for (p = end; p >= beg; p--) {
if (*p == ':' || *p == ']')
break;
}
if (p >= beg && *p == ':')
smp->data.u.str.data = p - beg;
/* if no port part was found, the hostname is the whole string */
smp->data.type = SMP_T_STR;
return sample_conv_str2lower(arg_p, smp, NULL);
}
/*
* This converter can takes a Host header value as defined by rfc9110#section-7.2
* Host = uri-host [ ":" port ] ;
* It returns the port value as a int.
*/
static int sample_conv_port_only(const struct arg *arg_p, struct sample *smp, void *private)
{
/* Working cases: hostname00, hostname00:80, 127.0.0.1, 127.0.0.1:80, [::1], [::1]:80 */
char *beg = smp->data.u.str.area;
char *end = smp->data.u.str.area + smp->data.u.str.data - 1;
char *p;
for (p = end; p >= beg; p--) {
if (*p == ':' || *p == ']')
break;
}
smp->data.type = SMP_T_SINT;
if (p >= beg && *p == ':' && ++p <= end) {
smp->data.u.sint = strl2ui(p, smp->data.u.str.data + smp->data.u.str.area - p);
} else {
smp->data.u.sint = 0;
}
return 1;
}
/* Takes a boolean as input. Returns the first argument if that boolean is true and
* the second argument otherwise.
*/
static int sample_conv_iif(const struct arg *arg_p, struct sample *smp, void *private)
{
smp->data.type = SMP_T_STR;
smp->flags |= SMP_F_CONST;
if (smp->data.u.sint) {
smp->data.u.str.data = arg_p[0].data.str.data;
smp->data.u.str.area = arg_p[0].data.str.area;
}
else {
smp->data.u.str.data = arg_p[1].data.str.data;
smp->data.u.str.area = arg_p[1].data.str.area;
}
return 1;
}
enum {
WHEN_COND_STOPPING,
WHEN_COND_NORMAL,
WHEN_COND_ERROR,
WHEN_COND_FORWARDED,
WHEN_COND_TOAPPLET,
WHEN_COND_PROCESSED,
WHEN_COND_CONDITIONS
};
const char *when_cond_kw[WHEN_COND_CONDITIONS] = {
[WHEN_COND_STOPPING] = "stopping",
[WHEN_COND_NORMAL] = "normal",
[WHEN_COND_ERROR] = "error",
[WHEN_COND_FORWARDED] = "forwarded",
[WHEN_COND_TOAPPLET] = "toapplet",
[WHEN_COND_PROCESSED] = "processed",
};
/* Evaluates a condition and decides whether or not to pass the input sample
* to the output. The purpose is to hide some info when certain conditions are
* (not) met. These conditions belong to a fixed list that can verify internal
* states (debug mode, too high load, reloading, server down, stream in error
* etc). The condition's sign is placed in arg_p[0].data.int. 0=direct, 1=inv.
* The condition keyword is in arg_p[1].data.int (WHEN_COND_*).
*/
static int sample_conv_when(const struct arg *arg_p, struct sample *smp, void *private)
{
struct session *sess = smp->sess;
struct stream *strm = smp->strm;
int neg = arg_p[0].data.sint;
int cond = arg_p[1].data.sint;
int ret = 0;
switch (cond) {
case WHEN_COND_STOPPING:
ret = !!stopping;
break;
case WHEN_COND_NORMAL:
neg = !neg;
__fallthrough;
case WHEN_COND_ERROR:
if (strm &&
((strm->flags & SF_REDISP) ||
((strm->flags & SF_ERR_MASK) > SF_ERR_LOCAL) ||
(((strm->flags & SF_ERR_MASK) == SF_ERR_NONE) && strm->conn_retries) ||
((sess->fe->mode == PR_MODE_HTTP) && strm->txn && strm->txn->status >= 500)))
ret = 1;
break;
case WHEN_COND_FORWARDED: // true if forwarded to a connection
ret = !!sc_conn(smp->strm->scb);
break;
case WHEN_COND_TOAPPLET: // true if handled as an applet
ret = !!sc_appctx(smp->strm->scb);
break;
case WHEN_COND_PROCESSED: // true if forwarded or appctx
ret = sc_conn(smp->strm->scb) || sc_appctx(smp->strm->scb);
break;
}
ret = !!ret ^ !!neg;
if (!ret) {
/* kill the sample */
return 0;
}
/* pass the sample as-is */
return 1;
}
/* checks and resolves the type of the argument passed to when().
* It supports an optional '!' to negate the condition, followed by
* a keyword among the list above.
*/
static int check_when_cond(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
const char *kw;
int neg = 0;
int i;
kw = args[0].data.str.area;
if (*kw == '!') {
kw++;
neg = 1;
}
for (i = 0; i < WHEN_COND_CONDITIONS; i++) {
if (strcmp(kw, when_cond_kw[i]) == 0)
break;
}
if (i == WHEN_COND_CONDITIONS) {
memprintf(err, "expects a supported keyword among {");
for (i = 0; i < WHEN_COND_CONDITIONS; i++)
memprintf(err, "%s%s%s", *err, when_cond_kw[i], (i == WHEN_COND_CONDITIONS - 1) ? "}" : ",");
memprintf(err, "%s but got '%s'", *err, kw);
return 0;
}
chunk_destroy(&args[0].data.str);
// store condition
args[0].type = ARGT_SINT;
args[0].data.sint = neg; // '!' present
// and keyword
args[1].type = ARGT_SINT;
args[1].data.sint = i;
return 1;
}
#define GRPC_MSG_COMPRESS_FLAG_SZ 1 /* 1 byte */
#define GRPC_MSG_LENGTH_SZ 4 /* 4 bytes */
#define GRPC_MSG_HEADER_SZ (GRPC_MSG_COMPRESS_FLAG_SZ + GRPC_MSG_LENGTH_SZ)
/*
* Extract the field value of an input binary sample. Takes a mandatory argument:
* the protocol buffers field identifier (dotted notation) internally represented
* as an array of unsigned integers and its size.
* Return 1 if the field was found, 0 if not.
*/
static int sample_conv_ungrpc(const struct arg *arg_p, struct sample *smp, void *private)
{
unsigned char *pos;
size_t grpc_left;
pos = (unsigned char *)smp->data.u.str.area;
grpc_left = smp->data.u.str.data;
while (grpc_left > GRPC_MSG_HEADER_SZ) {
size_t grpc_msg_len, left;
grpc_msg_len = left = ntohl(read_u32(pos + GRPC_MSG_COMPRESS_FLAG_SZ));
pos += GRPC_MSG_HEADER_SZ;
grpc_left -= GRPC_MSG_HEADER_SZ;
if (grpc_left < left)
return 0;
if (protobuf_field_lookup(arg_p, smp, &pos, &left))
return 1;
grpc_left -= grpc_msg_len;
}
return 0;
}
static int sample_conv_protobuf(const struct arg *arg_p, struct sample *smp, void *private)
{
unsigned char *pos;
size_t left;
pos = (unsigned char *)smp->data.u.str.area;
left = smp->data.u.str.data;
return protobuf_field_lookup(arg_p, smp, &pos, &left);
}
static int sample_conv_protobuf_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
if (!args[1].type) {
args[1].type = ARGT_SINT;
args[1].data.sint = PBUF_T_BINARY;
}
else {
int pbuf_type;
pbuf_type = protobuf_type(args[1].data.str.area);
if (pbuf_type == -1) {
memprintf(err, "Wrong protocol buffer type '%s'", args[1].data.str.area);
return 0;
}
chunk_destroy(&args[1].data.str);
args[1].type = ARGT_SINT;
args[1].data.sint = pbuf_type;
}
return 1;
}
/*
* Extract the tag value of an input binary sample. Takes a mandatory argument:
* the FIX protocol tag identifier.
* Return 1 if the tag was found, 0 if not.
*/
static int sample_conv_fix_tag_value(const struct arg *arg_p, struct sample *smp, void *private)
{
struct ist value;
smp->flags &= ~SMP_F_MAY_CHANGE;
value = fix_tag_value(ist2(smp->data.u.str.area, smp->data.u.str.data),
arg_p[0].data.sint);
if (!istlen(value)) {
if (isttest(value)) {
/* value != IST_NULL, need more data */
smp->flags |= SMP_F_MAY_CHANGE;
}
return 0;
}
smp->data.u.str = ist2buf(value);
smp->flags |= SMP_F_CONST;
return 1;
}
/* This function checks the "fix_tag_value" converter configuration.
* It expects a "known" (by HAProxy) tag name or ID.
* Tag string names are converted to their ID counterpart because this is the
* format they are sent over the wire.
*/
static int sample_conv_fix_value_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
struct ist str;
unsigned int tag;
str = ist2(args[0].data.str.area, args[0].data.str.data);
tag = fix_tagid(str);
if (!tag) {
memprintf(err, "Unknown FIX tag name '%s'", args[0].data.str.area);
return 0;
}
chunk_destroy(&args[0].data.str);
args[0].type = ARGT_SINT;
args[0].data.sint = tag;
return 1;
}
/*
* Checks that a buffer contains a valid FIX message
*
* Return 1 if the check could be run, 0 if not.
* The result of the analyse itself is stored in <smp> as a boolean
*/
static int sample_conv_fix_is_valid(const struct arg *arg_p, struct sample *smp, void *private)
{
struct ist msg;
msg = ist2(smp->data.u.str.area, smp->data.u.str.data);
smp->flags &= ~SMP_F_MAY_CHANGE;
switch (fix_validate_message(msg)) {
case FIX_VALID_MESSAGE:
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 1;
return 1;
case FIX_NEED_MORE_DATA:
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
case FIX_INVALID_MESSAGE:
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 0;
return 1;
}
return 0;
}
/*
* Extract the field value of an input binary sample containing an MQTT packet.
* Takes 2 mandatory arguments:
* - packet type
* - field name
*
* return 1 if the field was found, 0 if not.
*/
static int sample_conv_mqtt_field_value(const struct arg *arg_p, struct sample *smp, void *private)
{
struct ist pkt, value;
int type, fieldname_id;
pkt = ist2(smp->data.u.str.area, smp->data.u.str.data);
type = arg_p[0].data.sint;
fieldname_id = arg_p[1].data.sint;
smp->flags &= ~SMP_F_MAY_CHANGE;
value = mqtt_field_value(pkt, type, fieldname_id);
if (!istlen(value)) {
if (isttest(value)) {
/* value != IST_NULL, need more data */
smp->flags |= SMP_F_MAY_CHANGE;
}
return 0;
}
smp->data.u.str = ist2buf(value);
smp->flags |= SMP_F_CONST;
return 1;
}
/*
* this function checks the "mqtt_field_value" converter configuration.
* It expects a known packet type name or ID and a field name, in this order
*
* Args[0] will be turned into a MQTT_CPT_* value for direct matching when parsing
* a packet.
*/
static int sample_conv_mqtt_field_value_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
int type, fieldname_id;
/* check the MQTT packet type is valid */
type = mqtt_typeid(ist2(args[0].data.str.area, args[0].data.str.data));
if (type == MQTT_CPT_INVALID) {
memprintf(err, "Unknown MQTT type '%s'", args[0].data.str.area);
return 0;
}
/* check the field name belongs to the MQTT packet type */
fieldname_id = mqtt_check_type_fieldname(type, ist2(args[1].data.str.area, args[1].data.str.data));
if (fieldname_id == MQTT_FN_INVALID) {
memprintf(err, "Unknown MQTT field name '%s' for packet type '%s'", args[1].data.str.area,
args[0].data.str.area);
return 0;
}
/* save numeric counterparts of type and field name */
chunk_destroy(&args[0].data.str);
chunk_destroy(&args[1].data.str);
args[0].type = ARGT_SINT;
args[0].data.sint = type;
args[1].type = ARGT_SINT;
args[1].data.sint = fieldname_id;
return 1;
}
/*
* Checks that <smp> contains a valid MQTT message
*
* The function returns 1 if the check was run to its end, 0 otherwise.
* The result of the analyse itself is stored in <smp> as a boolean.
*/
static int sample_conv_mqtt_is_valid(const struct arg *arg_p, struct sample *smp, void *private)
{
struct ist msg;
msg = ist2(smp->data.u.str.area, smp->data.u.str.data);
smp->flags &= ~SMP_F_MAY_CHANGE;
switch (mqtt_validate_message(msg, NULL)) {
case FIX_VALID_MESSAGE:
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 1;
return 1;
case FIX_NEED_MORE_DATA:
smp->flags |= SMP_F_MAY_CHANGE;
return 0;
case FIX_INVALID_MESSAGE:
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 0;
return 1;
}
return 0;
}
/* This function checks the "strcmp" converter's arguments and extracts the
* variable name and its scope.
*/
static int smp_check_strcmp(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
if (!args[0].data.str.data) {
memprintf(err, "missing variable name");
return 0;
}
/* Try to decode a variable. */
if (vars_check_arg(&args[0], NULL))
return 1;
memprintf(err, "failed to register variable name '%s'",
args[0].data.str.area);
return 0;
}
/**/
static int sample_conv_htonl(const struct arg *arg_p, struct sample *smp, void *private)
{
struct buffer *tmp;
uint32_t n;
n = htonl((uint32_t)smp->data.u.sint);
tmp = get_trash_chunk();
memcpy(b_head(tmp), &n, 4);
b_add(tmp, 4);
smp->data.u.str = *tmp;
smp->data.type = SMP_T_BIN;
return 1;
}
/**/
static int sample_conv_cut_crlf(const struct arg *arg_p, struct sample *smp, void *private)
{
char *p;
size_t l;
p = smp->data.u.str.area;
for (l = 0; l < smp->data.u.str.data; l++) {
if (*(p+l) == '\r' || *(p+l) == '\n')
break;
}
smp->data.u.str.data = l;
return 1;
}
/**/
static int sample_conv_ltrim(const struct arg *arg_p, struct sample *smp, void *private)
{
char *delimiters, *p;
size_t dlen, l;
delimiters = arg_p[0].data.str.area;
dlen = arg_p[0].data.str.data;
l = smp->data.u.str.data;
p = smp->data.u.str.area;
while (l && memchr(delimiters, *p, dlen) != NULL) {
p++;
l--;
}
smp->data.u.str.area = p;
smp->data.u.str.data = l;
return 1;
}
/**/
static int sample_conv_rtrim(const struct arg *arg_p, struct sample *smp, void *private)
{
char *delimiters, *p;
size_t dlen, l;
delimiters = arg_p[0].data.str.area;
dlen = arg_p[0].data.str.data;
l = smp->data.u.str.data;
p = smp->data.u.str.area + l - 1;
while (l && memchr(delimiters, *p, dlen) != NULL) {
p--;
l--;
}
smp->data.u.str.data = l;
return 1;
}
/* This function checks the "json_query" converter's arguments. */
static int sample_check_json_query(struct arg *arg, struct sample_conv *conv,
const char *file, int line, char **err)
{
if (arg[0].data.str.data == 0) {
memprintf(err, "json_path must not be empty");
return 0;
}
if (arg[1].data.str.data != 0) {
if (strcmp(arg[1].data.str.area, "int") != 0) {
memprintf(err, "output_type only supports \"int\" as argument");
return 0;
} else {
arg[1].type = ARGT_SINT;
arg[1].data.sint = 0;
}
}
return 1;
}
/* Limit JSON integer values to the range [-(2**53)+1, (2**53)-1] as per
* the recommendation for interoperable integers in section 6 of RFC 7159.
*/
#define JSON_INT_MAX ((1LL << 53) - 1)
#define JSON_INT_MIN (-JSON_INT_MAX)
/* This sample function get the value from a given json string.
* The mjson library is used to parse the JSON struct
*/
static int sample_conv_json_query(const struct arg *args, struct sample *smp, void *private)
{
struct buffer *trash = get_trash_chunk();
const char *token; /* holds the temporary string from mjson_find */
int token_size; /* holds the length of <token> */
enum mjson_tok token_type;
token_type = mjson_find(smp->data.u.str.area, smp->data.u.str.data, args[0].data.str.area, &token, &token_size);
switch (token_type) {
case MJSON_TOK_NUMBER:
if (args[1].type == ARGT_SINT) {
smp->data.u.sint = strtoll(token, NULL, 0);
if (smp->data.u.sint < JSON_INT_MIN || smp->data.u.sint > JSON_INT_MAX)
return 0;
smp->data.type = SMP_T_SINT;
return 1;
} else {
double double_val;
if (mjson_get_number(smp->data.u.str.area, smp->data.u.str.data, args[0].data.str.area, &double_val) == 0)
return 0;
trash->data = snprintf(trash->area,trash->size,"%g",double_val);
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
return 1;
}
case MJSON_TOK_TRUE:
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 1;
return 1;
case MJSON_TOK_FALSE:
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 0;
return 1;
case MJSON_TOK_STRING: {
int len;
len = mjson_get_string(smp->data.u.str.area, smp->data.u.str.data, args[0].data.str.area, trash->area, trash->size);
if (len == -1) {
/* invalid string */
return 0;
}
trash->data = len;
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
return 1;
}
case MJSON_TOK_ARRAY: {
// We copy the complete array, including square brackets into the return buffer
// result looks like: ["manage-account","manage-account-links","view-profile"]
trash->data = b_putblk(trash, token, token_size);
smp->data.u.str = *trash;
smp->data.type = SMP_T_STR;
return 1;
}
case MJSON_TOK_NULL:
case MJSON_TOK_OBJECT:
/* We cannot handle these. */
return 0;
case MJSON_TOK_INVALID:
/* Nothing matches the query. */
return 0;
case MJSON_TOK_KEY:
/* This is not a valid return value according to the
* mjson documentation, but we handle it to benefit
* from '-Wswitch'.
*/
return 0;
}
my_unreachable();
return 0;
}
#ifdef USE_OPENSSL
static int sample_conv_jwt_verify_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
enum jwt_alg alg = JWT_ALG_DEFAULT;
vars_check_arg(&args[0], NULL);
vars_check_arg(&args[1], NULL);
if (args[0].type == ARGT_STR) {
alg = jwt_parse_alg(args[0].data.str.area, args[0].data.str.data);
if (alg == JWT_ALG_DEFAULT) {
memprintf(err, "unknown JWT algorithm: %s", args[0].data.str.area);
return 0;
}
}
if (args[1].type == ARGT_STR) {
switch (alg) {
JWS_ALG_HS256:
JWS_ALG_HS384:
JWS_ALG_HS512:
/* don't try to load a file with HMAC algorithms */
break;
default:
jwt_tree_load_cert(args[1].data.str.area, args[1].data.str.data, err);
break;
}
}
return 1;
}
/* Check that a JWT's signature is correct */
static int sample_conv_jwt_verify(const struct arg *args, struct sample *smp, void *private)
{
struct sample alg_smp, key_smp;
enum jwt_vrfy_status ret;
smp_set_owner(&alg_smp, smp->px, smp->sess, smp->strm, smp->opt);
smp_set_owner(&key_smp, smp->px, smp->sess, smp->strm, smp->opt);
if (!sample_conv_var2smp_str(&args[0], &alg_smp))
return 0;
if (!sample_conv_var2smp_str(&args[1], &key_smp))
return 0;
ret = jwt_verify(&smp->data.u.str, &alg_smp.data.u.str, &key_smp.data.u.str);
smp->data.type = SMP_T_SINT;
smp->data.u.sint = ret;
return 1;
}
/*
* Returns the decoded header or payload of a JWT if no parameter is given, or
* the value of the specified field of the corresponding JWT subpart if a
* parameter is given.
*/
static int sample_conv_jwt_member_query(const struct arg *args, struct sample *smp,
void *private, enum jwt_elt member)
{
struct jwt_item items[JWT_ELT_MAX] = { { 0 } };
unsigned int item_num = member + 1; /* We don't need to tokenize the full token */
struct buffer *decoded_header = get_trash_chunk();
int retval = 0;
int ret;
jwt_tokenize(&smp->data.u.str, items, &item_num);
if (item_num < member + 1)
goto end;
ret = base64urldec(items[member].start, items[member].length,
decoded_header->area, decoded_header->size);
if (ret == -1)
goto end;
decoded_header->data = ret;
if (args[0].type != ARGT_STR) {
smp->data.u.str = *decoded_header;
smp->data.type = SMP_T_STR;
goto end;
}
/* We look for a specific field of the header or payload part of the JWT */
smp->data.u.str = *decoded_header;
retval = sample_conv_json_query(args, smp, private);
end:
return retval;
}
/* This function checks the "jwt_header_query" and "jwt_payload_query" converters' arguments.
* It is based on the "json_query" converter's check with the only difference
* being that the jwt converters can take 0 parameters as well.
*/
static int sample_conv_jwt_query_check(struct arg *arg, struct sample_conv *conv,
const char *file, int line, char **err)
{
if (arg[1].data.str.data != 0) {
if (strcmp(arg[1].data.str.area, "int") != 0) {
memprintf(err, "output_type only supports \"int\" as argument");
return 0;
} else {
arg[1].type = ARGT_SINT;
arg[1].data.sint = 0;
}
}
return 1;
}
/*
* If no parameter is given, return the decoded header part of a JWT (the first
* base64 encoded part, corresponding to the JOSE header).
* If a parameter is given, this converter acts as a "json_query" on this
* decoded JSON.
*/
static int sample_conv_jwt_header_query(const struct arg *args, struct sample *smp, void *private)
{
return sample_conv_jwt_member_query(args, smp, private, JWT_ELT_JOSE);
}
/*
* If no parameter is given, return the decoded payload part of a JWT (the
* second base64 encoded part, which contains all the claims). If a parameter
* is given, this converter acts as a "json_query" on this decoded JSON.
*/
static int sample_conv_jwt_payload_query(const struct arg *args, struct sample *smp, void *private)
{
return sample_conv_jwt_member_query(args, smp, private, JWT_ELT_CLAIMS);
}
#endif /* USE_OPENSSL */
/************************************************************************/
/* All supported sample fetch functions must be declared here */
/************************************************************************/
/* returns the actconn */
static int
smp_fetch_actconn(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = actconn;
return 1;
}
/* force TRUE to be returned at the fetch level */
static int
smp_fetch_true(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp_make_rw(smp))
return 0;
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 1;
return 1;
}
/* force FALSE to be returned at the fetch level */
static int
smp_fetch_false(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = 0;
return 1;
}
/* retrieve environment variable $1 as a string */
static int
smp_fetch_env(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
char *env;
if (args[0].type != ARGT_STR)
return 0;
env = getenv(args[0].data.str.area);
if (!env)
return 0;
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
smp->data.u.str.area = env;
smp->data.u.str.data = strlen(env);
return 1;
}
/* Validates the data unit argument passed to "date" fetch. Argument 1 support an
* optional string representing the unit of the result: "s" for seconds, "ms" for
* milliseconds and "us" for microseconds.
* Returns 0 on error and non-zero if OK.
*/
int smp_check_date_unit(struct arg *args, char **err)
{
if (args[1].type == ARGT_STR) {
long long int unit;
if (strcmp(args[1].data.str.area, "s") == 0) {
unit = TIME_UNIT_S;
}
else if (strcmp(args[1].data.str.area, "ms") == 0) {
unit = TIME_UNIT_MS;
}
else if (strcmp(args[1].data.str.area, "us") == 0) {
unit = TIME_UNIT_US;
}
else {
memprintf(err, "expects 's', 'ms' or 'us', got '%s'",
args[1].data.str.area);
return 0;
}
chunk_destroy(&args[1].data.str);
args[1].type = ARGT_SINT;
args[1].data.sint = unit;
}
else if (args[1].type != ARGT_STOP) {
memprintf(err, "Unexpected arg type");
return 0;
}
return 1;
}
/* retrieve the current local date in epoch time, converts it to milliseconds
* or microseconds if asked to in optional args[1] unit param, and applies an
* optional args[0] offset.
*/
static int
smp_fetch_date(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.u.sint = date.tv_sec;
/* report in milliseconds */
if (args[1].type == ARGT_SINT && args[1].data.sint == TIME_UNIT_MS) {
smp->data.u.sint *= 1000;
smp->data.u.sint += date.tv_usec / 1000;
}
/* report in microseconds */
else if (args[1].type == ARGT_SINT && args[1].data.sint == TIME_UNIT_US) {
smp->data.u.sint *= 1000000;
smp->data.u.sint += date.tv_usec;
}
/* add offset */
if (args[0].type == ARGT_SINT)
smp->data.u.sint += args[0].data.sint;
smp->data.type = SMP_T_SINT;
smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE;
return 1;
}
/* retrieve the current microsecond part of the date */
static int
smp_fetch_date_us(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.u.sint = date.tv_usec;
smp->data.type = SMP_T_SINT;
smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE;
return 1;
}
/* returns the hostname */
static int
smp_fetch_hostname(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_CONST;
smp->data.u.str.area = hostname;
smp->data.u.str.data = strlen(hostname);
return 1;
}
/* returns the number of processes */
static int
smp_fetch_nbproc(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 1;
return 1;
}
/* returns the PID of the current process */
static int
smp_fetch_pid(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = pid;
return 1;
}
/* returns the number of the current process (between 1 and nbproc */
static int
smp_fetch_proc(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = 1;
return 1;
}
/* returns the number of the current thread (between 1 and nbthread */
static int
smp_fetch_thread(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = tid;
return 1;
}
/* generate a random 32-bit integer for whatever purpose, with an optional
* range specified in argument.
*/
static int
smp_fetch_rand(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.u.sint = statistical_prng();
/* reduce if needed. Don't do a modulo, use all bits! */
if (args[0].type == ARGT_SINT)
smp->data.u.sint = ((u64)smp->data.u.sint * (u64)args[0].data.sint) >> 32;
smp->data.type = SMP_T_SINT;
smp->flags |= SMP_F_VOL_TEST | SMP_F_MAY_CHANGE;
return 1;
}
/* returns true if the current process is stopping */
static int
smp_fetch_stopping(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = stopping;
return 1;
}
/* returns the number of calls of the current stream's process_stream() */
static int
smp_fetch_cpu_calls(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->strm->task->calls;
return 1;
}
/* returns the average number of nanoseconds spent processing the stream per call */
static int
smp_fetch_cpu_ns_avg(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->strm->task->calls ? smp->strm->cpu_time / smp->strm->task->calls : 0;
return 1;
}
/* returns the total number of nanoseconds spent processing the stream */
static int
smp_fetch_cpu_ns_tot(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->strm->cpu_time;
return 1;
}
/* returns the average number of nanoseconds per call spent waiting for other tasks to be processed */
static int
smp_fetch_lat_ns_avg(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->strm->task->calls ? smp->strm->lat_time / smp->strm->task->calls : 0;
return 1;
}
/* returns the total number of nanoseconds per call spent waiting for other tasks to be processed */
static int
smp_fetch_lat_ns_tot(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->data.u.sint = smp->strm->lat_time;
return 1;
}
static int smp_fetch_const_str(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags |= SMP_F_CONST;
smp->data.type = SMP_T_STR;
smp->data.u.str.area = args[0].data.str.area;
smp->data.u.str.data = args[0].data.str.data;
return 1;
}
static int smp_check_const_bool(struct arg *args, char **err)
{
if (strcasecmp(args[0].data.str.area, "true") == 0 ||
strcasecmp(args[0].data.str.area, "1") == 0) {
chunk_destroy(&args[0].data.str);
args[0].type = ARGT_SINT;
args[0].data.sint = 1;
return 1;
}
if (strcasecmp(args[0].data.str.area, "false") == 0 ||
strcasecmp(args[0].data.str.area, "0") == 0) {
chunk_destroy(&args[0].data.str);
args[0].type = ARGT_SINT;
args[0].data.sint = 0;
return 1;
}
memprintf(err, "Expects 'true', 'false', '0' or '1'");
return 0;
}
static int smp_fetch_const_bool(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_BOOL;
smp->data.u.sint = args[0].data.sint;
return 1;
}
static int smp_fetch_const_int(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = args[0].data.sint;
return 1;
}
static int smp_fetch_const_ipv4(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_IPV4;
smp->data.u.ipv4 = args[0].data.ipv4;
return 1;
}
static int smp_fetch_const_ipv6(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_IPV6;
smp->data.u.ipv6 = args[0].data.ipv6;
return 1;
}
static int smp_check_const_bin(struct arg *args, char **err)
{
char *binstr = NULL;
int binstrlen;
if (!parse_binary(args[0].data.str.area, &binstr, &binstrlen, err))
return 0;
chunk_destroy(&args[0].data.str);
args[0].type = ARGT_STR;
args[0].data.str.area = binstr;
args[0].data.str.data = binstrlen;
return 1;
}
static int smp_fetch_const_bin(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->flags |= SMP_F_CONST;
smp->data.type = SMP_T_BIN;
smp->data.u.str.area = args[0].data.str.area;
smp->data.u.str.data = args[0].data.str.data;
return 1;
}
static int smp_check_const_meth(struct arg *args, char **err)
{
enum http_meth_t meth;
int i;
meth = find_http_meth(args[0].data.str.area, args[0].data.str.data);
if (meth != HTTP_METH_OTHER) {
chunk_destroy(&args[0].data.str);
args[0].type = ARGT_SINT;
args[0].data.sint = meth;
} else {
/* Check method availability. A method is a token defined as :
* tchar = "!" / "#" / "$" / "%" / "&" / "'" / "*" / "+" / "-" / "." /
* "^" / "_" / "`" / "|" / "~" / DIGIT / ALPHA
* token = 1*tchar
*/
for (i = 0; i < args[0].data.str.data; i++) {
if (!HTTP_IS_TOKEN(args[0].data.str.area[i])) {
memprintf(err, "expects valid method.");
return 0;
}
}
}
return 1;
}
static int smp_fetch_const_meth(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_METH;
if (args[0].type == ARGT_SINT) {
smp->flags &= ~SMP_F_CONST;
smp->data.u.meth.meth = args[0].data.sint;
smp->data.u.meth.str.area = "";
smp->data.u.meth.str.data = 0;
} else {
smp->flags |= SMP_F_CONST;
smp->data.u.meth.meth = HTTP_METH_OTHER;
smp->data.u.meth.str.area = args[0].data.str.area;
smp->data.u.meth.str.data = args[0].data.str.data;
}
return 1;
}
// This function checks the "uuid" sample's arguments.
// Function won't get called when no parameter is specified (maybe a bug?)
static int smp_check_uuid(struct arg *args, char **err)
{
if (!args[0].type) {
args[0].type = ARGT_SINT;
args[0].data.sint = 4;
} else {
switch (args[0].data.sint) {
case 4:
case 7:
break;
default:
memprintf(err, "Unsupported UUID version: '%lld'", args[0].data.sint);
return 0;
}
}
return 1;
}
// Generate a RFC 9562 UUID (default is v4 = fully random)
static int smp_fetch_uuid(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
long long int type = -1;
if (!args[0].type) {
type = 4;
} else {
type = args[0].data.sint;
}
switch (type) {
case 4:
ha_generate_uuid_v4(&trash);
break;
case 7:
ha_generate_uuid_v7(&trash);
break;
default:
return 0;
}
smp->data.type = SMP_T_STR;
smp->flags = SMP_F_VOL_TEST | SMP_F_MAY_CHANGE;
smp->data.u.str = trash;
return 1;
}
/* returns the uptime in seconds */
static int
smp_fetch_uptime(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_SINT;
smp->data.u.sint = ns_to_sec(now_ns - start_time_ns);
return 1;
}
/* Check if QUIC support was compiled and was not disabled by "no-quic" global option */
static int smp_fetch_quic_enabled(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
smp->data.type = SMP_T_BOOL;
smp->flags = 0;
#ifdef USE_QUIC
smp->data.u.sint = !(global.tune.options & GTUNE_NO_QUIC);
#else
smp->data.u.sint = 0;
#endif
return smp->data.u.sint;
}
/* Timing events re{q,s}.timer. */
static int smp_fetch_reX_timers(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct strm_logs *logs;
int t_request = -1;
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->flags = 0;
logs = &smp->strm->logs;
if ((llong)(logs->request_ts - logs->accept_ts) >= 0)
t_request = ns_to_ms(logs->request_ts - logs->accept_ts);
/* req.timer. */
if (kw[2] == 'q') {
switch (kw[10]) {
/* req.timer.idle (%Ti) */
case 'i':
smp->data.u.sint = logs->t_idle;
break;
/* req.timer.tq (%Tq) */
case 't':
smp->data.u.sint = t_request;
break;
/* req.timer.hdr (%TR) */
case 'h':
smp->data.u.sint = (t_request >= 0) ? t_request - logs->t_idle - logs->t_handshake : -1;
break;
/* req.timer.queue (%Tw) */
case 'q':
smp->data.u.sint = (logs->t_queue >= 0) ? logs->t_queue - t_request : -1;
break;
default:
goto error;
}
} else {
/* res.timer. */
switch (kw[10]) {
/* res.timer.hdr (%Tr) */
case 'h':
smp->data.u.sint = (logs->t_data >= 0) ? logs->t_data - logs->t_connect : -1;
break;
/* res.timer.data (%Td) */
case 'd':
smp->data.u.sint = (logs->t_data >= 0) ? logs->t_close - logs->t_data : -1;
break;
default:
goto error;
}
}
return 1;
error:
return 0;
}
/* Timing events txn. */
static int smp_fetch_txn_timers(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct strm_logs *logs;
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->flags = 0;
logs = &smp->strm->logs;
/* txn.timer. */
switch (kw[10]) {
/* txn.timer.total (%Ta) */
case 't':
smp->data.u.sint = logs->t_close - (logs->t_idle >= 0 ? logs->t_idle + logs->t_handshake : 0);
break;
/* txn.timer.user (%Tu) */
case 'u':
smp->data.u.sint = logs->t_close - (logs->t_idle >= 0 ? logs->t_idle : 0);
break;
default:
goto error;
}
return 1;
error:
return 0;
}
/* Server conn queueing infos - bc_{be,srv}_queue */
static int smp_fetch_conn_queues(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct strm_logs *logs;
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->flags = 0;
logs = &smp->strm->logs;
if (kw[3] == 'b') {
/* bc_be_queue */
smp->data.u.sint = logs->prx_queue_pos;
}
else {
/* bc_srv_queue */
smp->data.u.sint = logs->srv_queue_pos;
}
return 1;
}
/* Timing events {f,bc}.timer. */
static int smp_fetch_conn_timers(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct strm_logs *logs;
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->flags = 0;
logs = &smp->strm->logs;
if (kw[0] == 'b') {
/* fc.timer. */
switch (kw[9]) {
/* bc.timer.connect (%Tc) */
case 'c':
smp->data.u.sint = (logs->t_connect >= 0) ? logs->t_connect - logs->t_queue : -1;
break;
default:
goto error;
}
} else {
/* fc.timer. */
switch (kw[9]) {
/* fc.timer.handshake (%Th) */
case 'h':
smp->data.u.sint = logs->t_handshake;
break;
/* fc,timer.total (%Tt) */
case 't':
smp->data.u.sint = logs->t_close;
break;
default:
goto error;
}
}
return 1;
error:
return 0;
}
/* bytes_{in,out} */
static int smp_fetch_bytes(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct strm_logs *logs;
if (!smp->strm)
return 0;
smp->data.type = SMP_T_SINT;
smp->flags = 0;
logs = &smp->strm->logs;
if (!logs)
return 0;
if (kw[6] == 'i') { /* bytes_in */
smp->data.u.sint = logs->bytes_in;
} else { /* bytes_out */
smp->data.u.sint = logs->bytes_out;
}
return 1;
}
static int sample_conv_bytes_check(struct arg *args, struct sample_conv *conv,
const char *file, int line, char **err)
{
// arg0 is not optional, must be >= 0
if (!check_operator(&args[0], conv, file, line, err)) {
return 0;
}
if (args[0].type != ARGT_VAR) {
if (args[0].type != ARGT_SINT || args[0].data.sint < 0) {
memprintf(err, "expects a non-negative integer");
return 0;
}
}
// arg1 is optional, must be > 0
if (args[1].type != ARGT_STOP) {
if (!check_operator(&args[1], conv, file, line, err)) {
return 0;
}
if (args[1].type != ARGT_VAR) {
if (args[1].type != ARGT_SINT || args[1].data.sint <= 0) {
memprintf(err, "expects a positive integer");
return 0;
}
}
}
return 1;
}
static struct sample_fetch_kw_list smp_logs_kws = {ILH, {
{ "bytes_in", smp_fetch_bytes, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "bytes_out", smp_fetch_bytes, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "txn.timer.total", smp_fetch_txn_timers, 0, NULL, SMP_T_SINT, SMP_USE_TXFIN }, /* "Ta" */
{ "txn.timer.user", smp_fetch_txn_timers, 0, NULL, SMP_T_SINT, SMP_USE_TXFIN }, /* "Tu" */
{ "bc.timer.connect", smp_fetch_conn_timers, 0, NULL, SMP_T_SINT, SMP_USE_L4SRV }, /* "Tc" */
{ "bc_be_queue", smp_fetch_conn_queues, 0, NULL, SMP_T_SINT, SMP_USE_L4SRV }, /* "bq" */
{ "bc_srv_queue", smp_fetch_conn_queues, 0, NULL, SMP_T_SINT, SMP_USE_L4SRV }, /* "sq" */
{ "fc.timer.handshake", smp_fetch_conn_timers, 0, NULL, SMP_T_SINT, SMP_USE_L4CLI }, /* "Th" */
{ "fc.timer.total", smp_fetch_conn_timers, 0, NULL, SMP_T_SINT, SMP_USE_SSFIN }, /* "Tt" */
{ "req.timer.idle", smp_fetch_reX_timers, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV }, /* "Ti" */
{ "req.timer.tq", smp_fetch_reX_timers, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV }, /* "Tq" */
{ "req.timer.hdr", smp_fetch_reX_timers, 0, NULL, SMP_T_SINT, SMP_USE_HRQHV }, /* "TR" */
{ "req.timer.queue", smp_fetch_reX_timers, 0, NULL, SMP_T_SINT, SMP_USE_L4SRV }, /* "Tw" */
{ "res.timer.data", smp_fetch_reX_timers, 0, NULL, SMP_T_SINT, SMP_USE_RSFIN }, /* "Td" */
{ "res.timer.hdr", smp_fetch_reX_timers, 0, NULL, SMP_T_SINT, SMP_USE_HRSHV }, /* "Tr" */
{ /* END */ },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_logs_kws);
/* Note: must not be declared <const> as its list will be overwritten.
* Note: fetches that may return multiple types should be declared using the
* appropriate pseudo-type. If not available it must be declared as the lowest
* common denominator, the type that can be casted into all other ones.
*/
static struct sample_fetch_kw_list smp_kws = {ILH, {
{ "act_conn", smp_fetch_actconn, 0, NULL, SMP_T_SINT, SMP_USE_CONST },
{ "always_false", smp_fetch_false, 0, NULL, SMP_T_BOOL, SMP_USE_CONST },
{ "always_true", smp_fetch_true, 0, NULL, SMP_T_BOOL, SMP_USE_CONST },
{ "env", smp_fetch_env, ARG1(1,STR), NULL, SMP_T_STR, SMP_USE_CONST },
{ "date", smp_fetch_date, ARG2(0,SINT,STR), smp_check_date_unit, SMP_T_SINT, SMP_USE_CONST },
{ "date_us", smp_fetch_date_us, 0, NULL, SMP_T_SINT, SMP_USE_CONST },
{ "hostname", smp_fetch_hostname, 0, NULL, SMP_T_STR, SMP_USE_CONST },
{ "nbproc", smp_fetch_nbproc,0, NULL, SMP_T_SINT, SMP_USE_CONST },
{ "pid", smp_fetch_pid, 0, NULL, SMP_T_SINT, SMP_USE_CONST },
{ "proc", smp_fetch_proc, 0, NULL, SMP_T_SINT, SMP_USE_CONST },
{ "quic_enabled", smp_fetch_quic_enabled, 0, NULL, SMP_T_BOOL, SMP_USE_CONST },
{ "thread", smp_fetch_thread, 0, NULL, SMP_T_SINT, SMP_USE_CONST },
{ "rand", smp_fetch_rand, ARG1(0,SINT), NULL, SMP_T_SINT, SMP_USE_CONST },
{ "stopping", smp_fetch_stopping, 0, NULL, SMP_T_BOOL, SMP_USE_INTRN },
{ "uptime", smp_fetch_uptime, 0, NULL, SMP_T_SINT, SMP_USE_CONST },
{ "uuid", smp_fetch_uuid, ARG1(0, SINT), smp_check_uuid, SMP_T_STR, SMP_USE_CONST },
{ "cpu_calls", smp_fetch_cpu_calls, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "cpu_ns_avg", smp_fetch_cpu_ns_avg, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "cpu_ns_tot", smp_fetch_cpu_ns_tot, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "lat_ns_avg", smp_fetch_lat_ns_avg, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "lat_ns_tot", smp_fetch_lat_ns_tot, 0, NULL, SMP_T_SINT, SMP_USE_INTRN },
{ "str", smp_fetch_const_str, ARG1(1,STR), NULL , SMP_T_STR, SMP_USE_CONST },
{ "bool", smp_fetch_const_bool, ARG1(1,STR), smp_check_const_bool, SMP_T_BOOL, SMP_USE_CONST },
{ "int", smp_fetch_const_int, ARG1(1,SINT), NULL , SMP_T_SINT, SMP_USE_CONST },
{ "ipv4", smp_fetch_const_ipv4, ARG1(1,IPV4), NULL , SMP_T_IPV4, SMP_USE_CONST },
{ "ipv6", smp_fetch_const_ipv6, ARG1(1,IPV6), NULL , SMP_T_IPV6, SMP_USE_CONST },
{ "bin", smp_fetch_const_bin, ARG1(1,STR), smp_check_const_bin , SMP_T_BIN, SMP_USE_CONST },
{ "meth", smp_fetch_const_meth, ARG1(1,STR), smp_check_const_meth, SMP_T_METH, SMP_USE_CONST },
{ /* END */ },
}};
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
/* Note: must not be declared <const> as its list will be overwritten */
static struct sample_conv_kw_list sample_conv_kws = {ILH, {
{ "add_item",sample_conv_add_item, ARG3(2,STR,STR,STR), smp_check_add_item, SMP_T_STR, SMP_T_STR },
{ "debug", sample_conv_debug, ARG2(0,STR,STR), smp_check_debug, SMP_T_ANY, SMP_T_SAME },
{ "b64dec", sample_conv_base642bin, 0, NULL, SMP_T_STR, SMP_T_BIN },
{ "base64", sample_conv_bin2base64, 0, NULL, SMP_T_BIN, SMP_T_STR },
{ "concat", sample_conv_concat, ARG3(1,STR,STR,STR), smp_check_concat, SMP_T_STR, SMP_T_STR },
{ "ub64enc", sample_conv_bin2base64url,0, NULL, SMP_T_BIN, SMP_T_STR },
{ "ub64dec", sample_conv_base64url2bin,0, NULL, SMP_T_STR, SMP_T_BIN },
{ "upper", sample_conv_str2upper, 0, NULL, SMP_T_STR, SMP_T_STR },
{ "lower", sample_conv_str2lower, 0, NULL, SMP_T_STR, SMP_T_STR },
{ "length", sample_conv_length, 0, NULL, SMP_T_STR, SMP_T_SINT },
{ "be2dec", sample_conv_be2dec, ARG3(1,STR,SINT,SINT), sample_conv_be2dec_check, SMP_T_BIN, SMP_T_STR },
{ "be2hex", sample_conv_be2hex, ARG3(1,STR,SINT,SINT), sample_conv_be2hex_check, SMP_T_BIN, SMP_T_STR },
{ "hex", sample_conv_bin2hex, 0, NULL, SMP_T_BIN, SMP_T_STR },
{ "hex2i", sample_conv_hex2int, 0, NULL, SMP_T_STR, SMP_T_SINT },
{ "ipmask", sample_conv_ipmask, ARG2(1,MSK4,MSK6), NULL, SMP_T_ADDR, SMP_T_ADDR },
{ "ltime", sample_conv_ltime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR },
{ "ms_ltime", sample_conv_ms_ltime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR },
{ "us_ltime", sample_conv_us_ltime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR },
{ "utime", sample_conv_utime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR },
{ "ms_utime", sample_conv_ms_utime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR },
{ "us_utime", sample_conv_us_utime, ARG2(1,STR,SINT), NULL, SMP_T_SINT, SMP_T_STR },
{ "crc32", sample_conv_crc32, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "crc32c", sample_conv_crc32c, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "djb2", sample_conv_djb2, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "sdbm", sample_conv_sdbm, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "wt6", sample_conv_wt6, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "xxh3", sample_conv_xxh3, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "xxh32", sample_conv_xxh32, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "xxh64", sample_conv_xxh64, ARG1(0,SINT), NULL, SMP_T_BIN, SMP_T_SINT },
{ "json", sample_conv_json, ARG1(1,STR), sample_conv_json_check, SMP_T_STR, SMP_T_STR },
{ "bytes", sample_conv_bytes, ARG2(1,STR,STR), sample_conv_bytes_check, SMP_T_BIN, SMP_T_BIN },
{ "field", sample_conv_field, ARG3(2,SINT,STR,SINT), sample_conv_field_check, SMP_T_STR, SMP_T_STR },
{ "word", sample_conv_word, ARG3(2,SINT,STR,SINT), sample_conv_field_check, SMP_T_STR, SMP_T_STR },
{ "param", sample_conv_param, ARG2(1,STR,STR), sample_conv_param_check, SMP_T_STR, SMP_T_STR },
{ "regsub", sample_conv_regsub, ARG3(2,REG,STR,STR), sample_conv_regsub_check, SMP_T_STR, SMP_T_STR },
{ "sha1", sample_conv_sha1, 0, NULL, SMP_T_BIN, SMP_T_BIN },
{ "strcmp", sample_conv_strcmp, ARG1(1,STR), smp_check_strcmp, SMP_T_STR, SMP_T_SINT },
{ "host_only", sample_conv_host_only, 0, NULL, SMP_T_STR, SMP_T_STR },
{ "port_only", sample_conv_port_only, 0, NULL, SMP_T_STR, SMP_T_SINT },
/* gRPC converters. */
{ "ungrpc", sample_conv_ungrpc, ARG2(1,PBUF_FNUM,STR), sample_conv_protobuf_check, SMP_T_BIN, SMP_T_BIN },
{ "protobuf", sample_conv_protobuf, ARG2(1,PBUF_FNUM,STR), sample_conv_protobuf_check, SMP_T_BIN, SMP_T_BIN },
/* FIX converters */
{ "fix_is_valid", sample_conv_fix_is_valid, 0, NULL, SMP_T_BIN, SMP_T_BOOL },
{ "fix_tag_value", sample_conv_fix_tag_value, ARG1(1,STR), sample_conv_fix_value_check, SMP_T_BIN, SMP_T_BIN },
/* MQTT converters */
{ "mqtt_is_valid", sample_conv_mqtt_is_valid, 0, NULL, SMP_T_BIN, SMP_T_BOOL },
{ "mqtt_field_value", sample_conv_mqtt_field_value, ARG2(2,STR,STR), sample_conv_mqtt_field_value_check, SMP_T_BIN, SMP_T_STR },
{ "iif", sample_conv_iif, ARG2(2, STR, STR), NULL, SMP_T_BOOL, SMP_T_STR },
{ "and", sample_conv_binary_and, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "or", sample_conv_binary_or, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "xor", sample_conv_binary_xor, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "cpl", sample_conv_binary_cpl, 0, NULL, SMP_T_SINT, SMP_T_SINT },
{ "bool", sample_conv_arith_bool, 0, NULL, SMP_T_SINT, SMP_T_BOOL },
{ "not", sample_conv_arith_not, 0, NULL, SMP_T_SINT, SMP_T_BOOL },
{ "odd", sample_conv_arith_odd, 0, NULL, SMP_T_SINT, SMP_T_BOOL },
{ "even", sample_conv_arith_even, 0, NULL, SMP_T_SINT, SMP_T_BOOL },
{ "add", sample_conv_arith_add, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "sub", sample_conv_arith_sub, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "mul", sample_conv_arith_mul, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "div", sample_conv_arith_div, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "mod", sample_conv_arith_mod, ARG1(1,STR), check_operator, SMP_T_SINT, SMP_T_SINT },
{ "neg", sample_conv_arith_neg, 0, NULL, SMP_T_SINT, SMP_T_SINT },
{ "htonl", sample_conv_htonl, 0, NULL, SMP_T_SINT, SMP_T_BIN },
{ "cut_crlf", sample_conv_cut_crlf, 0, NULL, SMP_T_STR, SMP_T_STR },
{ "ltrim", sample_conv_ltrim, ARG1(1,STR), NULL, SMP_T_STR, SMP_T_STR },
{ "rtrim", sample_conv_rtrim, ARG1(1,STR), NULL, SMP_T_STR, SMP_T_STR },
{ "json_query", sample_conv_json_query, ARG2(1,STR,STR), sample_check_json_query , SMP_T_STR, SMP_T_ANY },
#ifdef USE_OPENSSL
/* JSON Web Token converters */
{ "jwt_header_query", sample_conv_jwt_header_query, ARG2(0,STR,STR), sample_conv_jwt_query_check, SMP_T_BIN, SMP_T_ANY },
{ "jwt_payload_query", sample_conv_jwt_payload_query, ARG2(0,STR,STR), sample_conv_jwt_query_check, SMP_T_BIN, SMP_T_ANY },
{ "jwt_verify", sample_conv_jwt_verify, ARG2(2,STR,STR), sample_conv_jwt_verify_check, SMP_T_BIN, SMP_T_SINT },
#endif
{ "when", sample_conv_when, ARG1(1,STR), check_when_cond, SMP_T_ANY, SMP_T_ANY },
{ NULL, NULL, 0, 0, 0 },
}};
INITCALL1(STG_REGISTER, sample_register_convs, &sample_conv_kws);