haproxy/src/lb_fwlc.c
Willy Tarreau 1eb6c55808 MINOR: lb: make the leastconn algorithm more accurate
The leastconn algorithm queues available servers based on their weighted
current load. But this results in an inaccurate load balancing when weights
differ and the load is very low, because what matters is not the load before
picking the server but the load resulting from picking the server. At the
very least, it must be granted that servers with the highest weight are
always picked first when no server has any connection.

This patch addresses this by simply adding one to the current connections
count when queuing the server, since this is the load the server will have
once picked. This finally allows to bridge the gap that existed between
the "leastconn" and the "first" algorithms.
2018-12-14 08:33:28 +01:00

352 lines
9.4 KiB
C

/*
* Fast Weighted Least Connection load balancing algorithm.
*
* Copyright 2000-2009 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <common/compat.h>
#include <common/config.h>
#include <common/debug.h>
#include <eb32tree.h>
#include <types/global.h>
#include <types/server.h>
#include <proto/backend.h>
#include <proto/queue.h>
/* Remove a server from a tree. It must have previously been dequeued. This
* function is meant to be called when a server is going down or has its
* weight disabled.
*
* The server's lock and the lbprm's lock must be held.
*/
static inline void fwlc_remove_from_tree(struct server *s)
{
s->lb_tree = NULL;
}
/* simply removes a server from a tree.
*
* The server's lock and the lbprm's lock must be held.
*/
static inline void fwlc_dequeue_srv(struct server *s)
{
eb32_delete(&s->lb_node);
}
/* Queue a server in its associated tree, assuming the weight is >0.
* Servers are sorted by (#conns+1)/weight. To ensure maximum accuracy,
* we use (#conns+1)*SRV_EWGHT_MAX/eweight as the sorting key. The reason
* for using #conns+1 is to sort by weights in case the server is picked
* and not before it is picked. This provides a better load accuracy for
* low connection counts when weights differ and makes sure the round-robin
* applies between servers of highest weight first.
*
* The server's lock and the lbprm's lock must be held.
*/
static inline void fwlc_queue_srv(struct server *s)
{
s->lb_node.key = (s->served + 1) * SRV_EWGHT_MAX / s->next_eweight;
eb32_insert(s->lb_tree, &s->lb_node);
}
/* Re-position the server in the FWLC tree after it has been assigned one
* connection or after it has released one. Note that it is possible that
* the server has been moved out of the tree due to failed health-checks.
*
* The server's lock must be held. The lbprm's lock will be used.
*/
static void fwlc_srv_reposition(struct server *s)
{
if (!s->lb_tree)
return;
HA_SPIN_LOCK(LBPRM_LOCK, &s->proxy->lbprm.lock);
fwlc_dequeue_srv(s);
fwlc_queue_srv(s);
HA_SPIN_UNLOCK(LBPRM_LOCK, &s->proxy->lbprm.lock);
}
/* This function updates the server trees according to server <srv>'s new
* state. It should be called when server <srv>'s status changes to down.
* It is not important whether the server was already down or not. It is not
* important either that the new state is completely down (the caller may not
* know all the variables of a server's state).
*
* The server's lock must be held. The lbprm's lock will be used.
*/
static void fwlc_set_server_status_down(struct server *srv)
{
struct proxy *p = srv->proxy;
if (!srv_lb_status_changed(srv))
return;
if (srv_willbe_usable(srv))
goto out_update_state;
HA_SPIN_LOCK(LBPRM_LOCK, &p->lbprm.lock);
if (!srv_currently_usable(srv))
/* server was already down */
goto out_update_backend;
if (srv->flags & SRV_F_BACKUP) {
p->lbprm.tot_wbck -= srv->cur_eweight;
p->srv_bck--;
if (srv == p->lbprm.fbck) {
/* we lost the first backup server in a single-backup
* configuration, we must search another one.
*/
struct server *srv2 = p->lbprm.fbck;
do {
srv2 = srv2->next;
} while (srv2 &&
!((srv2->flags & SRV_F_BACKUP) &&
srv_willbe_usable(srv2)));
p->lbprm.fbck = srv2;
}
} else {
p->lbprm.tot_wact -= srv->cur_eweight;
p->srv_act--;
}
fwlc_dequeue_srv(srv);
fwlc_remove_from_tree(srv);
out_update_backend:
/* check/update tot_used, tot_weight */
update_backend_weight(p);
HA_SPIN_UNLOCK(LBPRM_LOCK, &p->lbprm.lock);
out_update_state:
srv_lb_commit_status(srv);
}
/* This function updates the server trees according to server <srv>'s new
* state. It should be called when server <srv>'s status changes to up.
* It is not important whether the server was already down or not. It is not
* important either that the new state is completely UP (the caller may not
* know all the variables of a server's state). This function will not change
* the weight of a server which was already up.
*
* The server's lock must be held. The lbprm's lock will be used.
*/
static void fwlc_set_server_status_up(struct server *srv)
{
struct proxy *p = srv->proxy;
if (!srv_lb_status_changed(srv))
return;
if (!srv_willbe_usable(srv))
goto out_update_state;
HA_SPIN_LOCK(LBPRM_LOCK, &p->lbprm.lock);
if (srv_currently_usable(srv))
/* server was already up */
goto out_update_backend;
if (srv->flags & SRV_F_BACKUP) {
srv->lb_tree = &p->lbprm.fwlc.bck;
p->lbprm.tot_wbck += srv->next_eweight;
p->srv_bck++;
if (!(p->options & PR_O_USE_ALL_BK)) {
if (!p->lbprm.fbck) {
/* there was no backup server anymore */
p->lbprm.fbck = srv;
} else {
/* we may have restored a backup server prior to fbck,
* in which case it should replace it.
*/
struct server *srv2 = srv;
do {
srv2 = srv2->next;
} while (srv2 && (srv2 != p->lbprm.fbck));
if (srv2)
p->lbprm.fbck = srv;
}
}
} else {
srv->lb_tree = &p->lbprm.fwlc.act;
p->lbprm.tot_wact += srv->next_eweight;
p->srv_act++;
}
/* note that eweight cannot be 0 here */
fwlc_queue_srv(srv);
out_update_backend:
/* check/update tot_used, tot_weight */
update_backend_weight(p);
HA_SPIN_UNLOCK(LBPRM_LOCK, &p->lbprm.lock);
out_update_state:
srv_lb_commit_status(srv);
}
/* This function must be called after an update to server <srv>'s effective
* weight. It may be called after a state change too.
*
* The server's lock must be held. The lbprm's lock will be used.
*/
static void fwlc_update_server_weight(struct server *srv)
{
int old_state, new_state;
struct proxy *p = srv->proxy;
if (!srv_lb_status_changed(srv))
return;
/* If changing the server's weight changes its state, we simply apply
* the procedures we already have for status change. If the state
* remains down, the server is not in any tree, so it's as easy as
* updating its values. If the state remains up with different weights,
* there are some computations to perform to find a new place and
* possibly a new tree for this server.
*/
old_state = srv_currently_usable(srv);
new_state = srv_willbe_usable(srv);
if (!old_state && !new_state) {
srv_lb_commit_status(srv);
return;
}
else if (!old_state && new_state) {
fwlc_set_server_status_up(srv);
return;
}
else if (old_state && !new_state) {
fwlc_set_server_status_down(srv);
return;
}
HA_SPIN_LOCK(LBPRM_LOCK, &p->lbprm.lock);
if (srv->lb_tree)
fwlc_dequeue_srv(srv);
if (srv->flags & SRV_F_BACKUP) {
p->lbprm.tot_wbck += srv->next_eweight - srv->cur_eweight;
srv->lb_tree = &p->lbprm.fwlc.bck;
} else {
p->lbprm.tot_wact += srv->next_eweight - srv->cur_eweight;
srv->lb_tree = &p->lbprm.fwlc.act;
}
fwlc_queue_srv(srv);
update_backend_weight(p);
HA_SPIN_UNLOCK(LBPRM_LOCK, &p->lbprm.lock);
srv_lb_commit_status(srv);
}
/* This function is responsible for building the trees in case of fast
* weighted least-conns. It also sets p->lbprm.wdiv to the eweight to
* uweight ratio. Both active and backup groups are initialized.
*/
void fwlc_init_server_tree(struct proxy *p)
{
struct server *srv;
struct eb_root init_head = EB_ROOT;
p->lbprm.set_server_status_up = fwlc_set_server_status_up;
p->lbprm.set_server_status_down = fwlc_set_server_status_down;
p->lbprm.update_server_eweight = fwlc_update_server_weight;
p->lbprm.server_take_conn = fwlc_srv_reposition;
p->lbprm.server_drop_conn = fwlc_srv_reposition;
p->lbprm.wdiv = BE_WEIGHT_SCALE;
for (srv = p->srv; srv; srv = srv->next) {
srv->next_eweight = (srv->uweight * p->lbprm.wdiv + p->lbprm.wmult - 1) / p->lbprm.wmult;
srv_lb_commit_status(srv);
}
recount_servers(p);
update_backend_weight(p);
p->lbprm.fwlc.act = init_head;
p->lbprm.fwlc.bck = init_head;
/* queue active and backup servers in two distinct groups */
for (srv = p->srv; srv; srv = srv->next) {
if (!srv_currently_usable(srv))
continue;
srv->lb_tree = (srv->flags & SRV_F_BACKUP) ? &p->lbprm.fwlc.bck : &p->lbprm.fwlc.act;
fwlc_queue_srv(srv);
}
}
/* Return next server from the FWLC tree in backend <p>. If the tree is empty,
* return NULL. Saturated servers are skipped.
*
* The server's lock must be held. The lbprm's lock will be used.
*/
struct server *fwlc_get_next_server(struct proxy *p, struct server *srvtoavoid)
{
struct server *srv, *avoided;
struct eb32_node *node;
srv = avoided = NULL;
HA_SPIN_LOCK(LBPRM_LOCK, &p->lbprm.lock);
if (p->srv_act)
node = eb32_first(&p->lbprm.fwlc.act);
else if (p->lbprm.fbck) {
srv = p->lbprm.fbck;
goto out;
}
else if (p->srv_bck)
node = eb32_first(&p->lbprm.fwlc.bck);
else {
srv = NULL;
goto out;
}
while (node) {
/* OK, we have a server. However, it may be saturated, in which
* case we don't want to reconsider it for now, so we'll simply
* skip it. Same if it's the server we try to avoid, in which
* case we simply remember it for later use if needed.
*/
struct server *s;
s = eb32_entry(node, struct server, lb_node);
if (!s->maxconn || (!s->nbpend && s->served < srv_dynamic_maxconn(s))) {
if (s != srvtoavoid) {
srv = s;
break;
}
avoided = s;
}
node = eb32_next(node);
}
if (!srv)
srv = avoided;
out:
HA_SPIN_UNLOCK(LBPRM_LOCK, &p->lbprm.lock);
return srv;
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/