mirror of
				https://git.haproxy.org/git/haproxy.git/
				synced 2025-10-31 00:21:00 +01:00 
			
		
		
		
	The fix in commit 09a325a4de ("BUG/MINOR: tools: always terminate empty
lines") is insufficient. While it properly addresses the lack of trailing
zero, it doesn't account for it in the returned outlen that is used to
allocate a larger line. This happens at boot if the very first line of
the test file is exactly a sharp with nothing else. In this case it will
return a length 0 and the caller (parse_cfg()) will try to re-allocate an
entry of size zero and will fail, bailing out a lack of memory. This time
it should really be OK.
It doesn't need to be backported, unless the patch above would be.
		
	
			
		
			
				
	
	
		
			7327 lines
		
	
	
		
			197 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7327 lines
		
	
	
		
			197 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * General purpose functions.
 | |
|  *
 | |
|  * Copyright 2000-2010 Willy Tarreau <w@1wt.eu>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
 | |
| #define _GNU_SOURCE
 | |
| #include <dlfcn.h>
 | |
| #include <link.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(__FreeBSD__)
 | |
| #include <sys/param.h>
 | |
| #if __FreeBSD_version < 1300058
 | |
| #include <elf.h>
 | |
| #include <dlfcn.h>
 | |
| extern void *__elf_aux_vector;
 | |
| #else
 | |
| #include <sys/auxv.h>
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(__NetBSD__)
 | |
| #include <sys/exec_elf.h>
 | |
| #include <dlfcn.h>
 | |
| #endif
 | |
| 
 | |
| #include <ctype.h>
 | |
| #include <errno.h>
 | |
| #include <netdb.h>
 | |
| #include <signal.h>
 | |
| #include <stdarg.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <time.h>
 | |
| #include <unistd.h>
 | |
| #include <sys/mman.h>
 | |
| #include <sys/socket.h>
 | |
| #include <sys/stat.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/un.h>
 | |
| #include <netinet/in.h>
 | |
| #include <arpa/inet.h>
 | |
| 
 | |
| #if defined(__linux__) && defined(__GLIBC__) && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 16))
 | |
| #include <sys/auxv.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(USE_PRCTL)
 | |
| #include <sys/prctl.h>
 | |
| #endif
 | |
| 
 | |
| #include <import/cebus_tree.h>
 | |
| #include <import/eb32sctree.h>
 | |
| #include <import/eb32tree.h>
 | |
| #include <import/ebmbtree.h>
 | |
| 
 | |
| #include <haproxy/api.h>
 | |
| #include <haproxy/applet.h>
 | |
| #include <haproxy/chunk.h>
 | |
| #include <haproxy/compiler.h>
 | |
| #include <haproxy/dgram.h>
 | |
| #include <haproxy/global.h>
 | |
| #include <haproxy/hlua.h>
 | |
| #include <haproxy/listener.h>
 | |
| #include <haproxy/namespace.h>
 | |
| #include <haproxy/net_helper.h>
 | |
| #include <haproxy/protocol.h>
 | |
| #include <haproxy/quic_sock.h>
 | |
| #include <haproxy/resolvers.h>
 | |
| #include <haproxy/sc_strm.h>
 | |
| #include <haproxy/sock.h>
 | |
| #include <haproxy/ssl_sock.h>
 | |
| #include <haproxy/ssl_utils.h>
 | |
| #include <haproxy/stconn.h>
 | |
| #include <haproxy/task.h>
 | |
| #include <haproxy/tools.h>
 | |
| #include <haproxy/xxhash.h>
 | |
| 
 | |
| extern char **environ;
 | |
| 
 | |
| /* This macro returns false if the test __x is false. Many
 | |
|  * of the following parsing function must be abort the processing
 | |
|  * if it returns 0, so this macro is useful for writing light code.
 | |
|  */
 | |
| #define RET0_UNLESS(__x) do { if (!(__x)) return 0; } while (0)
 | |
| 
 | |
| /* Define the number of line of hash_word */
 | |
| #define NB_L_HASH_WORD 15
 | |
| 
 | |
| /* return the hash of a string and length for a given key. All keys are valid. */
 | |
| #define HA_ANON(key, str, len) (XXH32(str, len, key) & 0xFFFFFF)
 | |
| 
 | |
| /* enough to store NB_ITOA_STR integers of :
 | |
|  *   2^64-1 = 18446744073709551615 or
 | |
|  *    -2^63 = -9223372036854775808
 | |
|  *
 | |
|  * The HTML version needs room for adding the 25 characters
 | |
|  * '<span class="rls"></span>' around digits at positions 3N+1 in order
 | |
|  * to add spacing at up to 6 positions : 18 446 744 073 709 551 615
 | |
|  */
 | |
| THREAD_LOCAL char itoa_str[NB_ITOA_STR][171];
 | |
| THREAD_LOCAL int itoa_idx = 0; /* index of next itoa_str to use */
 | |
| 
 | |
| /* sometimes we'll need to quote strings (eg: in stats), and we don't expect
 | |
|  * to quote strings larger than a max configuration line.
 | |
|  */
 | |
| THREAD_LOCAL char quoted_str[NB_QSTR][QSTR_SIZE + 1];
 | |
| THREAD_LOCAL int quoted_idx = 0;
 | |
| 
 | |
| /* thread-local PRNG state. It's modified to start from a different sequence
 | |
|  * on all threads upon startup. It must not be used or anything beyond getting
 | |
|  * statistical values as it's 100% predictable.
 | |
|  */
 | |
| THREAD_LOCAL unsigned int statistical_prng_state = 2463534242U;
 | |
| 
 | |
| /* set to true if this is a static build */
 | |
| int build_is_static = 0;
 | |
| 
 | |
| /* known file names, made of file_name_node, to be used with file_name_*() */
 | |
| struct {
 | |
| 	struct ceb_node *root; // file names tree, used with cebus_*()
 | |
| 	__decl_thread(HA_RWLOCK_T lock);
 | |
| } file_names = { 0 };
 | |
| 
 | |
| /* A global static table to store hashed words */
 | |
| static THREAD_LOCAL char hash_word[NB_L_HASH_WORD][20];
 | |
| static THREAD_LOCAL int index_hash = 0;
 | |
| 
 | |
| /*
 | |
|  * unsigned long long ASCII representation
 | |
|  *
 | |
|  * return the last char '\0' or NULL if no enough
 | |
|  * space in dst
 | |
|  */
 | |
| char *ulltoa(unsigned long long n, char *dst, size_t size)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	char *res;
 | |
| 
 | |
| 	switch(n) {
 | |
| 		case 1ULL ... 9ULL:
 | |
| 			i = 0;
 | |
| 			break;
 | |
| 
 | |
| 		case 10ULL ... 99ULL:
 | |
| 			i = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case 100ULL ... 999ULL:
 | |
| 			i = 2;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000ULL ... 9999ULL:
 | |
| 			i = 3;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000ULL ... 99999ULL:
 | |
| 			i = 4;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000ULL ... 999999ULL:
 | |
| 			i = 5;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000ULL ... 9999999ULL:
 | |
| 			i = 6;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000ULL ... 99999999ULL:
 | |
| 			i = 7;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000ULL ... 999999999ULL:
 | |
| 			i = 8;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000ULL ... 9999999999ULL:
 | |
| 			i = 9;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000ULL ... 99999999999ULL:
 | |
| 			i = 10;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000000ULL ... 999999999999ULL:
 | |
| 			i = 11;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000000ULL ... 9999999999999ULL:
 | |
| 			i = 12;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000000ULL ... 99999999999999ULL:
 | |
| 			i = 13;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000000000ULL ... 999999999999999ULL:
 | |
| 			i = 14;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000000000ULL ... 9999999999999999ULL:
 | |
| 			i = 15;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000000000ULL ... 99999999999999999ULL:
 | |
| 			i = 16;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000000000000ULL ... 999999999999999999ULL:
 | |
| 			i = 17;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000000000000ULL ... 9999999999999999999ULL:
 | |
| 			i = 18;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000000000000ULL ... ULLONG_MAX:
 | |
| 			i = 19;
 | |
| 			break;
 | |
| 	}
 | |
| 	if (i + 2 > size) // (i + 1) + '\0'
 | |
| 		return NULL;  // too long
 | |
| 	res = dst + i + 1;
 | |
| 	*res = '\0';
 | |
| 	for (; i >= 0; i--) {
 | |
| 		dst[i] = n % 10ULL + '0';
 | |
| 		n /= 10ULL;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * unsigned long ASCII representation
 | |
|  *
 | |
|  * return the last char '\0' or NULL if no enough
 | |
|  * space in dst
 | |
|  */
 | |
| char *ultoa_o(unsigned long n, char *dst, size_t size)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	char *res;
 | |
| 
 | |
| 	switch (n) {
 | |
| 		case 0U ... 9UL:
 | |
| 			i = 0;
 | |
| 			break;
 | |
| 
 | |
| 		case 10U ... 99UL:
 | |
| 			i = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case 100U ... 999UL:
 | |
| 			i = 2;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000U ... 9999UL:
 | |
| 			i = 3;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000U ... 99999UL:
 | |
| 			i = 4;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000U ... 999999UL:
 | |
| 			i = 5;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000U ... 9999999UL:
 | |
| 			i = 6;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000U ... 99999999UL:
 | |
| 			i = 7;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000U ... 999999999UL:
 | |
| 			i = 8;
 | |
| 			break;
 | |
| #if __WORDSIZE == 32
 | |
| 
 | |
| 		case 1000000000ULL ... ULONG_MAX:
 | |
| 			i = 9;
 | |
| 			break;
 | |
| 
 | |
| #elif __WORDSIZE == 64
 | |
| 
 | |
| 		case 1000000000ULL ... 9999999999UL:
 | |
| 			i = 9;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000ULL ... 99999999999UL:
 | |
| 			i = 10;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000000ULL ... 999999999999UL:
 | |
| 			i = 11;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000000ULL ... 9999999999999UL:
 | |
| 			i = 12;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000000ULL ... 99999999999999UL:
 | |
| 			i = 13;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000000000ULL ... 999999999999999UL:
 | |
| 			i = 14;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000000000ULL ... 9999999999999999UL:
 | |
| 			i = 15;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000000000ULL ... 99999999999999999UL:
 | |
| 			i = 16;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000000000000ULL ... 999999999999999999UL:
 | |
| 			i = 17;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000000000000ULL ... 9999999999999999999UL:
 | |
| 			i = 18;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000000000000ULL ... ULONG_MAX:
 | |
| 			i = 19;
 | |
| 			break;
 | |
| 
 | |
| #endif
 | |
| 	}
 | |
| 	if (i + 2 > size) // (i + 1) + '\0'
 | |
| 		return NULL;  // too long
 | |
| 	res = dst + i + 1;
 | |
| 	*res = '\0';
 | |
| 	for (; i >= 0; i--) {
 | |
| 		dst[i] = n % 10U + '0';
 | |
| 		n /= 10U;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * signed long ASCII representation
 | |
|  *
 | |
|  * return the last char '\0' or NULL if no enough
 | |
|  * space in dst
 | |
|  */
 | |
| char *ltoa_o(long int n, char *dst, size_t size)
 | |
| {
 | |
| 	char *pos = dst;
 | |
| 
 | |
| 	if (n < 0) {
 | |
| 		if (size < 3)
 | |
| 			return NULL; // min size is '-' + digit + '\0' but another test in ultoa
 | |
| 		*pos = '-';
 | |
| 		pos++;
 | |
| 		dst = ultoa_o(-n, pos, size - 1);
 | |
| 	} else {
 | |
| 		dst = ultoa_o(n, dst, size);
 | |
| 	}
 | |
| 	return dst;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * signed long long ASCII representation
 | |
|  *
 | |
|  * return the last char '\0' or NULL if no enough
 | |
|  * space in dst
 | |
|  */
 | |
| char *lltoa(long long n, char *dst, size_t size)
 | |
| {
 | |
| 	char *pos = dst;
 | |
| 
 | |
| 	if (n < 0) {
 | |
| 		if (size < 3)
 | |
| 			return NULL; // min size is '-' + digit + '\0' but another test in ulltoa
 | |
| 		*pos = '-';
 | |
| 		pos++;
 | |
| 		dst = ulltoa(-n, pos, size - 1);
 | |
| 	} else {
 | |
| 		dst = ulltoa(n, dst, size);
 | |
| 	}
 | |
| 	return dst;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * write a ascii representation of a unsigned into dst,
 | |
|  * return a pointer to the last character
 | |
|  * Pad the ascii representation with '0', using size.
 | |
|  */
 | |
| char *utoa_pad(unsigned int n, char *dst, size_t size)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	char *ret;
 | |
| 
 | |
| 	switch(n) {
 | |
| 		case 0U ... 9U:
 | |
| 			i = 0;
 | |
| 			break;
 | |
| 
 | |
| 		case 10U ... 99U:
 | |
| 			i = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case 100U ... 999U:
 | |
| 			i = 2;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000U ... 9999U:
 | |
| 			i = 3;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000U ... 99999U:
 | |
| 			i = 4;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000U ... 999999U:
 | |
| 			i = 5;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000U ... 9999999U:
 | |
| 			i = 6;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000U ... 99999999U:
 | |
| 			i = 7;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000U ... 999999999U:
 | |
| 			i = 8;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000U ... 4294967295U:
 | |
| 			i = 9;
 | |
| 			break;
 | |
| 	}
 | |
| 	if (i + 2 > size) // (i + 1) + '\0'
 | |
| 		return NULL;  // too long
 | |
| 	i = size - 2; // padding - '\0'
 | |
| 
 | |
| 	ret = dst + i + 1;
 | |
| 	*ret = '\0';
 | |
| 	for (; i >= 0; i--) {
 | |
| 		dst[i] = n % 10U + '0';
 | |
| 		n /= 10U;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * copies at most <size-1> chars from <src> to <dst>. Last char is always
 | |
|  * set to 0, unless <size> is 0. The number of chars copied is returned
 | |
|  * (excluding the terminating zero).
 | |
|  * This code has been optimized for size and speed : on x86, it's 45 bytes
 | |
|  * long, uses only registers, and consumes only 4 cycles per char.
 | |
|  */
 | |
| int strlcpy2(char *dst, const char *src, int size)
 | |
| {
 | |
| 	char *orig = dst;
 | |
| 	if (size) {
 | |
| 		while (--size && (*dst = *src)) {
 | |
| 			src++; dst++;
 | |
| 		}
 | |
| 		*dst = 0;
 | |
| 	}
 | |
| 	return dst - orig;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function simply returns a locally allocated string containing
 | |
|  * the ascii representation for number 'n' in decimal.
 | |
|  */
 | |
| char *ultoa_r(unsigned long n, char *buffer, int size)
 | |
| {
 | |
| 	char *pos;
 | |
| 	
 | |
| 	pos = buffer + size - 1;
 | |
| 	*pos-- = '\0';
 | |
| 	
 | |
| 	do {
 | |
| 		*pos-- = '0' + n % 10;
 | |
| 		n /= 10;
 | |
| 	} while (n && pos >= buffer);
 | |
| 	return pos + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function simply returns a locally allocated string containing
 | |
|  * the ascii representation for number 'n' in decimal.
 | |
|  */
 | |
| char *lltoa_r(long long int in, char *buffer, int size)
 | |
| {
 | |
| 	char *pos;
 | |
| 	int neg = 0;
 | |
| 	unsigned long long int n;
 | |
| 
 | |
| 	pos = buffer + size - 1;
 | |
| 	*pos-- = '\0';
 | |
| 
 | |
| 	if (in < 0) {
 | |
| 		neg = 1;
 | |
| 		n = -in;
 | |
| 	}
 | |
| 	else
 | |
| 		n = in;
 | |
| 
 | |
| 	do {
 | |
| 		*pos-- = '0' + n % 10;
 | |
| 		n /= 10;
 | |
| 	} while (n && pos >= buffer);
 | |
| 	if (neg && pos > buffer)
 | |
| 		*pos-- = '-';
 | |
| 	return pos + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function simply returns a locally allocated string containing
 | |
|  * the ascii representation for signed number 'n' in decimal.
 | |
|  */
 | |
| char *sltoa_r(long n, char *buffer, int size)
 | |
| {
 | |
| 	char *pos;
 | |
| 
 | |
| 	if (n >= 0)
 | |
| 		return ultoa_r(n, buffer, size);
 | |
| 
 | |
| 	pos = ultoa_r(-n, buffer + 1, size - 1) - 1;
 | |
| 	*pos = '-';
 | |
| 	return pos;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function simply returns a locally allocated string containing
 | |
|  * the ascii representation for number 'n' in decimal, formatted for
 | |
|  * HTML output with tags to create visual grouping by 3 digits. The
 | |
|  * output needs to support at least 171 characters.
 | |
|  */
 | |
| const char *ulltoh_r(unsigned long long n, char *buffer, int size)
 | |
| {
 | |
| 	char *start;
 | |
| 	int digit = 0;
 | |
| 	
 | |
| 	start = buffer + size;
 | |
| 	*--start = '\0';
 | |
| 	
 | |
| 	do {
 | |
| 		if (digit == 3 && start >= buffer + 7)
 | |
| 			memcpy(start -= 7, "</span>", 7);
 | |
| 
 | |
| 		if (start >= buffer + 1) {
 | |
| 			*--start = '0' + n % 10;
 | |
| 			n /= 10;
 | |
| 		}
 | |
| 
 | |
| 		if (digit == 3 && start >= buffer + 18)
 | |
| 			memcpy(start -= 18, "<span class=\"rls\">", 18);
 | |
| 
 | |
| 		if (digit++ == 3)
 | |
| 			digit = 1;
 | |
| 	} while (n && start > buffer);
 | |
| 	return start;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function simply returns a locally allocated string containing the ascii
 | |
|  * representation for number 'n' in decimal, unless n is 0 in which case it
 | |
|  * returns the alternate string (or an empty string if the alternate string is
 | |
|  * NULL). It use is intended for limits reported in reports, where it's
 | |
|  * desirable not to display anything if there is no limit. Warning! it shares
 | |
|  * the same vector as ultoa_r().
 | |
|  */
 | |
| const char *limit_r(unsigned long n, char *buffer, int size, const char *alt)
 | |
| {
 | |
| 	return (n) ? ultoa_r(n, buffer, size) : (alt ? alt : "");
 | |
| }
 | |
| 
 | |
| /* Trims the first "%f" float in a string to its minimum number of digits after
 | |
|  * the decimal point by trimming trailing zeroes, even dropping the decimal
 | |
|  * point if not needed. The string is in <buffer> of length <len>, and the
 | |
|  * number is expected to start at or after position <num_start> (the first
 | |
|  * point appearing there is considered). A NUL character is always placed at
 | |
|  * the end if some trimming occurs. The new buffer length is returned.
 | |
|  */
 | |
| size_t flt_trim(char *buffer, size_t num_start, size_t len)
 | |
| {
 | |
| 	char *end = buffer + len;
 | |
| 	char *p = buffer + num_start;
 | |
| 	char *trim;
 | |
| 
 | |
| 	do {
 | |
| 		if (p >= end)
 | |
| 			return len;
 | |
| 		trim = p++;
 | |
| 	} while (*trim != '.');
 | |
| 
 | |
| 	/* For now <trim> is on the decimal point. Let's look for any other
 | |
| 	 * meaningful digit after it.
 | |
| 	 */
 | |
| 	while (p < end) {
 | |
| 		if (*p++ != '0')
 | |
| 			trim = p;
 | |
| 	}
 | |
| 
 | |
| 	if (trim < end)
 | |
| 		*trim = 0;
 | |
| 
 | |
| 	return trim - buffer;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function simply returns a locally allocated string containing
 | |
|  * the ascii representation for number 'n' in decimal with useless trailing
 | |
|  * zeroes trimmed.
 | |
|  */
 | |
| char *ftoa_r(double n, char *buffer, int size)
 | |
| {
 | |
| 	flt_trim(buffer, 0, snprintf(buffer, size, "%f", n));
 | |
| 	return buffer;
 | |
| }
 | |
| 
 | |
| /* returns a locally allocated string containing the quoted encoding of the
 | |
|  * input string. The output may be truncated to QSTR_SIZE chars, but it is
 | |
|  * guaranteed that the string will always be properly terminated. Quotes are
 | |
|  * encoded by doubling them as is commonly done in CSV files. QSTR_SIZE must
 | |
|  * always be at least 4 chars.
 | |
|  */
 | |
| const char *qstr(const char *str)
 | |
| {
 | |
| 	char *ret = quoted_str[quoted_idx];
 | |
| 	char *p, *end;
 | |
| 
 | |
| 	if (++quoted_idx >= NB_QSTR)
 | |
| 		quoted_idx = 0;
 | |
| 
 | |
| 	p = ret;
 | |
| 	end = ret + QSTR_SIZE;
 | |
| 
 | |
| 	*p++ = '"';
 | |
| 
 | |
| 	/* always keep 3 chars to support passing "" and the ending " */
 | |
| 	while (*str && p < end - 3) {
 | |
| 		if (*str == '"') {
 | |
| 			*p++ = '"';
 | |
| 			*p++ = '"';
 | |
| 		}
 | |
| 		else
 | |
| 			*p++ = *str;
 | |
| 		str++;
 | |
| 	}
 | |
| 	*p++ = '"';
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns non-zero if character <s> is a hex digit (0-9, a-f, A-F), else zero.
 | |
|  *
 | |
|  * It looks like this one would be a good candidate for inlining, but this is
 | |
|  * not interesting because it around 35 bytes long and often called multiple
 | |
|  * times within the same function.
 | |
|  */
 | |
| int ishex(char s)
 | |
| {
 | |
| 	s -= '0';
 | |
| 	if ((unsigned char)s <= 9)
 | |
| 		return 1;
 | |
| 	s -= 'A' - '0';
 | |
| 	if ((unsigned char)s <= 5)
 | |
| 		return 1;
 | |
| 	s -= 'a' - 'A';
 | |
| 	if ((unsigned char)s <= 5)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* rounds <i> down to the closest value having max 2 digits */
 | |
| unsigned int round_2dig(unsigned int i)
 | |
| {
 | |
| 	unsigned int mul = 1;
 | |
| 
 | |
| 	while (i >= 100) {
 | |
| 		i /= 10;
 | |
| 		mul *= 10;
 | |
| 	}
 | |
| 	return i * mul;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_:.-]. If an
 | |
|  * invalid character is found, a pointer to it is returned. If everything is
 | |
|  * fine, NULL is returned.
 | |
|  */
 | |
| const char *invalid_char(const char *name)
 | |
| {
 | |
| 	if (!*name)
 | |
| 		return name;
 | |
| 
 | |
| 	while (*name) {
 | |
| 		if (!isalnum((unsigned char)*name) && *name != '.' && *name != ':' &&
 | |
| 		    *name != '_' && *name != '-')
 | |
| 			return name;
 | |
| 		name++;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks <name> for invalid characters. Valid chars are [_.-] and those
 | |
|  * accepted by <f> function.
 | |
|  * If an invalid character is found, a pointer to it is returned.
 | |
|  * If everything is fine, NULL is returned.
 | |
|  */
 | |
| static inline const char *__invalid_char(const char *name, int (*f)(int)) {
 | |
| 
 | |
| 	if (!*name)
 | |
| 		return name;
 | |
| 
 | |
| 	while (*name) {
 | |
| 		if (!f((unsigned char)*name) && *name != '.' &&
 | |
| 		    *name != '_' && *name != '-')
 | |
| 			return name;
 | |
| 
 | |
| 		name++;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_.-].
 | |
|  * If an invalid character is found, a pointer to it is returned.
 | |
|  * If everything is fine, NULL is returned.
 | |
|  */
 | |
| const char *invalid_domainchar(const char *name) {
 | |
| 	return __invalid_char(name, isalnum);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks <name> for invalid characters. Valid chars are [A-Za-z_.-].
 | |
|  * If an invalid character is found, a pointer to it is returned.
 | |
|  * If everything is fine, NULL is returned.
 | |
|  */
 | |
| const char *invalid_prefix_char(const char *name) {
 | |
| 	return __invalid_char(name, isalnum);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * converts <str> to a struct sockaddr_storage* provided by the caller. The
 | |
|  * caller must have zeroed <sa> first, and may have set sa->ss_family to force
 | |
|  * parse a specific address format. If the ss_family is 0 or AF_UNSPEC, then
 | |
|  * the function tries to guess the address family from the syntax. If the
 | |
|  * family is forced and the format doesn't match, an error is returned. The
 | |
|  * string is assumed to contain only an address, no port. The address can be a
 | |
|  * dotted IPv4 address, an IPv6 address, a host name, or empty or "*" to
 | |
|  * indicate INADDR_ANY. NULL is returned if the host part cannot be resolved.
 | |
|  * The return address will only have the address family and the address set,
 | |
|  * all other fields remain zero. The string is not supposed to be modified.
 | |
|  * The IPv6 '::' address is IN6ADDR_ANY. If <resolve> is non-zero, the hostname
 | |
|  * is resolved, otherwise only IP addresses are resolved, and anything else
 | |
|  * returns NULL. If the address contains a port, this one is preserved.
 | |
|  */
 | |
| struct sockaddr_storage *str2ip2(const char *str, struct sockaddr_storage *sa, int resolve)
 | |
| {
 | |
| 	struct hostent *he;
 | |
| 	/* max IPv6 length, including brackets and terminating NULL */
 | |
| 	char tmpip[48];
 | |
| 	int port = get_host_port(sa);
 | |
| 
 | |
| 	/* check IPv6 with square brackets */
 | |
| 	if (str[0] == '[') {
 | |
| 		size_t iplength = strlen(str);
 | |
| 
 | |
| 		if (iplength < 4) {
 | |
| 			/* minimal size is 4 when using brackets "[::]" */
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		else if (iplength >= sizeof(tmpip)) {
 | |
| 			/* IPv6 literal can not be larger than tmpip */
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		else {
 | |
| 			if (str[iplength - 1] != ']') {
 | |
| 				/* if address started with bracket, it should end with bracket */
 | |
| 				goto fail;
 | |
| 			}
 | |
| 			else {
 | |
| 				memcpy(tmpip, str + 1, iplength - 2);
 | |
| 				tmpip[iplength - 2] = '\0';
 | |
| 				str = tmpip;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Any IPv6 address */
 | |
| 	if (str[0] == ':' && str[1] == ':' && !str[2]) {
 | |
| 		if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
 | |
| 			sa->ss_family = AF_INET6;
 | |
| 		else if (sa->ss_family != AF_INET6)
 | |
| 			goto fail;
 | |
| 		set_host_port(sa, port);
 | |
| 		return sa;
 | |
| 	}
 | |
| 
 | |
| 	/* Any address for the family, defaults to IPv4 */
 | |
| 	if (!str[0] || (str[0] == '*' && !str[1])) {
 | |
| 		if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
 | |
| 			sa->ss_family = AF_INET;
 | |
| 		set_host_port(sa, port);
 | |
| 		return sa;
 | |
| 	}
 | |
| 
 | |
| 	/* check for IPv6 first */
 | |
| 	if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET6) &&
 | |
| 	    inet_pton(AF_INET6, str, &((struct sockaddr_in6 *)sa)->sin6_addr)) {
 | |
| 		sa->ss_family = AF_INET6;
 | |
| 		set_host_port(sa, port);
 | |
| 		return sa;
 | |
| 	}
 | |
| 
 | |
| 	/* then check for IPv4 */
 | |
| 	if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET) &&
 | |
| 	    inet_pton(AF_INET, str, &((struct sockaddr_in *)sa)->sin_addr)) {
 | |
| 		sa->ss_family = AF_INET;
 | |
| 		set_host_port(sa, port);
 | |
| 		return sa;
 | |
| 	}
 | |
| 
 | |
| 	if (!resolve)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!resolv_hostname_validation(str, NULL))
 | |
| 		return NULL;
 | |
| 
 | |
| #ifdef USE_GETADDRINFO
 | |
| 	if (global.tune.options & GTUNE_USE_GAI) {
 | |
| 		struct addrinfo hints, *result;
 | |
| 		int success = 0;
 | |
| 
 | |
| 		memset(&result, 0, sizeof(result));
 | |
| 		memset(&hints, 0, sizeof(hints));
 | |
| 		hints.ai_family = sa->ss_family ? sa->ss_family : AF_UNSPEC;
 | |
| 		hints.ai_socktype = SOCK_DGRAM;
 | |
| 		hints.ai_flags = 0;
 | |
| 		hints.ai_protocol = 0;
 | |
| 
 | |
| 		if (getaddrinfo(str, NULL, &hints, &result) == 0) {
 | |
| 			if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
 | |
| 				sa->ss_family = result->ai_family;
 | |
| 			else if (sa->ss_family != result->ai_family) {
 | |
| 				freeaddrinfo(result);
 | |
| 				goto fail;
 | |
| 			}
 | |
| 
 | |
| 			switch (result->ai_family) {
 | |
| 			case AF_INET:
 | |
| 				memcpy((struct sockaddr_in *)sa, result->ai_addr, result->ai_addrlen);
 | |
| 				set_host_port(sa, port);
 | |
| 				success = 1;
 | |
| 				break;
 | |
| 			case AF_INET6:
 | |
| 				memcpy((struct sockaddr_in6 *)sa, result->ai_addr, result->ai_addrlen);
 | |
| 				set_host_port(sa, port);
 | |
| 				success = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (result)
 | |
| 			freeaddrinfo(result);
 | |
| 
 | |
| 		if (success)
 | |
| 			return sa;
 | |
| 	}
 | |
| #endif
 | |
| 	/* try to resolve an IPv4/IPv6 hostname */
 | |
| 	he = gethostbyname(str);
 | |
| 	if (he) {
 | |
| 		if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
 | |
| 			sa->ss_family = he->h_addrtype;
 | |
| 		else if (sa->ss_family != he->h_addrtype)
 | |
| 			goto fail;
 | |
| 
 | |
| 		switch (sa->ss_family) {
 | |
| 		case AF_INET:
 | |
| 			((struct sockaddr_in *)sa)->sin_addr = *(struct in_addr *) *(he->h_addr_list);
 | |
| 			set_host_port(sa, port);
 | |
| 			return sa;
 | |
| 		case AF_INET6:
 | |
| 			((struct sockaddr_in6 *)sa)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list);
 | |
| 			set_host_port(sa, port);
 | |
| 			return sa;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* unsupported address family */
 | |
|  fail:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Converts <str> to a locally allocated struct sockaddr_storage *, and a port
 | |
|  * range or offset consisting in two integers that the caller will have to
 | |
|  * check to find the relevant input format. The following format are supported :
 | |
|  *
 | |
|  *   String format           | address |  port  |  low   |  high
 | |
|  *    addr                   | <addr>  |   0    |   0    |   0
 | |
|  *    addr:                  | <addr>  |   0    |   0    |   0
 | |
|  *    addr:port              | <addr>  | <port> | <port> | <port>
 | |
|  *    addr:pl-ph             | <addr>  |  <pl>  |  <pl>  |  <ph>
 | |
|  *    addr:+port             | <addr>  | <port> |   0    | <port>
 | |
|  *    addr:-port             | <addr>  |-<port> | <port> |   0
 | |
|  *
 | |
|  * The detection of a port range or increment by the caller is made by
 | |
|  * comparing <low> and <high>. If both are equal, then port 0 means no port
 | |
|  * was specified. The caller may pass NULL for <low> and <high> if it is not
 | |
|  * interested in retrieving port ranges.
 | |
|  *
 | |
|  * Note that <addr> above may also be :
 | |
|  *    - empty ("")  => family will be AF_INET and address will be INADDR_ANY
 | |
|  *    - "*"         => family will be AF_INET and address will be INADDR_ANY
 | |
|  *    - "::"        => family will be AF_INET6 and address will be IN6ADDR_ANY
 | |
|  *    - a host name => family and address will depend on host name resolving.
 | |
|  *
 | |
|  * A prefix may be passed in before the address above to force the family :
 | |
|  *    - "ipv4@"  => force address to resolve as IPv4 and fail if not possible.
 | |
|  *    - "ipv6@"  => force address to resolve as IPv6 and fail if not possible.
 | |
|  *    - "unix@"  => force address to be a path to a UNIX socket even if the
 | |
|  *                  path does not start with a '/'
 | |
|  *    - 'abns@'  -> force address to belong to the abstract namespace (Linux
 | |
|  *                  only). These sockets are just like Unix sockets but without
 | |
|  *                  the need for an underlying file system. The address is a
 | |
|  *                  string. Technically it's like a Unix socket with a zero in
 | |
|  *                  the first byte of the address.
 | |
|  *    - "fd@"    => an integer must follow, and is a file descriptor number.
 | |
|  *
 | |
|  * IPv6 addresses can be declared with or without square brackets. When using
 | |
|  * square brackets for IPv6 addresses, the port separator (colon) is optional.
 | |
|  * If not using square brackets, and in order to avoid any ambiguity with
 | |
|  * IPv6 addresses, the last colon ':' is mandatory even when no port is specified.
 | |
|  * NULL is returned if the address cannot be parsed. The <low> and <high> ports
 | |
|  * are always initialized if non-null, even for non-IP families.
 | |
|  *
 | |
|  * If <pfx> is non-null, it is used as a string prefix before any path-based
 | |
|  * address (typically the path to a unix socket).
 | |
|  *
 | |
|  * if <fqdn> is non-null, it will be filled with :
 | |
|  *   - a pointer to the FQDN of the server name to resolve if there's one, and
 | |
|  *     that the caller will have to free(),
 | |
|  *   - NULL if there was an explicit address that doesn't require resolution.
 | |
|  *
 | |
|  * Hostnames are only resolved if <opts> has PA_O_RESOLVE. Otherwise <fqdn> is
 | |
|  * still honored so it is possible for the caller to know whether a resolution
 | |
|  * failed by clearing this flag and checking if <fqdn> was filled, indicating
 | |
|  * the need for a resolution.
 | |
|  *
 | |
|  * When a file descriptor is passed, its value is put into the s_addr part of
 | |
|  * the address when cast to sockaddr_in and the address family is
 | |
|  * AF_CUST_EXISTING_FD.
 | |
|  *
 | |
|  * The matching protocol will be set into <proto> if non-null.
 | |
|  * The address protocol and transport types hints which are directly resolved
 | |
|  * will be set into <sa_type> if not NULL.
 | |
|  *
 | |
|  * Any known file descriptor is also assigned to <fd> if non-null, otherwise it
 | |
|  * is forced to -1.
 | |
|  */
 | |
| struct sockaddr_storage *str2sa_range(const char *str, int *port, int *low, int *high, int *fd,
 | |
|                                       struct protocol **proto, struct net_addr_type *sa_type,
 | |
|                                       char **err, const char *pfx, char **fqdn, int *alt, unsigned int opts)
 | |
| {
 | |
| 	static THREAD_LOCAL struct sockaddr_storage ss;
 | |
| 	struct sockaddr_storage *ret = NULL;
 | |
| 	struct protocol *new_proto = NULL;
 | |
| 	char *back, *str2;
 | |
| 	char *port1, *port2;
 | |
| 	int portl, porth, porta;
 | |
| 	int new_fd = -1;
 | |
| 	enum proto_type proto_type = 0; // to shut gcc warning
 | |
| 	int ctrl_type = 0; // to shut gcc warning
 | |
| 	int alt_proto = 0;
 | |
| 
 | |
| 	portl = porth = porta = 0;
 | |
| 	if (fqdn)
 | |
| 		*fqdn = NULL;
 | |
| 
 | |
| 	str2 = back = env_expand(strdup(str));
 | |
| 	if (str2 == NULL) {
 | |
| 		memprintf(err, "out of memory in '%s'", __FUNCTION__);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!*str2) {
 | |
| 		memprintf(err, "'%s' resolves to an empty address (environment variable missing?)", str);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	memset(&ss, 0, sizeof(ss));
 | |
| 
 | |
| 	/* prepare the default socket types */
 | |
| 	if ((opts & (PA_O_STREAM|PA_O_DGRAM)) == PA_O_DGRAM ||
 | |
| 	    ((opts & (PA_O_STREAM|PA_O_DGRAM)) == (PA_O_DGRAM|PA_O_STREAM) && (opts & PA_O_DEFAULT_DGRAM))) {
 | |
| 		proto_type = PROTO_TYPE_DGRAM;
 | |
| 		ctrl_type = SOCK_DGRAM;
 | |
| 		alt_proto = 1;
 | |
| 	} else {
 | |
| 		proto_type = PROTO_TYPE_STREAM;
 | |
| 		ctrl_type = SOCK_STREAM;
 | |
| 	}
 | |
| 
 | |
| 	if (strncmp(str2, "stream+", 7) == 0) {
 | |
| 		str2 += 7;
 | |
| 		proto_type = PROTO_TYPE_STREAM;
 | |
| 		ctrl_type = SOCK_STREAM;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "dgram+", 6) == 0) {
 | |
| 		str2 += 6;
 | |
| 		proto_type = PROTO_TYPE_DGRAM;
 | |
| 		ctrl_type = SOCK_DGRAM;
 | |
| 		alt_proto = 1;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "quic+", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		proto_type = PROTO_TYPE_DGRAM;
 | |
| 		ctrl_type = SOCK_STREAM;
 | |
| 	}
 | |
| 
 | |
| 	if (strncmp(str2, "unix@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		ss.ss_family = AF_UNIX;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "uxdg@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		ss.ss_family = AF_UNIX;
 | |
| 		proto_type = PROTO_TYPE_DGRAM;
 | |
| 		ctrl_type = SOCK_DGRAM;
 | |
| 		alt_proto = 1;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "uxst@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		ss.ss_family = AF_UNIX;
 | |
| 		proto_type = PROTO_TYPE_STREAM;
 | |
| 		ctrl_type = SOCK_STREAM;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "abns@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		ss.ss_family = AF_CUST_ABNS;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "abnsz@", 5) == 0) {
 | |
| 		str2 += 6;
 | |
| 		ss.ss_family = AF_CUST_ABNSZ;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "ip@", 3) == 0) {
 | |
| 		str2 += 3;
 | |
| 		ss.ss_family = AF_UNSPEC;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "ipv4@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		ss.ss_family = AF_INET;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "ipv6@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		ss.ss_family = AF_INET6;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "tcp4@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		ss.ss_family = AF_INET;
 | |
| 		proto_type = PROTO_TYPE_STREAM;
 | |
| 		ctrl_type = SOCK_STREAM;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "mptcp4@", 7) == 0) {
 | |
| 		str2 += 7;
 | |
| 		ss.ss_family = AF_INET;
 | |
| 		proto_type = PROTO_TYPE_STREAM;
 | |
| 		ctrl_type = SOCK_STREAM;
 | |
| 		alt_proto = 1;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "udp4@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		ss.ss_family = AF_INET;
 | |
| 		proto_type = PROTO_TYPE_DGRAM;
 | |
| 		ctrl_type = SOCK_DGRAM;
 | |
| 		alt_proto = 1;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "tcp6@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		ss.ss_family = AF_INET6;
 | |
| 		proto_type = PROTO_TYPE_STREAM;
 | |
| 		ctrl_type = SOCK_STREAM;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "mptcp6@", 7) == 0) {
 | |
| 		str2 += 7;
 | |
| 		ss.ss_family = AF_INET6;
 | |
| 		proto_type = PROTO_TYPE_STREAM;
 | |
| 		ctrl_type = SOCK_STREAM;
 | |
| 		alt_proto = 1;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "udp6@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		ss.ss_family = AF_INET6;
 | |
| 		proto_type = PROTO_TYPE_DGRAM;
 | |
| 		ctrl_type = SOCK_DGRAM;
 | |
| 		alt_proto = 1;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "tcp@", 4) == 0) {
 | |
| 		str2 += 4;
 | |
| 		ss.ss_family = AF_UNSPEC;
 | |
| 		proto_type = PROTO_TYPE_STREAM;
 | |
| 		ctrl_type = SOCK_STREAM;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "mptcp@", 6) == 0) {
 | |
| 		str2 += 6;
 | |
| 		ss.ss_family = AF_UNSPEC;
 | |
| 		proto_type = PROTO_TYPE_STREAM;
 | |
| 		ctrl_type = SOCK_STREAM;
 | |
| 		alt_proto = 1;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "udp@", 4) == 0) {
 | |
| 		str2 += 4;
 | |
| 		ss.ss_family = AF_UNSPEC;
 | |
| 		proto_type = PROTO_TYPE_DGRAM;
 | |
| 		ctrl_type = SOCK_DGRAM;
 | |
| 		alt_proto = 1;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "quic4@", 6) == 0) {
 | |
| 		str2 += 6;
 | |
| 		ss.ss_family = AF_INET;
 | |
| 		proto_type = PROTO_TYPE_DGRAM;
 | |
| 		ctrl_type = SOCK_STREAM;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "quic6@", 6) == 0) {
 | |
| 		str2 += 6;
 | |
| 		ss.ss_family = AF_INET6;
 | |
| 		proto_type = PROTO_TYPE_DGRAM;
 | |
| 		ctrl_type = SOCK_STREAM;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "fd@", 3) == 0) {
 | |
| 		str2 += 3;
 | |
| 		ss.ss_family = AF_CUST_EXISTING_FD;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "sockpair@", 9) == 0) {
 | |
| 		str2 += 9;
 | |
| 		ss.ss_family = AF_CUST_SOCKPAIR;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "rhttp@", 3) == 0) {
 | |
| 		/* TODO duplicated code from check_kw_experimental() */
 | |
| 		if (!experimental_directives_allowed) {
 | |
| 			memprintf(err, "Address '%s' is experimental, must be allowed via a global 'expose-experimental-directives'", str2);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		mark_tainted(TAINTED_CONFIG_EXP_KW_DECLARED);
 | |
| 
 | |
| 		str2 += 4;
 | |
| 		ss.ss_family = AF_CUST_RHTTP_SRV;
 | |
| 	}
 | |
| 	else if (*str2 == '/') {
 | |
| 		ss.ss_family = AF_UNIX;
 | |
| 	}
 | |
| 	else
 | |
| 		ss.ss_family = AF_UNSPEC;
 | |
| 
 | |
| 	if (ss.ss_family == AF_CUST_SOCKPAIR) {
 | |
| 		struct sockaddr_storage ss2;
 | |
| 		socklen_t addr_len;
 | |
| 		char *endptr;
 | |
| 
 | |
| 		new_fd = strtol(str2, &endptr, 10);
 | |
| 		if (!*str2 || new_fd < 0 || *endptr) {
 | |
| 			memprintf(err, "file descriptor '%s' is not a valid integer in '%s'", str2, str);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* just verify that it's a socket */
 | |
| 		addr_len = sizeof(ss2);
 | |
| 		if (getsockname(new_fd, (struct sockaddr *)&ss2, &addr_len) == -1) {
 | |
| 			memprintf(err, "cannot use file descriptor '%d' : %s.", new_fd, strerror(errno));
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		((struct sockaddr_in *)&ss)->sin_addr.s_addr = new_fd;
 | |
| 		((struct sockaddr_in *)&ss)->sin_port = 0;
 | |
| 	}
 | |
| 	else if (ss.ss_family == AF_CUST_EXISTING_FD) {
 | |
| 		char *endptr;
 | |
| 
 | |
| 		new_fd = strtol(str2, &endptr, 10);
 | |
| 		if (!*str2 || new_fd < 0 || *endptr) {
 | |
| 			memprintf(err, "file descriptor '%s' is not a valid integer in '%s'", str2, str);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (opts & PA_O_SOCKET_FD) {
 | |
| 			socklen_t addr_len;
 | |
| 			int type;
 | |
| 
 | |
| 			addr_len = sizeof(ss);
 | |
| 			if (getsockname(new_fd, (struct sockaddr *)&ss, &addr_len) == -1) {
 | |
| 				memprintf(err, "cannot use file descriptor '%d' : %s.", new_fd, strerror(errno));
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			addr_len = sizeof(type);
 | |
| 			if (getsockopt(new_fd, SOL_SOCKET, SO_TYPE, &type, &addr_len) != 0 ||
 | |
| 			    (type == SOCK_STREAM) != (proto_type == PROTO_TYPE_STREAM)) {
 | |
| 				memprintf(err, "socket on file descriptor '%d' is of the wrong type.", new_fd);
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			porta = portl = porth = get_host_port(&ss);
 | |
| 		} else if (opts & PA_O_RAW_FD) {
 | |
| 			((struct sockaddr_in *)&ss)->sin_addr.s_addr = new_fd;
 | |
| 			((struct sockaddr_in *)&ss)->sin_port = 0;
 | |
| 		} else {
 | |
| 			memprintf(err, "a file descriptor is not acceptable here in '%s'", str);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	else if (ss.ss_family == AF_UNIX || ss.ss_family == AF_CUST_ABNS || ss.ss_family == AF_CUST_ABNSZ) {
 | |
| 		struct sockaddr_un *un = (struct sockaddr_un *)&ss;
 | |
| 		int prefix_path_len;
 | |
| 		int max_path_len;
 | |
| 		int adr_len;
 | |
| 		int abstract = 0;
 | |
| 
 | |
| 		if (ss.ss_family == AF_CUST_ABNS || ss.ss_family == AF_CUST_ABNSZ)
 | |
| 			abstract = 1;
 | |
| 
 | |
| 		/* complete unix socket path name during startup or soft-restart is
 | |
| 		 * <unix_bind_prefix><path>.<pid>.<bak|tmp>
 | |
| 		 */
 | |
| 		prefix_path_len = (pfx && !abstract) ? strlen(pfx) : 0;
 | |
| 		max_path_len = (sizeof(un->sun_path) - 1) -
 | |
| 			(abstract ? 0 : prefix_path_len + 1 + 5 + 1 + 3);
 | |
| 
 | |
| 		adr_len = strlen(str2);
 | |
| 		if (adr_len > max_path_len) {
 | |
| 			memprintf(err, "socket path '%s' too long (max %d)", str, max_path_len);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* when abstract==1, we skip the first zero and copy all bytes except the trailing zero */
 | |
| 		memset(un->sun_path, 0, sizeof(un->sun_path));
 | |
| 		if (prefix_path_len)
 | |
| 			memcpy(un->sun_path, pfx, prefix_path_len);
 | |
| 		memcpy(un->sun_path + prefix_path_len + abstract, str2, adr_len + 1 - abstract);
 | |
| 	}
 | |
| 	else if (ss.ss_family == AF_CUST_RHTTP_SRV) {
 | |
| 		/* Nothing to do here. */
 | |
| 	}
 | |
| 	else { /* IPv4 and IPv6 */
 | |
| 		char *end = str2 + strlen(str2);
 | |
| 		char *chr;
 | |
| 
 | |
| 		/* search for : or ] whatever comes first */
 | |
| 		for (chr = end-1; chr > str2; chr--) {
 | |
| 			if (*chr == ']' || *chr == ':')
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (*chr == ':') {
 | |
| 			/* Found a colon before a closing-bracket, must be a port separator.
 | |
| 			 * This guarantee backward compatibility.
 | |
| 			 */
 | |
| 			if (!(opts & PA_O_PORT_OK)) {
 | |
| 				memprintf(err, "port specification not permitted here in '%s'", str);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			*chr++ = '\0';
 | |
| 			port1 = chr;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* Either no colon and no closing-bracket
 | |
| 			 * or directly ending with a closing-bracket.
 | |
| 			 * However, no port.
 | |
| 			 */
 | |
| 			if (opts & PA_O_PORT_MAND) {
 | |
| 				memprintf(err, "missing port specification in '%s'", str);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			port1 = "";
 | |
| 		}
 | |
| 
 | |
| 		if (isdigit((unsigned char)*port1)) {	/* single port or range */
 | |
| 			char *endptr;
 | |
| 
 | |
| 			port2 = strchr(port1, '-');
 | |
| 			if (port2) {
 | |
| 				if (!(opts & PA_O_PORT_RANGE)) {
 | |
| 					memprintf(err, "port range not permitted here in '%s'", str);
 | |
| 					goto out;
 | |
| 				}
 | |
| 				*port2++ = '\0';
 | |
| 			}
 | |
| 			else
 | |
| 				port2 = port1;
 | |
| 			portl = strtol(port1, &endptr, 10);
 | |
| 			if (*endptr != '\0') {
 | |
| 				memprintf(err, "invalid character '%c' in port number '%s' in '%s'", *endptr, port1, str);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			porth = strtol(port2, &endptr, 10);
 | |
| 			if (*endptr != '\0') {
 | |
| 				memprintf(err, "invalid character '%c' in port number '%s' in '%s'", *endptr, port2, str);
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			if (portl < !!(opts & PA_O_PORT_MAND) || portl > 65535) {
 | |
| 				memprintf(err, "invalid port '%s'", port1);
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			if (porth < !!(opts & PA_O_PORT_MAND) || porth > 65535) {
 | |
| 				memprintf(err, "invalid port '%s'", port2);
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			if (portl > porth) {
 | |
| 				memprintf(err, "invalid port range '%d-%d'", portl, porth);
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			porta = portl;
 | |
| 		}
 | |
| 		else if (*port1 == '-') { /* negative offset */
 | |
| 			char *endptr;
 | |
| 
 | |
| 			if (!(opts & PA_O_PORT_OFS)) {
 | |
| 				memprintf(err, "port offset not permitted here in '%s'", str);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			portl = strtol(port1 + 1, &endptr, 10);
 | |
| 			if (*endptr != '\0') {
 | |
| 				memprintf(err, "invalid character '%c' in port number '%s' in '%s'", *endptr, port1 + 1, str);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			porta = -portl;
 | |
| 		}
 | |
| 		else if (*port1 == '+') { /* positive offset */
 | |
| 			char *endptr;
 | |
| 
 | |
| 			if (!(opts & PA_O_PORT_OFS)) {
 | |
| 				memprintf(err, "port offset not permitted here in '%s'", str);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			porth = strtol(port1 + 1,  &endptr, 10);
 | |
| 			if (*endptr != '\0') {
 | |
| 				memprintf(err, "invalid character '%c' in port number '%s' in '%s'", *endptr, port1 + 1, str);
 | |
| 				goto out;
 | |
| 			}
 | |
| 			porta = porth;
 | |
| 		}
 | |
| 		else if (*port1) { /* other any unexpected char */
 | |
| 			memprintf(err, "invalid character '%c' in port number '%s' in '%s'", *port1, port1, str);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		else if (opts & PA_O_PORT_MAND) {
 | |
| 			memprintf(err, "missing port specification in '%s'", str);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* first try to parse the IP without resolving. If it fails, it
 | |
| 		 * tells us we need to keep a copy of the FQDN to resolve later
 | |
| 		 * and to enable DNS. In this case we can proceed if <fqdn> is
 | |
| 		 * set or if PA_O_RESOLVE is set, otherwise it's an error.
 | |
| 		 */
 | |
| 		if (str2ip2(str2, &ss, 0) == NULL) {
 | |
| 			if ((!(opts & PA_O_RESOLVE) && !fqdn) ||
 | |
| 			    ((opts & PA_O_RESOLVE) && str2ip2(str2, &ss, 1) == NULL)) {
 | |
| 				memprintf(err, "invalid address: '%s' in '%s'", str2, str);
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			if (fqdn) {
 | |
| 				if (str2 != back)
 | |
| 					memmove(back, str2, strlen(str2) + 1);
 | |
| 				*fqdn = back;
 | |
| 				back = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		set_host_port(&ss, porta);
 | |
| 	}
 | |
| 
 | |
| 	if (ctrl_type == SOCK_STREAM && !(opts & PA_O_STREAM)) {
 | |
| 		memprintf(err, "stream-type address not acceptable in '%s'", str);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	else if (ctrl_type == SOCK_DGRAM && !(opts & PA_O_DGRAM)) {
 | |
| 		memprintf(err, "dgram-type address not acceptable in '%s'", str);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (proto || (opts & PA_O_CONNECT)) {
 | |
| 		/* Note: if the caller asks for a proto, we must find one,
 | |
| 		 * except if we inherit from a raw FD (family == AF_CUST_EXISTING_FD)
 | |
| 		 * orif we return with an fqdn that will resolve later,
 | |
| 		 * in which case the address is not known yet (this is only
 | |
| 		 * for servers actually).
 | |
| 		 */
 | |
| 		new_proto = protocol_lookup(ss.ss_family,
 | |
| 					    proto_type,
 | |
| 					    alt_proto);
 | |
| 
 | |
| 		if (!new_proto && (!fqdn || !*fqdn) && (ss.ss_family != AF_CUST_EXISTING_FD)) {
 | |
| 			memprintf(err, "unsupported %s protocol for %s family %d address '%s'%s",
 | |
| 				  (ctrl_type == SOCK_DGRAM) ? "datagram" : "stream",
 | |
| 				  (proto_type == PROTO_TYPE_DGRAM) ? "datagram" : "stream",
 | |
| 				  ss.ss_family,
 | |
| 				  str,
 | |
| #ifndef USE_QUIC
 | |
| 				  (ctrl_type == SOCK_STREAM && proto_type == PROTO_TYPE_DGRAM)
 | |
| 				  ? "; QUIC is not compiled in if this is what you were looking for."
 | |
| 				  : ""
 | |
| #else
 | |
| 				  ""
 | |
| #endif
 | |
| 				);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if ((opts & PA_O_CONNECT) && new_proto && !new_proto->connect) {
 | |
| 			memprintf(err, "connect() not supported for this protocol family %d used by address '%s'", ss.ss_family, str);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = &ss;
 | |
|  out:
 | |
| 	if (port)
 | |
| 		*port = porta;
 | |
| 	if (low)
 | |
| 		*low = portl;
 | |
| 	if (high)
 | |
| 		*high = porth;
 | |
| 	if (fd)
 | |
| 		*fd = new_fd;
 | |
| 	if (proto)
 | |
| 		*proto = new_proto;
 | |
| 	if (sa_type) {
 | |
| 		sa_type->proto_type = proto_type;
 | |
| 		sa_type->xprt_type = (ctrl_type == SOCK_DGRAM) ? PROTO_TYPE_DGRAM : PROTO_TYPE_STREAM;
 | |
| 	}
 | |
| 	if (alt)
 | |
| 		*alt = alt_proto;
 | |
| 	free(back);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* converts <addr> and <port> into a string representation of the address and port. This is sort
 | |
|  * of an inverse of str2sa_range, with some restrictions. The supported families are AF_INET,
 | |
|  * AF_INET6, AF_UNIX, and AF_CUST_SOCKPAIR. If the family is unsopported NULL is returned.
 | |
|  * If port is special value '-1', then only the address is represented and <map_ports> is ignored.
 | |
|  * If map_ports is true, then the sign of the port is included in the output, to indicate it is
 | |
|  * relative to the incoming port. AF_INET and AF_INET6 will be in the form "<addr>:<port>".
 | |
|  * AF_UNIX will either be just the path (if using a pathname) or "abns@<path>" if it is abstract.
 | |
|  * AF_CUST_SOCKPAIR will be of the form "sockpair@<fd>".
 | |
|  *
 | |
|  * The returned char* is allocated, and it is the responsibility of the caller to free it.
 | |
|  */
 | |
| char * sa2str(const struct sockaddr_storage *addr, int port, int map_ports)
 | |
| {
 | |
| 	char buffer[INET6_ADDRSTRLEN];
 | |
| 	char *out = NULL;
 | |
| 	const void *ptr;
 | |
| 	const char *path;
 | |
| 
 | |
| 	switch (addr->ss_family) {
 | |
| 	case AF_INET:
 | |
| 		ptr = &((struct sockaddr_in *)addr)->sin_addr;
 | |
| 		break;
 | |
| 	case AF_INET6:
 | |
| 		ptr = &((struct sockaddr_in6 *)addr)->sin6_addr;
 | |
| 		break;
 | |
| 	case AF_UNIX:
 | |
| 	case AF_CUST_ABNS:
 | |
| 	case AF_CUST_ABNSZ:
 | |
| 		path = ((struct sockaddr_un *)addr)->sun_path;
 | |
| 		if (addr->ss_family == AF_CUST_ABNS ||
 | |
| 		    addr->ss_family == AF_CUST_ABNSZ) {
 | |
| 			const int max_length = sizeof(struct sockaddr_un) - offsetof(struct sockaddr_un, sun_path) - 1;
 | |
| 			return memprintf(&out, "abns@%.*s", max_length, path+1);
 | |
| 		} else {
 | |
| 			return strdup(path);
 | |
| 		}
 | |
| 	case AF_CUST_SOCKPAIR:
 | |
| 		return memprintf(&out, "sockpair@%d", ((struct sockaddr_in *)addr)->sin_addr.s_addr);
 | |
| 	default:
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (inet_ntop(addr->ss_family, ptr, buffer, sizeof(buffer)) == NULL) {
 | |
| 		BUG_ON(errno == ENOSPC);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (port == -1)
 | |
| 		return strdup(buffer); // address only
 | |
| 
 | |
| 	if (map_ports)
 | |
| 		return memprintf(&out, "%s:%+d", buffer, port);
 | |
| 	else
 | |
| 		return memprintf(&out, "%s:%d", buffer, port);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* converts <str> to a struct in_addr containing a network mask. It can be
 | |
|  * passed in dotted form (255.255.255.0) or in CIDR form (24). It returns 1
 | |
|  * if the conversion succeeds otherwise zero.
 | |
|  */
 | |
| int str2mask(const char *str, struct in_addr *mask)
 | |
| {
 | |
| 	if (strchr(str, '.') != NULL) {	    /* dotted notation */
 | |
| 		if (!inet_pton(AF_INET, str, mask))
 | |
| 			return 0;
 | |
| 	}
 | |
| 	else { /* mask length */
 | |
| 		char *err;
 | |
| 		unsigned long len = strtol(str, &err, 10);
 | |
| 
 | |
| 		if (!*str || (err && *err) || (unsigned)len > 32)
 | |
| 			return 0;
 | |
| 
 | |
| 		len2mask4(len, mask);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* converts <str> to a struct in6_addr containing a network mask. It can be
 | |
|  * passed in quadruplet form (ffff:ffff::) or in CIDR form (64). It returns 1
 | |
|  * if the conversion succeeds otherwise zero.
 | |
|  */
 | |
| int str2mask6(const char *str, struct in6_addr *mask)
 | |
| {
 | |
| 	if (strchr(str, ':') != NULL) {	    /* quadruplet notation */
 | |
| 		if (!inet_pton(AF_INET6, str, mask))
 | |
| 			return 0;
 | |
| 	}
 | |
| 	else { /* mask length */
 | |
| 		char *err;
 | |
| 		unsigned long len = strtol(str, &err, 10);
 | |
| 
 | |
| 		if (!*str || (err && *err) || (unsigned)len > 128)
 | |
| 			return 0;
 | |
| 
 | |
| 		len2mask6(len, mask);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* convert <cidr> to struct in_addr <mask>. It returns 1 if the conversion
 | |
|  * succeeds otherwise zero.
 | |
|  */
 | |
| int cidr2dotted(int cidr, struct in_addr *mask) {
 | |
| 
 | |
| 	if (cidr < 0 || cidr > 32)
 | |
| 		return 0;
 | |
| 
 | |
| 	mask->s_addr = cidr ? htonl(~0UL << (32 - cidr)) : 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Convert mask from bit length form to in_addr form.
 | |
|  * This function never fails.
 | |
|  */
 | |
| void len2mask4(int len, struct in_addr *addr)
 | |
| {
 | |
| 	if (len >= 32) {
 | |
| 		addr->s_addr = 0xffffffff;
 | |
| 		return;
 | |
| 	}
 | |
| 	if (len <= 0) {
 | |
| 		addr->s_addr = 0x00000000;
 | |
| 		return;
 | |
| 	}
 | |
| 	addr->s_addr = 0xffffffff << (32 - len);
 | |
| 	addr->s_addr = htonl(addr->s_addr);
 | |
| }
 | |
| 
 | |
| /* Convert mask from bit length form to in6_addr form.
 | |
|  * This function never fails.
 | |
|  */
 | |
| void len2mask6(int len, struct in6_addr *addr)
 | |
| {
 | |
| 	len2mask4(len, (struct in_addr *)&addr->s6_addr[0]); /* msb */
 | |
| 	len -= 32;
 | |
| 	len2mask4(len, (struct in_addr *)&addr->s6_addr[4]);
 | |
| 	len -= 32;
 | |
| 	len2mask4(len, (struct in_addr *)&addr->s6_addr[8]);
 | |
| 	len -= 32;
 | |
| 	len2mask4(len, (struct in_addr *)&addr->s6_addr[12]); /* lsb */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * converts <str> to two struct in_addr* which must be pre-allocated.
 | |
|  * The format is "addr[/mask]", where "addr" cannot be empty, and mask
 | |
|  * is optional and either in the dotted or CIDR notation.
 | |
|  * Note: "addr" can also be a hostname. Returns 1 if OK, 0 if error.
 | |
|  */
 | |
| int str2net(const char *str, int resolve, struct in_addr *addr, struct in_addr *mask)
 | |
| {
 | |
| 	__label__ out_free, out_err;
 | |
| 	char *c, *s;
 | |
| 	int ret_val;
 | |
| 
 | |
| 	s = strdup(str);
 | |
| 	if (!s)
 | |
| 		return 0;
 | |
| 
 | |
| 	memset(mask, 0, sizeof(*mask));
 | |
| 	memset(addr, 0, sizeof(*addr));
 | |
| 
 | |
| 	if ((c = strrchr(s, '/')) != NULL) {
 | |
| 		*c++ = '\0';
 | |
| 		/* c points to the mask */
 | |
| 		if (!str2mask(c, mask))
 | |
| 			goto out_err;
 | |
| 	}
 | |
| 	else {
 | |
| 		mask->s_addr = ~0U;
 | |
| 	}
 | |
| 	if (!inet_pton(AF_INET, s, addr)) {
 | |
| 		struct hostent *he;
 | |
| 
 | |
| 		if (!resolve)
 | |
| 			goto out_err;
 | |
| 
 | |
| 		if ((he = gethostbyname(s)) == NULL) {
 | |
| 			goto out_err;
 | |
| 		}
 | |
| 		else
 | |
| 			*addr = *(struct in_addr *) *(he->h_addr_list);
 | |
| 	}
 | |
| 
 | |
| 	ret_val = 1;
 | |
|  out_free:
 | |
| 	free(s);
 | |
| 	return ret_val;
 | |
|  out_err:
 | |
| 	ret_val = 0;
 | |
| 	goto out_free;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * converts <str> to two struct in6_addr* which must be pre-allocated.
 | |
|  * The format is "addr[/mask]", where "addr" cannot be empty, and mask
 | |
|  * is an optional number of bits (128 being the default).
 | |
|  * Returns 1 if OK, 0 if error.
 | |
|  */
 | |
| int str62net(const char *str, struct in6_addr *addr, unsigned char *mask)
 | |
| {
 | |
| 	char *c, *s;
 | |
| 	int ret_val = 0;
 | |
| 	char *err;
 | |
| 	unsigned long len = 128;
 | |
| 
 | |
| 	s = strdup(str);
 | |
| 	if (!s)
 | |
| 		return 0;
 | |
| 
 | |
| 	memset(mask, 0, sizeof(*mask));
 | |
| 	memset(addr, 0, sizeof(*addr));
 | |
| 
 | |
| 	if ((c = strrchr(s, '/')) != NULL) {
 | |
| 		*c++ = '\0'; /* c points to the mask */
 | |
| 		if (!*c)
 | |
| 			goto out_free;
 | |
| 
 | |
| 		len = strtoul(c, &err, 10);
 | |
| 		if ((err && *err) || (unsigned)len > 128)
 | |
| 			goto out_free;
 | |
| 	}
 | |
| 	*mask = len; /* OK we have a valid mask in <len> */
 | |
| 
 | |
| 	if (!inet_pton(AF_INET6, s, addr))
 | |
| 		goto out_free;
 | |
| 
 | |
| 	ret_val = 1;
 | |
|  out_free:
 | |
| 	free(s);
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Parse IPv4 address found in url. Return the number of bytes parsed. It
 | |
|  * expects exactly 4 numbers between 0 and 255 delimited by dots, and returns
 | |
|  * zero in case of mismatch.
 | |
|  */
 | |
| int url2ipv4(const char *addr, struct in_addr *dst)
 | |
| {
 | |
| 	int saw_digit, octets, ch;
 | |
| 	u_char tmp[4], *tp;
 | |
| 	const char *cp = addr;
 | |
| 
 | |
| 	saw_digit = 0;
 | |
| 	octets = 0;
 | |
| 	*(tp = tmp) = 0;
 | |
| 
 | |
| 	while (*addr) {
 | |
| 		unsigned char digit = (ch = *addr) - '0';
 | |
| 		if (digit > 9 && ch != '.')
 | |
| 			break;
 | |
| 		addr++;
 | |
| 		if (digit <= 9) {
 | |
| 			u_int new = *tp * 10 + digit;
 | |
| 			if (new > 255)
 | |
| 				return 0;
 | |
| 			*tp = new;
 | |
| 			if (!saw_digit) {
 | |
| 				if (++octets > 4)
 | |
| 					return 0;
 | |
| 				saw_digit = 1;
 | |
| 			}
 | |
| 		} else if (ch == '.' && saw_digit) {
 | |
| 			if (octets == 4)
 | |
| 				return 0;
 | |
| 			*++tp = 0;
 | |
| 			saw_digit = 0;
 | |
| 		} else
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (octets < 4)
 | |
| 		return 0;
 | |
| 
 | |
| 	memcpy(&dst->s_addr, tmp, 4);
 | |
| 	return addr - cp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Resolve destination server from URL. Convert <str> to a sockaddr_storage.
 | |
|  * <out> contain the code of the detected scheme, the start and length of
 | |
|  * the hostname. Actually only http and https are supported. <out> can be NULL.
 | |
|  * This function returns the consumed length. It is useful if you parse complete
 | |
|  * url like http://host:port/path, because the consumed length corresponds to
 | |
|  * the first character of the path. If the conversion fails, it returns -1.
 | |
|  *
 | |
|  * This function tries to resolve the DNS name if haproxy is in starting mode.
 | |
|  * So, this function may be used during the configuration parsing.
 | |
|  */
 | |
| int url2sa(const char *url, int ulen, struct sockaddr_storage *addr, struct split_url *out)
 | |
| {
 | |
| 	const char *curr = url, *cp = url;
 | |
| 	const char *end;
 | |
| 	int ret, url_code = 0;
 | |
| 	unsigned long long int http_code = 0;
 | |
| 	int default_port;
 | |
| 	struct hostent *he;
 | |
| 	char *p;
 | |
| 
 | |
| 	/* Firstly, try to find :// pattern */
 | |
| 	while (curr < url+ulen && url_code != 0x3a2f2f) {
 | |
| 		url_code = ((url_code & 0xffff) << 8);
 | |
| 		url_code += (unsigned char)*curr++;
 | |
| 	}
 | |
| 
 | |
| 	/* Secondly, if :// pattern is found, verify parsed stuff
 | |
| 	 * before pattern is matching our http pattern.
 | |
| 	 * If so parse ip address and port in uri.
 | |
| 	 * 
 | |
| 	 * WARNING: Current code doesn't support dynamic async dns resolver.
 | |
| 	 */
 | |
| 	if (url_code != 0x3a2f2f)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Copy scheme, and utrn to lower case. */
 | |
| 	while (cp < curr - 3)
 | |
| 		http_code = (http_code << 8) + *cp++;
 | |
| 	http_code |= 0x2020202020202020ULL;			/* Turn everything to lower case */
 | |
| 		
 | |
| 	/* HTTP or HTTPS url matching */
 | |
| 	if (http_code == 0x2020202068747470ULL) {
 | |
| 		default_port = 80;
 | |
| 		if (out)
 | |
| 			out->scheme = SCH_HTTP;
 | |
| 	}
 | |
| 	else if (http_code == 0x2020206874747073ULL) {
 | |
| 		default_port = 443;
 | |
| 		if (out)
 | |
| 			out->scheme = SCH_HTTPS;
 | |
| 	}
 | |
| 	else
 | |
| 		return -1;
 | |
| 
 | |
| 	/* If the next char is '[', the host address is IPv6. */
 | |
| 	if (*curr == '[') {
 | |
| 		curr++;
 | |
| 
 | |
| 		/* Check trash size */
 | |
| 		if (trash.size < ulen)
 | |
| 			return -1;
 | |
| 
 | |
| 		/* Look for ']' and copy the address in a trash buffer. */
 | |
| 		p = trash.area;
 | |
| 		for (end = curr;
 | |
| 		     end < url + ulen && *end != ']';
 | |
| 		     end++, p++)
 | |
| 			*p = *end;
 | |
| 		if (*end != ']')
 | |
| 			return -1;
 | |
| 		*p = '\0';
 | |
| 
 | |
| 		/* Update out. */
 | |
| 		if (out) {
 | |
| 			out->host = curr;
 | |
| 			out->host_len = end - curr;
 | |
| 		}
 | |
| 
 | |
| 		/* Try IPv6 decoding. */
 | |
| 		if (!inet_pton(AF_INET6, trash.area, &((struct sockaddr_in6 *)addr)->sin6_addr))
 | |
| 			return -1;
 | |
| 		end++;
 | |
| 
 | |
| 		/* Decode port. */
 | |
| 		if (end < url + ulen && *end == ':') {
 | |
| 			end++;
 | |
| 			default_port = read_uint(&end, url + ulen);
 | |
| 		}
 | |
| 		((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port);
 | |
| 		((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6;
 | |
| 		return end - url;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* we need to copy the string into the trash because url2ipv4
 | |
| 		 * needs a \0 at the end of the string */
 | |
| 		if (trash.size < ulen)
 | |
| 			return -1;
 | |
| 
 | |
| 		memcpy(trash.area, curr, ulen - (curr - url));
 | |
| 		trash.area[ulen - (curr - url)] = '\0';
 | |
| 
 | |
| 		/* We are looking for IP address. If you want to parse and
 | |
| 		 * resolve hostname found in url, you can use str2sa_range(), but
 | |
| 		 * be warned this can slow down global daemon performances
 | |
| 		 * while handling lagging dns responses.
 | |
| 		 */
 | |
| 		ret = url2ipv4(trash.area, &((struct sockaddr_in *)addr)->sin_addr);
 | |
| 		if (ret) {
 | |
| 			/* Update out. */
 | |
| 			if (out) {
 | |
| 				out->host = curr;
 | |
| 				out->host_len = ret;
 | |
| 			}
 | |
| 
 | |
| 			curr += ret;
 | |
| 
 | |
| 			/* Decode port. */
 | |
| 			if (curr < url + ulen && *curr == ':') {
 | |
| 				curr++;
 | |
| 				default_port = read_uint(&curr, url + ulen);
 | |
| 			}
 | |
| 			((struct sockaddr_in *)addr)->sin_port = htons(default_port);
 | |
| 
 | |
| 			/* Set family. */
 | |
| 			((struct sockaddr_in *)addr)->sin_family = AF_INET;
 | |
| 			return curr - url;
 | |
| 		}
 | |
| 		else if (global.mode & MODE_STARTING) {
 | |
| 			/* The IPv4 and IPv6 decoding fails, maybe the url contain name. Try to execute
 | |
| 			 * synchronous DNS request only if HAProxy is in the start state.
 | |
| 			 */
 | |
| 
 | |
| 			/* look for : or / or end */
 | |
| 			for (end = curr;
 | |
| 			     end < url + ulen && *end != '/' && *end != ':';
 | |
| 			     end++);
 | |
| 			memcpy(trash.area, curr, end - curr);
 | |
| 			trash.area[end - curr] = '\0';
 | |
| 
 | |
| 			/* try to resolve an IPv4/IPv6 hostname */
 | |
| 			he = gethostbyname(trash.area);
 | |
| 			if (!he)
 | |
| 				return -1;
 | |
| 
 | |
| 			/* Update out. */
 | |
| 			if (out) {
 | |
| 				out->host = curr;
 | |
| 				out->host_len = end - curr;
 | |
| 			}
 | |
| 
 | |
| 			/* Decode port. */
 | |
| 			if (end < url + ulen && *end == ':') {
 | |
| 				end++;
 | |
| 				default_port = read_uint(&end, url + ulen);
 | |
| 			}
 | |
| 
 | |
| 			/* Copy IP address, set port and family. */
 | |
| 			switch (he->h_addrtype) {
 | |
| 			case AF_INET:
 | |
| 				((struct sockaddr_in *)addr)->sin_addr = *(struct in_addr *) *(he->h_addr_list);
 | |
| 				((struct sockaddr_in *)addr)->sin_port = htons(default_port);
 | |
| 				((struct sockaddr_in *)addr)->sin_family = AF_INET;
 | |
| 				return end - url;
 | |
| 
 | |
| 			case AF_INET6:
 | |
| 				((struct sockaddr_in6 *)addr)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list);
 | |
| 				((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port);
 | |
| 				((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6;
 | |
| 				return end - url;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Tries to convert a sockaddr_storage address to text form. Upon success, the
 | |
|  * address family is returned so that it's easy for the caller to adapt to the
 | |
|  * output format. Zero is returned if the address family is not supported. -1
 | |
|  * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are
 | |
|  * supported.
 | |
|  */
 | |
| int addr_to_str(const struct sockaddr_storage *addr, char *str, int size)
 | |
| {
 | |
| 
 | |
| 	const void *ptr;
 | |
| 
 | |
| 	if (size < 5)
 | |
| 		return 0;
 | |
| 	*str = '\0';
 | |
| 
 | |
| 	switch (addr->ss_family) {
 | |
| 	case AF_INET:
 | |
| 		ptr = &((struct sockaddr_in *)addr)->sin_addr;
 | |
| 		break;
 | |
| 	case AF_INET6:
 | |
| 		ptr = &((struct sockaddr_in6 *)addr)->sin6_addr;
 | |
| 		break;
 | |
| 	case AF_UNIX:
 | |
| 	case AF_CUST_ABNS:
 | |
| 	case AF_CUST_ABNSZ:
 | |
| 		memcpy(str, "unix", 5);
 | |
| 		return addr->ss_family;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (inet_ntop(addr->ss_family, ptr, str, size))
 | |
| 		return addr->ss_family;
 | |
| 
 | |
| 	/* failed */
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Tries to convert a sockaddr_storage port to text form. Upon success, the
 | |
|  * address family is returned so that it's easy for the caller to adapt to the
 | |
|  * output format. Zero is returned if the address family is not supported. -1
 | |
|  * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are
 | |
|  * supported.
 | |
|  */
 | |
| int port_to_str(const struct sockaddr_storage *addr, char *str, int size)
 | |
| {
 | |
| 
 | |
| 	uint16_t port;
 | |
| 
 | |
| 
 | |
| 	if (size < 6)
 | |
| 		return 0;
 | |
| 	*str = '\0';
 | |
| 
 | |
| 	switch (addr->ss_family) {
 | |
| 	case AF_INET:
 | |
| 		port = ((struct sockaddr_in *)addr)->sin_port;
 | |
| 		break;
 | |
| 	case AF_INET6:
 | |
| 		port = ((struct sockaddr_in6 *)addr)->sin6_port;
 | |
| 		break;
 | |
| 	case AF_UNIX:
 | |
| 	case AF_CUST_ABNS:
 | |
| 	case AF_CUST_ABNSZ:
 | |
| 		memcpy(str, "unix", 5);
 | |
| 		return addr->ss_family;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	snprintf(str, size, "%u", ntohs(port));
 | |
| 	return addr->ss_family;
 | |
| }
 | |
| 
 | |
| /* check if the given address is local to the system or not. It will return
 | |
|  * -1 when it's not possible to know, 0 when the address is not local, 1 when
 | |
|  * it is. We don't want to iterate over all interfaces for this (and it is not
 | |
|  * portable). So instead we try to bind in UDP to this address on a free non
 | |
|  * privileged port and to connect to the same address, port 0 (connect doesn't
 | |
|  * care). If it succeeds, we own the address. Note that non-inet addresses are
 | |
|  * considered local since they're most likely AF_UNIX.
 | |
|  */
 | |
| int addr_is_local(const struct netns_entry *ns,
 | |
|                   const struct sockaddr_storage *orig)
 | |
| {
 | |
| 	struct sockaddr_storage addr;
 | |
| 	const struct proto_fam *fam;
 | |
| 	int result;
 | |
| 	int fd;
 | |
| 
 | |
| 	if (!is_inet_addr(orig))
 | |
| 		return 1;
 | |
| 
 | |
| 	memcpy(&addr, orig, sizeof(addr));
 | |
| 	set_host_port(&addr, 0);
 | |
| 
 | |
| 	fam = proto_fam_lookup(addr.ss_family);
 | |
| 	BUG_ON(!fam);
 | |
| 
 | |
| 	fd = my_socketat(ns, fam->sock_domain, SOCK_DGRAM, IPPROTO_UDP);
 | |
| 	if (fd < 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	result = -1;
 | |
| 	if (bind(fd, (struct sockaddr *)&addr, get_addr_len(&addr)) == 0) {
 | |
| 		if (connect(fd, (struct sockaddr *)&addr, get_addr_len(&addr)) == -1)
 | |
| 			result = 0; // fail, non-local address
 | |
| 		else
 | |
| 			result = 1; // success, local address
 | |
| 	}
 | |
| 	else {
 | |
| 		if (errno == EADDRNOTAVAIL)
 | |
| 			result = 0; // definitely not local :-)
 | |
| 	}
 | |
| 	close(fd);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* will try to encode the string <string> replacing all characters tagged in
 | |
|  * <map> with the hexadecimal representation of their ASCII-code (2 digits)
 | |
|  * prefixed by <escape>, and will store the result between <start> (included)
 | |
|  * and <stop> (excluded), and will always terminate the string with a '\0'
 | |
|  * before <stop>. If bytes are missing between <start> and <stop>, then the
 | |
|  * conversion will be incomplete and truncated.
 | |
|  * The input string must also be zero-terminated.
 | |
|  *
 | |
|  * Return the address of the \0 character, or NULL on error
 | |
|  */
 | |
| const char hextab[16] __nonstring = "0123456789ABCDEF";
 | |
| char *encode_string(char *start, char *stop,
 | |
| 		    const char escape, const long *map,
 | |
| 		    const char *string)
 | |
| {
 | |
| 	if (start < stop) {
 | |
| 		stop--; /* reserve one byte for the final '\0' */
 | |
| 		while (start < stop && *string != '\0') {
 | |
| 			if (!ha_bit_test((unsigned char)(*string), map))
 | |
| 				*start++ = *string;
 | |
| 			else {
 | |
| 				if (start + 3 >= stop)
 | |
| 					break;
 | |
| 				*start++ = escape;
 | |
| 				*start++ = hextab[(*string >> 4) & 15];
 | |
| 				*start++ = hextab[*string & 15];
 | |
| 			}
 | |
| 			string++;
 | |
| 		}
 | |
| 		*start = '\0';
 | |
| 		return start;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Same behavior as encode_string() above, except that it encodes chunk
 | |
|  * <chunk> instead of a string.
 | |
|  */
 | |
| char *encode_chunk(char *start, char *stop,
 | |
| 		    const char escape, const long *map,
 | |
| 		    const struct buffer *chunk)
 | |
| {
 | |
| 	char *str = chunk->area;
 | |
| 	char *end = chunk->area + chunk->data;
 | |
| 
 | |
| 	if (start < stop) {
 | |
| 		stop--; /* reserve one byte for the final '\0' */
 | |
| 		while (start < stop && str < end) {
 | |
| 			if (!ha_bit_test((unsigned char)(*str), map))
 | |
| 				*start++ = *str;
 | |
| 			else {
 | |
| 				if (start + 3 >= stop)
 | |
| 					break;
 | |
| 				*start++ = escape;
 | |
| 				*start++ = hextab[(*str >> 4) & 15];
 | |
| 				*start++ = hextab[*str & 15];
 | |
| 			}
 | |
| 			str++;
 | |
| 		}
 | |
| 		*start = '\0';
 | |
| 		return start;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tries to prefix characters tagged in the <map> with the <escape>
 | |
|  * character. The input <string> is processed until string_stop
 | |
|  * is reached or NULL-byte is encountered. The result will
 | |
|  * be stored between <start> (included) and <stop> (excluded). This
 | |
|  * function will always try to terminate the resulting string with a '\0'
 | |
|  * before <stop>.
 | |
|  *
 | |
|  * Return the address of the \0 character, or NULL on error
 | |
|  */
 | |
| char *escape_string(char *start, char *stop,
 | |
| 		    const char escape, const long *map,
 | |
| 		    const char *string, const char *string_stop)
 | |
| {
 | |
| 	if (start < stop) {
 | |
| 		stop--; /* reserve one byte for the final '\0' */
 | |
| 		while (start < stop && string < string_stop && *string != '\0') {
 | |
| 			if (!ha_bit_test((unsigned char)(*string), map))
 | |
| 				*start++ = *string;
 | |
| 			else {
 | |
| 				if (start + 2 >= stop)
 | |
| 					break;
 | |
| 				*start++ = escape;
 | |
| 				*start++ = *string;
 | |
| 			}
 | |
| 			string++;
 | |
| 		}
 | |
| 		*start = '\0';
 | |
| 		return start;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* CBOR helper to encode an uint64 value with prefix (3bits MAJOR type)
 | |
|  * according to RFC8949
 | |
|  *
 | |
|  * CBOR encode ctx is provided in <ctx>
 | |
|  *
 | |
|  * Returns the position of the last written byte on success and NULL on
 | |
|  * error. The function cannot write past <stop>
 | |
|  */
 | |
| char *cbor_encode_uint64_prefix(struct cbor_encode_ctx *ctx,
 | |
|                                 char *start, char *stop, uint64_t value,
 | |
|                                 uint8_t prefix)
 | |
| {
 | |
| 	int nb_bytes = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * For encoding logic, see:
 | |
| 	 * https://www.rfc-editor.org/rfc/rfc8949.html#name-specification-of-the-cbor-e
 | |
| 	 */
 | |
| 	if (value < 24) {
 | |
| 		/* argument is the value itself */
 | |
| 		prefix |= value;
 | |
| 	}
 | |
| 	else {
 | |
| 		if (value <= 0xFFU) {
 | |
| 			/* 1-byte */
 | |
| 			nb_bytes = 1;
 | |
| 			prefix |= 24; // 0x18
 | |
| 		}
 | |
| 		else if (value <= 0xFFFFU) {
 | |
| 			/* 2 bytes */
 | |
| 			nb_bytes = 2;
 | |
| 			prefix |= 25; // 0x19
 | |
| 		}
 | |
| 		else if (value <= 0xFFFFFFFFU) {
 | |
| 			/* 4 bytes */
 | |
| 			nb_bytes = 4;
 | |
| 			prefix |= 26; // 0x1A
 | |
| 		}
 | |
| 		else {
 | |
| 			/* 8 bytes */
 | |
| 			nb_bytes = 8;
 | |
| 			prefix |= 27; // 0x1B
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	start = ctx->e_fct_byte(ctx, start, stop, prefix);
 | |
| 	if (start == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* encode 1 byte at a time from higher bits to lower bits */
 | |
| 	while (nb_bytes) {
 | |
| 		uint8_t cur_byte = (value >> ((nb_bytes - 1) * 8)) & 0xFFU;
 | |
| 
 | |
| 		start = ctx->e_fct_byte(ctx, start, stop, cur_byte);
 | |
| 		if (start == NULL)
 | |
| 			return NULL;
 | |
| 
 | |
| 		nb_bytes--;
 | |
| 	}
 | |
| 
 | |
| 	return start;
 | |
| }
 | |
| 
 | |
| /* CBOR helper to encode an int64 value according to RFC8949
 | |
|  *
 | |
|  * CBOR encode ctx is provided in <ctx>
 | |
|  *
 | |
|  * Returns the position of the last written byte on success and NULL on
 | |
|  * error. The function cannot write past <stop>
 | |
|  */
 | |
| char *cbor_encode_int64(struct cbor_encode_ctx *ctx,
 | |
|                         char *start, char *stop, int64_t value)
 | |
| {
 | |
| 	uint64_t absolute_value = llabs(value);
 | |
| 	int cbor_prefix;
 | |
| 
 | |
| 	/*
 | |
| 	 * For encoding logic, see:
 | |
| 	 * https://www.rfc-editor.org/rfc/rfc8949.html#name-specification-of-the-cbor-e
 | |
| 	 */
 | |
| 	if (value >= 0)
 | |
| 		cbor_prefix = 0x00; // unsigned int
 | |
| 	else {
 | |
| 		cbor_prefix = 0x20; // negative int
 | |
| 		/* N-1 for negative int */
 | |
| 		absolute_value -= 1;
 | |
| 	}
 | |
| 	return cbor_encode_uint64_prefix(ctx, start, stop,
 | |
| 	                                 absolute_value, cbor_prefix);
 | |
| }
 | |
| 
 | |
| /* CBOR helper to encode a <prefix> string chunk according to RFC8949
 | |
|  *
 | |
|  * if <bytes> is NULL, then only the <prefix> (with length) will be
 | |
|  * emitted
 | |
|  *
 | |
|  * CBOR encode ctx is provided in <ctx>
 | |
|  *
 | |
|  * Returns the position of the last written byte on success and NULL on
 | |
|  * error. The function cannot write past <stop>
 | |
|  */
 | |
| char *cbor_encode_bytes_prefix(struct cbor_encode_ctx *ctx,
 | |
|                                char *start, char *stop,
 | |
|                                const char *bytes, size_t len,
 | |
|                                uint8_t prefix)
 | |
| {
 | |
| 
 | |
| 	size_t it = 0;
 | |
| 
 | |
| 	/* write prefix (with text length as argument) */
 | |
| 	start = cbor_encode_uint64_prefix(ctx, start, stop,
 | |
| 	                                  len, prefix);
 | |
| 	if (start == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* write actual bytes if provided */
 | |
| 	while (bytes && it < len) {
 | |
| 		start = ctx->e_fct_byte(ctx, start, stop, bytes[it]);
 | |
| 		if (start == NULL)
 | |
| 			return NULL;
 | |
| 		it++;
 | |
| 	}
 | |
| 	return start;
 | |
| }
 | |
| 
 | |
| /* CBOR helper to encode a text chunk according to RFC8949
 | |
|  *
 | |
|  * if <text> is NULL, then only the text prefix (with length) will be emitted
 | |
|  *
 | |
|  * CBOR encode ctx is provided in <ctx>
 | |
|  *
 | |
|  * Returns the position of the last written byte on success and NULL on
 | |
|  * error. The function cannot write past <stop>
 | |
|  */
 | |
| char *cbor_encode_text(struct cbor_encode_ctx *ctx,
 | |
|                        char *start, char *stop,
 | |
|                        const char *text, size_t len)
 | |
| {
 | |
| 	return cbor_encode_bytes_prefix(ctx, start, stop, text, len, 0x60);
 | |
| }
 | |
| 
 | |
| /* CBOR helper to encode a byte string chunk according to RFC8949
 | |
|  *
 | |
|  * if <bytes> is NULL, then only the byte string prefix (with length) will be
 | |
|  * emitted
 | |
|  *
 | |
|  * CBOR encode ctx is provided in <ctx>
 | |
|  *
 | |
|  * Returns the position of the last written byte on success and NULL on
 | |
|  * error. The function cannot write past <stop>
 | |
|  */
 | |
| char *cbor_encode_bytes(struct cbor_encode_ctx *ctx,
 | |
|                         char *start, char *stop,
 | |
|                         const char *bytes, size_t len)
 | |
| {
 | |
| 	return cbor_encode_bytes_prefix(ctx, start, stop, bytes, len, 0x40);
 | |
| }
 | |
| 
 | |
| /* Check a string for using it in a CSV output format. If the string contains
 | |
|  * one of the following four char <">, <,>, CR or LF, the string is
 | |
|  * encapsulated between <"> and the <"> are escaped by a <""> sequence.
 | |
|  * <str> is the input string to be escaped. The function assumes that
 | |
|  * the input string is null-terminated.
 | |
|  *
 | |
|  * If <quote> is 0, the result is returned escaped but without double quote.
 | |
|  * It is useful if the escaped string is used between double quotes in the
 | |
|  * format.
 | |
|  *
 | |
|  *    printf("..., \"%s\", ...\r\n", csv_enc(str, 0, 0, &trash));
 | |
|  *
 | |
|  * If <quote> is 1, the converter puts the quotes only if any reserved character
 | |
|  * is present. If <quote> is 2, the converter always puts the quotes.
 | |
|  *
 | |
|  * If <oneline> is not 0, CRs are skipped and LFs are replaced by spaces.
 | |
|  * This re-format multi-lines strings to only one line. The purpose is to
 | |
|  * allow a line by line parsing but also to keep the output compliant with
 | |
|  * the CLI witch uses LF to defines the end of the response.
 | |
|  *
 | |
|  * If <oneline> is 2, In addition to previous action, the trailing spaces are
 | |
|  * removed.
 | |
|  *
 | |
|  * <output> is a struct buffer used for storing the output string.
 | |
|  *
 | |
|  * The function returns the converted string on its output. If an error
 | |
|  * occurs, the function returns an empty string. This type of output is useful
 | |
|  * for using the function directly as printf() argument.
 | |
|  *
 | |
|  * If the output buffer is too short to contain the input string, the result
 | |
|  * is truncated.
 | |
|  *
 | |
|  * This function appends the encoding to the existing output chunk, and it
 | |
|  * guarantees that it starts immediately at the first available character of
 | |
|  * the chunk. Please use csv_enc() instead if you want to replace the output
 | |
|  * chunk.
 | |
|  */
 | |
| const char *csv_enc_append(const char *str, int quote, int oneline, struct buffer *output)
 | |
| {
 | |
| 	char *end = output->area + output->size;
 | |
| 	char *out = output->area + output->data;
 | |
| 	char *ptr = out;
 | |
| 
 | |
| 	if (quote == 1) {
 | |
| 		/* automatic quoting: first verify if we'll have to quote the string */
 | |
| 		if (!strpbrk(str, "\n\r,\""))
 | |
| 			quote = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (quote)
 | |
| 		*ptr++ = '"';
 | |
| 
 | |
| 	while (*str && ptr < end - 2) { /* -2 for reserving space for <"> and \0. */
 | |
| 		if (oneline) {
 | |
| 			if (*str == '\n' ) {
 | |
| 				/* replace LF by a space */
 | |
| 				*ptr++ = ' ';
 | |
| 				str++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			else if (*str == '\r' ) {
 | |
| 				/* skip CR */
 | |
| 				str++;
 | |
| 				continue;
 | |
| 			}
 | |
| 		}
 | |
| 		*ptr = *str;
 | |
| 		if (*str == '"') {
 | |
| 			ptr++;
 | |
| 			if (ptr >= end - 2) {
 | |
| 				ptr--;
 | |
| 				break;
 | |
| 			}
 | |
| 			*ptr = '"';
 | |
| 		}
 | |
| 		ptr++;
 | |
| 		str++;
 | |
| 	}
 | |
| 
 | |
| 	if (oneline == 2) {
 | |
| 		/* remove trailing spaces */
 | |
| 		while (ptr > out && *(ptr - 1) == ' ')
 | |
| 			ptr--;
 | |
| 	}
 | |
| 
 | |
| 	if (quote)
 | |
| 		*ptr++ = '"';
 | |
| 
 | |
| 	*ptr = '\0';
 | |
| 	output->data = ptr - output->area;
 | |
| 	return out;
 | |
| }
 | |
| 
 | |
| /* Decode an URL-encoded string in-place. The resulting string might
 | |
|  * be shorter. If some forbidden characters are found, the conversion is
 | |
|  * aborted, the string is truncated before the issue and a negative value is
 | |
|  * returned, otherwise the operation returns the length of the decoded string.
 | |
|  * If the 'in_form' argument is non-nul the string is assumed to be part of
 | |
|  * an "application/x-www-form-urlencoded" encoded string, and the '+' will be
 | |
|  * turned to a space. If it's zero, this will only be done after a question
 | |
|  * mark ('?').
 | |
|  */
 | |
| int url_decode(char *string, int in_form)
 | |
| {
 | |
| 	char *in, *out;
 | |
| 	int ret = -1;
 | |
| 
 | |
| 	in = string;
 | |
| 	out = string;
 | |
| 	while (*in) {
 | |
| 		switch (*in) {
 | |
| 		case '+' :
 | |
| 			*out++ = in_form ? ' ' : *in;
 | |
| 			break;
 | |
| 		case '%' :
 | |
| 			if (!ishex(in[1]) || !ishex(in[2]))
 | |
| 				goto end;
 | |
| 			*out++ = (hex2i(in[1]) << 4) + hex2i(in[2]);
 | |
| 			in += 2;
 | |
| 			break;
 | |
| 		case '?':
 | |
| 			in_form = 1;
 | |
| 			__fallthrough;
 | |
| 		default:
 | |
| 			*out++ = *in;
 | |
| 			break;
 | |
| 		}
 | |
| 		in++;
 | |
| 	}
 | |
| 	ret = out - string; /* success */
 | |
|  end:
 | |
| 	*out = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| unsigned int str2ui(const char *s)
 | |
| {
 | |
| 	return __str2ui(s);
 | |
| }
 | |
| 
 | |
| unsigned int str2uic(const char *s)
 | |
| {
 | |
| 	return __str2uic(s);
 | |
| }
 | |
| 
 | |
| unsigned int strl2ui(const char *s, int len)
 | |
| {
 | |
| 	return __strl2ui(s, len);
 | |
| }
 | |
| 
 | |
| unsigned int strl2uic(const char *s, int len)
 | |
| {
 | |
| 	return __strl2uic(s, len);
 | |
| }
 | |
| 
 | |
| unsigned int read_uint(const char **s, const char *end)
 | |
| {
 | |
| 	return __read_uint(s, end);
 | |
| }
 | |
| 
 | |
| /* This function reads an unsigned integer from the string pointed to by <s> and
 | |
|  * returns it. The <s> pointer is adjusted to point to the first unread char. The
 | |
|  * function automatically stops at <end>. If the number overflows, the 2^64-1
 | |
|  * value is returned.
 | |
|  */
 | |
| unsigned long long int read_uint64(const char **s, const char *end)
 | |
| {
 | |
| 	const char *ptr = *s;
 | |
| 	unsigned long long int i = 0, tmp;
 | |
| 	unsigned int j;
 | |
| 
 | |
| 	while (ptr < end) {
 | |
| 
 | |
| 		/* read next char */
 | |
| 		j = *ptr - '0';
 | |
| 		if (j > 9)
 | |
| 			goto read_uint64_end;
 | |
| 
 | |
| 		/* add char to the number and check overflow. */
 | |
| 		tmp = i * 10;
 | |
| 		if (tmp / 10 != i) {
 | |
| 			i = ULLONG_MAX;
 | |
| 			goto read_uint64_eat;
 | |
| 		}
 | |
| 		if (ULLONG_MAX - tmp < j) {
 | |
| 			i = ULLONG_MAX;
 | |
| 			goto read_uint64_eat;
 | |
| 		}
 | |
| 		i = tmp + j;
 | |
| 		ptr++;
 | |
| 	}
 | |
| read_uint64_eat:
 | |
| 	/* eat each numeric char */
 | |
| 	while (ptr < end) {
 | |
| 		if ((unsigned int)(*ptr - '0') > 9)
 | |
| 			break;
 | |
| 		ptr++;
 | |
| 	}
 | |
| read_uint64_end:
 | |
| 	*s = ptr;
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /* This function reads an integer from the string pointed to by <s> and returns
 | |
|  * it. The <s> pointer is adjusted to point to the first unread char. The function
 | |
|  * automatically stops at <end>. Il the number is bigger than 2^63-2, the 2^63-1
 | |
|  * value is returned. If the number is lowest than -2^63-1, the -2^63 value is
 | |
|  * returned.
 | |
|  */
 | |
| long long int read_int64(const char **s, const char *end)
 | |
| {
 | |
| 	unsigned long long int i = 0;
 | |
| 	int neg = 0;
 | |
| 
 | |
| 	/* Look for minus char. */
 | |
| 	if (**s == '-') {
 | |
| 		neg = 1;
 | |
| 		(*s)++;
 | |
| 	}
 | |
| 	else if (**s == '+')
 | |
| 		(*s)++;
 | |
| 
 | |
| 	/* convert as positive number. */
 | |
| 	i = read_uint64(s, end);
 | |
| 
 | |
| 	if (neg) {
 | |
| 		if (i > 0x8000000000000000ULL)
 | |
| 			return LLONG_MIN;
 | |
| 		return -i;
 | |
| 	}
 | |
| 	if (i > 0x7fffffffffffffffULL)
 | |
| 		return LLONG_MAX;
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /* This one is 7 times faster than strtol() on athlon with checks.
 | |
|  * It returns the value of the number composed of all valid digits read,
 | |
|  * and can process negative numbers too.
 | |
|  */
 | |
| int strl2ic(const char *s, int len)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	int j, k;
 | |
| 
 | |
| 	if (len > 0) {
 | |
| 		if (*s != '-') {
 | |
| 			/* positive number */
 | |
| 			while (len-- > 0) {
 | |
| 				j = (*s++) - '0';
 | |
| 				k = i * 10;
 | |
| 				if (j > 9)
 | |
| 					break;
 | |
| 				i = k + j;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* negative number */
 | |
| 			s++;
 | |
| 			while (--len > 0) {
 | |
| 				j = (*s++) - '0';
 | |
| 				k = i * 10;
 | |
| 				if (j > 9)
 | |
| 					break;
 | |
| 				i = k - j;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This function reads exactly <len> chars from <s> and converts them to a
 | |
|  * signed integer which it stores into <ret>. It accurately detects any error
 | |
|  * (truncated string, invalid chars, overflows). It is meant to be used in
 | |
|  * applications designed for hostile environments. It returns zero when the
 | |
|  * number has successfully been converted, non-zero otherwise. When an error
 | |
|  * is returned, the <ret> value is left untouched. It is yet 5 to 40 times
 | |
|  * faster than strtol().
 | |
|  */
 | |
| int strl2irc(const char *s, int len, int *ret)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	int j;
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (*s != '-') {
 | |
| 		/* positive number */
 | |
| 		while (len-- > 0) {
 | |
| 			j = (*s++) - '0';
 | |
| 			if (j > 9)            return 1; /* invalid char */
 | |
| 			if (i > INT_MAX / 10) return 1; /* check for multiply overflow */
 | |
| 			i = i * 10;
 | |
| 			if (i + j < i)        return 1; /* check for addition overflow */
 | |
| 			i = i + j;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* negative number */
 | |
| 		s++;
 | |
| 		while (--len > 0) {
 | |
| 			j = (*s++) - '0';
 | |
| 			if (j > 9)             return 1; /* invalid char */
 | |
| 			if (i < INT_MIN / 10)  return 1; /* check for multiply overflow */
 | |
| 			i = i * 10;
 | |
| 			if (i - j > i)         return 1; /* check for subtract overflow */
 | |
| 			i = i - j;
 | |
| 		}
 | |
| 	}
 | |
| 	*ret = i;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This function reads exactly <len> chars from <s> and converts them to a
 | |
|  * signed integer which it stores into <ret>. It accurately detects any error
 | |
|  * (truncated string, invalid chars, overflows). It is meant to be used in
 | |
|  * applications designed for hostile environments. It returns zero when the
 | |
|  * number has successfully been converted, non-zero otherwise. When an error
 | |
|  * is returned, the <ret> value is left untouched. It is about 3 times slower
 | |
|  * than strl2irc().
 | |
|  */
 | |
| 
 | |
| int strl2llrc(const char *s, int len, long long *ret)
 | |
| {
 | |
| 	long long i = 0;
 | |
| 	int j;
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (*s != '-') {
 | |
| 		/* positive number */
 | |
| 		while (len-- > 0) {
 | |
| 			j = (*s++) - '0';
 | |
| 			if (j > 9)              return 1; /* invalid char */
 | |
| 			if (i > LLONG_MAX / 10LL) return 1; /* check for multiply overflow */
 | |
| 			i = i * 10LL;
 | |
| 			if (i + j < i)          return 1; /* check for addition overflow */
 | |
| 			i = i + j;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* negative number */
 | |
| 		s++;
 | |
| 		while (--len > 0) {
 | |
| 			j = (*s++) - '0';
 | |
| 			if (j > 9)              return 1; /* invalid char */
 | |
| 			if (i < LLONG_MIN / 10LL) return 1; /* check for multiply overflow */
 | |
| 			i = i * 10LL;
 | |
| 			if (i - j > i)          return 1; /* check for subtract overflow */
 | |
| 			i = i - j;
 | |
| 		}
 | |
| 	}
 | |
| 	*ret = i;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This function is used with pat_parse_dotted_ver(). It converts a string
 | |
|  * composed by two number separated by a dot. Each part must contain in 16 bits
 | |
|  * because internally they will be represented as a 32-bit quantity stored in
 | |
|  * a 64-bit integer. It returns zero when the number has successfully been
 | |
|  * converted, non-zero otherwise. When an error is returned, the <ret> value
 | |
|  * is left untouched.
 | |
|  *
 | |
|  *    "1.3"         -> 0x0000000000010003
 | |
|  *    "65535.65535" -> 0x00000000ffffffff
 | |
|  */
 | |
| int strl2llrc_dotted(const char *text, int len, long long *ret)
 | |
| {
 | |
| 	const char *end = &text[len];
 | |
| 	const char *p;
 | |
| 	long long major, minor;
 | |
| 
 | |
| 	/* Look for dot. */
 | |
| 	for (p = text; p < end; p++)
 | |
| 		if (*p == '.')
 | |
| 			break;
 | |
| 
 | |
| 	/* Convert major. */
 | |
| 	if (strl2llrc(text, p - text, &major) != 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Check major. */
 | |
| 	if (major >= 65536)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Convert minor. */
 | |
| 	minor = 0;
 | |
| 	if (p < end)
 | |
| 		if (strl2llrc(p + 1, end - (p + 1), &minor) != 0)
 | |
| 			return 1;
 | |
| 
 | |
| 	/* Check minor. */
 | |
| 	if (minor >= 65536)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Compose value. */
 | |
| 	*ret = (major << 16) | (minor & 0xffff);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This function parses a time value optionally followed by a unit suffix among
 | |
|  * "d", "h", "m", "s", "ms" or "us". It converts the value into the unit
 | |
|  * expected by the caller. The computation does its best to avoid overflows.
 | |
|  * The value is returned in <ret> if everything is fine, and a NULL is returned
 | |
|  * by the function. In case of error, a pointer to the error is returned and
 | |
|  * <ret> is left untouched. Values are automatically rounded up when needed.
 | |
|  * Values resulting in values larger than or equal to 2^31 after conversion are
 | |
|  * reported as an overflow as value PARSE_TIME_OVER. Non-null values resulting
 | |
|  * in an underflow are reported as an underflow as value PARSE_TIME_UNDER.
 | |
|  */
 | |
| const char *parse_time_err(const char *text, unsigned *ret, unsigned unit_flags)
 | |
| {
 | |
| 	unsigned long long imult, idiv;
 | |
| 	unsigned long long omult, odiv;
 | |
| 	unsigned long long value, result;
 | |
| 	const char *str = text;
 | |
| 
 | |
| 	if (!isdigit((unsigned char)*text))
 | |
| 		return text;
 | |
| 
 | |
| 	omult = odiv = 1;
 | |
| 
 | |
| 	switch (unit_flags & TIME_UNIT_MASK) {
 | |
| 	case TIME_UNIT_US:   omult = 1000000; break;
 | |
| 	case TIME_UNIT_MS:   omult = 1000; break;
 | |
| 	case TIME_UNIT_S:    break;
 | |
| 	case TIME_UNIT_MIN:  odiv = 60; break;
 | |
| 	case TIME_UNIT_HOUR: odiv = 3600; break;
 | |
| 	case TIME_UNIT_DAY:  odiv = 86400; break;
 | |
| 	default: break;
 | |
| 	}
 | |
| 
 | |
| 	value = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		unsigned int j;
 | |
| 
 | |
| 		j = *text - '0';
 | |
| 		if (j > 9)
 | |
| 			break;
 | |
| 		text++;
 | |
| 		value *= 10;
 | |
| 		value += j;
 | |
| 	}
 | |
| 
 | |
| 	imult = idiv = 1;
 | |
| 	switch (*text) {
 | |
| 	case '\0': /* no unit = default unit */
 | |
| 		imult = omult = idiv = odiv = 1;
 | |
| 		goto end;
 | |
| 	case 's': /* second = unscaled unit */
 | |
| 		break;
 | |
| 	case 'u': /* microsecond : "us" */
 | |
| 		if (text[1] == 's') {
 | |
| 			idiv = 1000000;
 | |
| 			text++;
 | |
| 			break;
 | |
| 		}
 | |
| 		return text;
 | |
| 	case 'm': /* millisecond : "ms" or minute: "m" */
 | |
| 		if (text[1] == 's') {
 | |
| 			idiv = 1000;
 | |
| 			text++;
 | |
| 		} else
 | |
| 			imult = 60;
 | |
| 		break;
 | |
| 	case 'h': /* hour : "h" */
 | |
| 		imult = 3600;
 | |
| 		break;
 | |
| 	case 'd': /* day : "d" */
 | |
| 		imult = 86400;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return text;
 | |
| 	}
 | |
| 	if (*(++text) != '\0') {
 | |
| 		ha_warning("unexpected character '%c' after the timer value '%s', only "
 | |
| 			   "(us=microseconds,ms=milliseconds,s=seconds,m=minutes,h=hours,d=days) are supported."
 | |
| 			   " This will be reported as an error in next versions.\n", *text, str);
 | |
| 	}
 | |
| 
 | |
|   end:
 | |
| 	if (omult % idiv == 0) { omult /= idiv; idiv = 1; }
 | |
| 	if (idiv % omult == 0) { idiv /= omult; omult = 1; }
 | |
| 	if (imult % odiv == 0) { imult /= odiv; odiv = 1; }
 | |
| 	if (odiv % imult == 0) { odiv /= imult; imult = 1; }
 | |
| 
 | |
| 	result = (value * (imult * omult) + (idiv * odiv - 1)) / (idiv * odiv);
 | |
| 	if (result >= 0x80000000)
 | |
| 		return PARSE_TIME_OVER;
 | |
| 	if (!result && value)
 | |
| 		return PARSE_TIME_UNDER;
 | |
| 	*ret = result;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* this function converts the string starting at <text> to an unsigned int
 | |
|  * stored in <ret>. If an error is detected, the pointer to the unexpected
 | |
|  * character is returned. If the conversion is successful, NULL is returned.
 | |
|  */
 | |
| const char *parse_size_ui(const char *text, unsigned *ret)
 | |
| {
 | |
| 	unsigned value = 0;
 | |
| 
 | |
| 	if (!isdigit((unsigned char)*text))
 | |
| 		return text;
 | |
| 
 | |
| 	while (1) {
 | |
| 		unsigned int j;
 | |
| 
 | |
| 		j = *text - '0';
 | |
| 		if (j > 9)
 | |
| 			break;
 | |
| 		if (value > ~0U / 10)
 | |
| 			return text;
 | |
| 		value *= 10;
 | |
| 		if (value > (value + j))
 | |
| 			return text;
 | |
| 		value += j;
 | |
| 		text++;
 | |
| 	}
 | |
| 
 | |
| 	switch (*text) {
 | |
| 	case '\0':
 | |
| 		break;
 | |
| 	case 'K':
 | |
| 	case 'k':
 | |
| 		if (value > ~0U >> 10)
 | |
| 			return text;
 | |
| 		value = value << 10;
 | |
| 		break;
 | |
| 	case 'M':
 | |
| 	case 'm':
 | |
| 		if (value > ~0U >> 20)
 | |
| 			return text;
 | |
| 		value = value << 20;
 | |
| 		break;
 | |
| 	case 'G':
 | |
| 	case 'g':
 | |
| 		if (value > ~0U >> 30)
 | |
| 			return text;
 | |
| 		value = value << 30;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return text;
 | |
| 	}
 | |
| 
 | |
| 	if (*text != '\0' && *++text != '\0')
 | |
| 		return text;
 | |
| 
 | |
| 	*ret = value;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* this function converts the string starting at <text> to an ullong stored in
 | |
|  * <ret>. If an error is detected, the pointer to the unexpected character is
 | |
|  * returned. If the conversion is successful, NULL is returned.
 | |
|  */
 | |
| const char *parse_size_ull(const char *text, ullong *ret)
 | |
| {
 | |
| 	ullong value = 0;
 | |
| 
 | |
| 	if (!isdigit((unsigned char)*text))
 | |
| 		return text;
 | |
| 
 | |
| 	while (1) {
 | |
| 		unsigned int j;
 | |
| 
 | |
| 		j = *text - '0';
 | |
| 		if (j > 9)
 | |
| 			break;
 | |
| 		if (value > ~0ULL / 10)
 | |
| 			return text;
 | |
| 		value *= 10;
 | |
| 		if (value > (value + j))
 | |
| 			return text;
 | |
| 		value += j;
 | |
| 		text++;
 | |
| 	}
 | |
| 
 | |
| 	switch (*text) {
 | |
| 	case '\0':
 | |
| 		break;
 | |
| 	case 'K':
 | |
| 	case 'k':
 | |
| 		if (value > ~0ULL >> 10)
 | |
| 			return text;
 | |
| 		value = value << 10;
 | |
| 		break;
 | |
| 	case 'M':
 | |
| 	case 'm':
 | |
| 		if (value > ~0ULL >> 20)
 | |
| 			return text;
 | |
| 		value = value << 20;
 | |
| 		break;
 | |
| 	case 'G':
 | |
| 	case 'g':
 | |
| 		if (value > ~0ULL >> 30)
 | |
| 			return text;
 | |
| 		value = value << 30;
 | |
| 		break;
 | |
| 	case 'T':
 | |
| 	case 't':
 | |
| 		if (value > ~0ULL >> 40)
 | |
| 			return text;
 | |
| 		value = value << 40;
 | |
| 		break;
 | |
| 	case 'P':
 | |
| 	case 'p':
 | |
| 		if (value > ~0ULL >> 50)
 | |
| 			return text;
 | |
| 		value = value << 50;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return text;
 | |
| 	}
 | |
| 
 | |
| 	if (*text != '\0' && *++text != '\0')
 | |
| 		return text;
 | |
| 
 | |
| 	*ret = value;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse binary string written in hexadecimal (source) and store the decoded
 | |
|  * result into binstr and set binstrlen to the length of binstr. Memory for
 | |
|  * binstr is allocated by the function. In case of error, returns 0 with an
 | |
|  * error message in err. In success case, it returns the consumed length.
 | |
|  */
 | |
| int parse_binary(const char *source, char **binstr, int *binstrlen, char **err)
 | |
| {
 | |
| 	int len;
 | |
| 	const char *p = source;
 | |
| 	int i,j;
 | |
| 	int alloc;
 | |
| 
 | |
| 	len = strlen(source);
 | |
| 	if (len % 2) {
 | |
| 		memprintf(err, "an even number of hex digit is expected");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	len = len >> 1;
 | |
| 
 | |
| 	if (!*binstr) {
 | |
| 		*binstr = calloc(len, sizeof(**binstr));
 | |
| 		if (!*binstr) {
 | |
| 			memprintf(err, "out of memory while loading string pattern");
 | |
| 			return 0;
 | |
| 		}
 | |
| 		alloc = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		if (*binstrlen < len) {
 | |
| 			memprintf(err, "no space available in the buffer. expect %d, provides %d",
 | |
| 			          len, *binstrlen);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		alloc = 0;
 | |
| 	}
 | |
| 	*binstrlen = len;
 | |
| 
 | |
| 	i = j = 0;
 | |
| 	while (j < len) {
 | |
| 		if (!ishex(p[i++]))
 | |
| 			goto bad_input;
 | |
| 		if (!ishex(p[i++]))
 | |
| 			goto bad_input;
 | |
| 		(*binstr)[j++] =  (hex2i(p[i-2]) << 4) + hex2i(p[i-1]);
 | |
| 	}
 | |
| 	return len << 1;
 | |
| 
 | |
| bad_input:
 | |
| 	memprintf(err, "an hex digit is expected (found '%c')", p[i-1]);
 | |
| 	if (alloc)
 | |
| 		ha_free(binstr);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* copies at most <n> characters from <src> and always terminates with '\0' */
 | |
| char *my_strndup(const char *src, size_t n)
 | |
| {
 | |
| 	size_t len = 0;
 | |
| 	char *ret;
 | |
| 
 | |
| 	while (len < n && src[len])
 | |
| 		len++;
 | |
| 
 | |
| 	ret = malloc(len + 1);
 | |
| 	if (!ret)
 | |
| 		return ret;
 | |
| 	memcpy(ret, src, len);
 | |
| 	ret[len] = '\0';
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * search needle in haystack
 | |
|  * returns the pointer if found, returns NULL otherwise
 | |
|  */
 | |
| const void *my_memmem(const void *haystack, size_t haystacklen, const void *needle, size_t needlelen)
 | |
| {
 | |
| 	const void *c = NULL;
 | |
| 	unsigned char f;
 | |
| 
 | |
| 	if ((haystack == NULL) || (needle == NULL) || (haystacklen < needlelen))
 | |
| 		return NULL;
 | |
| 
 | |
| 	f = *(char *)needle;
 | |
| 	c = haystack;
 | |
| 	while ((c = memchr(c, f, haystacklen - (c - haystack))) != NULL) {
 | |
| 		if ((haystacklen - (c - haystack)) < needlelen)
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (memcmp(c, needle, needlelen) == 0)
 | |
| 			return c;
 | |
| 		++c;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* get length of the initial segment consisting entirely of bytes in <accept> */
 | |
| size_t my_memspn(const void *str, size_t len, const void *accept, size_t acceptlen)
 | |
| {
 | |
| 	size_t ret = 0;
 | |
| 
 | |
| 	while (ret < len && memchr(accept, *((int *)str), acceptlen)) {
 | |
| 		str++;
 | |
| 		ret++;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* get length of the initial segment consisting entirely of bytes not in <rejcet> */
 | |
| size_t my_memcspn(const void *str, size_t len, const void *reject, size_t rejectlen)
 | |
| {
 | |
| 	size_t ret = 0;
 | |
| 
 | |
| 	while (ret < len) {
 | |
| 		if(memchr(reject, *((int *)str), rejectlen))
 | |
| 			return ret;
 | |
| 		str++;
 | |
| 		ret++;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* This function returns the first unused key greater than or equal to <key> in
 | |
|  * ID tree <root>. Zero is returned if no place is found.
 | |
|  */
 | |
| unsigned int get_next_id(struct eb_root *root, unsigned int key)
 | |
| {
 | |
| 	struct eb32_node *used;
 | |
| 
 | |
| 	do {
 | |
| 		used = eb32_lookup_ge(root, key);
 | |
| 		if (!used || used->key > key)
 | |
| 			return key; /* key is available */
 | |
| 		key++;
 | |
| 	} while (key);
 | |
| 	return key;
 | |
| }
 | |
| 
 | |
| /* dump the full tree to <file> in DOT format for debugging purposes. Will
 | |
|  * optionally highlight node <subj> if found, depending on operation <op> :
 | |
|  *    0 : nothing
 | |
|  *   >0 : insertion, node/leaf are surrounded in red
 | |
|  *   <0 : removal, node/leaf are dashed with no background
 | |
|  * Will optionally add "desc" as a label on the graph if set and non-null.
 | |
|  */
 | |
| void eb32sc_to_file(FILE *file, struct eb_root *root, const struct eb32sc_node *subj, int op, const char *desc)
 | |
| {
 | |
| 	struct eb32sc_node *node;
 | |
| 	unsigned long scope = -1;
 | |
| 
 | |
| 	fprintf(file, "digraph ebtree {\n");
 | |
| 
 | |
| 	if (desc && *desc) {
 | |
| 		fprintf(file,
 | |
| 			"  fontname=\"fixed\";\n"
 | |
| 			"  fontsize=8;\n"
 | |
| 			"  label=\"%s\";\n", desc);
 | |
| 	}
 | |
| 
 | |
| 	fprintf(file,
 | |
| 		"  node [fontname=\"fixed\" fontsize=8 shape=\"box\" style=\"filled\" color=\"black\" fillcolor=\"white\"];\n"
 | |
| 		"  edge [fontname=\"fixed\" fontsize=8 style=\"solid\" color=\"magenta\" dir=\"forward\"];\n"
 | |
| 		"  \"%lx_n\" [label=\"root\\n%lx\"]\n", (long)eb_root_to_node(root), (long)root
 | |
| 		);
 | |
| 
 | |
| 	fprintf(file, "  \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n",
 | |
| 		(long)eb_root_to_node(root),
 | |
| 		(long)eb_root_to_node(eb_clrtag(root->b[0])),
 | |
| 		eb_gettag(root->b[0]) == EB_LEAF ? 'l' : 'n');
 | |
| 
 | |
| 	node = eb32sc_first(root, scope);
 | |
| 	while (node) {
 | |
| 		if (node->node.node_p) {
 | |
| 			/* node part is used */
 | |
| 			fprintf(file, "  \"%lx_n\" [label=\"%lx\\nkey=%u\\nscope=%lx\\nbit=%d\" fillcolor=\"lightskyblue1\" %s];\n",
 | |
| 				(long)node, (long)node, node->key, node->node_s, node->node.bit,
 | |
| 				(node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : "");
 | |
| 
 | |
| 			fprintf(file, "  \"%lx_n\" -> \"%lx_n\" [taillabel=\"%c\"];\n",
 | |
| 				(long)node,
 | |
| 				(long)eb_root_to_node(eb_clrtag(node->node.node_p)),
 | |
| 				eb_gettag(node->node.node_p) ? 'R' : 'L');
 | |
| 
 | |
| 			fprintf(file, "  \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n",
 | |
| 				(long)node,
 | |
| 				(long)eb_root_to_node(eb_clrtag(node->node.branches.b[0])),
 | |
| 				eb_gettag(node->node.branches.b[0]) == EB_LEAF ? 'l' : 'n');
 | |
| 
 | |
| 			fprintf(file, "  \"%lx_n\" -> \"%lx_%c\" [taillabel=\"R\"];\n",
 | |
| 				(long)node,
 | |
| 				(long)eb_root_to_node(eb_clrtag(node->node.branches.b[1])),
 | |
| 				eb_gettag(node->node.branches.b[1]) == EB_LEAF ? 'l' : 'n');
 | |
| 		}
 | |
| 
 | |
| 		fprintf(file, "  \"%lx_l\" [label=\"%lx\\nkey=%u\\nscope=%lx\\npfx=%u\" fillcolor=\"yellow\" %s];\n",
 | |
| 			(long)node, (long)node, node->key, node->leaf_s, node->node.pfx,
 | |
| 			(node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : "");
 | |
| 
 | |
| 		fprintf(file, "  \"%lx_l\" -> \"%lx_n\" [taillabel=\"%c\"];\n",
 | |
| 			(long)node,
 | |
| 			(long)eb_root_to_node(eb_clrtag(node->node.leaf_p)),
 | |
| 			eb_gettag(node->node.leaf_p) ? 'R' : 'L');
 | |
| 		node = eb32sc_next(node, scope);
 | |
| 	}
 | |
| 	fprintf(file, "}\n");
 | |
| }
 | |
| 
 | |
| /* dump the full tree to <file> in DOT format for debugging purposes. Will
 | |
|  * optionally highlight node <subj> if found, depending on operation <op> :
 | |
|  *    0 : nothing
 | |
|  *   >0 : insertion, node/leaf are surrounded in red
 | |
|  *   <0 : removal, node/leaf are dashed with no background
 | |
|  * Will optionally add "desc" as a label on the graph if set and non-null. The
 | |
|  * key is printed as a u32 hex value. A full-sized hex dump would be better but
 | |
|  * is left to be implemented.
 | |
|  */
 | |
| void ebmb_to_file(FILE *file, struct eb_root *root, const struct ebmb_node *subj, int op, const char *desc)
 | |
| {
 | |
| 	struct ebmb_node *node;
 | |
| 
 | |
| 	fprintf(file, "digraph ebtree {\n");
 | |
| 
 | |
| 	if (desc && *desc) {
 | |
| 		fprintf(file,
 | |
| 			"  fontname=\"fixed\";\n"
 | |
| 			"  fontsize=8;\n"
 | |
| 			"  label=\"%s\";\n", desc);
 | |
| 	}
 | |
| 
 | |
| 	fprintf(file,
 | |
| 		"  node [fontname=\"fixed\" fontsize=8 shape=\"box\" style=\"filled\" color=\"black\" fillcolor=\"white\"];\n"
 | |
| 		"  edge [fontname=\"fixed\" fontsize=8 style=\"solid\" color=\"magenta\" dir=\"forward\"];\n"
 | |
| 		"  \"%lx_n\" [label=\"root\\n%lx\"]\n", (long)eb_root_to_node(root), (long)root
 | |
| 		);
 | |
| 
 | |
| 	fprintf(file, "  \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n",
 | |
| 		(long)eb_root_to_node(root),
 | |
| 		(long)eb_root_to_node(eb_clrtag(root->b[0])),
 | |
| 		eb_gettag(root->b[0]) == EB_LEAF ? 'l' : 'n');
 | |
| 
 | |
| 	node = ebmb_first(root);
 | |
| 	while (node) {
 | |
| 		if (node->node.node_p) {
 | |
| 			/* node part is used */
 | |
| 			fprintf(file, "  \"%lx_n\" [label=\"%lx\\nkey=%#x\\nbit=%d\" fillcolor=\"lightskyblue1\" %s];\n",
 | |
| 				(long)node, (long)node, read_u32(node->key), node->node.bit,
 | |
| 				(node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : "");
 | |
| 
 | |
| 			fprintf(file, "  \"%lx_n\" -> \"%lx_n\" [taillabel=\"%c\"];\n",
 | |
| 				(long)node,
 | |
| 				(long)eb_root_to_node(eb_clrtag(node->node.node_p)),
 | |
| 				eb_gettag(node->node.node_p) ? 'R' : 'L');
 | |
| 
 | |
| 			fprintf(file, "  \"%lx_n\" -> \"%lx_%c\" [taillabel=\"L\"];\n",
 | |
| 				(long)node,
 | |
| 				(long)eb_root_to_node(eb_clrtag(node->node.branches.b[0])),
 | |
| 				eb_gettag(node->node.branches.b[0]) == EB_LEAF ? 'l' : 'n');
 | |
| 
 | |
| 			fprintf(file, "  \"%lx_n\" -> \"%lx_%c\" [taillabel=\"R\"];\n",
 | |
| 				(long)node,
 | |
| 				(long)eb_root_to_node(eb_clrtag(node->node.branches.b[1])),
 | |
| 				eb_gettag(node->node.branches.b[1]) == EB_LEAF ? 'l' : 'n');
 | |
| 		}
 | |
| 
 | |
| 		fprintf(file, "  \"%lx_l\" [label=\"%lx\\nkey=%#x\\npfx=%u\" fillcolor=\"yellow\" %s];\n",
 | |
| 			(long)node, (long)node, read_u32(node->key), node->node.pfx,
 | |
| 			(node == subj) ? (op < 0 ? "color=\"red\" style=\"dashed\"" : op > 0 ? "color=\"red\"" : "") : "");
 | |
| 
 | |
| 		fprintf(file, "  \"%lx_l\" -> \"%lx_n\" [taillabel=\"%c\"];\n",
 | |
| 			(long)node,
 | |
| 			(long)eb_root_to_node(eb_clrtag(node->node.leaf_p)),
 | |
| 			eb_gettag(node->node.leaf_p) ? 'R' : 'L');
 | |
| 		node = ebmb_next(node);
 | |
| 	}
 | |
| 	fprintf(file, "}\n");
 | |
| }
 | |
| 
 | |
| /* This function compares a sample word possibly followed by blanks to another
 | |
|  * clean word. The compare is case-insensitive. 1 is returned if both are equal,
 | |
|  * otherwise zero. This intends to be used when checking HTTP headers for some
 | |
|  * values. Note that it validates a word followed only by blanks but does not
 | |
|  * validate a word followed by blanks then other chars.
 | |
|  */
 | |
| int word_match(const char *sample, int slen, const char *word, int wlen)
 | |
| {
 | |
| 	if (slen < wlen)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (wlen) {
 | |
| 		char c = *sample ^ *word;
 | |
| 		if (c && c != ('A' ^ 'a'))
 | |
| 			return 0;
 | |
| 		sample++;
 | |
| 		word++;
 | |
| 		slen--;
 | |
| 		wlen--;
 | |
| 	}
 | |
| 
 | |
| 	while (slen) {
 | |
| 		if (*sample != ' ' && *sample != '\t')
 | |
| 			return 0;
 | |
| 		sample++;
 | |
| 		slen--;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Converts any text-formatted IPv4 address to a host-order IPv4 address. It
 | |
|  * is particularly fast because it avoids expensive operations such as
 | |
|  * multiplies, which are optimized away at the end. It requires a properly
 | |
|  * formatted address though (3 points).
 | |
|  */
 | |
| unsigned int inetaddr_host(const char *text)
 | |
| {
 | |
| 	const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
 | |
| 	register unsigned int dig100, dig10, dig1;
 | |
| 	int s;
 | |
| 	const char *p, *d;
 | |
| 
 | |
| 	dig1 = dig10 = dig100 = ascii_zero;
 | |
| 	s = 24;
 | |
| 
 | |
| 	p = text;
 | |
| 	while (1) {
 | |
| 		if (((unsigned)(*p - '0')) <= 9) {
 | |
| 			p++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* here, we have a complete byte between <text> and <p> (exclusive) */
 | |
| 		if (p == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d = p - 1;
 | |
| 		dig1   |= (unsigned int)(*d << s);
 | |
| 		if (d == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d--;
 | |
| 		dig10  |= (unsigned int)(*d << s);
 | |
| 		if (d == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d--;
 | |
| 		dig100 |= (unsigned int)(*d << s);
 | |
| 	end:
 | |
| 		if (!s || *p != '.')
 | |
| 			break;
 | |
| 
 | |
| 		s -= 8;
 | |
| 		text = ++p;
 | |
| 	}
 | |
| 
 | |
| 	dig100 -= ascii_zero;
 | |
| 	dig10  -= ascii_zero;
 | |
| 	dig1   -= ascii_zero;
 | |
| 	return ((dig100 * 10) + dig10) * 10 + dig1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Idem except the first unparsed character has to be passed in <stop>.
 | |
|  */
 | |
| unsigned int inetaddr_host_lim(const char *text, const char *stop)
 | |
| {
 | |
| 	const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
 | |
| 	register unsigned int dig100, dig10, dig1;
 | |
| 	int s;
 | |
| 	const char *p, *d;
 | |
| 
 | |
| 	dig1 = dig10 = dig100 = ascii_zero;
 | |
| 	s = 24;
 | |
| 
 | |
| 	p = text;
 | |
| 	while (1) {
 | |
| 		if (((unsigned)(*p - '0')) <= 9 && p < stop) {
 | |
| 			p++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* here, we have a complete byte between <text> and <p> (exclusive) */
 | |
| 		if (p == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d = p - 1;
 | |
| 		dig1   |= (unsigned int)(*d << s);
 | |
| 		if (d == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d--;
 | |
| 		dig10  |= (unsigned int)(*d << s);
 | |
| 		if (d == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d--;
 | |
| 		dig100 |= (unsigned int)(*d << s);
 | |
| 	end:
 | |
| 		if (!s || p == stop || *p != '.')
 | |
| 			break;
 | |
| 
 | |
| 		s -= 8;
 | |
| 		text = ++p;
 | |
| 	}
 | |
| 
 | |
| 	dig100 -= ascii_zero;
 | |
| 	dig10  -= ascii_zero;
 | |
| 	dig1   -= ascii_zero;
 | |
| 	return ((dig100 * 10) + dig10) * 10 + dig1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Idem except the pointer to first unparsed byte is returned into <ret> which
 | |
|  * must not be NULL.
 | |
|  */
 | |
| unsigned int inetaddr_host_lim_ret(char *text, char *stop, char **ret)
 | |
| {
 | |
| 	const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
 | |
| 	register unsigned int dig100, dig10, dig1;
 | |
| 	int s;
 | |
| 	char *p, *d;
 | |
| 
 | |
| 	dig1 = dig10 = dig100 = ascii_zero;
 | |
| 	s = 24;
 | |
| 
 | |
| 	p = text;
 | |
| 	while (1) {
 | |
| 		if (((unsigned)(*p - '0')) <= 9 && p < stop) {
 | |
| 			p++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* here, we have a complete byte between <text> and <p> (exclusive) */
 | |
| 		if (p == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d = p - 1;
 | |
| 		dig1   |= (unsigned int)(*d << s);
 | |
| 		if (d == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d--;
 | |
| 		dig10  |= (unsigned int)(*d << s);
 | |
| 		if (d == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d--;
 | |
| 		dig100 |= (unsigned int)(*d << s);
 | |
| 	end:
 | |
| 		if (!s || p == stop || *p != '.')
 | |
| 			break;
 | |
| 
 | |
| 		s -= 8;
 | |
| 		text = ++p;
 | |
| 	}
 | |
| 
 | |
| 	*ret = p;
 | |
| 	dig100 -= ascii_zero;
 | |
| 	dig10  -= ascii_zero;
 | |
| 	dig1   -= ascii_zero;
 | |
| 	return ((dig100 * 10) + dig10) * 10 + dig1;
 | |
| }
 | |
| 
 | |
| /* Convert a fixed-length string to an IP address. Returns 0 in case of error,
 | |
|  * or the number of chars read in case of success. Maybe this could be replaced
 | |
|  * by one of the functions above. Also, apparently this function does not support
 | |
|  * hosts above 255 and requires exactly 4 octets.
 | |
|  * The destination is only modified on success.
 | |
|  */
 | |
| int buf2ip(const char *buf, size_t len, struct in_addr *dst)
 | |
| {
 | |
| 	const char *addr;
 | |
| 	int saw_digit, octets, ch;
 | |
| 	u_char tmp[4], *tp;
 | |
| 	const char *cp = buf;
 | |
| 
 | |
| 	saw_digit = 0;
 | |
| 	octets = 0;
 | |
| 	*(tp = tmp) = 0;
 | |
| 
 | |
| 	for (addr = buf; addr - buf < len; addr++) {
 | |
| 		unsigned char digit = (ch = *addr) - '0';
 | |
| 
 | |
| 		if (digit > 9 && ch != '.')
 | |
| 			break;
 | |
| 
 | |
| 		if (digit <= 9) {
 | |
| 			u_int new = *tp * 10 + digit;
 | |
| 
 | |
| 			if (new > 255)
 | |
| 				return 0;
 | |
| 
 | |
| 			*tp = new;
 | |
| 
 | |
| 			if (!saw_digit) {
 | |
| 				if (++octets > 4)
 | |
| 					return 0;
 | |
| 				saw_digit = 1;
 | |
| 			}
 | |
| 		} else if (ch == '.' && saw_digit) {
 | |
| 			if (octets == 4)
 | |
| 				return 0;
 | |
| 
 | |
| 			*++tp = 0;
 | |
| 			saw_digit = 0;
 | |
| 		} else
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (octets < 4)
 | |
| 		return 0;
 | |
| 
 | |
| 	memcpy(&dst->s_addr, tmp, 4);
 | |
| 	return addr - cp;
 | |
| }
 | |
| 
 | |
| /* This function converts the string in <buf> of the len <len> to
 | |
|  * struct in6_addr <dst> which must be allocated by the caller.
 | |
|  * This function returns 1 in success case, otherwise zero.
 | |
|  * The destination is only modified on success.
 | |
|  */
 | |
| int buf2ip6(const char *buf, size_t len, struct in6_addr *dst)
 | |
| {
 | |
| 	char null_term_ip6[INET6_ADDRSTRLEN + 1];
 | |
| 	struct in6_addr out;
 | |
| 
 | |
| 	if (len > INET6_ADDRSTRLEN)
 | |
| 		return 0;
 | |
| 
 | |
| 	memcpy(null_term_ip6, buf, len);
 | |
| 	null_term_ip6[len] = '\0';
 | |
| 
 | |
| 	if (!inet_pton(AF_INET6, null_term_ip6, &out))
 | |
| 		return 0;
 | |
| 
 | |
| 	*dst = out;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* To be used to quote config arg positions. Returns the short string at <ptr>
 | |
|  * surrounded by simple quotes if <ptr> is valid and non-empty, or "end of line"
 | |
|  * if ptr is NULL or empty. The string is locally allocated.
 | |
|  */
 | |
| const char *quote_arg(const char *ptr)
 | |
| {
 | |
| 	static THREAD_LOCAL char val[32];
 | |
| 	int i;
 | |
| 
 | |
| 	if (!ptr || !*ptr)
 | |
| 		return "end of line";
 | |
| 	val[0] = '\'';
 | |
| 	for (i = 1; i < sizeof(val) - 2 && *ptr; i++)
 | |
| 		val[i] = *ptr++;
 | |
| 	val[i++] = '\'';
 | |
| 	val[i] = '\0';
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /* returns an operator among STD_OP_* for string <str> or < 0 if unknown */
 | |
| int get_std_op(const char *str)
 | |
| {
 | |
| 	int ret = -1;
 | |
| 
 | |
| 	if (*str == 'e' && str[1] == 'q')
 | |
| 		ret = STD_OP_EQ;
 | |
| 	else if (*str == 'n' && str[1] == 'e')
 | |
| 		ret = STD_OP_NE;
 | |
| 	else if (*str == 'l') {
 | |
| 		if (str[1] == 'e') ret = STD_OP_LE;
 | |
| 		else if (str[1] == 't') ret = STD_OP_LT;
 | |
| 	}
 | |
| 	else if (*str == 'g') {
 | |
| 		if (str[1] == 'e') ret = STD_OP_GE;
 | |
| 		else if (str[1] == 't') ret = STD_OP_GT;
 | |
| 	}
 | |
| 
 | |
| 	if (ret == -1 || str[2] != '\0')
 | |
| 		return -1;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* hash a 32-bit integer to another 32-bit integer */
 | |
| unsigned int full_hash(unsigned int a)
 | |
| {
 | |
| 	return __full_hash(a);
 | |
| }
 | |
| 
 | |
| /* Return the bit position in mask <m> of the nth bit set of rank <r>, between
 | |
|  * 0 and LONGBITS-1 included, starting from the left. For example ranks 0,1,2,3
 | |
|  * for mask 0x55 will be 6, 4, 2 and 0 respectively. This algorithm is based on
 | |
|  * a popcount variant and is described here :
 | |
|  *   https://graphics.stanford.edu/~seander/bithacks.html
 | |
|  */
 | |
| unsigned int mask_find_rank_bit(unsigned int r, unsigned long m)
 | |
| {
 | |
| 	unsigned long a, b, c, d;
 | |
| 	unsigned int s;
 | |
| 	unsigned int t;
 | |
| 
 | |
| 	a =  m - ((m >> 1) & ~0UL/3);
 | |
| 	b = (a & ~0UL/5) + ((a >> 2) & ~0UL/5);
 | |
| 	c = (b + (b >> 4)) & ~0UL/0x11;
 | |
| 	d = (c + (c >> 8)) & ~0UL/0x101;
 | |
| 
 | |
| 	r++; // make r be 1..64
 | |
| 
 | |
| 	t = 0;
 | |
| 	s = LONGBITS;
 | |
| 	if (s > 32) {
 | |
| 		unsigned long d2 = (d >> 16) >> 16;
 | |
| 		t = d2 + (d2 >> 16);
 | |
| 		s -= ((t - r) & 256) >> 3; r -= (t & ((t - r) >> 8));
 | |
| 	}
 | |
| 
 | |
| 	t  = (d >> (s - 16)) & 0xff;
 | |
| 	s -= ((t - r) & 256) >> 4; r -= (t & ((t - r) >> 8));
 | |
| 	t  = (c >> (s - 8)) & 0xf;
 | |
| 	s -= ((t - r) & 256) >> 5; r -= (t & ((t - r) >> 8));
 | |
| 	t  = (b >> (s - 4)) & 0x7;
 | |
| 	s -= ((t - r) & 256) >> 6; r -= (t & ((t - r) >> 8));
 | |
| 	t  = (a >> (s - 2)) & 0x3;
 | |
| 	s -= ((t - r) & 256) >> 7; r -= (t & ((t - r) >> 8));
 | |
| 	t  = (m >> (s - 1)) & 0x1;
 | |
| 	s -= ((t - r) & 256) >> 8;
 | |
| 
 | |
|        return s - 1;
 | |
| }
 | |
| 
 | |
| /* Same as mask_find_rank_bit() above but makes use of pre-computed bitmaps
 | |
|  * based on <m>, in <a..d>. These ones must be updated whenever <m> changes
 | |
|  * using mask_prep_rank_map() below.
 | |
|  */
 | |
| unsigned int mask_find_rank_bit_fast(unsigned int r, unsigned long m,
 | |
|                                      unsigned long a, unsigned long b,
 | |
|                                      unsigned long c, unsigned long d)
 | |
| {
 | |
| 	unsigned int s;
 | |
| 	unsigned int t;
 | |
| 
 | |
| 	r++; // make r be 1..64
 | |
| 
 | |
| 	t = 0;
 | |
| 	s = LONGBITS;
 | |
| 	if (s > 32) {
 | |
| 		unsigned long d2 = (d >> 16) >> 16;
 | |
| 		t = d2 + (d2 >> 16);
 | |
| 		s -= ((t - r) & 256) >> 3; r -= (t & ((t - r) >> 8));
 | |
| 	}
 | |
| 
 | |
| 	t  = (d >> (s - 16)) & 0xff;
 | |
| 	s -= ((t - r) & 256) >> 4; r -= (t & ((t - r) >> 8));
 | |
| 	t  = (c >> (s - 8)) & 0xf;
 | |
| 	s -= ((t - r) & 256) >> 5; r -= (t & ((t - r) >> 8));
 | |
| 	t  = (b >> (s - 4)) & 0x7;
 | |
| 	s -= ((t - r) & 256) >> 6; r -= (t & ((t - r) >> 8));
 | |
| 	t  = (a >> (s - 2)) & 0x3;
 | |
| 	s -= ((t - r) & 256) >> 7; r -= (t & ((t - r) >> 8));
 | |
| 	t  = (m >> (s - 1)) & 0x1;
 | |
| 	s -= ((t - r) & 256) >> 8;
 | |
| 
 | |
| 	return s - 1;
 | |
| }
 | |
| 
 | |
| /* Prepare the bitmaps used by the fast implementation of the find_rank_bit()
 | |
|  * above.
 | |
|  */
 | |
| void mask_prep_rank_map(unsigned long m,
 | |
|                         unsigned long *a, unsigned long *b,
 | |
|                         unsigned long *c, unsigned long *d)
 | |
| {
 | |
| 	*a =  m - ((m >> 1) & ~0UL/3);
 | |
| 	*b = (*a & ~0UL/5) + ((*a >> 2) & ~0UL/5);
 | |
| 	*c = (*b + (*b >> 4)) & ~0UL/0x11;
 | |
| 	*d = (*c + (*c >> 8)) & ~0UL/0x101;
 | |
| }
 | |
| 
 | |
| /* Returns the position of one bit set in <v>, starting at position <bit>, and
 | |
|  * searching in other halves if not found. This is intended to be used to
 | |
|  * report the position of one bit set among several based on a counter or a
 | |
|  * random generator while preserving a relatively good distribution so that
 | |
|  * values made of holes in the middle do not see one of the bits around the
 | |
|  * hole being returned much more often than the other one. It can be seen as a
 | |
|  * disturbed ffsl() where the initial search starts at bit <bit>. The look up
 | |
|  * is performed in O(logN) time for N bit words, yielding a bit among 64 in
 | |
|  * about 16 cycles. Its usage differs from the rank find function in that the
 | |
|  * bit passed doesn't need to be limited to the value's popcount, making the
 | |
|  * function easier to use for random picking, and twice as fast. Passing value
 | |
|  * 0 for <v> makes no sense and -1 is returned in this case.
 | |
|  */
 | |
| int one_among_mask(unsigned long v, int bit)
 | |
| {
 | |
| 	/* note, these masks may be produced by ~0UL/((1UL<<scale)+1) but
 | |
| 	 * that's more expensive.
 | |
| 	 */
 | |
| 	static const unsigned long halves[] = {
 | |
| 		(unsigned long)0x5555555555555555ULL,
 | |
| 		(unsigned long)0x3333333333333333ULL,
 | |
| 		(unsigned long)0x0F0F0F0F0F0F0F0FULL,
 | |
| 		(unsigned long)0x00FF00FF00FF00FFULL,
 | |
| 		(unsigned long)0x0000FFFF0000FFFFULL,
 | |
| 		(unsigned long)0x00000000FFFFFFFFULL
 | |
| 	};
 | |
| 	unsigned long halfword = ~0UL;
 | |
| 	int scope = 0;
 | |
| 	int mirror;
 | |
| 	int scale;
 | |
| 
 | |
| 	if (!v)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* we check if the exact bit is set or if it's present in a mirror
 | |
| 	 * position based on the current scale we're checking, in which case
 | |
| 	 * it's returned with its current (or mirrored) value. Otherwise we'll
 | |
| 	 * make sure there's at least one bit in the half we're in, and will
 | |
| 	 * scale down to a smaller scope and try again, until we find the
 | |
| 	 * closest bit.
 | |
| 	 */
 | |
| 	for (scale = (sizeof(long) > 4) ? 5 : 4; scale >= 0; scale--) {
 | |
| 		halfword >>= (1UL << scale);
 | |
| 		scope |= (1UL << scale);
 | |
| 		mirror = bit ^ (1UL << scale);
 | |
| 		if (v & ((1UL << bit) | (1UL << mirror)))
 | |
| 			return (v & (1UL << bit)) ? bit : mirror;
 | |
| 
 | |
| 		if (!((v >> (bit & scope)) & halves[scale] & halfword))
 | |
| 			bit = mirror;
 | |
| 	}
 | |
| 	return bit;
 | |
| }
 | |
| 
 | |
| /* Return non-zero if IPv4 address is part of the network,
 | |
|  * otherwise zero. Note that <addr> may not necessarily be aligned
 | |
|  * while the two other ones must.
 | |
|  */
 | |
| int in_net_ipv4(const void *addr, const struct in_addr *mask, const struct in_addr *net)
 | |
| {
 | |
| 	struct in_addr addr_copy;
 | |
| 
 | |
| 	memcpy(&addr_copy, addr, sizeof(addr_copy));
 | |
| 	return((addr_copy.s_addr & mask->s_addr) == (net->s_addr & mask->s_addr));
 | |
| }
 | |
| 
 | |
| /* Return non-zero if IPv6 address is part of the network,
 | |
|  * otherwise zero. Note that <addr> may not necessarily be aligned
 | |
|  * while the two other ones must.
 | |
|  */
 | |
| int in_net_ipv6(const void *addr, const struct in6_addr *mask, const struct in6_addr *net)
 | |
| {
 | |
| 	int i;
 | |
| 	struct in6_addr addr_copy;
 | |
| 
 | |
| 	memcpy(&addr_copy, addr, sizeof(addr_copy));
 | |
| 	for (i = 0; i < sizeof(struct in6_addr) / sizeof(int); i++)
 | |
| 		if (((((int *)&addr_copy)[i] & ((int *)mask)[i])) !=
 | |
| 		    (((int *)net)[i] & ((int *)mask)[i]))
 | |
| 			return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Map IPv4 address on IPv6 address, as specified in RFC4291
 | |
|  * "IPv4-Mapped IPv6 Address" (using the :ffff: prefix)
 | |
|  *
 | |
|  * Input and output may overlap.
 | |
|  */
 | |
| void v4tov6(struct in6_addr *sin6_addr, struct in_addr *sin_addr)
 | |
| {
 | |
| 	uint32_t ip4_addr;
 | |
| 
 | |
| 	ip4_addr = sin_addr->s_addr;
 | |
| 	memset(&sin6_addr->s6_addr, 0, 10);
 | |
| 	write_u16(&sin6_addr->s6_addr[10], htons(0xFFFF));
 | |
| 	write_u32(&sin6_addr->s6_addr[12], ip4_addr);
 | |
| }
 | |
| 
 | |
| /* Try to convert IPv6 address to IPv4 address thanks to the
 | |
|  * following mapping methods:
 | |
|  *  - RFC4291 IPv4-Mapped IPv6 Address (preferred method)
 | |
|  *    -> ::ffff:ip:v4
 | |
|  *  - RFC4291 IPv4-Compatible IPv6 Address (deprecated, RFC3513 legacy for
 | |
|  *    "IPv6 Addresses with Embedded IPv4 Addresses)
 | |
|  *    -> ::0000:ip:v4
 | |
|  *  - 6to4 (defined in RFC3056 proposal, seems deprecated nowadays)
 | |
|  *    -> 2002:ip:v4::
 | |
|  * Return true if conversion is possible and false otherwise.
 | |
|  */
 | |
| int v6tov4(struct in_addr *sin_addr, struct in6_addr *sin6_addr)
 | |
| {
 | |
| 	if (read_u64(&sin6_addr->s6_addr[0]) == 0 &&
 | |
| 	    (read_u32(&sin6_addr->s6_addr[8]) == htonl(0xFFFF) ||
 | |
| 	     read_u32(&sin6_addr->s6_addr[8]) == 0)) {
 | |
| 		// RFC4291 ipv4 mapped or compatible ipv6 address
 | |
| 		sin_addr->s_addr = read_u32(&sin6_addr->s6_addr[12]);
 | |
| 	} else if (read_u16(&sin6_addr->s6_addr[0]) == htons(0x2002)) {
 | |
| 		// RFC3056 6to4 address
 | |
| 		sin_addr->s_addr = htonl((ntohs(read_u16(&sin6_addr->s6_addr[2])) << 16) +
 | |
| 		                         ntohs(read_u16(&sin6_addr->s6_addr[4])));
 | |
| 	}
 | |
| 	else
 | |
| 		return 0; /* unrecognized input */
 | |
| 	return 1; /* mapping completed */
 | |
| }
 | |
| 
 | |
| /* compare two struct sockaddr_storage, including port if <check_port> is true,
 | |
|  * and return:
 | |
|  *  0 (true)  if the addr is the same in both
 | |
|  *  1 (false) if the addr is not the same in both
 | |
|  *  -1 (unable) if one of the addr is not AF_INET*
 | |
|  */
 | |
| int ipcmp(const struct sockaddr_storage *ss1, const struct sockaddr_storage *ss2, int check_port)
 | |
| {
 | |
| 	if ((ss1->ss_family != AF_INET) && (ss1->ss_family != AF_INET6))
 | |
| 		return -1;
 | |
| 
 | |
| 	if ((ss2->ss_family != AF_INET) && (ss2->ss_family != AF_INET6))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (ss1->ss_family != ss2->ss_family)
 | |
| 		return 1;
 | |
| 
 | |
| 	switch (ss1->ss_family) {
 | |
| 		case AF_INET:
 | |
| 			return (memcmp(&((struct sockaddr_in *)ss1)->sin_addr,
 | |
| 				      &((struct sockaddr_in *)ss2)->sin_addr,
 | |
| 				      sizeof(struct in_addr)) != 0) ||
 | |
| 			       (check_port && get_net_port(ss1) != get_net_port(ss2));
 | |
| 		case AF_INET6:
 | |
| 			return (memcmp(&((struct sockaddr_in6 *)ss1)->sin6_addr,
 | |
| 				      &((struct sockaddr_in6 *)ss2)->sin6_addr,
 | |
| 				      sizeof(struct in6_addr)) != 0) ||
 | |
| 			       (check_port && get_net_port(ss1) != get_net_port(ss2));
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* compare a struct sockaddr_storage to a struct net_addr and return :
 | |
|  *  0 (true)  if <addr> is matching <net>
 | |
|  *  1 (false) if <addr> is not matching <net>
 | |
|  *  -1 (unable) if <addr> or <net> is not AF_INET*
 | |
|  */
 | |
| int ipcmp2net(const struct sockaddr_storage *addr, const struct net_addr *net)
 | |
| {
 | |
| 	if ((addr->ss_family != AF_INET) && (addr->ss_family != AF_INET6))
 | |
| 		return -1;
 | |
| 
 | |
| 	if ((net->family != AF_INET) && (net->family != AF_INET6))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (addr->ss_family != net->family)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (addr->ss_family == AF_INET &&
 | |
| 	    (((struct sockaddr_in *)addr)->sin_addr.s_addr & net->addr.v4.mask.s_addr) == net->addr.v4.ip.s_addr)
 | |
| 		return 0;
 | |
| 	else {
 | |
| 		const struct in6_addr *addr6  = &(((const struct sockaddr_in6*)addr)->sin6_addr);
 | |
| 		const struct in6_addr *nip6   = &net->addr.v6.ip;
 | |
| 		const struct in6_addr *nmask6 = &net->addr.v6.mask;
 | |
| 
 | |
| 		if ((read_u32(&addr6->s6_addr[0]) & read_u32(&nmask6->s6_addr[0])) == read_u32(&nip6->s6_addr[0]) &&
 | |
| 		    (read_u32(&addr6->s6_addr[4]) & read_u32(&nmask6->s6_addr[4])) == read_u32(&nip6->s6_addr[4]) &&
 | |
| 		    (read_u32(&addr6->s6_addr[8]) & read_u32(&nmask6->s6_addr[8])) == read_u32(&nip6->s6_addr[8]) &&
 | |
| 		    (read_u32(&addr6->s6_addr[12]) & read_u32(&nmask6->s6_addr[12])) == read_u32(&nip6->s6_addr[12]))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* copy IP address from <source> into <dest>
 | |
|  * The caller must allocate and clear <dest> before calling.
 | |
|  * The source must be in either AF_INET or AF_INET6 family, or the destination
 | |
|  * address will be undefined. If the destination address used to hold a port,
 | |
|  * it is preserved, so that this function can be used to switch to another
 | |
|  * address family with no risk. Returns a pointer to the destination.
 | |
|  */
 | |
| struct sockaddr_storage *ipcpy(const struct sockaddr_storage *source, struct sockaddr_storage *dest)
 | |
| {
 | |
| 	int prev_port;
 | |
| 
 | |
| 	prev_port = get_net_port(dest);
 | |
| 	memset(dest, 0, sizeof(*dest));
 | |
| 	dest->ss_family = source->ss_family;
 | |
| 
 | |
| 	/* copy new addr and apply it */
 | |
| 	switch (source->ss_family) {
 | |
| 		case AF_INET:
 | |
| 			((struct sockaddr_in *)dest)->sin_addr.s_addr = ((struct sockaddr_in *)source)->sin_addr.s_addr;
 | |
| 			((struct sockaddr_in *)dest)->sin_port = prev_port;
 | |
| 			break;
 | |
| 		case AF_INET6:
 | |
| 			memcpy(((struct sockaddr_in6 *)dest)->sin6_addr.s6_addr, ((struct sockaddr_in6 *)source)->sin6_addr.s6_addr, sizeof(struct in6_addr));
 | |
| 			((struct sockaddr_in6 *)dest)->sin6_port = prev_port;
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| /* Copy only the IP address from <saddr> socket address data into <buf> buffer.
 | |
|  * This is the responsibility of the caller to check the <buf> buffer is big
 | |
|  * enough to contain these socket address data.
 | |
|  * Return the number of bytes copied.
 | |
|  */
 | |
| size_t ipaddrcpy(unsigned char *buf, const struct sockaddr_storage *saddr)
 | |
| {
 | |
| 	void *addr;
 | |
| 	unsigned char *p;
 | |
| 	size_t addr_len;
 | |
| 
 | |
| 	p = buf;
 | |
| 	if (saddr->ss_family == AF_INET6) {
 | |
| 		addr = &((struct sockaddr_in6 *)saddr)->sin6_addr;
 | |
| 		addr_len = sizeof ((struct sockaddr_in6 *)saddr)->sin6_addr;
 | |
| 	}
 | |
| 	else {
 | |
| 		addr = &((struct sockaddr_in *)saddr)->sin_addr;
 | |
| 		addr_len = sizeof ((struct sockaddr_in *)saddr)->sin_addr;
 | |
| 	}
 | |
| 	memcpy(p, addr, addr_len);
 | |
| 	p += addr_len;
 | |
| 
 | |
| 	return p - buf;
 | |
| }
 | |
| 
 | |
| 
 | |
| char *human_time(int t, short hz_div) {
 | |
| 	static char rv[sizeof("24855d23h")+1];	// longest of "23h59m" and "59m59s"
 | |
| 	char *p = rv;
 | |
| 	char *end = rv + sizeof(rv);
 | |
| 	int cnt=2;				// print two numbers
 | |
| 
 | |
| 	if (unlikely(t < 0 || hz_div <= 0)) {
 | |
| 		snprintf(p, end - p, "?");
 | |
| 		return rv;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(hz_div > 1))
 | |
| 		t /= hz_div;
 | |
| 
 | |
| 	if (t >= DAY) {
 | |
| 		p += snprintf(p, end - p, "%dd", t / DAY);
 | |
| 		cnt--;
 | |
| 	}
 | |
| 
 | |
| 	if (cnt && t % DAY / HOUR) {
 | |
| 		p += snprintf(p, end - p, "%dh", t % DAY / HOUR);
 | |
| 		cnt--;
 | |
| 	}
 | |
| 
 | |
| 	if (cnt && t % HOUR / MINUTE) {
 | |
| 		p += snprintf(p, end - p, "%dm", t % HOUR / MINUTE);
 | |
| 		cnt--;
 | |
| 	}
 | |
| 
 | |
| 	if ((cnt && t % MINUTE) || !t)					// also display '0s'
 | |
| 		p += snprintf(p, end - p, "%ds", t % MINUTE / SEC);
 | |
| 
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| const char *monthname[12] = {
 | |
| 	"Jan", "Feb", "Mar", "Apr", "May", "Jun",
 | |
| 	"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
 | |
| };
 | |
| 
 | |
| /* date2str_log: write a date in the format :
 | |
|  * 	sprintf(str, "%02d/%s/%04d:%02d:%02d:%02d.%03d",
 | |
|  *		tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
 | |
|  *		tm.tm_hour, tm.tm_min, tm.tm_sec, (int)date.tv_usec/1000);
 | |
|  *
 | |
|  * without using sprintf. return a pointer to the last char written (\0) or
 | |
|  * NULL if there isn't enough space.
 | |
|  */
 | |
| char *date2str_log(char *dst, const struct tm *tm, const struct timeval *date, size_t size)
 | |
| {
 | |
| 
 | |
| 	if (size < 25) /* the size is fixed: 24 chars + \0 */
 | |
| 		return NULL;
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = '/';
 | |
| 
 | |
| 	memcpy(dst, monthname[tm->tm_mon], 3); // month
 | |
| 	dst += 3;
 | |
| 	*dst++ = '/';
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = ':';
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = ':';
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = ':';
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = '.';
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)(date->tv_usec/1000)%1000, dst, 4); // milliseconds
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst = '\0';
 | |
| 
 | |
| 	return dst;
 | |
| }
 | |
| 
 | |
| /* Base year used to compute leap years */
 | |
| #define TM_YEAR_BASE 1900
 | |
| 
 | |
| /* Return the difference in seconds between two times (leap seconds are ignored).
 | |
|  * Retrieved from glibc 2.18 source code.
 | |
|  */
 | |
| static int my_tm_diff(const struct tm *a, const struct tm *b)
 | |
| {
 | |
| 	/* Compute intervening leap days correctly even if year is negative.
 | |
| 	 * Take care to avoid int overflow in leap day calculations,
 | |
| 	 * but it's OK to assume that A and B are close to each other.
 | |
| 	 */
 | |
| 	int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
 | |
| 	int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
 | |
| 	int a100 = a4 / 25 - (a4 % 25 < 0);
 | |
| 	int b100 = b4 / 25 - (b4 % 25 < 0);
 | |
| 	int a400 = a100 >> 2;
 | |
| 	int b400 = b100 >> 2;
 | |
| 	int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
 | |
| 	int years = a->tm_year - b->tm_year;
 | |
| 	int days = (365 * years + intervening_leap_days
 | |
| 	         + (a->tm_yday - b->tm_yday));
 | |
| 	return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
 | |
| 	       + (a->tm_min - b->tm_min))
 | |
| 	       + (a->tm_sec - b->tm_sec));
 | |
| }
 | |
| 
 | |
| /* Return the GMT offset for a specific local time.
 | |
|  * Both t and tm must represent the same time.
 | |
|  * The string returned has the same format as returned by strftime(... "%z", tm).
 | |
|  * Offsets are kept in an internal cache for better performances.
 | |
|  */
 | |
| const char *get_gmt_offset(time_t t, struct tm *tm)
 | |
| {
 | |
| 	/* Cache offsets from GMT (depending on whether DST is active or not) */
 | |
| 	static THREAD_LOCAL char gmt_offsets[2][5+1] = { "", "" };
 | |
| 
 | |
| 	char *gmt_offset;
 | |
| 	struct tm tm_gmt;
 | |
| 	int diff;
 | |
| 	int isdst = tm->tm_isdst;
 | |
| 
 | |
| 	/* Pretend DST not active if its status is unknown */
 | |
| 	if (isdst < 0)
 | |
| 		isdst = 0;
 | |
| 
 | |
| 	/* Fetch the offset and initialize it if needed */
 | |
| 	gmt_offset = gmt_offsets[isdst & 0x01];
 | |
| 	if (unlikely(!*gmt_offset)) {
 | |
| 		get_gmtime(t, &tm_gmt);
 | |
| 		diff = my_tm_diff(tm, &tm_gmt);
 | |
| 		if (diff < 0) {
 | |
| 			diff = -diff;
 | |
| 			*gmt_offset = '-';
 | |
| 		} else {
 | |
| 			*gmt_offset = '+';
 | |
| 		}
 | |
| 		diff %= 86400U;
 | |
| 		diff /= 60; /* Convert to minutes */
 | |
| 		snprintf(gmt_offset+1, 4+1, "%02d%02d", diff/60, diff%60);
 | |
| 	}
 | |
| 
 | |
| 	return gmt_offset;
 | |
| }
 | |
| 
 | |
| /* gmt2str_log: write a date in the format :
 | |
|  * "%02d/%s/%04d:%02d:%02d:%02d +0000" without using snprintf
 | |
|  * return a pointer to the last char written (\0) or
 | |
|  * NULL if there isn't enough space.
 | |
|  */
 | |
| char *gmt2str_log(char *dst, struct tm *tm, size_t size)
 | |
| {
 | |
| 	if (size < 27) /* the size is fixed: 26 chars + \0 */
 | |
| 		return NULL;
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = '/';
 | |
| 
 | |
| 	memcpy(dst, monthname[tm->tm_mon], 3); // month
 | |
| 	dst += 3;
 | |
| 	*dst++ = '/';
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = ':';
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = ':';
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = ':';
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = ' ';
 | |
| 	*dst++ = '+';
 | |
| 	*dst++ = '0';
 | |
| 	*dst++ = '0';
 | |
| 	*dst++ = '0';
 | |
| 	*dst++ = '0';
 | |
| 	*dst = '\0';
 | |
| 
 | |
| 	return dst;
 | |
| }
 | |
| 
 | |
| /* localdate2str_log: write a date in the format :
 | |
|  * "%02d/%s/%04d:%02d:%02d:%02d +0000(local timezone)" without using snprintf
 | |
|  * Both t and tm must represent the same time.
 | |
|  * return a pointer to the last char written (\0) or
 | |
|  * NULL if there isn't enough space.
 | |
|  */
 | |
| char *localdate2str_log(char *dst, time_t t, struct tm *tm, size_t size)
 | |
| {
 | |
| 	const char *gmt_offset;
 | |
| 	if (size < 27) /* the size is fixed: 26 chars + \0 */
 | |
| 		return NULL;
 | |
| 
 | |
| 	gmt_offset = get_gmt_offset(t, tm);
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = '/';
 | |
| 
 | |
| 	memcpy(dst, monthname[tm->tm_mon], 3); // month
 | |
| 	dst += 3;
 | |
| 	*dst++ = '/';
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = ':';
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = ':';
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = ':';
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
 | |
| 	if (!dst)
 | |
| 		return NULL;
 | |
| 	*dst++ = ' ';
 | |
| 
 | |
| 	memcpy(dst, gmt_offset, 5); // Offset from local time to GMT
 | |
| 	dst += 5;
 | |
| 	*dst = '\0';
 | |
| 
 | |
| 	return dst;
 | |
| }
 | |
| 
 | |
| /* Returns the number of seconds since 01/01/1970 0:0:0 GMT for GMT date <tm>.
 | |
|  * It is meant as a portable replacement for timegm() for use with valid inputs.
 | |
|  * Returns undefined results for invalid dates (eg: months out of range 0..11).
 | |
|  */
 | |
| time_t my_timegm(const struct tm *tm)
 | |
| {
 | |
| 	/* Each month has 28, 29, 30 or 31 days, or 28+N. The date in the year
 | |
| 	 * is thus (current month - 1)*28 + cumulated_N[month] to count the
 | |
| 	 * sum of the extra N days for elapsed months. The sum of all these N
 | |
| 	 * days doesn't exceed 30 for a complete year (366-12*28) so it fits
 | |
| 	 * in a 5-bit word. This means that with 60 bits we can represent a
 | |
| 	 * matrix of all these values at once, which is fast and efficient to
 | |
| 	 * access. The extra February day for leap years is not counted here.
 | |
| 	 *
 | |
| 	 * Jan : none      =  0 (0)
 | |
| 	 * Feb : Jan       =  3 (3)
 | |
| 	 * Mar : Jan..Feb  =  3 (3 + 0)
 | |
| 	 * Apr : Jan..Mar  =  6 (3 + 0 + 3)
 | |
| 	 * May : Jan..Apr  =  8 (3 + 0 + 3 + 2)
 | |
| 	 * Jun : Jan..May  = 11 (3 + 0 + 3 + 2 + 3)
 | |
| 	 * Jul : Jan..Jun  = 13 (3 + 0 + 3 + 2 + 3 + 2)
 | |
| 	 * Aug : Jan..Jul  = 16 (3 + 0 + 3 + 2 + 3 + 2 + 3)
 | |
| 	 * Sep : Jan..Aug  = 19 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3)
 | |
| 	 * Oct : Jan..Sep  = 21 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2)
 | |
| 	 * Nov : Jan..Oct  = 24 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2 + 3)
 | |
| 	 * Dec : Jan..Nov  = 26 (3 + 0 + 3 + 2 + 3 + 2 + 3 + 3 + 2 + 3 + 2)
 | |
| 	 */
 | |
| 	uint64_t extra =
 | |
| 		( 0ULL <<  0*5) + ( 3ULL <<  1*5) + ( 3ULL <<  2*5) + /* Jan, Feb, Mar, */
 | |
| 		( 6ULL <<  3*5) + ( 8ULL <<  4*5) + (11ULL <<  5*5) + /* Apr, May, Jun, */
 | |
| 		(13ULL <<  6*5) + (16ULL <<  7*5) + (19ULL <<  8*5) + /* Jul, Aug, Sep, */
 | |
| 		(21ULL <<  9*5) + (24ULL << 10*5) + (26ULL << 11*5);  /* Oct, Nov, Dec, */
 | |
| 
 | |
| 	unsigned int y = tm->tm_year + 1900;
 | |
| 	unsigned int m = tm->tm_mon;
 | |
| 	unsigned long days = 0;
 | |
| 
 | |
| 	/* days since 1/1/1970 for full years */
 | |
| 	days += days_since_zero(y) - days_since_zero(1970);
 | |
| 
 | |
| 	/* days for full months in the current year */
 | |
| 	days += 28 * m + ((extra >> (m * 5)) & 0x1f);
 | |
| 
 | |
| 	/* count + 1 after March for leap years. A leap year is a year multiple
 | |
| 	 * of 4, unless it's multiple of 100 without being multiple of 400. 2000
 | |
| 	 * is leap, 1900 isn't, 1904 is.
 | |
| 	 */
 | |
| 	if ((m > 1) && !(y & 3) && ((y % 100) || !(y % 400)))
 | |
| 		days++;
 | |
| 
 | |
| 	days += tm->tm_mday - 1;
 | |
| 	return days * 86400ULL + tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec;
 | |
| }
 | |
| 
 | |
| /* This function check a char. It returns true and updates
 | |
|  * <date> and <len> pointer to the new position if the
 | |
|  * character is found.
 | |
|  */
 | |
| static inline int parse_expect_char(const char **date, int *len, char c)
 | |
| {
 | |
| 	if (*len < 1 || **date != c)
 | |
| 		return 0;
 | |
| 	(*len)--;
 | |
| 	(*date)++;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* This function expects a string <str> of len <l>. It return true and updates.
 | |
|  * <date> and <len> if the string matches, otherwise, it returns false.
 | |
|  */
 | |
| static inline int parse_strcmp(const char **date, int *len, char *str, int l)
 | |
| {
 | |
| 	if (*len < l || strncmp(*date, str, l) != 0)
 | |
| 		return 0;
 | |
| 	(*len) -= l;
 | |
| 	(*date) += l;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* This macro converts 3 chars name in integer. */
 | |
| #define STR2I3(__a, __b, __c) ((__a) * 65536 + (__b) * 256 + (__c))
 | |
| 
 | |
| /* day-name     = %x4D.6F.6E ; "Mon", case-sensitive
 | |
|  *              / %x54.75.65 ; "Tue", case-sensitive
 | |
|  *              / %x57.65.64 ; "Wed", case-sensitive
 | |
|  *              / %x54.68.75 ; "Thu", case-sensitive
 | |
|  *              / %x46.72.69 ; "Fri", case-sensitive
 | |
|  *              / %x53.61.74 ; "Sat", case-sensitive
 | |
|  *              / %x53.75.6E ; "Sun", case-sensitive
 | |
|  *
 | |
|  * This array must be alphabetically sorted
 | |
|  */
 | |
| static inline int parse_http_dayname(const char **date, int *len, struct tm *tm)
 | |
| {
 | |
| 	if (*len < 3)
 | |
| 		return 0;
 | |
| 	switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
 | |
| 	case STR2I3('M','o','n'): tm->tm_wday = 1;  break;
 | |
| 	case STR2I3('T','u','e'): tm->tm_wday = 2;  break;
 | |
| 	case STR2I3('W','e','d'): tm->tm_wday = 3;  break;
 | |
| 	case STR2I3('T','h','u'): tm->tm_wday = 4;  break;
 | |
| 	case STR2I3('F','r','i'): tm->tm_wday = 5;  break;
 | |
| 	case STR2I3('S','a','t'): tm->tm_wday = 6;  break;
 | |
| 	case STR2I3('S','u','n'): tm->tm_wday = 7;  break;
 | |
| 	default: return 0;
 | |
| 	}
 | |
| 	*len -= 3;
 | |
| 	*date  += 3;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* month        = %x4A.61.6E ; "Jan", case-sensitive
 | |
|  *              / %x46.65.62 ; "Feb", case-sensitive
 | |
|  *              / %x4D.61.72 ; "Mar", case-sensitive
 | |
|  *              / %x41.70.72 ; "Apr", case-sensitive
 | |
|  *              / %x4D.61.79 ; "May", case-sensitive
 | |
|  *              / %x4A.75.6E ; "Jun", case-sensitive
 | |
|  *              / %x4A.75.6C ; "Jul", case-sensitive
 | |
|  *              / %x41.75.67 ; "Aug", case-sensitive
 | |
|  *              / %x53.65.70 ; "Sep", case-sensitive
 | |
|  *              / %x4F.63.74 ; "Oct", case-sensitive
 | |
|  *              / %x4E.6F.76 ; "Nov", case-sensitive
 | |
|  *              / %x44.65.63 ; "Dec", case-sensitive
 | |
|  *
 | |
|  * This array must be alphabetically sorted
 | |
|  */
 | |
| static inline int parse_http_monthname(const char **date, int *len, struct tm *tm)
 | |
| {
 | |
| 	if (*len < 3)
 | |
| 		return 0;
 | |
| 	switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
 | |
| 	case STR2I3('J','a','n'): tm->tm_mon = 0;  break;
 | |
| 	case STR2I3('F','e','b'): tm->tm_mon = 1;  break;
 | |
| 	case STR2I3('M','a','r'): tm->tm_mon = 2;  break;
 | |
| 	case STR2I3('A','p','r'): tm->tm_mon = 3;  break;
 | |
| 	case STR2I3('M','a','y'): tm->tm_mon = 4;  break;
 | |
| 	case STR2I3('J','u','n'): tm->tm_mon = 5;  break;
 | |
| 	case STR2I3('J','u','l'): tm->tm_mon = 6;  break;
 | |
| 	case STR2I3('A','u','g'): tm->tm_mon = 7;  break;
 | |
| 	case STR2I3('S','e','p'): tm->tm_mon = 8;  break;
 | |
| 	case STR2I3('O','c','t'): tm->tm_mon = 9;  break;
 | |
| 	case STR2I3('N','o','v'): tm->tm_mon = 10; break;
 | |
| 	case STR2I3('D','e','c'): tm->tm_mon = 11; break;
 | |
| 	default: return 0;
 | |
| 	}
 | |
| 	*len -= 3;
 | |
| 	*date  += 3;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* day-name-l   = %x4D.6F.6E.64.61.79    ; "Monday", case-sensitive
 | |
|  *        / %x54.75.65.73.64.61.79       ; "Tuesday", case-sensitive
 | |
|  *        / %x57.65.64.6E.65.73.64.61.79 ; "Wednesday", case-sensitive
 | |
|  *        / %x54.68.75.72.73.64.61.79    ; "Thursday", case-sensitive
 | |
|  *        / %x46.72.69.64.61.79          ; "Friday", case-sensitive
 | |
|  *        / %x53.61.74.75.72.64.61.79    ; "Saturday", case-sensitive
 | |
|  *        / %x53.75.6E.64.61.79          ; "Sunday", case-sensitive
 | |
|  *
 | |
|  * This array must be alphabetically sorted
 | |
|  */
 | |
| static inline int parse_http_ldayname(const char **date, int *len, struct tm *tm)
 | |
| {
 | |
| 	if (*len < 6) /* Minimum length. */
 | |
| 		return 0;
 | |
| 	switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
 | |
| 	case STR2I3('M','o','n'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Monday", 6));
 | |
| 		tm->tm_wday = 1;
 | |
| 		return 1;
 | |
| 	case STR2I3('T','u','e'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Tuesday", 7));
 | |
| 		tm->tm_wday = 2;
 | |
| 		return 1;
 | |
| 	case STR2I3('W','e','d'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Wednesday", 9));
 | |
| 		tm->tm_wday = 3;
 | |
| 		return 1;
 | |
| 	case STR2I3('T','h','u'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Thursday", 8));
 | |
| 		tm->tm_wday = 4;
 | |
| 		return 1;
 | |
| 	case STR2I3('F','r','i'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Friday", 6));
 | |
| 		tm->tm_wday = 5;
 | |
| 		return 1;
 | |
| 	case STR2I3('S','a','t'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Saturday", 8));
 | |
| 		tm->tm_wday = 6;
 | |
| 		return 1;
 | |
| 	case STR2I3('S','u','n'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Sunday", 6));
 | |
| 		tm->tm_wday = 7;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This function parses exactly 1 digit and returns the numeric value in "digit". */
 | |
| static inline int parse_digit(const char **date, int *len, int *digit)
 | |
| {
 | |
| 	if (*len < 1 || **date < '0' || **date > '9')
 | |
| 		return 0;
 | |
| 	*digit = (**date - '0');
 | |
| 	(*date)++;
 | |
| 	(*len)--;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* This function parses exactly 2 digits and returns the numeric value in "digit". */
 | |
| static inline int parse_2digit(const char **date, int *len, int *digit)
 | |
| {
 | |
| 	int value;
 | |
| 
 | |
| 	RET0_UNLESS(parse_digit(date, len, &value));
 | |
| 	(*digit) = value * 10;
 | |
| 	RET0_UNLESS(parse_digit(date, len, &value));
 | |
| 	(*digit) += value;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* This function parses exactly 4 digits and returns the numeric value in "digit". */
 | |
| static inline int parse_4digit(const char **date, int *len, int *digit)
 | |
| {
 | |
| 	int value;
 | |
| 
 | |
| 	RET0_UNLESS(parse_digit(date, len, &value));
 | |
| 	(*digit) = value * 1000;
 | |
| 
 | |
| 	RET0_UNLESS(parse_digit(date, len, &value));
 | |
| 	(*digit) += value * 100;
 | |
| 
 | |
| 	RET0_UNLESS(parse_digit(date, len, &value));
 | |
| 	(*digit) += value * 10;
 | |
| 
 | |
| 	RET0_UNLESS(parse_digit(date, len, &value));
 | |
| 	(*digit) += value;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* time-of-day  = hour ":" minute ":" second
 | |
|  *              ; 00:00:00 - 23:59:60 (leap second)
 | |
|  *
 | |
|  * hour         = 2DIGIT
 | |
|  * minute       = 2DIGIT
 | |
|  * second       = 2DIGIT
 | |
|  */
 | |
| static inline int parse_http_time(const char **date, int *len, struct tm *tm)
 | |
| {
 | |
| 	RET0_UNLESS(parse_2digit(date, len, &tm->tm_hour)); /* hour 2DIGIT */
 | |
| 	RET0_UNLESS(parse_expect_char(date, len, ':'));     /* expect ":"  */
 | |
| 	RET0_UNLESS(parse_2digit(date, len, &tm->tm_min));  /* min 2DIGIT  */
 | |
| 	RET0_UNLESS(parse_expect_char(date, len, ':'));     /* expect ":"  */
 | |
| 	RET0_UNLESS(parse_2digit(date, len, &tm->tm_sec));  /* sec 2DIGIT  */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* From RFC7231
 | |
|  * https://tools.ietf.org/html/rfc7231#section-7.1.1.1
 | |
|  *
 | |
|  * IMF-fixdate  = day-name "," SP date1 SP time-of-day SP GMT
 | |
|  * ; fixed length/zone/capitalization subset of the format
 | |
|  * ; see Section 3.3 of [RFC5322]
 | |
|  *
 | |
|  *
 | |
|  * date1        = day SP month SP year
 | |
|  *              ; e.g., 02 Jun 1982
 | |
|  *
 | |
|  * day          = 2DIGIT
 | |
|  * year         = 4DIGIT
 | |
|  *
 | |
|  * GMT          = %x47.4D.54 ; "GMT", case-sensitive
 | |
|  *
 | |
|  * time-of-day  = hour ":" minute ":" second
 | |
|  *              ; 00:00:00 - 23:59:60 (leap second)
 | |
|  *
 | |
|  * hour         = 2DIGIT
 | |
|  * minute       = 2DIGIT
 | |
|  * second       = 2DIGIT
 | |
|  *
 | |
|  * DIGIT        = decimal 0-9
 | |
|  */
 | |
| int parse_imf_date(const char *date, int len, struct tm *tm)
 | |
| {
 | |
| 	/* tm_gmtoff, if present, ought to be zero'ed */
 | |
| 	memset(tm, 0, sizeof(*tm));
 | |
| 
 | |
| 	RET0_UNLESS(parse_http_dayname(&date, &len, tm));     /* day-name */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ','));     /* expect "," */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_http_monthname(&date, &len, tm));   /* Month */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */
 | |
| 	tm->tm_year -= 1900;
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_http_time(&date, &len, tm));        /* Parse time. */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3));     /* GMT = %x47.4D.54 ; "GMT", case-sensitive */
 | |
| 	tm->tm_isdst = -1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* From RFC7231
 | |
|  * https://tools.ietf.org/html/rfc7231#section-7.1.1.1
 | |
|  *
 | |
|  * rfc850-date  = day-name-l "," SP date2 SP time-of-day SP GMT
 | |
|  * date2        = day "-" month "-" 2DIGIT
 | |
|  *              ; e.g., 02-Jun-82
 | |
|  *
 | |
|  * day          = 2DIGIT
 | |
|  */
 | |
| int parse_rfc850_date(const char *date, int len, struct tm *tm)
 | |
| {
 | |
| 	int year;
 | |
| 
 | |
| 	/* tm_gmtoff, if present, ought to be zero'ed */
 | |
| 	memset(tm, 0, sizeof(*tm));
 | |
| 
 | |
| 	RET0_UNLESS(parse_http_ldayname(&date, &len, tm));    /* Read the day name */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ','));     /* expect "," */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, '-'));     /* expect "-" */
 | |
| 	RET0_UNLESS(parse_http_monthname(&date, &len, tm));   /* Month */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, '-'));     /* expect "-" */
 | |
| 
 | |
| 	/* year = 2DIGIT
 | |
| 	 *
 | |
| 	 * Recipients of a timestamp value in rfc850-(*date) format, which uses a
 | |
| 	 * two-digit year, MUST interpret a timestamp that appears to be more
 | |
| 	 * than 50 years in the future as representing the most recent year in
 | |
| 	 * the past that had the same last two digits.
 | |
| 	 */
 | |
| 	RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_year));
 | |
| 
 | |
| 	/* expect SP */
 | |
| 	if (!parse_expect_char(&date, &len, ' ')) {
 | |
| 		/* Maybe we have the date with 4 digits. */
 | |
| 		RET0_UNLESS(parse_2digit(&date, &len, &year));
 | |
| 		tm->tm_year = (tm->tm_year * 100 + year) - 1900;
 | |
| 		/* expect SP */
 | |
| 		RET0_UNLESS(parse_expect_char(&date, &len, ' '));
 | |
| 	} else {
 | |
| 		/* I fix 60 as pivot: >60: +1900, <60: +2000. Note that the
 | |
| 		 * tm_year is the number of year since 1900, so for +1900, we
 | |
| 		 * do nothing, and for +2000, we add 100.
 | |
| 		 */
 | |
| 		if (tm->tm_year <= 60)
 | |
| 			tm->tm_year += 100;
 | |
| 	}
 | |
| 
 | |
| 	RET0_UNLESS(parse_http_time(&date, &len, tm));    /* Parse time. */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
 | |
| 	RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3)); /* GMT = %x47.4D.54 ; "GMT", case-sensitive */
 | |
| 	tm->tm_isdst = -1;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* From RFC7231
 | |
|  * https://tools.ietf.org/html/rfc7231#section-7.1.1.1
 | |
|  *
 | |
|  * asctime-date = day-name SP date3 SP time-of-day SP year
 | |
|  * date3        = month SP ( 2DIGIT / ( SP 1DIGIT ))
 | |
|  *              ; e.g., Jun  2
 | |
|  *
 | |
|  * HTTP-date is case sensitive.  A sender MUST NOT generate additional
 | |
|  * whitespace in an HTTP-date beyond that specifically included as SP in
 | |
|  * the grammar.
 | |
|  */
 | |
| int parse_asctime_date(const char *date, int len, struct tm *tm)
 | |
| {
 | |
| 	/* tm_gmtoff, if present, ought to be zero'ed */
 | |
| 	memset(tm, 0, sizeof(*tm));
 | |
| 
 | |
| 	RET0_UNLESS(parse_http_dayname(&date, &len, tm));   /* day-name */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));   /* expect SP */
 | |
| 	RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* expect month */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));   /* expect SP */
 | |
| 
 | |
| 	/* expect SP and 1DIGIT or 2DIGIT */
 | |
| 	if (parse_expect_char(&date, &len, ' '))
 | |
| 		RET0_UNLESS(parse_digit(&date, &len, &tm->tm_mday));
 | |
| 	else
 | |
| 		RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday));
 | |
| 
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_http_time(&date, &len, tm));        /* Parse time. */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */
 | |
| 	tm->tm_year -= 1900;
 | |
| 	tm->tm_isdst = -1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* From RFC7231
 | |
|  * https://tools.ietf.org/html/rfc7231#section-7.1.1.1
 | |
|  *
 | |
|  * HTTP-date    = IMF-fixdate / obs-date
 | |
|  * obs-date     = rfc850-date / asctime-date
 | |
|  *
 | |
|  * parses an HTTP date in the RFC format and is accepted
 | |
|  * alternatives. <date> is the strinf containing the date,
 | |
|  * len is the len of the string. <tm> is filled with the
 | |
|  * parsed time. We must considers this time as GMT.
 | |
|  */
 | |
| int parse_http_date(const char *date, int len, struct tm *tm)
 | |
| {
 | |
| 	if (parse_imf_date(date, len, tm))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (parse_rfc850_date(date, len, tm))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (parse_asctime_date(date, len, tm))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* print the time <ns> in a short form (exactly 7 chars) at the end of buffer
 | |
|  * <out>. "-" is printed if the value is zero, "inf" if larger than 1000 years.
 | |
|  * It returns the new buffer length, or 0 if it doesn't fit. The value will be
 | |
|  * surrounded by <pfx> and <sfx> respectively if not NULL.
 | |
|  */
 | |
| int print_time_short(struct buffer *out, const char *pfx, uint64_t ns, const char *sfx)
 | |
| {
 | |
| 	double val = ns; // 52 bits of mantissa keep ns accuracy over 52 days
 | |
| 	const char *unit;
 | |
| 
 | |
| 	if (!pfx)
 | |
| 		pfx = "";
 | |
| 	if (!sfx)
 | |
| 		sfx = "";
 | |
| 
 | |
| 	do {
 | |
| 		unit = "   -   "; if (val <= 0.0) break;
 | |
| 		unit = "ns"; if (val < 1000.0) break;
 | |
| 		unit = "us"; val /= 1000.0; if (val < 1000.0) break;
 | |
| 		unit = "ms"; val /= 1000.0; if (val < 1000.0) break;
 | |
| 		unit = "s "; val /= 1000.0; if (val <   60.0) break;
 | |
| 		unit = "m "; val /=   60.0; if (val <   60.0) break;
 | |
| 		unit = "h "; val /=   60.0; if (val <   24.0) break;
 | |
| 		unit = "d "; val /=   24.0; if (val <  365.0) break;
 | |
| 		unit = "yr"; val /=  365.0; if (val < 1000.0) break;
 | |
| 		unit = "  inf  "; val = 0.0; break;
 | |
| 	} while (0);
 | |
| 
 | |
| 	if (val <= 0.0)
 | |
| 		return chunk_appendf(out, "%s%7s%s", pfx, unit, sfx);
 | |
| 	else if (val < 10.0)
 | |
| 		return chunk_appendf(out, "%s%1.3f%s%s", pfx, val, unit, sfx);
 | |
| 	else if (val < 100.0)
 | |
| 		return chunk_appendf(out, "%s%2.2f%s%s", pfx, val, unit, sfx);
 | |
| 	else
 | |
| 		return chunk_appendf(out, "%s%3.1f%s%s", pfx, val, unit, sfx);
 | |
| }
 | |
| 
 | |
| /* Dynamically allocates a string of the proper length to hold the formatted
 | |
|  * output. NULL is returned on error. The caller is responsible for freeing the
 | |
|  * memory area using free(). The resulting string is returned in <out> if the
 | |
|  * pointer is not NULL. A previous version of <out> might be used to build the
 | |
|  * new string, and it will be freed before returning if it is not NULL, which
 | |
|  * makes it possible to build complex strings from iterative calls without
 | |
|  * having to care about freeing intermediate values, as in the example below :
 | |
|  *
 | |
|  *     memprintf(&err, "invalid argument: '%s'", arg);
 | |
|  *     ...
 | |
|  *     memprintf(&err, "parser said : <%s>\n", *err);
 | |
|  *     ...
 | |
|  *     free(*err);
 | |
|  *
 | |
|  * This means that <err> must be initialized to NULL before first invocation.
 | |
|  * The return value also holds the allocated string, which eases error checking
 | |
|  * and immediate consumption. If the output pointer is not used, NULL must be
 | |
|  * passed instead and it will be ignored. The returned message will then also
 | |
|  * be NULL so that the caller does not have to bother with freeing anything.
 | |
|  *
 | |
|  * It is also convenient to use it without any free except the last one :
 | |
|  *    err = NULL;
 | |
|  *    if (!fct1(err)) report(*err);
 | |
|  *    if (!fct2(err)) report(*err);
 | |
|  *    if (!fct3(err)) report(*err);
 | |
|  *    free(*err);
 | |
|  *
 | |
|  * memprintf relies on memvprintf. This last version can be called from any
 | |
|  * function with variadic arguments.
 | |
|  */
 | |
| char *memvprintf(char **out, const char *format, va_list orig_args)
 | |
| {
 | |
| 	va_list args;
 | |
| 	char *ret = NULL;
 | |
| 	int allocated = 0;
 | |
| 	int needed = 0;
 | |
| 
 | |
| 	if (!out)
 | |
| 		return NULL;
 | |
| 
 | |
| 	do {
 | |
| 		char buf1;
 | |
| 
 | |
| 		/* vsnprintf() will return the required length even when the
 | |
| 		 * target buffer is NULL. We do this in a loop just in case
 | |
| 		 * intermediate evaluations get wrong.
 | |
| 		 */
 | |
| 		va_copy(args, orig_args);
 | |
| 		needed = vsnprintf(ret ? ret : &buf1, allocated, format, args);
 | |
| 		va_end(args);
 | |
| 		if (needed < allocated) {
 | |
| 			/* Note: on Solaris 8, the first iteration always
 | |
| 			 * returns -1 if allocated is zero, so we force a
 | |
| 			 * retry.
 | |
| 			 */
 | |
| 			if (!allocated)
 | |
| 				needed = 0;
 | |
| 			else
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		allocated = needed + 1;
 | |
| 		ret = my_realloc2(ret, allocated);
 | |
| 	} while (ret);
 | |
| 
 | |
| 	if (needed < 0) {
 | |
| 		/* an error was encountered */
 | |
| 		ha_free(&ret);
 | |
| 	}
 | |
| 
 | |
| 	if (out) {
 | |
| 		free(*out);
 | |
| 		*out = ret;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| char *memprintf(char **out, const char *format, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	char *ret = NULL;
 | |
| 
 | |
| 	va_start(args, format);
 | |
| 	ret = memvprintf(out, format, args);
 | |
| 	va_end(args);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Used to add <level> spaces before each line of <out>, unless there is only one line.
 | |
|  * The input argument is automatically freed and reassigned. The result will have to be
 | |
|  * freed by the caller. It also supports being passed a NULL which results in the same
 | |
|  * output.
 | |
|  * Example of use :
 | |
|  *   parse(cmd, &err); (callee: memprintf(&err, ...))
 | |
|  *   fprintf(stderr, "Parser said: %s\n", indent_error(&err));
 | |
|  *   free(err);
 | |
|  */
 | |
| char *indent_msg(char **out, int level)
 | |
| {
 | |
| 	char *ret, *in, *p;
 | |
| 	int needed = 0;
 | |
| 	int lf = 0;
 | |
| 	int lastlf = 0;
 | |
| 	int len;
 | |
| 
 | |
| 	if (!out || !*out)
 | |
| 		return NULL;
 | |
| 
 | |
| 	in = *out - 1;
 | |
| 	while ((in = strchr(in + 1, '\n')) != NULL) {
 | |
| 		lastlf = in - *out;
 | |
| 		lf++;
 | |
| 	}
 | |
| 
 | |
| 	if (!lf) /* single line, no LF, return it as-is */
 | |
| 		return *out;
 | |
| 
 | |
| 	len = strlen(*out);
 | |
| 
 | |
| 	if (lf == 1 && lastlf == len - 1) {
 | |
| 		/* single line, LF at end, strip it and return as-is */
 | |
| 		(*out)[lastlf] = 0;
 | |
| 		return *out;
 | |
| 	}
 | |
| 
 | |
| 	/* OK now we have at least one LF, we need to process the whole string
 | |
| 	 * as a multi-line string. What we'll do :
 | |
| 	 *   - prefix with an LF if there is none
 | |
| 	 *   - add <level> spaces before each line
 | |
| 	 * This means at most ( 1 + level + (len-lf) + lf*<1+level) ) =
 | |
| 	 *   1 + level + len + lf * level = 1 + level * (lf + 1) + len.
 | |
| 	 */
 | |
| 
 | |
| 	needed = 1 + level * (lf + 1) + len + 1;
 | |
| 	p = ret = malloc(needed);
 | |
| 	in = *out;
 | |
| 
 | |
| 	/* skip initial LFs */
 | |
| 	while (*in == '\n')
 | |
| 		in++;
 | |
| 
 | |
| 	/* copy each line, prefixed with LF and <level> spaces, and without the trailing LF */
 | |
| 	while (*in) {
 | |
| 		*p++ = '\n';
 | |
| 		memset(p, ' ', level);
 | |
| 		p += level;
 | |
| 		do {
 | |
| 			*p++ = *in++;
 | |
| 		} while (*in && *in != '\n');
 | |
| 		if (*in)
 | |
| 			in++;
 | |
| 	}
 | |
| 	*p = 0;
 | |
| 
 | |
| 	free(*out);
 | |
| 	*out = ret;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* makes a copy of message <in> into <out>, with each line prefixed with <pfx>
 | |
|  * and end of lines replaced with <eol> if not 0. The first line to indent has
 | |
|  * to be indicated in <first> (starts at zero), so that it is possible to skip
 | |
|  * indenting the first line if it has to be appended after an existing message.
 | |
|  * Empty strings are never indented, and NULL strings are considered empty both
 | |
|  * for <in> and <pfx>. It returns non-zero if an EOL was appended as the last
 | |
|  * character, non-zero otherwise.
 | |
|  */
 | |
| int append_prefixed_str(struct buffer *out, const char *in, const char *pfx, char eol, int first)
 | |
| {
 | |
| 	int bol, lf;
 | |
| 	int pfxlen = pfx ? strlen(pfx) : 0;
 | |
| 
 | |
| 	if (!in)
 | |
| 		return 0;
 | |
| 
 | |
| 	bol = 1;
 | |
| 	lf = 0;
 | |
| 	while (*in) {
 | |
| 		if (bol && pfxlen) {
 | |
| 			if (first > 0)
 | |
| 				first--;
 | |
| 			else
 | |
| 				b_putblk(out, pfx, pfxlen);
 | |
| 			bol = 0;
 | |
| 		}
 | |
| 
 | |
| 		lf = (*in == '\n');
 | |
| 		bol |= lf;
 | |
| 		b_putchr(out, (lf && eol) ? eol : *in);
 | |
| 		in++;
 | |
| 	}
 | |
| 	return lf;
 | |
| }
 | |
| 
 | |
| /* removes environment variable <name> from the environment as found in
 | |
|  * environ. This is only provided as an alternative for systems without
 | |
|  * unsetenv() (old Solaris and AIX versions). THIS IS NOT THREAD SAFE.
 | |
|  * The principle is to scan environ for each occurrence of variable name
 | |
|  * <name> and to replace the matching pointers with the last pointer of
 | |
|  * the array (since variables are not ordered).
 | |
|  * It always returns 0 (success).
 | |
|  */
 | |
| int my_unsetenv(const char *name)
 | |
| {
 | |
| 	extern char **environ;
 | |
| 	char **p = environ;
 | |
| 	int vars;
 | |
| 	int next;
 | |
| 	int len;
 | |
| 
 | |
| 	len = strlen(name);
 | |
| 	for (vars = 0; p[vars]; vars++)
 | |
| 		;
 | |
| 	next = 0;
 | |
| 	while (next < vars) {
 | |
| 		if (strncmp(p[next], name, len) != 0 || p[next][len] != '=') {
 | |
| 			next++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (next < vars - 1)
 | |
| 			p[next] = p[vars - 1];
 | |
| 		p[--vars] = NULL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Convert occurrences of environment variables in the input string to their
 | |
|  * corresponding value. A variable is identified as a series of alphanumeric
 | |
|  * characters or underscores following a '$' sign. The <in> string must be
 | |
|  * free()able. NULL returns NULL. The resulting string might be reallocated if
 | |
|  * some expansion is made (an NULL will be returned on failure). Variable names
 | |
|  * may also be enclosed into braces if needed (eg: to concatenate alphanum
 | |
|  * characters).
 | |
|  */
 | |
| char *env_expand(char *in)
 | |
| {
 | |
| 	char *txt_beg;
 | |
| 	char *out;
 | |
| 	char *txt_end;
 | |
| 	char *var_beg;
 | |
| 	char *var_end;
 | |
| 	char *value;
 | |
| 	char *next;
 | |
| 	int out_len;
 | |
| 	int val_len;
 | |
| 
 | |
| 	if (!in)
 | |
| 		return in;
 | |
| 
 | |
| 	value = out = NULL;
 | |
| 	out_len = 0;
 | |
| 
 | |
| 	txt_beg = in;
 | |
| 	do {
 | |
| 		/* look for next '$' sign in <in> */
 | |
| 		for (txt_end = txt_beg; *txt_end && *txt_end != '$'; txt_end++);
 | |
| 
 | |
| 		if (!*txt_end && !out) /* end and no expansion performed */
 | |
| 			return in;
 | |
| 
 | |
| 		val_len = 0;
 | |
| 		next = txt_end;
 | |
| 		if (*txt_end == '$') {
 | |
| 			char save;
 | |
| 
 | |
| 			var_beg = txt_end + 1;
 | |
| 			if (*var_beg == '{')
 | |
| 				var_beg++;
 | |
| 
 | |
| 			var_end = var_beg;
 | |
| 			while (isalnum((unsigned char)*var_end) || *var_end == '_') {
 | |
| 				var_end++;
 | |
| 			}
 | |
| 
 | |
| 			next = var_end;
 | |
| 			if (*var_end == '}' && (var_beg > txt_end + 1))
 | |
| 				next++;
 | |
| 
 | |
| 			/* get value of the variable name at this location */
 | |
| 			save = *var_end;
 | |
| 			*var_end = '\0';
 | |
| 			value = getenv(var_beg);
 | |
| 			*var_end = save;
 | |
| 			val_len = value ? strlen(value) : 0;
 | |
| 		}
 | |
| 
 | |
| 		out = my_realloc2(out, out_len + (txt_end - txt_beg) + val_len + 1);
 | |
| 		if (!out)
 | |
| 			goto leave;
 | |
| 
 | |
| 		if (txt_end > txt_beg) {
 | |
| 			memcpy(out + out_len, txt_beg, txt_end - txt_beg);
 | |
| 			out_len += txt_end - txt_beg;
 | |
| 		}
 | |
| 		if (val_len) {
 | |
| 			memcpy(out + out_len, value, val_len);
 | |
| 			out_len += val_len;
 | |
| 		}
 | |
| 		out[out_len] = 0;
 | |
| 		txt_beg = next;
 | |
| 	} while (*txt_beg);
 | |
| 
 | |
| 	/* here we know that <out> was allocated and that we don't need <in> anymore */
 | |
| 	free(in);
 | |
| leave:
 | |
| 	return out;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* same as strstr() but case-insensitive and with limit length */
 | |
| const char *strnistr(const char *str1, int len_str1, const char *str2, int len_str2)
 | |
| {
 | |
| 	char *pptr, *sptr, *start;
 | |
| 	unsigned int slen, plen;
 | |
| 	unsigned int tmp1, tmp2;
 | |
| 
 | |
| 	if (str1 == NULL || len_str1 == 0) // search pattern into an empty string => search is not found
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (str2 == NULL || len_str2 == 0) // pattern is empty => every str1 match
 | |
| 		return str1;
 | |
| 
 | |
| 	if (len_str1 < len_str2) // pattern is longer than string => search is not found
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (tmp1 = 0, start = (char *)str1, pptr = (char *)str2, slen = len_str1, plen = len_str2; slen >= plen; start++, slen--) {
 | |
| 		while (toupper((unsigned char)*start) != toupper((unsigned char)*str2)) {
 | |
| 			start++;
 | |
| 			slen--;
 | |
| 			tmp1++;
 | |
| 
 | |
| 			if (tmp1 >= len_str1)
 | |
| 				return NULL;
 | |
| 
 | |
| 			/* if pattern longer than string */
 | |
| 			if (slen < plen)
 | |
| 				return NULL;
 | |
| 		}
 | |
| 
 | |
| 		sptr = start;
 | |
| 		pptr = (char *)str2;
 | |
| 
 | |
| 		tmp2 = 0;
 | |
| 		while (toupper((unsigned char)*sptr) == toupper((unsigned char)*pptr)) {
 | |
| 			sptr++;
 | |
| 			pptr++;
 | |
| 			tmp2++;
 | |
| 
 | |
| 			if (*pptr == '\0' || tmp2 == len_str2) /* end of pattern found */
 | |
| 				return start;
 | |
| 			if (*sptr == '\0' || tmp2 == len_str1) /* end of string found and the pattern is not fully found */
 | |
| 				return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Returns true if s1 < s2 < s3 otherwise zero. Both s1 and s3 may be NULL and
 | |
|  * in this case only non-null strings are compared. This allows to pass initial
 | |
|  * values in iterators and in sort functions.
 | |
|  */
 | |
| int strordered(const char *s1, const char *s2, const char *s3)
 | |
| {
 | |
| 	return (!s1 || strcmp(s1, s2) < 0) && (!s3 || strcmp(s2, s3) < 0);
 | |
| }
 | |
| 
 | |
| /* This function read the next valid utf8 char.
 | |
|  * <s> is the byte srray to be decode, <len> is its length.
 | |
|  * The function returns decoded char encoded like this:
 | |
|  * The 4 msb are the return code (UTF8_CODE_*), the 4 lsb
 | |
|  * are the length read. The decoded character is stored in <c>.
 | |
|  */
 | |
| unsigned char utf8_next(const char *s, int len, unsigned int *c)
 | |
| {
 | |
| 	const unsigned char *p = (unsigned char *)s;
 | |
| 	int dec;
 | |
| 	unsigned char code = UTF8_CODE_OK;
 | |
| 
 | |
| 	if (len < 1)
 | |
| 		return UTF8_CODE_OK;
 | |
| 
 | |
| 	/* Check the type of UTF8 sequence
 | |
| 	 *
 | |
| 	 * 0... ....  0x00 <= x <= 0x7f : 1 byte: ascii char
 | |
| 	 * 10.. ....  0x80 <= x <= 0xbf : invalid sequence
 | |
| 	 * 110. ....  0xc0 <= x <= 0xdf : 2 bytes
 | |
| 	 * 1110 ....  0xe0 <= x <= 0xef : 3 bytes
 | |
| 	 * 1111 0...  0xf0 <= x <= 0xf7 : 4 bytes
 | |
| 	 * 1111 10..  0xf8 <= x <= 0xfb : 5 bytes
 | |
| 	 * 1111 110.  0xfc <= x <= 0xfd : 6 bytes
 | |
| 	 * 1111 111.  0xfe <= x <= 0xff : invalid sequence
 | |
| 	 */
 | |
| 	switch (*p) {
 | |
| 	case 0x00 ... 0x7f:
 | |
| 		*c = *p;
 | |
| 		return UTF8_CODE_OK | 1;
 | |
| 
 | |
| 	case 0x80 ... 0xbf:
 | |
| 		*c = *p;
 | |
| 		return UTF8_CODE_BADSEQ | 1;
 | |
| 
 | |
| 	case 0xc0 ... 0xdf:
 | |
| 		if (len < 2) {
 | |
| 			*c = *p;
 | |
| 			return UTF8_CODE_BADSEQ | 1;
 | |
| 		}
 | |
| 		*c = *p & 0x1f;
 | |
| 		dec = 1;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xe0 ... 0xef:
 | |
| 		if (len < 3) {
 | |
| 			*c = *p;
 | |
| 			return UTF8_CODE_BADSEQ | 1;
 | |
| 		}
 | |
| 		*c = *p & 0x0f;
 | |
| 		dec = 2;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xf0 ... 0xf7:
 | |
| 		if (len < 4) {
 | |
| 			*c = *p;
 | |
| 			return UTF8_CODE_BADSEQ | 1;
 | |
| 		}
 | |
| 		*c = *p & 0x07;
 | |
| 		dec = 3;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xf8 ... 0xfb:
 | |
| 		if (len < 5) {
 | |
| 			*c = *p;
 | |
| 			return UTF8_CODE_BADSEQ | 1;
 | |
| 		}
 | |
| 		*c = *p & 0x03;
 | |
| 		dec = 4;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xfc ... 0xfd:
 | |
| 		if (len < 6) {
 | |
| 			*c = *p;
 | |
| 			return UTF8_CODE_BADSEQ | 1;
 | |
| 		}
 | |
| 		*c = *p & 0x01;
 | |
| 		dec = 5;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xfe ... 0xff:
 | |
| 	default:
 | |
| 		*c = *p;
 | |
| 		return UTF8_CODE_BADSEQ | 1;
 | |
| 	}
 | |
| 
 | |
| 	p++;
 | |
| 
 | |
| 	while (dec > 0) {
 | |
| 
 | |
| 		/* need 0x10 for the 2 first bits */
 | |
| 		if ( ( *p & 0xc0 ) != 0x80 )
 | |
| 			return UTF8_CODE_BADSEQ | ((p-(unsigned char *)s)&0xffff);
 | |
| 
 | |
| 		/* add data at char */
 | |
| 		*c = ( *c << 6 ) | ( *p & 0x3f );
 | |
| 
 | |
| 		dec--;
 | |
| 		p++;
 | |
| 	}
 | |
| 
 | |
| 	/* Check ovelong encoding.
 | |
| 	 * 1 byte  : 5 + 6         : 11 : 0x80    ... 0x7ff
 | |
| 	 * 2 bytes : 4 + 6 + 6     : 16 : 0x800   ... 0xffff
 | |
| 	 * 3 bytes : 3 + 6 + 6 + 6 : 21 : 0x10000 ... 0x1fffff
 | |
| 	 */
 | |
| 	if ((                 *c <= 0x7f     && (p-(unsigned char *)s) > 1) ||
 | |
| 	    (*c >= 0x80    && *c <= 0x7ff    && (p-(unsigned char *)s) > 2) ||
 | |
| 	    (*c >= 0x800   && *c <= 0xffff   && (p-(unsigned char *)s) > 3) ||
 | |
| 	    (*c >= 0x10000 && *c <= 0x1fffff && (p-(unsigned char *)s) > 4))
 | |
| 		code |= UTF8_CODE_OVERLONG;
 | |
| 
 | |
| 	/* Check invalid UTF8 range. */
 | |
| 	if ((*c >= 0xd800 && *c <= 0xdfff) ||
 | |
| 	    (*c >= 0xfffe && *c <= 0xffff))
 | |
| 		code |= UTF8_CODE_INVRANGE;
 | |
| 
 | |
| 	return code | ((p-(unsigned char *)s)&0x0f);
 | |
| }
 | |
| 
 | |
| /* indicates if a memory location may safely be read or not. The trick consists
 | |
|  * in performing a harmless syscall using this location as an input and letting
 | |
|  * the operating system report whether it's OK or not. For this we have the
 | |
|  * stat() syscall, which will return EFAULT when the memory location supposed
 | |
|  * to contain the file name is not readable. If it is readable it will then
 | |
|  * either return 0 if the area contains an existing file name, or -1 with
 | |
|  * another code. This must not be abused, and some audit systems might detect
 | |
|  * this as abnormal activity. It's used only for unsafe dumps.
 | |
|  */
 | |
| int may_access(const void *ptr)
 | |
| {
 | |
| 	struct stat buf;
 | |
| 
 | |
| 	if (stat(ptr, &buf) == 0)
 | |
| 		return 1;
 | |
| 	if (errno == EFAULT)
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* print a string of text buffer to <out>. The format is :
 | |
|  * Non-printable chars \t, \n, \r and \e are * encoded in C format.
 | |
|  * Other non-printable chars are encoded "\xHH". Space, '\', and '=' are also escaped.
 | |
|  * Print stopped if null char or <bsize> is reached, or if no more place in the chunk.
 | |
|  */
 | |
| int dump_text(struct buffer *out, const char *buf, int bsize)
 | |
| {
 | |
| 	unsigned char c;
 | |
| 	size_t ptr = 0;
 | |
| 
 | |
| 	while (ptr < bsize && buf[ptr]) {
 | |
| 		c = buf[ptr];
 | |
| 		if (isprint((unsigned char)c) && isascii((unsigned char)c) && c != '\\' && c != ' ' && c != '=') {
 | |
| 			if (out->data > out->size - 1)
 | |
| 				break;
 | |
| 			out->area[out->data++] = c;
 | |
| 		}
 | |
| 		else if (c == '\t' || c == '\n' || c == '\r' || c == '\e' || c == '\\' || c == ' ' || c == '=') {
 | |
| 			if (out->data > out->size - 2)
 | |
| 				break;
 | |
| 			out->area[out->data++] = '\\';
 | |
| 			switch (c) {
 | |
| 			case ' ': c = ' '; break;
 | |
| 			case '\t': c = 't'; break;
 | |
| 			case '\n': c = 'n'; break;
 | |
| 			case '\r': c = 'r'; break;
 | |
| 			case '\e': c = 'e'; break;
 | |
| 			case '\\': c = '\\'; break;
 | |
| 			case '=': c = '='; break;
 | |
| 			}
 | |
| 			out->area[out->data++] = c;
 | |
| 		}
 | |
| 		else {
 | |
| 			if (out->data > out->size - 4)
 | |
| 				break;
 | |
| 			out->area[out->data++] = '\\';
 | |
| 			out->area[out->data++] = 'x';
 | |
| 			out->area[out->data++] = hextab[(c >> 4) & 0xF];
 | |
| 			out->area[out->data++] = hextab[c & 0xF];
 | |
| 		}
 | |
| 		ptr++;
 | |
| 	}
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| /* print a buffer in hexa.
 | |
|  * Print stopped if <bsize> is reached, or if no more place in the chunk.
 | |
|  */
 | |
| int dump_binary(struct buffer *out, const char *buf, int bsize)
 | |
| {
 | |
| 	unsigned char c;
 | |
| 	int ptr = 0;
 | |
| 
 | |
| 	while (ptr < bsize) {
 | |
| 		c = buf[ptr];
 | |
| 
 | |
| 		if (out->data > out->size - 2)
 | |
| 			break;
 | |
| 		out->area[out->data++] = hextab[(c >> 4) & 0xF];
 | |
| 		out->area[out->data++] = hextab[c & 0xF];
 | |
| 
 | |
| 		ptr++;
 | |
| 	}
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| /* Appends into buffer <out> a hex dump of memory area <buf> for <len> bytes,
 | |
|  * prepending each line with prefix <pfx>. The output is *not* initialized.
 | |
|  * The output will not wrap pas the buffer's end so it is more optimal if the
 | |
|  * caller makes sure the buffer is aligned first. A trailing zero will always
 | |
|  * be appended (and not counted) if there is room for it. The caller must make
 | |
|  * sure that the area is dumpable first. If <unsafe> is non-null, the memory
 | |
|  * locations are checked first for being readable.
 | |
|  */
 | |
| void dump_hex(struct buffer *out, const char *pfx, const void *buf, int len, int unsafe)
 | |
| {
 | |
| 	const unsigned char *d = buf;
 | |
| 	int i, j, start;
 | |
| 
 | |
| 	d = (const unsigned char *)(((unsigned long)buf) & -16);
 | |
| 	start = ((unsigned long)buf) & 15;
 | |
| 
 | |
| 	for (i = 0; i < start + len; i += 16) {
 | |
| 		chunk_appendf(out, (sizeof(void *) == 4) ? "%s%8p: " : "%s%16p: ", pfx, d + i);
 | |
| 
 | |
| 		// 0: unchecked, 1: checked safe, 2: danger
 | |
| 		unsafe = !!unsafe;
 | |
| 		if (unsafe && !may_access(d + i))
 | |
| 			unsafe = 2;
 | |
| 
 | |
| 		for (j = 0; j < 16; j++) {
 | |
| 			if ((i + j < start) || (i + j >= start + len))
 | |
| 				chunk_strcat(out, "'' ");
 | |
| 			else if (unsafe > 1)
 | |
| 				chunk_strcat(out, "** ");
 | |
| 			else
 | |
| 				chunk_appendf(out, "%02x ", d[i + j]);
 | |
| 
 | |
| 			if (j == 7)
 | |
| 				chunk_strcat(out, "- ");
 | |
| 		}
 | |
| 		chunk_strcat(out, "  ");
 | |
| 		for (j = 0; j < 16; j++) {
 | |
| 			if ((i + j < start) || (i + j >= start + len))
 | |
| 				chunk_strcat(out, "'");
 | |
| 			else if (unsafe > 1)
 | |
| 				chunk_strcat(out, "*");
 | |
| 			else if (isprint((unsigned char)d[i + j]))
 | |
| 				chunk_appendf(out, "%c", d[i + j]);
 | |
| 			else
 | |
| 				chunk_strcat(out, ".");
 | |
| 		}
 | |
| 		chunk_strcat(out, "\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* dumps <pfx> followed by <n> bytes from <addr> in hex form into buffer <buf>
 | |
|  * enclosed in brackets after the address itself, formatted on 14 chars
 | |
|  * including the "0x" prefix. This is meant to be used as a prefix for code
 | |
|  * areas. For example:
 | |
|  *    "0x7f10b6557690 [48 c7 c0 0f 00 00 00 0f]"
 | |
|  * It relies on may_access() to know if the bytes are dumpable, otherwise "--"
 | |
|  * is emitted. A NULL <pfx> will be considered empty.
 | |
|  * if <n> is negative, then the bytes before the address are dumped instead, so
 | |
|  * that the address ends after the last byte. This can be handy for call traces
 | |
|  * where the code that follows hasn't been executed but the code that precedes
 | |
|  * usually contains a call instruction. In this case, the opening bracket uses
 | |
|  * a '<' instead of '[' to indicate that the address is at the ']'.
 | |
|  */
 | |
| void dump_addr_and_bytes(struct buffer *buf, const char *pfx, const void *addr, int n)
 | |
| {
 | |
| 	int ok = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	chunk_appendf(buf, "%s%#14lx %c", pfx ? pfx : "", (long)addr, (n < 0) ? '<' : '[');
 | |
| 
 | |
| 	if (n < 0) {
 | |
| 		addr += n;
 | |
| 		n = -n;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		if (i == 0 || (((long)(addr + i) ^ (long)(addr)) & 4096))
 | |
| 			ok = may_access(addr + i);
 | |
| 		if (ok)
 | |
| 			chunk_appendf(buf, "%02x%s", ((uint8_t*)addr)[i], (i<n-1) ? " " : "]");
 | |
| 		else
 | |
| 			chunk_appendf(buf, "--%s", (i<n-1) ? " " : "]");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Dumps the 64 bytes around <addr> at the end of <output> with symbols
 | |
|  * decoding. An optional special pointer may be recognized (special), in
 | |
|  * which case its type (spec_type) and name (spec_name) will be reported.
 | |
|  * This is convenient for pool names but could be used for list heads or
 | |
|  * anything in that vein.
 | |
| */
 | |
| void dump_area_with_syms(struct buffer *output, const void *base, const void *addr,
 | |
|                          const void *special, const char *spec_type, const char *spec_name)
 | |
| {
 | |
| 	const char *start, *end, *p;
 | |
| 	const void *tag;
 | |
| 
 | |
| 	chunk_appendf(output, "Contents around address %p+%lu=%p:\n", base, (ulong)(addr - base), addr);
 | |
| 
 | |
| 	/* dump in word-sized blocks */
 | |
| 	start = (const void *)(((uintptr_t)addr - 32) & -sizeof(void*));
 | |
| 	end   = (const void *)(((uintptr_t)addr + 32 + sizeof(void*) - 1) & -sizeof(void*));
 | |
| 
 | |
| 	while (start < end) {
 | |
| 		dump_addr_and_bytes(output, "  ", start, sizeof(void*));
 | |
| 		chunk_strcat(output, " [");
 | |
| 		for (p = start; p < start + sizeof(void*); p++) {
 | |
| 			if (!may_access(p))
 | |
| 				chunk_strcat(output, "*");
 | |
| 			else if (isprint((unsigned char)*p))
 | |
| 				chunk_appendf(output, "%c", *p);
 | |
| 			else
 | |
| 				chunk_strcat(output, ".");
 | |
| 		}
 | |
| 
 | |
| 		if (may_access(start))
 | |
| 			tag = *(const void **)start;
 | |
| 		else
 | |
| 			tag = NULL;
 | |
| 
 | |
| 		if (special && tag == special) {
 | |
| 			/* the pool can often be there so let's detect it */
 | |
| 			chunk_appendf(output, "] [%s:%s", spec_type, spec_name);
 | |
| 		}
 | |
| 		else if (tag) {
 | |
| 			/* print pointers that resolve to a symbol */
 | |
| 			size_t back_data = output->data;
 | |
| 			chunk_strcat(output, "] [");
 | |
| 			if (!resolve_sym_name(output, NULL, tag))
 | |
| 				output->data = back_data;
 | |
| 		}
 | |
| 
 | |
| 		chunk_strcat(output, "]\n");
 | |
| 		start = p;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* print a line of text buffer (limited to 70 bytes) to <out>. The format is :
 | |
|  * <2 spaces> <offset=5 digits> <space or plus> <space> <70 chars max> <\n>
 | |
|  * which is 60 chars per line. Non-printable chars \t, \n, \r and \e are
 | |
|  * encoded in C format. Other non-printable chars are encoded "\xHH". Original
 | |
|  * lines are respected within the limit of 70 output chars. Lines that are
 | |
|  * continuation of a previous truncated line begin with "+" instead of " "
 | |
|  * after the offset. The new pointer is returned.
 | |
|  */
 | |
| int dump_text_line(struct buffer *out, const char *buf, int bsize, int len,
 | |
|                    int *line, int ptr)
 | |
| {
 | |
| 	int end;
 | |
| 	unsigned char c;
 | |
| 
 | |
| 	end = out->data + 80;
 | |
| 	if (end > out->size)
 | |
| 		return ptr;
 | |
| 
 | |
| 	chunk_appendf(out, "  %05d%c ", ptr, (ptr == *line) ? ' ' : '+');
 | |
| 
 | |
| 	while (ptr < len && ptr < bsize) {
 | |
| 		c = buf[ptr];
 | |
| 		if (isprint((unsigned char)c) && isascii((unsigned char)c) && c != '\\') {
 | |
| 			if (out->data > end - 2)
 | |
| 				break;
 | |
| 			out->area[out->data++] = c;
 | |
| 		} else if (c == '\t' || c == '\n' || c == '\r' || c == '\e' || c == '\\') {
 | |
| 			if (out->data > end - 3)
 | |
| 				break;
 | |
| 			out->area[out->data++] = '\\';
 | |
| 			switch (c) {
 | |
| 			case '\t': c = 't'; break;
 | |
| 			case '\n': c = 'n'; break;
 | |
| 			case '\r': c = 'r'; break;
 | |
| 			case '\e': c = 'e'; break;
 | |
| 			case '\\': c = '\\'; break;
 | |
| 			}
 | |
| 			out->area[out->data++] = c;
 | |
| 		} else {
 | |
| 			if (out->data > end - 5)
 | |
| 				break;
 | |
| 			out->area[out->data++] = '\\';
 | |
| 			out->area[out->data++] = 'x';
 | |
| 			out->area[out->data++] = hextab[(c >> 4) & 0xF];
 | |
| 			out->area[out->data++] = hextab[c & 0xF];
 | |
| 		}
 | |
| 		if (buf[ptr++] == '\n') {
 | |
| 			/* we had a line break, let's return now */
 | |
| 			out->area[out->data++] = '\n';
 | |
| 			*line = ptr;
 | |
| 			return ptr;
 | |
| 		}
 | |
| 	}
 | |
| 	/* we have an incomplete line, we return it as-is */
 | |
| 	out->area[out->data++] = '\n';
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| /* displays a <len> long memory block at <buf>, assuming first byte of <buf>
 | |
|  * has address <baseaddr>. String <pfx> may be placed as a prefix in front of
 | |
|  * each line. It may be NULL if unused. The output is emitted to file <out>.
 | |
|  */
 | |
| void debug_hexdump(FILE *out, const char *pfx, const char *buf,
 | |
|                    unsigned int baseaddr, int len)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int b, j;
 | |
| 
 | |
| 	for (i = 0; i < (len + (baseaddr & 15)); i += 16) {
 | |
| 		b = i - (baseaddr & 15);
 | |
| 		fprintf(out, "%s%08x: ", pfx ? pfx : "", i + (baseaddr & ~15));
 | |
| 		for (j = 0; j < 8; j++) {
 | |
| 			if (b + j >= 0 && b + j < len)
 | |
| 				fprintf(out, "%02x ", (unsigned char)buf[b + j]);
 | |
| 			else
 | |
| 				fprintf(out, "   ");
 | |
| 		}
 | |
| 
 | |
| 		if (b + j >= 0 && b + j < len)
 | |
| 			fputc('-', out);
 | |
| 		else
 | |
| 			fputc(' ', out);
 | |
| 
 | |
| 		for (j = 8; j < 16; j++) {
 | |
| 			if (b + j >= 0 && b + j < len)
 | |
| 				fprintf(out, " %02x", (unsigned char)buf[b + j]);
 | |
| 			else
 | |
| 				fprintf(out, "   ");
 | |
| 		}
 | |
| 
 | |
| 		fprintf(out, "   ");
 | |
| 		for (j = 0; j < 16; j++) {
 | |
| 			if (b + j >= 0 && b + j < len) {
 | |
| 				if (isprint((unsigned char)buf[b + j]))
 | |
| 					fputc((unsigned char)buf[b + j], out);
 | |
| 				else
 | |
| 					fputc('.', out);
 | |
| 			}
 | |
| 			else
 | |
| 				fputc(' ', out);
 | |
| 		}
 | |
| 		fputc('\n', out);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Tries to report the executable path name on platforms supporting this. If
 | |
|  * not found or not possible, returns NULL.
 | |
|  */
 | |
| const char *get_exec_path()
 | |
| {
 | |
| 	const char *ret = NULL;
 | |
| 
 | |
| #if defined(__linux__) && defined(__GLIBC__) && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 16))
 | |
| 	long execfn = getauxval(AT_EXECFN);
 | |
| 
 | |
| 	if (execfn && execfn != ENOENT)
 | |
| 		ret = (const char *)execfn;
 | |
| #elif defined(__FreeBSD__)
 | |
| #if __FreeBSD_version < 1300058
 | |
| 	Elf_Auxinfo *auxv;
 | |
| 	for (auxv = __elf_aux_vector; auxv->a_type != AT_NULL; ++auxv) {
 | |
| 		if (auxv->a_type == AT_EXECPATH) {
 | |
| 			ret = (const char *)auxv->a_un.a_ptr;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| #else
 | |
| 	static char execpath[MAXPATHLEN];
 | |
| 
 | |
| 	if (execpath[0] == '\0')
 | |
| 		elf_aux_info(AT_EXECPATH, execpath, MAXPATHLEN);
 | |
| 	if (execpath[0] != '\0')
 | |
| 		ret = execpath;
 | |
| #endif
 | |
| #elif defined(__NetBSD__)
 | |
| 	AuxInfo *auxv;
 | |
| 	for (auxv = _dlauxinfo(); auxv->a_type != AT_NULL; ++auxv) {
 | |
| 		if (auxv->a_type == AT_SUN_EXECNAME) {
 | |
| 			ret = (const char *)auxv->a_v;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| #elif defined(__sun)
 | |
| 	ret = getexecname();
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
 | |
| /* calls dladdr() or dladdr1() on <addr> and <dli>. If dladdr1 is available,
 | |
|  * also returns the symbol size in <size>, otherwise returns 0 there.
 | |
|  */
 | |
| static int dladdr_and_size(const void *addr, Dl_info *dli, size_t *size)
 | |
| {
 | |
| 	int ret;
 | |
| #if defined(__GLIBC__) && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3)) // most detailed one
 | |
| 	const ElfW(Sym) *sym __attribute__((may_alias));
 | |
| 
 | |
| 	ret = dladdr1(addr, dli, (void **)&sym, RTLD_DL_SYMENT);
 | |
| 	if (ret)
 | |
| 		*size = sym ? sym->st_size : 0;
 | |
| #else
 | |
| #if defined(__sun)
 | |
| 	ret = dladdr((void *)addr, dli);
 | |
| #else
 | |
| 	ret = dladdr(addr, dli);
 | |
| #endif
 | |
| 	*size = 0;
 | |
| #endif
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Sets build_is_static to true if we detect a static build. Some older glibcs
 | |
|  * tend to crash inside dlsym() in static builds, but tests show that at least
 | |
|  * dladdr() still works (and will fail to resolve anything of course). Thus we
 | |
|  * try to determine if we're on a static build to avoid calling dlsym() in this
 | |
|  * case.
 | |
|  */
 | |
| void check_if_static_build()
 | |
| {
 | |
| 	Dl_info dli = { };
 | |
| 	size_t size = 0;
 | |
| 
 | |
| 	/* Now let's try to be smarter */
 | |
| 	if (!dladdr_and_size(&main, &dli, &size))
 | |
| 		build_is_static = 1;
 | |
| 	else
 | |
| 		build_is_static = 0;
 | |
| }
 | |
| 
 | |
| INITCALL0(STG_PREPARE, check_if_static_build);
 | |
| 
 | |
| /* Tries to retrieve the address of the first occurrence symbol <name>.
 | |
|  * Note that NULL in return is not always an error as a symbol may have that
 | |
|  * address in special situations.
 | |
|  */
 | |
| void *get_sym_curr_addr(const char *name)
 | |
| {
 | |
| 	void *ptr = NULL;
 | |
| 
 | |
| #ifdef RTLD_DEFAULT
 | |
| 	if (!build_is_static)
 | |
| 		ptr = dlsym(RTLD_DEFAULT, name);
 | |
| #endif
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Tries to retrieve the address of the next occurrence of symbol <name>
 | |
|  * Note that NULL in return is not always an error as a symbol may have that
 | |
|  * address in special situations.
 | |
|  */
 | |
| void *get_sym_next_addr(const char *name)
 | |
| {
 | |
| 	void *ptr = NULL;
 | |
| 
 | |
| #ifdef RTLD_NEXT
 | |
| 	if (!build_is_static)
 | |
| 		ptr = dlsym(RTLD_NEXT, name);
 | |
| #endif
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| #else /* elf & linux & dl */
 | |
| 
 | |
| /* no possible resolving on other platforms at the moment */
 | |
| void *get_sym_curr_addr(const char *name)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void *get_sym_next_addr(const char *name)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #endif /* elf & linux & dl */
 | |
| 
 | |
| /* Tries to append to buffer <buf> some indications about the symbol at address
 | |
|  * <addr> using the following form:
 | |
|  *   lib:+0xoffset              (unresolvable address from lib's base)
 | |
|  *   main+0xoffset              (unresolvable address from main (+/-))
 | |
|  *   lib:main+0xoffset          (unresolvable lib address from main (+/-))
 | |
|  *   name                       (resolved exact exec address)
 | |
|  *   lib:name                   (resolved exact lib address)
 | |
|  *   name+0xoffset/0xsize       (resolved address within exec symbol)
 | |
|  *   lib:name+0xoffset/0xsize   (resolved address within lib symbol)
 | |
|  *
 | |
|  * The file name (lib or executable) is limited to what lies between the last
 | |
|  * '/' and the first following '.'. An optional prefix <pfx> is prepended before
 | |
|  * the output if not null. The file is not dumped when it's the same as the one
 | |
|  * that contains the "main" symbol, or when __ELF__ && USE_DL are not set.
 | |
|  *
 | |
|  * The symbol's base address is returned, or NULL when unresolved, in order to
 | |
|  * allow the caller to match it against known ones.
 | |
|  */
 | |
| const void *resolve_sym_name(struct buffer *buf, const char *pfx, const void *addr)
 | |
| {
 | |
| 	const struct {
 | |
| 		const void *func;
 | |
| 		const char *name;
 | |
| 	} fcts[] = {
 | |
| #define DEF_SYM(sym, ...) { .func = ({ __VA_ARGS__; sym; }), .name = #sym }
 | |
| 		DEF_SYM(process_stream),
 | |
| 		DEF_SYM(task_run_applet),
 | |
| 		DEF_SYM(run_poll_loop),
 | |
| 		DEF_SYM(run_tasks_from_lists),
 | |
| 		DEF_SYM(process_runnable_tasks),
 | |
| 		DEF_SYM(sc_conn_io_cb),
 | |
| 		DEF_SYM(sock_conn_iocb),
 | |
| 		DEF_SYM(dgram_fd_handler),
 | |
| 		DEF_SYM(listener_accept),
 | |
| 		DEF_SYM(manage_global_listener_queue),
 | |
| 		DEF_SYM(poller_pipe_io_handler),
 | |
| 		DEF_SYM(mworker_accept_wrapper),
 | |
| 		DEF_SYM(session_expire_embryonic),
 | |
| 		DEF_SYM(ha_dump_backtrace, extern void ha_dump_backtrace(struct buffer, const char *, int)),
 | |
| 		DEF_SYM(cli_io_handler, extern void cli_io_handler(struct appctx*)),
 | |
| #ifdef USE_THREAD
 | |
| 		DEF_SYM(accept_queue_process),
 | |
| #endif
 | |
| #ifdef USE_LUA
 | |
| 		DEF_SYM(hlua_process_task),
 | |
| #endif
 | |
| #ifdef SSL_MODE_ASYNC
 | |
| 		DEF_SYM(ssl_async_fd_free),
 | |
| 		DEF_SYM(ssl_async_fd_handler),
 | |
| #endif
 | |
| #ifdef USE_QUIC
 | |
| 		DEF_SYM(quic_conn_sock_fd_iocb),
 | |
| #endif
 | |
| #undef DEF_SYM
 | |
| 	};
 | |
| 
 | |
| #if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
 | |
| 	static Dl_info dli_main;
 | |
| 	static int dli_main_done; // 0 = not resolved, 1 = resolve in progress, 2 = done
 | |
| 	__decl_thread_var(static HA_SPINLOCK_T dladdr_lock);
 | |
| 	sigset_t new_mask, old_mask;
 | |
| 	int isolated;
 | |
| 	Dl_info dli;
 | |
| 	size_t size = 0;
 | |
| 	const char *fname, *p;
 | |
| #endif
 | |
| 	size_t dist, best_dist;
 | |
| 	int i, best_idx;
 | |
| 
 | |
| 	if (pfx)
 | |
| 		chunk_appendf(buf, "%s", pfx);
 | |
| 
 | |
| 	best_idx = -1; best_dist = ~0;
 | |
| 	for (i = 0; i < sizeof(fcts) / sizeof(fcts[0]); i++) {
 | |
| 		if (addr < (void*)fcts[i].func)
 | |
| 			continue;
 | |
| 		dist = addr - (void*)fcts[i].func;
 | |
| 		if (dist < (1<<18) && dist < best_dist) {
 | |
| 			best_dist = dist;
 | |
| 			best_idx = i;
 | |
| 			if (!dist)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* if that's an exact match, no need to call dl_addr. This happens
 | |
| 	 * when showing callback pointers for example, but not in backtraces.
 | |
| 	 */
 | |
| 	if (!best_dist)
 | |
| 		goto use_array;
 | |
| 
 | |
| #if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
 | |
| 	/* Now let's try to be smarter */
 | |
| 
 | |
| 	/* dladdr_and_size() can be super expensive and will often rely on a
 | |
| 	 * mutex inside the library to deal with concurrent accesses. We don't
 | |
| 	 * want to inflict this to parallel callers who could wait much too
 | |
| 	 * long (e.g. during a wdt warning). Thus, we'll do the following:
 | |
| 	 *   - if we're isolated or in a panic, we're safe and don't need to
 | |
| 	 *     lock so we don't wait.
 | |
| 	 *   - otherwise we use a trylock and we fail on conflict so that
 | |
| 	 *     noone waits when there is contention.
 | |
| 	 */
 | |
| 	isolated = thread_isolated() || (get_tainted() & TAINTED_PANIC);
 | |
| 
 | |
| 	if (!isolated &&
 | |
| 	    HA_SPIN_TRYLOCK(OTHER_LOCK, &dladdr_lock) != 0)
 | |
| 		goto use_array;
 | |
| 
 | |
| 	/* make sure we don't re-enter from wdt nor debug coming from other
 | |
| 	 * threads as dladdr() is not re-entrant. We'll block these sensitive
 | |
| 	 * signals while possibly dumping a backtrace.
 | |
| 	 */
 | |
| 	sigemptyset(&new_mask);
 | |
| #ifdef WDTSIG
 | |
| 	sigaddset(&new_mask, WDTSIG);
 | |
| #endif
 | |
| #ifdef DEBUGSIG
 | |
| 	sigaddset(&new_mask, DEBUGSIG);
 | |
| #endif
 | |
| 	ha_sigmask(SIG_BLOCK, &new_mask, &old_mask);
 | |
| 
 | |
| 	/* now resolve the symbol */
 | |
| 	i = dladdr_and_size(addr, &dli, &size);
 | |
| 
 | |
| 	if (!i) {
 | |
| 		/* unblock temporarily blocked signals */
 | |
| 		ha_sigmask(SIG_SETMASK, &old_mask, NULL);
 | |
| 
 | |
| 		if (!isolated)
 | |
| 			HA_SPIN_UNLOCK(OTHER_LOCK, &dladdr_lock);
 | |
| 		goto use_array;
 | |
| 	}
 | |
| 
 | |
| 	/* 1. prefix the library name if it's not the same object as the one
 | |
| 	 * that contains the main function. The name is picked between last '/'
 | |
| 	 * and first following '.'.
 | |
| 	 */
 | |
| 
 | |
| 	/* let's check main only once, no need to do it all the time */
 | |
| 
 | |
| 	i = HA_ATOMIC_LOAD(&dli_main_done);
 | |
| 	while (i < 2) {
 | |
| 		i = 0;
 | |
| 		if (HA_ATOMIC_CAS(&dli_main_done, &i, 1)) {
 | |
| 			/* we're the first ones, resolve it */
 | |
| 			if (!dladdr(main, &dli_main))
 | |
| 				dli_main.dli_fbase = NULL;
 | |
| 			HA_ATOMIC_STORE(&dli_main_done, 2); // done
 | |
| 			break;
 | |
| 		}
 | |
| 		ha_thread_relax();
 | |
| 	}
 | |
| 
 | |
| 	/* unblock temporarily blocked signals */
 | |
| 	ha_sigmask(SIG_SETMASK, &old_mask, NULL);
 | |
| 
 | |
| 	if (!isolated)
 | |
| 		HA_SPIN_UNLOCK(OTHER_LOCK, &dladdr_lock);
 | |
| 
 | |
| 	if (dli_main.dli_fbase != dli.dli_fbase) {
 | |
| 		fname = dli.dli_fname;
 | |
| 		p = strrchr(fname, '/');
 | |
| 		if (p++)
 | |
| 			fname = p;
 | |
| 		p = strchr(fname, '.');
 | |
| 		if (!p)
 | |
| 			p = fname + strlen(fname);
 | |
| 
 | |
| 		chunk_appendf(buf, "%.*s:", (int)(long)(p - fname), fname);
 | |
| 	}
 | |
| 
 | |
| 	/* 2. symbol name */
 | |
| 	if (dli.dli_sname) {
 | |
| 		/* known, dump it and return symbol's address (exact or relative) */
 | |
| 		chunk_appendf(buf, "%s", dli.dli_sname);
 | |
| 		if (addr != dli.dli_saddr) {
 | |
| 			chunk_appendf(buf, "+%#lx", (long)(addr - dli.dli_saddr));
 | |
| 			if (size)
 | |
| 				chunk_appendf(buf, "/%#lx", (long)size);
 | |
| 		}
 | |
| 		return dli.dli_saddr;
 | |
| 	}
 | |
| 	else if (dli_main.dli_fbase != dli.dli_fbase) {
 | |
| 		/* unresolved symbol from a known library, report relative offset */
 | |
| 		chunk_appendf(buf, "+%#lx", (long)(addr - dli.dli_fbase));
 | |
| 		return NULL;
 | |
| 	}
 | |
| #endif /* __ELF__ && !__linux__ || USE_DL */
 | |
|  use_array:
 | |
| 	/* either exact match from the array, or unresolved symbol for which we
 | |
| 	 * may have a close match. Otherwise we report an offset relative to main.
 | |
| 	 */
 | |
| 	if (best_idx >= 0) {
 | |
| 		chunk_appendf(buf, "%s+%#lx", fcts[best_idx].name, (long)best_dist);
 | |
| 		return best_dist == 0 ? addr : NULL;
 | |
| 	}
 | |
| 	else if ((void*)addr < (void*)main)
 | |
| 		chunk_appendf(buf, "main-%#lx", (long)((void*)main - addr));
 | |
| 	else
 | |
| 		chunk_appendf(buf, "main+%#lx", (long)(addr - (void*)main));
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Tries to append to buffer <buf> the DSO name containing the symbol at address
 | |
|  * <addr>. The name (lib or executable) is limited to what lies between the last
 | |
|  * '/' and the first following '.'. An optional prefix <pfx> is prepended before
 | |
|  * the output if not null. It returns "*unknown*" when the symbol is not found.
 | |
|  *
 | |
|  * The symbol's address is returned, or NULL when unresolved, in order to allow
 | |
|  * the caller to match it against known ones.
 | |
|  */
 | |
| const void *resolve_dso_name(struct buffer *buf, const char *pfx, const void *addr)
 | |
| {
 | |
| #if (defined(__ELF__) && !defined(__linux__)) || defined(USE_DL)
 | |
| 	Dl_info dli;
 | |
| 	size_t size;
 | |
| 	const char *fname, *p;
 | |
| 
 | |
| 	/* Now let's try to be smarter */
 | |
| 	if (!dladdr_and_size(addr, &dli, &size))
 | |
| 		goto unknown;
 | |
| 
 | |
| 	if (pfx) {
 | |
| 		chunk_appendf(buf, "%s", pfx);
 | |
| 		pfx = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* keep the part between '/' and '.' */
 | |
| 	fname = dli.dli_fname;
 | |
| 	p = strrchr(fname, '/');
 | |
| 	if (p++)
 | |
| 		fname = p;
 | |
| 	p = strchr(fname, '.');
 | |
| 	if (!p)
 | |
| 		p = fname + strlen(fname);
 | |
| 	chunk_appendf(buf, "%.*s", (int)(long)(p - fname), fname);
 | |
| 	return addr;
 | |
|  unknown:
 | |
| #endif /* __ELF__ && !__linux__ || USE_DL */
 | |
| 
 | |
| 	/* unknown symbol */
 | |
| 	chunk_appendf(buf, "%s*unknown*", pfx ? pfx : "");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* On systems where this is supported, let's provide a possibility to enumerate
 | |
|  * the list of object files. The output is appended to a buffer initialized by
 | |
|  * the caller, with one name per line. A trailing zero is always emitted if data
 | |
|  * are written. Only real objects are dumped (executable and .so libs). The
 | |
|  * function returns non-zero if it dumps anything. These functions do not make
 | |
|  * use of the trash so that it is possible for the caller to call them with the
 | |
|  * trash on input. The output format may be platform-specific but at least one
 | |
|  * version must emit raw object file names when argument is zero.
 | |
|  */
 | |
| #if defined(HA_HAVE_DUMP_LIBS)
 | |
| # if defined(HA_HAVE_DL_ITERATE_PHDR)
 | |
| /* the private <data> we pass below is a dump context initialized like this */
 | |
| struct dl_dump_ctx {
 | |
| 	struct buffer *buf;
 | |
| 	int with_addr;
 | |
| };
 | |
| 
 | |
| static int dl_dump_libs_cb(struct dl_phdr_info *info, size_t size, void *data)
 | |
| {
 | |
| 	struct dl_dump_ctx *ctx = data;
 | |
| 	const char *fname;
 | |
| 	size_t p1, p2, beg, end;
 | |
| 	int idx;
 | |
| 
 | |
| 	if (!info || !info->dlpi_name)
 | |
| 		goto leave;
 | |
| 
 | |
| 	if (!*info->dlpi_name)
 | |
| 		fname = get_exec_path();
 | |
| 	else if (strchr(info->dlpi_name, '/'))
 | |
| 		fname = info->dlpi_name;
 | |
| 	else
 | |
| 		/* else it's a VDSO or similar and we're not interested */
 | |
| 		goto leave;
 | |
| 
 | |
| 	if (!ctx->with_addr)
 | |
| 		goto dump_name;
 | |
| 
 | |
| 	/* virtual addresses are relative to the load address and are per
 | |
| 	 * pseudo-header, so we have to scan them all to find the furthest
 | |
| 	 * one from the beginning. In this case we only dump entries if
 | |
| 	 * they have at least one section.
 | |
| 	 */
 | |
| 	beg = ~0; end = 0;
 | |
| 	for (idx = 0; idx < info->dlpi_phnum; idx++) {
 | |
| 		if (!info->dlpi_phdr[idx].p_memsz)
 | |
| 			continue;
 | |
| 		p1 = info->dlpi_phdr[idx].p_vaddr;
 | |
| 		if (p1 < beg)
 | |
| 			beg = p1;
 | |
| 		p2 = p1 + info->dlpi_phdr[idx].p_memsz - 1;
 | |
| 		if (p2 > end)
 | |
| 			end = p2;
 | |
| 	}
 | |
| 
 | |
| 	if (!idx)
 | |
| 		goto leave;
 | |
| 
 | |
| 	chunk_appendf(ctx->buf, "0x%012llx-0x%012llx (0x%07llx) ",
 | |
| 		      (ullong)info->dlpi_addr + beg,
 | |
| 		      (ullong)info->dlpi_addr + end,
 | |
| 		      (ullong)(end - beg + 1));
 | |
|  dump_name:
 | |
| 	chunk_appendf(ctx->buf, "%s\n", fname);
 | |
|  leave:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* dumps lib names and optionally address ranges */
 | |
| int dump_libs(struct buffer *output, int with_addr)
 | |
| {
 | |
| 	struct dl_dump_ctx ctx = { .buf = output, .with_addr = with_addr };
 | |
| 	size_t old_data = output->data;
 | |
| 
 | |
| 	dl_iterate_phdr(dl_dump_libs_cb, &ctx);
 | |
| 	return output->data != old_data;
 | |
| }
 | |
| # else // no DL_ITERATE_PHDR
 | |
| #  error "No dump_libs() function for this platform"
 | |
| # endif
 | |
| #else // no HA_HAVE_DUMP_LIBS
 | |
| 
 | |
| /* unsupported platform: do not dump anything */
 | |
| int dump_libs(struct buffer *output, int with_addr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif // HA_HAVE_DUMP_LIBS
 | |
| 
 | |
| /*
 | |
|  * Allocate an array of unsigned int with <nums> as address from <str> string
 | |
|  * made of integer separated by dot characters.
 | |
|  *
 | |
|  * First, initializes the value with <sz> as address to 0 and initializes the
 | |
|  * array with <nums> as address to NULL. Then allocates the array with <nums> as
 | |
|  * address updating <sz> pointed value to the size of this array.
 | |
|  *
 | |
|  * Returns 1 if succeeded, 0 if not.
 | |
|  */
 | |
| int parse_dotted_uints(const char *str, unsigned int **nums, size_t *sz)
 | |
| {
 | |
| 	unsigned int *n;
 | |
| 	const char *s, *end;
 | |
| 
 | |
| 	s = str;
 | |
| 	*sz = 0;
 | |
| 	end = str + strlen(str);
 | |
| 	*nums = n = NULL;
 | |
| 
 | |
| 	while (1) {
 | |
| 		unsigned int r;
 | |
| 
 | |
| 		if (s >= end)
 | |
| 			break;
 | |
| 
 | |
| 		r = read_uint(&s, end);
 | |
| 		/* Expected characters after having read an uint: '\0' or '.',
 | |
| 		 * if '.', must not be terminal.
 | |
| 		 */
 | |
| 		if (*s != '\0'&& (*s++ != '.' || s == end)) {
 | |
| 			free(n);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		n = my_realloc2(n, (*sz + 1) * sizeof *n);
 | |
| 		if (!n)
 | |
| 			return 0;
 | |
| 
 | |
| 		n[(*sz)++] = r;
 | |
| 	}
 | |
| 	*nums = n;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* returns the number of bytes needed to encode <v> as a varint. An inline
 | |
|  * version exists for use with constants (__varint_bytes()).
 | |
|  */
 | |
| int varint_bytes(uint64_t v)
 | |
| {
 | |
| 	int len = 1;
 | |
| 
 | |
| 	if (v >= 240) {
 | |
| 		v = (v - 240) >> 4;
 | |
| 		while (1) {
 | |
| 			len++;
 | |
| 			if (v < 128)
 | |
| 				break;
 | |
| 			v = (v - 128) >> 7;
 | |
| 		}
 | |
| 	}
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Random number generator state, see below */
 | |
| static uint64_t ha_random_state[2] ALIGNED(2*sizeof(uint64_t));
 | |
| 
 | |
| /* This is a thread-safe implementation of xoroshiro128** described below:
 | |
|  *     http://prng.di.unimi.it/
 | |
|  * It features a 2^128 long sequence, returns 64 high-quality bits on each call,
 | |
|  * supports fast jumps and passes all common quality tests. It is thread-safe,
 | |
|  * uses a double-cas on 64-bit architectures supporting it, and falls back to a
 | |
|  * local lock on other ones.
 | |
|  */
 | |
| uint64_t ha_random64()
 | |
| {
 | |
| 	uint64_t old[2] ALIGNED(2*sizeof(uint64_t));
 | |
| 	uint64_t new[2] ALIGNED(2*sizeof(uint64_t));
 | |
| 
 | |
| #if defined(USE_THREAD) && (!defined(HA_CAS_IS_8B) || !defined(HA_HAVE_CAS_DW))
 | |
| 	static HA_SPINLOCK_T rand_lock;
 | |
| 
 | |
| 	HA_SPIN_LOCK(OTHER_LOCK, &rand_lock);
 | |
| #endif
 | |
| 
 | |
| 	old[0] = ha_random_state[0];
 | |
| 	old[1] = ha_random_state[1];
 | |
| 
 | |
| #if defined(USE_THREAD) && defined(HA_CAS_IS_8B) && defined(HA_HAVE_CAS_DW)
 | |
| 	do {
 | |
| #endif
 | |
| 		new[1] = old[0] ^ old[1];
 | |
| 		new[0] = rotl64(old[0], 24) ^ new[1] ^ (new[1] << 16); // a, b
 | |
| 		new[1] = rotl64(new[1], 37); // c
 | |
| 
 | |
| #if defined(USE_THREAD) && defined(HA_CAS_IS_8B) && defined(HA_HAVE_CAS_DW)
 | |
| 	} while (unlikely(!_HA_ATOMIC_DWCAS(ha_random_state, old, new)));
 | |
| #else
 | |
| 	ha_random_state[0] = new[0];
 | |
| 	ha_random_state[1] = new[1];
 | |
| #if defined(USE_THREAD)
 | |
| 	HA_SPIN_UNLOCK(OTHER_LOCK, &rand_lock);
 | |
| #endif
 | |
| #endif
 | |
| 	return rotl64(old[0] * 5, 7) * 9;
 | |
| }
 | |
| 
 | |
| /* seeds the random state using up to <len> bytes from <seed>, starting with
 | |
|  * the first non-zero byte.
 | |
|  */
 | |
| void ha_random_seed(const unsigned char *seed, size_t len)
 | |
| {
 | |
| 	size_t pos;
 | |
| 
 | |
| 	/* the seed must not be all zeroes, so we pre-fill it with alternating
 | |
| 	 * bits and overwrite part of them with the block starting at the first
 | |
| 	 * non-zero byte from the seed.
 | |
| 	 */
 | |
| 	memset(ha_random_state, 0x55, sizeof(ha_random_state));
 | |
| 
 | |
| 	for (pos = 0; pos < len; pos++)
 | |
| 		if (seed[pos] != 0)
 | |
| 			break;
 | |
| 
 | |
| 	if (pos == len)
 | |
| 		return;
 | |
| 
 | |
| 	seed += pos;
 | |
| 	len -= pos;
 | |
| 
 | |
| 	if (len > sizeof(ha_random_state))
 | |
| 		len = sizeof(ha_random_state);
 | |
| 
 | |
| 	memcpy(ha_random_state, seed, len);
 | |
| }
 | |
| 
 | |
| /* This causes a jump to (dist * 2^96) places in the pseudo-random sequence,
 | |
|  * and is equivalent to calling ha_random64() as many times. It is used to
 | |
|  * provide non-overlapping sequences of 2^96 numbers (~7*10^28) to up to 2^32
 | |
|  * different generators (i.e. different processes after a fork). The <dist>
 | |
|  * argument is the distance to jump to and is used in a loop so it rather not
 | |
|  * be too large if the processing time is a concern.
 | |
|  *
 | |
|  * BEWARE: this function is NOT thread-safe and must not be called during
 | |
|  * concurrent accesses to ha_random64().
 | |
|  */
 | |
| void ha_random_jump96(uint32_t dist)
 | |
| {
 | |
| 	while (dist--) {
 | |
| 		uint64_t s0 = 0;
 | |
| 		uint64_t s1 = 0;
 | |
| 		int b;
 | |
| 
 | |
| 		for (b = 0; b < 64; b++) {
 | |
| 			if ((0xd2a98b26625eee7bULL >> b) & 1) {
 | |
| 				s0 ^= ha_random_state[0];
 | |
| 				s1 ^= ha_random_state[1];
 | |
| 			}
 | |
| 			ha_random64();
 | |
| 		}
 | |
| 
 | |
| 		for (b = 0; b < 64; b++) {
 | |
| 			if ((0xdddf9b1090aa7ac1ULL >> b) & 1) {
 | |
| 				s0 ^= ha_random_state[0];
 | |
| 				s1 ^= ha_random_state[1];
 | |
| 			}
 | |
| 			ha_random64();
 | |
| 		}
 | |
| 		ha_random_state[0] = s0;
 | |
| 		ha_random_state[1] = s1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Generates an RFC 9562 version 4 UUID into chunk
 | |
|  * <output> which must be at least 37 bytes large.
 | |
|  */
 | |
| void ha_generate_uuid_v4(struct buffer *output)
 | |
| {
 | |
| 	uint32_t rnd[4];
 | |
| 	uint64_t last;
 | |
| 
 | |
| 	last = ha_random64();
 | |
| 	rnd[0] = last;
 | |
| 	rnd[1] = last >> 32;
 | |
| 
 | |
| 	last = ha_random64();
 | |
| 	rnd[2] = last;
 | |
| 	rnd[3] = last >> 32;
 | |
| 
 | |
| 	chunk_printf(output, "%8.8x-%4.4x-%4.4x-%4.4x-%12.12llx",
 | |
| 	             rnd[0],
 | |
| 	             rnd[1] & 0xFFFF,
 | |
| 	             ((rnd[1] >> 16u) & 0xFFF) | 0x4000,  // highest 4 bits indicate the uuid version
 | |
| 	             (rnd[2] & 0x3FFF) | 0x8000,  // the highest 2 bits indicate the UUID variant (10),
 | |
| 	             (long long)((rnd[2] >> 14u) | ((uint64_t) rnd[3] << 18u)) & 0xFFFFFFFFFFFFull);
 | |
| }
 | |
| 
 | |
| /* Generates an RFC 9562 version 7 UUID into chunk
 | |
|  * <output> which must be at least 37 bytes large.
 | |
|  */
 | |
| void ha_generate_uuid_v7(struct buffer *output)
 | |
| {
 | |
| 	uint32_t rnd[3];
 | |
| 	uint64_t last;
 | |
| 	uint64_t time;
 | |
| 
 | |
| 	time = (date.tv_sec * 1000) + (date.tv_usec / 1000);
 | |
| 	last = ha_random64();
 | |
| 	rnd[0] = last;
 | |
| 	rnd[1] = last >> 32;
 | |
| 
 | |
| 	last = ha_random64();
 | |
| 	rnd[2] = last;
 | |
| 
 | |
| 	chunk_printf(output, "%8.8x-%4.4x-%4.4x-%4.4x-%12.12llx",
 | |
| 	             (uint)(time >> 16u),
 | |
| 	             (uint)(time & 0xFFFF),
 | |
| 	             ((rnd[0] >> 16u) & 0xFFF) | 0x7000,  // highest 4 bits indicate the uuid version
 | |
| 	             (rnd[1] & 0x3FFF) | 0x8000,  // the highest 2 bits indicate the UUID variant (10),
 | |
| 	             (long long)((rnd[1] >> 14u) | ((uint64_t) rnd[2] << 18u)) & 0xFFFFFFFFFFFFull);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* See is_path_mode(). This version is for internal use and uses a va_list. */
 | |
| static int _is_path_mode(mode_t mode, const char *path_fmt, va_list args)
 | |
| {
 | |
| 	struct stat file_stat;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	chunk_reset(&trash);
 | |
| 
 | |
| 	ret = vsnprintf(trash.area, trash.size, path_fmt, args);
 | |
| 	if (ret >= trash.size)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (stat(trash.area, &file_stat) != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return (file_stat.st_mode & S_IFMT) == mode;
 | |
| }
 | |
| 
 | |
| /* Use <path_fmt> and following arguments as a printf format to build up the
 | |
|  * name of a file, which will be checked for existence and for mode matching
 | |
|  * <mode> among S_IF*. On success, non-zero is returned. On failure, zero is
 | |
|  * returned. The trash is destroyed.
 | |
|  */
 | |
| int is_path_mode(mode_t mode, const char *path_fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	int ret;
 | |
| 
 | |
| 	va_start(args, path_fmt);
 | |
| 	ret = _is_path_mode(mode, path_fmt, args);
 | |
| 	va_end(args);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Use <path_fmt> and following arguments as a printf format to build up the
 | |
|  * name of a file, which will be checked for existence. On success, non-zero
 | |
|  * is returned. On failure, zero is returned. The trash is destroyed.
 | |
|  */
 | |
| int is_file_present(const char *path_fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	int ret;
 | |
| 
 | |
| 	va_start(args, path_fmt);
 | |
| 	ret = _is_path_mode(S_IFREG, path_fmt, args);
 | |
| 	va_end(args);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Use <path_fmt> and following arguments as a printf format to build up the
 | |
|  * name of a directory, which will be checked for existence. On success, non-zero
 | |
|  * is returned. On failure, zero is returned. The trash is destroyed.
 | |
|  */
 | |
| int is_dir_present(const char *path_fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	int ret;
 | |
| 
 | |
| 	va_start(args, path_fmt);
 | |
| 	ret = _is_path_mode(S_IFDIR, path_fmt, args);
 | |
| 	va_end(args);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* only used by parse_line() below. It supports writing in place provided that
 | |
|  * <in> is updated to the next location before calling it. In that case, the
 | |
|  * char at <in> may be overwritten.
 | |
|  */
 | |
| #define EMIT_CHAR(x)						       \
 | |
| 	do {							       \
 | |
| 		char __c = (char)(x);				       \
 | |
| 		if ((opts & PARSE_OPT_INPLACE) && out+outpos > in)     \
 | |
| 			err |= PARSE_ERR_OVERLAP;		       \
 | |
| 		if (outpos >= outmax)				       \
 | |
| 			err |= PARSE_ERR_TOOLARGE;		       \
 | |
| 		if (!err)					       \
 | |
| 			out[outpos] = __c;			       \
 | |
| 		outpos++;					       \
 | |
| 	} while (0)
 | |
| 
 | |
| /* Parse <in>, copy it into <out> split into isolated words whose pointers
 | |
|  * are put in <args>. If more than <outlen> bytes have to be emitted, the
 | |
|  * extraneous ones are not emitted but <outlen> is updated so that the caller
 | |
|  * knows how much to realloc. Similarly, <args> are not updated beyond <nbargs>
 | |
|  * but the returned <nbargs> indicates how many were found. All trailing args
 | |
|  * up to <nbargs> point to the trailing zero, and as long as <nbargs> is > 0,
 | |
|  * it is guaranteed that at least one arg will point to the zero. It is safe
 | |
|  * to call it with a NULL <args> if <nbargs> is 0.
 | |
|  *
 | |
|  * <out> may overlap with <in> provided that it never goes further, in which
 | |
|  * case the parser will accept to perform in-place parsing and unquoting/
 | |
|  * unescaping but only if environment variables do not lead to expansion that
 | |
|  * causes overlapping, otherwise the input string being destroyed, the error
 | |
|  * will not be recoverable. Note that even during out-of-place <in> will
 | |
|  * experience temporary modifications in-place for variable resolution and must
 | |
|  * be writable, and will also receive zeroes to delimit words when using
 | |
|  * in-place copy. Parsing options <opts> taken from PARSE_OPT_*. Return value
 | |
|  * is zero on success otherwise a bitwise-or of PARSE_ERR_*. Upon error, the
 | |
|  * starting point of the first invalid character sequence or unmatched
 | |
|  * quote/brace is reported in <errptr> if not NULL. When using in-place parsing
 | |
|  * error reporting might be difficult since zeroes will have been inserted into
 | |
|  * the string. One solution for the caller may consist in replacing all args
 | |
|  * delimiters with spaces in this case. As a convenience, the pointer to the
 | |
|  * first empty arg may be reported in errptr if that one was not assigned an
 | |
|  * error.
 | |
|  */
 | |
| uint32_t parse_line(char *in, char *out, size_t *outlen, char **args, int *nbargs, uint32_t opts, const char **errptr)
 | |
| {
 | |
| 	char *quote = NULL;
 | |
| 	char *brace = NULL;
 | |
| 	char *word_expand = NULL;
 | |
| 	unsigned char hex1, hex2;
 | |
| 	size_t outmax = *outlen;
 | |
| 	int argsmax = *nbargs - 1;
 | |
| 	size_t outpos = 0;
 | |
| 	size_t arg_start = 0; // copy of outpos before EMIT_CHAR().
 | |
| 	const char *curr_in = in; // <in> at the beginning of the loop
 | |
| 	const char *begin_new_arg = NULL; // <in> at transition to new arg
 | |
| 	const char *empty_arg_ptr = NULL; // pos of first empty arg if any (wrt in)
 | |
| 	int squote = 0;
 | |
| 	int dquote = 0;
 | |
| 	int arg = 0;
 | |
| 	uint32_t err = 0;
 | |
| 	int in_arg = 0;
 | |
| 	int prev_in_arg = 0;
 | |
| 
 | |
| 	*nbargs = 0;
 | |
| 	*outlen = 0;
 | |
| 
 | |
| 	/* argsmax may be -1 here, protecting args[] from any write */
 | |
| 	if (arg < argsmax)
 | |
| 		args[arg] = out;
 | |
| 
 | |
| 	while (1) {
 | |
| 		prev_in_arg = in_arg;
 | |
| 		arg_start = outpos;
 | |
| 		curr_in = in;
 | |
| 
 | |
| 		if (*in >= '-' && *in != '\\') {
 | |
| 			in_arg = 1;
 | |
| 			/* speedup: directly send all regular chars starting
 | |
| 			 * with '-', '.', '/', alnum etc...
 | |
| 			 */
 | |
| 			EMIT_CHAR(*in++);
 | |
| 		}
 | |
| 		else if (*in == '\0' || *in == '\n' || *in == '\r') {
 | |
| 			/* end of line */
 | |
| 			break;
 | |
| 		}
 | |
| 		else if (*in == '#' && (opts & PARSE_OPT_SHARP) && !squote && !dquote) {
 | |
| 			/* comment */
 | |
| 			break;
 | |
| 		}
 | |
| 		else if (*in == '"' && !squote && (opts & PARSE_OPT_DQUOTE)) {  /* double quote outside single quotes */
 | |
| 			in_arg = 1;
 | |
| 			if (dquote) {
 | |
| 				dquote = 0;
 | |
| 				quote = NULL;
 | |
| 			}
 | |
| 			else {
 | |
| 				dquote = 1;
 | |
| 				quote = in;
 | |
| 			}
 | |
| 			in++;
 | |
| 		}
 | |
| 		else if (*in == '\'' && !dquote && (opts & PARSE_OPT_SQUOTE)) { /* single quote outside double quotes */
 | |
| 			in_arg = 1;
 | |
| 			if (squote) {
 | |
| 				squote = 0;
 | |
| 				quote = NULL;
 | |
| 			}
 | |
| 			else {
 | |
| 				squote = 1;
 | |
| 				quote = in;
 | |
| 			}
 | |
| 			in++;
 | |
| 		}
 | |
| 		else if (*in == '\\' && !squote && (opts & PARSE_OPT_BKSLASH)) {
 | |
| 			/* first, we'll replace \\, \<space>, \#, \r, \n, \t, \xXX with their
 | |
| 			 * C equivalent value but only when they have a special meaning and within
 | |
| 			 * double quotes for some of them. Other combinations left unchanged (eg: \1).
 | |
| 			 */
 | |
| 			char tosend = *in;
 | |
| 
 | |
| 			in_arg = 1;
 | |
| 			switch (in[1]) {
 | |
| 			case ' ':
 | |
| 			case '\\':
 | |
| 				tosend = in[1];
 | |
| 				in++;
 | |
| 				break;
 | |
| 
 | |
| 			case 't':
 | |
| 				tosend = '\t';
 | |
| 				in++;
 | |
| 				break;
 | |
| 
 | |
| 			case 'n':
 | |
| 				tosend = '\n';
 | |
| 				in++;
 | |
| 				break;
 | |
| 
 | |
| 			case 'r':
 | |
| 				tosend = '\r';
 | |
| 				in++;
 | |
| 				break;
 | |
| 
 | |
| 			case '#':
 | |
| 				/* escaping of "#" only if comments are supported */
 | |
| 				if (opts & PARSE_OPT_SHARP)
 | |
| 					in++;
 | |
| 				tosend = *in;
 | |
| 				break;
 | |
| 
 | |
| 			case '\'':
 | |
| 				/* escaping of "'" only outside single quotes and only if single quotes are supported */
 | |
| 				if (opts & PARSE_OPT_SQUOTE && !squote)
 | |
| 					in++;
 | |
| 				tosend = *in;
 | |
| 				break;
 | |
| 
 | |
| 			case '"':
 | |
| 				/* escaping of '"' only outside single quotes and only if double quotes are supported */
 | |
| 				if (opts & PARSE_OPT_DQUOTE && !squote)
 | |
| 					in++;
 | |
| 				tosend = *in;
 | |
| 				break;
 | |
| 
 | |
| 			case '$':
 | |
| 				/* escaping of '$' only inside double quotes and only if env supported */
 | |
| 				if (opts & PARSE_OPT_ENV && dquote)
 | |
| 					in++;
 | |
| 				tosend = *in;
 | |
| 				break;
 | |
| 
 | |
| 			case 'x':
 | |
| 				if (!ishex(in[2]) || !ishex(in[3])) {
 | |
| 					/* invalid or incomplete hex sequence */
 | |
| 					err |= PARSE_ERR_HEX;
 | |
| 					if (errptr)
 | |
| 						*errptr = in;
 | |
| 					goto leave;
 | |
| 				}
 | |
| 				hex1 = toupper((unsigned char)in[2]) - '0';
 | |
| 				hex2 = toupper((unsigned char)in[3]) - '0';
 | |
| 				if (hex1 > 9) hex1 -= 'A' - '9' - 1;
 | |
| 				if (hex2 > 9) hex2 -= 'A' - '9' - 1;
 | |
| 				tosend = (hex1 << 4) + hex2;
 | |
| 				in += 3;
 | |
| 				break;
 | |
| 
 | |
| 			default:
 | |
| 				/* other combinations are not escape sequences */
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			in++;
 | |
| 			EMIT_CHAR(tosend);
 | |
| 		}
 | |
| 		else if (isspace((unsigned char)*in) && !squote && !dquote) {
 | |
| 			/* a non-escaped space is an argument separator */
 | |
| 			in_arg = 0;
 | |
| 			while (isspace((unsigned char)*in))
 | |
| 				in++;
 | |
| 		}
 | |
| 		else if (*in == '$' && (opts & PARSE_OPT_ENV) && (dquote || !(opts & PARSE_OPT_DQUOTE))) {
 | |
| 			/* environment variables are evaluated anywhere, or only
 | |
| 			 * inside double quotes if they are supported.
 | |
| 			 */
 | |
| 			char *var_name;
 | |
| 			char save_char;
 | |
| 			const char *value;
 | |
| 
 | |
| 			in++;
 | |
| 
 | |
| 			if (*in == '{')
 | |
| 				brace = in++;
 | |
| 
 | |
| 			if (!isalpha((unsigned char)*in) && *in != '_' && *in != '.') {
 | |
| 				/* unacceptable character in variable name */
 | |
| 				err |= PARSE_ERR_VARNAME;
 | |
| 				if (errptr)
 | |
| 					*errptr = in;
 | |
| 				goto leave;
 | |
| 			}
 | |
| 
 | |
| 			var_name = in;
 | |
| 			if (*in == '.')
 | |
| 				in++;
 | |
| 			while (isalnum((unsigned char)*in) || *in == '_')
 | |
| 				in++;
 | |
| 
 | |
| 			save_char = *in;
 | |
| 			*in = '\0';
 | |
| 			if (unlikely(*var_name == '.')) {
 | |
| 				/* internal pseudo-variables */
 | |
| 				if (strcmp(var_name, ".LINE") == 0)
 | |
| 					value = ultoa(global.cfg_curr_line);
 | |
| 				else if (strcmp(var_name, ".FILE") == 0)
 | |
| 					value = global.cfg_curr_file;
 | |
| 				else if (strcmp(var_name, ".SECTION") == 0)
 | |
| 					value = global.cfg_curr_section;
 | |
| 				else {
 | |
| 					/* unsupported internal variable name */
 | |
| 					err |= PARSE_ERR_VARNAME;
 | |
| 					if (errptr)
 | |
| 						*errptr = var_name;
 | |
| 					goto leave;
 | |
| 				}
 | |
| 			} else {
 | |
| 				value = getenv(var_name);
 | |
| 			}
 | |
| 			*in = save_char;
 | |
| 
 | |
| 			/* support for '[*]' sequence to force word expansion,
 | |
| 			 * only available inside braces */
 | |
| 			if (*in == '[' && brace && (opts & PARSE_OPT_WORD_EXPAND)) {
 | |
| 				word_expand = in++;
 | |
| 
 | |
| 				if (*in++ != '*' || *in++ != ']') {
 | |
| 					err |= PARSE_ERR_WRONG_EXPAND;
 | |
| 					if (errptr)
 | |
| 						*errptr = word_expand;
 | |
| 					goto leave;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (brace) {
 | |
| 				if (*in == '-') {
 | |
| 					/* default value starts just after the '-' */
 | |
| 					if (!value)
 | |
| 						value = in + 1;
 | |
| 
 | |
| 					while (*in && *in != '}')
 | |
| 						in++;
 | |
| 					if (!*in)
 | |
| 						goto no_brace;
 | |
| 					*in = 0; // terminate the default value
 | |
| 				}
 | |
| 				else if (*in != '}') {
 | |
| 				no_brace:
 | |
| 					/* unmatched brace */
 | |
| 					err |= PARSE_ERR_BRACE;
 | |
| 					if (errptr)
 | |
| 						*errptr = brace;
 | |
| 					goto leave;
 | |
| 				}
 | |
| 
 | |
| 				/* brace found, skip it */
 | |
| 				in++;
 | |
| 				brace = NULL;
 | |
| 			}
 | |
| 
 | |
| 			if (value) {
 | |
| 				while (*value) {
 | |
| 					/* expand as individual parameters on a space character */
 | |
| 					if (word_expand && isspace((unsigned char)*value)) {
 | |
| 						in_arg = 0;
 | |
| 
 | |
| 						/* skip consecutive spaces */
 | |
| 						while (isspace((unsigned char)*++value))
 | |
| 							;
 | |
| 					} else {
 | |
| 						in_arg = 1;
 | |
| 						EMIT_CHAR(*value++);
 | |
| 					}
 | |
| 					if (!prev_in_arg && in_arg) {
 | |
| 						begin_new_arg = curr_in;
 | |
| 						if (arg < argsmax)
 | |
| 							args[arg] = out + arg_start;
 | |
| 						else
 | |
| 							err |= PARSE_ERR_TOOMANY;
 | |
| 					}
 | |
| 					if (prev_in_arg && !in_arg) {
 | |
| 						if (!empty_arg_ptr && args[arg] == out + arg_start)
 | |
| 							empty_arg_ptr = begin_new_arg;
 | |
| 						EMIT_CHAR(0);
 | |
| 						arg++;
 | |
| 					}
 | |
| 					prev_in_arg = in_arg;
 | |
| 					arg_start = outpos;
 | |
| 				}
 | |
| 			}
 | |
| 			else {
 | |
| 				/* An unmatched environment variable was parsed.
 | |
| 				 * Let's skip the trailing double-quote character
 | |
| 				 * and spaces.
 | |
| 				 */
 | |
| 				in_arg = 1;
 | |
| 				if (likely(*var_name != '.') && *in == '"') {
 | |
| 					in++;
 | |
| 					while (isspace((unsigned char)*in))
 | |
| 						in++;
 | |
| 					if (dquote) {
 | |
| 						dquote = 0;
 | |
| 						quote = NULL;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			word_expand = NULL;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* any other regular char */
 | |
| 			in_arg = 1;
 | |
| 			EMIT_CHAR(*in++);
 | |
| 		}
 | |
| 
 | |
| 		if (!prev_in_arg && in_arg) {
 | |
| 			begin_new_arg = curr_in;
 | |
| 			if (arg < argsmax)
 | |
| 				args[arg] = out + arg_start;
 | |
| 			else
 | |
| 				err |= PARSE_ERR_TOOMANY;
 | |
| 		}
 | |
| 
 | |
| 		if (prev_in_arg && !in_arg) {
 | |
| 			if (!empty_arg_ptr && args[arg] == out + arg_start)
 | |
| 				empty_arg_ptr = begin_new_arg;
 | |
| 			EMIT_CHAR(0);
 | |
| 			arg++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* end of output string */
 | |
| 	if (in_arg) {
 | |
| 		if (!empty_arg_ptr && args[arg] == out + arg_start)
 | |
| 			empty_arg_ptr = begin_new_arg;
 | |
| 		EMIT_CHAR(0);
 | |
| 		arg++;
 | |
| 	}
 | |
| 
 | |
| 	if (quote) {
 | |
| 		/* unmatched quote */
 | |
| 		err |= PARSE_ERR_QUOTE;
 | |
| 		if (errptr)
 | |
| 			*errptr = quote;
 | |
| 		goto leave;
 | |
| 	}
 | |
|  leave:
 | |
| 	/* make sure empty lines are terminated */
 | |
| 	if (!arg)
 | |
| 		EMIT_CHAR(0);
 | |
| 
 | |
| 	*nbargs = arg;
 | |
| 	*outlen = outpos;
 | |
| 
 | |
| 	/* empty all trailing args by making them point to the trailing zero,
 | |
| 	 * at least the last one in any case.
 | |
| 	 */
 | |
| 	if (arg > argsmax)
 | |
| 		arg = argsmax;
 | |
| 
 | |
| 	while (arg >= 0 && arg <= argsmax)
 | |
| 		args[arg++] = out + outpos - 1;
 | |
| 
 | |
| 	/* if no error but an empty arg, report its pointer in errptr for convenience */
 | |
| 	if (empty_arg_ptr && errptr && !err)
 | |
| 		*errptr = empty_arg_ptr;
 | |
| 	return err;
 | |
| }
 | |
| #undef EMIT_CHAR
 | |
| 
 | |
| /* Use <path_fmt> and following arguments as a printf format to build up the
 | |
|  * name of a file, whose first line will be read into the trash buffer. The
 | |
|  * trailing CR and LF if any are stripped. On success, it sets trash.data to
 | |
|  * the number of resulting bytes in the trash and returns this value. Otherwise
 | |
|  * on failure it returns -1 if it could not build the path, -2 on file access
 | |
|  * access error (e.g. permissions), or -3 on file read error. The trash is
 | |
|  * always reset before proceeding. Too large lines are truncated to the size
 | |
|  * of the trash.
 | |
|  */
 | |
| ssize_t read_line_to_trash(const char *path_fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	FILE *file;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	chunk_reset(&trash);
 | |
| 
 | |
| 	va_start(args, path_fmt);
 | |
| 	ret = vsnprintf(trash.area, trash.size, path_fmt, args);
 | |
| 	va_end(args);
 | |
| 
 | |
| 	if (ret >= trash.size)
 | |
| 		return -1;
 | |
| 
 | |
| 	file = fopen(trash.area, "r");
 | |
| 	if (!file)
 | |
| 		return -2;
 | |
| 
 | |
| 	ret = -3;
 | |
| 	chunk_reset(&trash);
 | |
| 	if (fgets(trash.area, trash.size, file)) {
 | |
| 		trash.data = strlen(trash.area);
 | |
| 		while (trash.data &&
 | |
| 		       (trash.area[trash.data - 1] == '\r' ||
 | |
| 			trash.area[trash.data - 1] == '\n'))
 | |
| 			trash.data--;
 | |
| 		trash.area[trash.data] = 0;
 | |
| 		ret = trash.data; // success
 | |
| 	}
 | |
| 
 | |
| 	fclose(file);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* This is used to sanitize an input line that's about to be used for error reporting.
 | |
|  * It will adjust <line> to print approximately <width> chars around <pos>, trying to
 | |
|  * preserve the beginning, with leading or trailing "..." when the line is truncated.
 | |
|  * If non-printable chars are present in the output. It returns the new offset <pos>
 | |
|  * in the modified line. Non-printable characters are replaced with '?'. <width> must
 | |
|  * be at least 6 to support two "..." otherwise the result is undefined. The line
 | |
|  * itself must have at least 7 chars allocated for the same reason.
 | |
|  */
 | |
| size_t sanitize_for_printing(char *line, size_t pos, size_t width)
 | |
| {
 | |
| 	size_t shift = 0;
 | |
| 	char *out = line;
 | |
| 	char *in = line;
 | |
| 	char *end = line + width;
 | |
| 
 | |
| 	if (pos >= width) {
 | |
| 		/* if we have to shift, we'll be out of context, so let's
 | |
| 		 * try to put <pos> at the center of width.
 | |
| 		 */
 | |
| 		shift = pos - width / 2;
 | |
| 		in += shift + 3;
 | |
| 		end = out + width - 3;
 | |
| 		out[0] = out[1] = out[2] = '.';
 | |
| 		out += 3;
 | |
| 	}
 | |
| 
 | |
| 	while (out < end && *in) {
 | |
| 		if (isspace((unsigned char)*in))
 | |
| 			*out++ = ' ';
 | |
| 		else if (isprint((unsigned char)*in))
 | |
| 			*out++ = *in;
 | |
| 		else
 | |
| 			*out++ = '?';
 | |
| 		in++;
 | |
| 	}
 | |
| 
 | |
| 	if (end < line + width) {
 | |
| 		out[0] = out[1] = out[2] = '.';
 | |
| 		out += 3;
 | |
| 	}
 | |
| 
 | |
| 	*out++ = 0;
 | |
| 	return pos - shift;
 | |
| }
 | |
| 
 | |
| /* Update array <fp> with the fingerprint of word <word> by counting the
 | |
|  * transitions between characters. <fp> is a 1024-entries array indexed as
 | |
|  * 32*from+to. Positions for 'from' and 'to' are:
 | |
|  *   1..26=letter, 27=digit, 28=other/begin/end.
 | |
|  * Row "from=0" is used to mark the character's presence. Others unused.
 | |
|  */
 | |
| void update_word_fingerprint(uint8_t *fp, const char *word)
 | |
| {
 | |
| 	const char *p;
 | |
| 	int from, to;
 | |
| 	int c;
 | |
| 
 | |
| 	from = 28; // begin
 | |
| 	for (p = word; *p; p++) {
 | |
| 		c = tolower((unsigned char)*p);
 | |
| 		switch(c) {
 | |
| 		case 'a'...'z': to = c - 'a' + 1; break;
 | |
| 		case 'A'...'Z': to = tolower((unsigned char )c) - 'a' + 1; break;
 | |
| 		case '0'...'9': to = 27; break;
 | |
| 		default:        to = 28; break;
 | |
| 		}
 | |
| 		fp[to] = 1;
 | |
| 		fp[32 * from + to]++;
 | |
| 		from = to;
 | |
| 	}
 | |
| 	to = 28; // end
 | |
| 	fp[32 * from + to]++;
 | |
| }
 | |
| 
 | |
| /* This function hashes a word, scramble is the anonymizing key, returns
 | |
|  * the hashed word when the key (scramble) != 0, else returns the word.
 | |
|  * This function can be called NB_L_HASH_WORD times in a row, don't call
 | |
|  * it if you called it more than NB_L_HASH_WORD.
 | |
|  */
 | |
| const char *hash_anon(uint32_t scramble, const char *string2hash, const char *prefix, const char *suffix)
 | |
| {
 | |
| 	index_hash++;
 | |
| 	if (index_hash == NB_L_HASH_WORD)
 | |
| 		index_hash = 0;
 | |
| 
 | |
| 	/* don't hash empty strings */
 | |
| 	if (!string2hash[0] || (string2hash[0] == ' ' && string2hash[1] == 0))
 | |
| 		return string2hash;
 | |
| 
 | |
| 	if (scramble != 0) {
 | |
| 		snprintf(hash_word[index_hash], sizeof(hash_word[index_hash]), "%s%06x%s",
 | |
| 			 prefix, HA_ANON(scramble, string2hash, strlen(string2hash)), suffix);
 | |
| 		return hash_word[index_hash];
 | |
| 	}
 | |
| 	else
 | |
| 		return string2hash;
 | |
| }
 | |
| 
 | |
| /* This function hashes or not an ip address ipstring, scramble is the anonymizing
 | |
|  * key, returns the hashed ip with his port or ipstring when there is nothing to hash.
 | |
|  * Put hasport equal 0 to point out ipstring has no port, else put an other int.
 | |
|  * Without port, return a simple hash or ipstring.
 | |
|  */
 | |
| const char *hash_ipanon(uint32_t scramble, char *ipstring, int hasport)
 | |
| {
 | |
| 	char *errmsg = NULL;
 | |
| 	struct sockaddr_storage *sa;
 | |
| 	struct sockaddr_storage ss;
 | |
| 	char addr[46];
 | |
| 	int port;
 | |
| 
 | |
| 	index_hash++;
 | |
|         if (index_hash == NB_L_HASH_WORD) {
 | |
|                 index_hash = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (scramble == 0) {
 | |
| 		return ipstring;
 | |
| 	}
 | |
| 	if (strcmp(ipstring, "localhost") == 0 ||
 | |
| 	    strcmp(ipstring, "stdout") == 0 ||
 | |
| 	    strcmp(ipstring, "stderr") == 0 ||
 | |
| 	    strncmp(ipstring, "fd@", 3) == 0 ||
 | |
| 	    strncmp(ipstring, "sockpair@", 9) == 0) {
 | |
| 		return ipstring;
 | |
| 	}
 | |
| 	else {
 | |
| 		if (hasport == 0) {
 | |
| 			memset(&ss, 0, sizeof(ss));
 | |
| 			if (str2ip2(ipstring, &ss, 1) == NULL) {
 | |
| 				return HA_ANON_STR(scramble, ipstring);
 | |
| 			}
 | |
| 			sa = &ss;
 | |
| 		}
 | |
| 		else {
 | |
| 			sa = str2sa_range(ipstring, NULL, NULL, NULL, NULL, NULL, NULL, &errmsg, NULL, NULL, NULL,
 | |
| 					  PA_O_PORT_OK | PA_O_STREAM | PA_O_DGRAM | PA_O_XPRT | PA_O_CONNECT |
 | |
| 					  PA_O_PORT_RANGE | PA_O_PORT_OFS | PA_O_RESOLVE);
 | |
| 			if (sa == NULL) {
 | |
| 				return HA_ANON_STR(scramble, ipstring);
 | |
| 			}
 | |
| 		}
 | |
| 		addr_to_str(sa, addr, sizeof(addr));
 | |
| 		port = get_host_port(sa);
 | |
| 
 | |
| 		switch(sa->ss_family) {
 | |
| 			case AF_INET:
 | |
| 				if (strncmp(addr, "127", 3) == 0 || strncmp(addr, "255", 3) == 0 || strncmp(addr, "0", 1) == 0) {
 | |
| 					return ipstring;
 | |
| 				}
 | |
| 				else {
 | |
| 					if (port != 0) {
 | |
| 						snprintf(hash_word[index_hash], sizeof(hash_word[index_hash]), "IPV4(%06x):%d", HA_ANON(scramble, addr, strlen(addr)), port);
 | |
| 						return hash_word[index_hash];
 | |
| 					}
 | |
| 					else {
 | |
| 						snprintf(hash_word[index_hash], sizeof(hash_word[index_hash]), "IPV4(%06x)", HA_ANON(scramble, addr, strlen(addr)));
 | |
| 						return hash_word[index_hash];
 | |
| 					}
 | |
| 				}
 | |
| 				break;
 | |
| 
 | |
| 			case AF_INET6:
 | |
| 				if (strcmp(addr, "::1") == 0) {
 | |
| 					return ipstring;
 | |
| 				}
 | |
| 				else {
 | |
| 					if (port != 0) {
 | |
| 						snprintf(hash_word[index_hash], sizeof(hash_word[index_hash]), "IPV6(%06x):%d", HA_ANON(scramble, addr, strlen(addr)), port);
 | |
| 						return hash_word[index_hash];
 | |
| 					}
 | |
| 					else {
 | |
| 						snprintf(hash_word[index_hash], sizeof(hash_word[index_hash]), "IPV6(%06x)", HA_ANON(scramble, addr, strlen(addr)));
 | |
| 						return hash_word[index_hash];
 | |
| 					}
 | |
| 				}
 | |
| 				break;
 | |
| 
 | |
| 			case AF_UNIX:
 | |
| 			case AF_CUST_ABNS:
 | |
| 			case AF_CUST_ABNSZ:
 | |
| 				return HA_ANON_STR(scramble, ipstring);
 | |
| 				break;
 | |
| 
 | |
| 			default:
 | |
| 				return ipstring;
 | |
| 				break;
 | |
| 		};
 | |
| 	}
 | |
| 	return ipstring;
 | |
| }
 | |
| 
 | |
| /* Initialize array <fp> with the fingerprint of word <word> by counting the
 | |
|  * transitions between characters. <fp> is a 1024-entries array indexed as
 | |
|  * 32*from+to. Positions for 'from' and 'to' are:
 | |
|  *   0..25=letter, 26=digit, 27=other, 28=begin, 29=end, others unused.
 | |
|  */
 | |
| void make_word_fingerprint(uint8_t *fp, const char *word)
 | |
| {
 | |
| 	memset(fp, 0, 1024);
 | |
| 	update_word_fingerprint(fp, word);
 | |
| }
 | |
| 
 | |
| /* Return the distance between two word fingerprints created by function
 | |
|  * make_word_fingerprint(). It's a positive integer calculated as the sum of
 | |
|  * the differences between each location.
 | |
|  */
 | |
| int word_fingerprint_distance(const uint8_t *fp1, const uint8_t *fp2)
 | |
| {
 | |
| 	int i, k, dist = 0;
 | |
| 
 | |
| 	for (i = 0; i < 1024; i++) {
 | |
| 		k = (int)fp1[i] - (int)fp2[i];
 | |
| 		dist += abs(k);
 | |
| 	}
 | |
| 	return dist;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function compares the loaded openssl version with a string <version>
 | |
|  * This function use the same return code as compare_current_version:
 | |
|  *
 | |
|  *  -1 : the version in argument is older than the current openssl version
 | |
|  *   0 : the version in argument is the same as the current openssl version
 | |
|  *   1 : the version in argument is newer than the current openssl version
 | |
|  *
 | |
|  * Or some errors:
 | |
|  *  -2 : openssl is not available on this process
 | |
|  *  -3 : the version in argument is not parsable
 | |
|  */
 | |
| int openssl_compare_current_version(const char *version)
 | |
| {
 | |
| #ifdef USE_OPENSSL
 | |
| 	int numversion;
 | |
| 
 | |
| 	numversion = openssl_version_parser(version);
 | |
| 	if (numversion == 0)
 | |
| 		return -3;
 | |
| 
 | |
| 	if (numversion < OPENSSL_VERSION_NUMBER)
 | |
| 		return -1;
 | |
| 	else if (numversion > OPENSSL_VERSION_NUMBER)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| #else
 | |
| 	return -2;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function compares the loaded openssl name with a string <name>
 | |
|  * This function returns 0 if the OpenSSL name starts like the passed parameter,
 | |
|  * 1 otherwise.
 | |
|  */
 | |
| int openssl_compare_current_name(const char *name)
 | |
| {
 | |
| #ifdef USE_OPENSSL
 | |
| 	int name_len = 0;
 | |
| 	const char *openssl_version = OpenSSL_version(OPENSSL_VERSION);
 | |
| 
 | |
| 	if (name) {
 | |
| 		name_len = strlen(name);
 | |
| 		if (strlen(name) <= strlen(openssl_version))
 | |
| 			return strncmp(openssl_version, name, name_len);
 | |
| 	}
 | |
| #endif
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* prctl/PR_SET_VMA wrapper to easily give a name to virtual memory areas,
 | |
|  * knowing their address and size.
 | |
|  *
 | |
|  * It is only intended for use with memory allocated using mmap (private or
 | |
|  * shared anonymous maps) or malloc (provided that <size> is at least one page
 | |
|  * large), which is memory that may be released using munmap(). For memory
 | |
|  * allocated using malloc(), no naming will be attempted if the vma is less
 | |
|  * than one page large, because naming is only relevant for large memory
 | |
|  * blocks. For instance, glibc/malloc() will directly use mmap() once
 | |
|  * MMAP_THRESHOLD is reached (defaults to 128K), and will try to use the
 | |
|  * heap as much as possible below that.
 | |
|  *
 | |
|  * <type> and <name> are mandatory
 | |
|  * <id> is optional, if != ~0, will be used to append an id after the name
 | |
|  * in order to differentiate 2 entries set using the same <type> and <name>
 | |
|  *
 | |
|  * The function does nothing if naming API is not available, and naming errors
 | |
|  * are ignored.
 | |
|  */
 | |
| void vma_set_name_id(void *addr, size_t size, const char *type, const char *name, unsigned int id)
 | |
| {
 | |
| 	long pagesize = sysconf(_SC_PAGESIZE);
 | |
| 	void *aligned_addr;
 | |
| 	__maybe_unused size_t aligned_size;
 | |
| 
 | |
| 	BUG_ON(!type || !name);
 | |
| 
 | |
| 	/* prctl/PR_SET/VMA expects the start of an aligned memory address, but
 | |
| 	 * user may have provided address returned by malloc() which may not be
 | |
| 	 * aligned nor point to the beginning of the map
 | |
| 	 */
 | |
| 	aligned_addr = (void *)((uintptr_t)addr & -4096);
 | |
| 	aligned_size = (((addr +  size) - aligned_addr) + 4095) & -4096;
 | |
| 
 | |
| 	if (aligned_addr != addr) {
 | |
| 		/* provided pointer likely comes from malloc(), at least it
 | |
| 		 * doesn't come from mmap() which only returns aligned addresses
 | |
| 		 */
 | |
| 		if (size < pagesize)
 | |
| 			return;
 | |
| 	}
 | |
| #if defined(USE_PRCTL) && defined(PR_SET_VMA)
 | |
| 	{
 | |
| 		/*
 | |
| 		 * From Linux 5.17 (and if the `CONFIG_ANON_VMA_NAME` kernel config is set)`,
 | |
| 		 * anonymous regions can be named.
 | |
| 		 * We intentionally ignore errors as it should not jeopardize the memory context
 | |
| 		 * mapping whatsoever (e.g. older kernels).
 | |
| 		 *
 | |
| 		 * The naming can take up to 79 characters, accepting valid ASCII values
 | |
| 		 * except [, ], \, $ and '.
 | |
| 		 * As a result, when looking for /proc/<pid>/maps, we can see the anonymous range
 | |
| 		 * as follow :
 | |
| 		 * `7364c4fff000-736508000000 rw-s 00000000 00:01 3540  [anon_shmem:scope:name{-id}]`
 | |
| 		 * (MAP_SHARED)
 | |
| 		 * `7364c4fff000-736508000000 rw-s 00000000 00:01 3540  [anon:scope:name{-id}]`
 | |
| 		 * (MAP_PRIVATE)
 | |
| 		 */
 | |
| 		char fullname[80];
 | |
| 		int rn;
 | |
| 
 | |
| 		if (id != ~0)
 | |
| 			rn = snprintf(fullname, sizeof(fullname), "%s:%s-%u", type, name, id);
 | |
| 		else
 | |
| 			rn = snprintf(fullname, sizeof(fullname), "%s:%s", type, name);
 | |
| 
 | |
| 		if (rn >= 0) {
 | |
| 			/* Give a name to the map by setting PR_SET_VMA_ANON_NAME attribute
 | |
| 			 * using prctl/PR_SET_VMA combination.
 | |
| 			 *
 | |
| 			 * note from 'man prctl':
 | |
| 			 *   assigning an attribute to a virtual memory area might prevent it
 | |
| 			 *   from being merged with adjacent virtual memory areas due to the
 | |
| 			 *   difference in that attribute's value.
 | |
| 			 */
 | |
| 			(void)prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME,
 | |
| 			            aligned_addr, aligned_size, fullname);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* wrapper for vma_set_name_id() but without id */
 | |
| void vma_set_name(void *addr, size_t size, const char *type, const char *name)
 | |
| {
 | |
| 	vma_set_name_id(addr, size, type, name, ~0);
 | |
| }
 | |
| 
 | |
| #if defined(RTLD_DEFAULT) || defined(RTLD_NEXT)
 | |
| /* redefine dlopen() so that we can detect unexpected replacement of some
 | |
|  * critical symbols, typically init/alloc/free functions coming from alternate
 | |
|  * libraries. When called, a tainted flag is set (TAINTED_SHARED_LIBS).
 | |
|  * It's important to understand that the dynamic linker will present the
 | |
|  * first loaded of each symbol to all libs, so that if haproxy is linked
 | |
|  * with a new lib that uses a static inline or a #define to replace an old
 | |
|  * function, and a dependency was linked against an older version of that
 | |
|  * lib that had a function there, that lib would use all of the newer
 | |
|  * versions of the functions that are already loaded in haproxy, except
 | |
|  * for that unique function which would continue to be the old one. This
 | |
|  * creates all sort of problems when init code allocates smaller structs
 | |
|  * than required for example but uses new functions on them, etc. Thus what
 | |
|  * we do here is to try to detect API consistency: we take a fingerprint of
 | |
|  * a number of known functions, and verify that if they change in a loaded
 | |
|  * library, either there all appeared or all disappeared, but not partially.
 | |
|  * We can check up to 64 symbols that belong to individual groups that are
 | |
|  * checked together.
 | |
|  */
 | |
| void *dlopen(const char *filename, int flags)
 | |
| {
 | |
| 	static void *(*_dlopen)(const char *filename, int flags);
 | |
| 	struct {
 | |
| 		const char *name;
 | |
| 		uint64_t bit, grp;
 | |
| 		void *curr, *next;
 | |
| 	} check_syms[] = {
 | |
| 		/* openssl's libcrypto checks: group bits 0x1f */
 | |
| 		{ .name="OPENSSL_init",                  .bit = 0x0000000000000001, .grp = 0x000000000000001f, }, // openssl 1.0 / 1.1 / 3.0
 | |
| 		{ .name="OPENSSL_init_crypto",           .bit = 0x0000000000000002, .grp = 0x000000000000001f, }, // openssl 1.1 / 3.0
 | |
| 		{ .name="ENGINE_init",                   .bit = 0x0000000000000004, .grp = 0x000000000000001f, }, // openssl 1.x / 3.x with engine
 | |
| 		{ .name="EVP_CIPHER_CTX_init",           .bit = 0x0000000000000008, .grp = 0x000000000000001f, }, // openssl 1.0
 | |
| 		{ .name="HMAC_Init",                     .bit = 0x0000000000000010, .grp = 0x000000000000001f, }, // openssl 1.x
 | |
| 
 | |
| 		/* openssl's libssl checks: group bits 0x3e0 */
 | |
| 		{ .name="OPENSSL_init_ssl",              .bit = 0x0000000000000020, .grp = 0x00000000000003e0, }, // openssl 1.1 / 3.0
 | |
| 		{ .name="SSL_library_init",              .bit = 0x0000000000000040, .grp = 0x00000000000003e0, }, // openssl 1.x
 | |
| 		{ .name="SSL_is_quic",                   .bit = 0x0000000000000080, .grp = 0x00000000000003e0, }, // quictls
 | |
| 		{ .name="SSL_CTX_new_ex",                .bit = 0x0000000000000100, .grp = 0x00000000000003e0, }, // openssl 3.x
 | |
| 		{ .name="SSL_CTX_get0_security_ex_data", .bit = 0x0000000000000200, .grp = 0x00000000000003e0, }, // openssl 1.x / 3.x
 | |
| 
 | |
| 		/* insert only above, 0 must be the last one */
 | |
| 		{ 0 },
 | |
| 	};
 | |
| 	const char *trace;
 | |
| 	uint64_t own_fp, lib_fp; // symbols fingerprints
 | |
| 	void *addr;
 | |
| 	void *ret;
 | |
| 	int sym = 0;
 | |
| 
 | |
| 	if (!_dlopen) {
 | |
| 		_dlopen = get_sym_next_addr("dlopen");
 | |
| 		if (!_dlopen || _dlopen == dlopen) {
 | |
| 			_dlopen = NULL;
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* save a few pointers to critical symbols. We keep a copy of both the
 | |
| 	 * current and the next value, because we might already have replaced
 | |
| 	 * some of them in an inconsistent way (i.e. not all), and we're only
 | |
| 	 * interested in verifying that a loaded library doesn't come with a
 | |
| 	 * completely different definition that would be incompatible. We'll
 | |
| 	 * keep a fingerprint of our own symbols.
 | |
| 	 */
 | |
| 	own_fp = 0;
 | |
| 	for (sym = 0; check_syms[sym].name; sym++) {
 | |
| 		check_syms[sym].curr = get_sym_curr_addr(check_syms[sym].name);
 | |
| 		check_syms[sym].next = get_sym_next_addr(check_syms[sym].name);
 | |
| 		if (check_syms[sym].curr || check_syms[sym].next)
 | |
| 			own_fp |= check_syms[sym].bit;
 | |
| 	}
 | |
| 
 | |
| 	/* now open the requested lib */
 | |
| 	ret = _dlopen(filename, flags);
 | |
| 	if (!ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mark_tainted(TAINTED_SHARED_LIBS);
 | |
| 
 | |
| 	/* and check that critical symbols didn't change */
 | |
| 	lib_fp = 0;
 | |
| 	for (sym = 0; check_syms[sym].name; sym++) {
 | |
| 		addr = dlsym(ret, check_syms[sym].name);
 | |
| 		if (addr)
 | |
| 			lib_fp |= check_syms[sym].bit;
 | |
| 	}
 | |
| 
 | |
| 	if (lib_fp != own_fp) {
 | |
| 		/* let's check what changed:  */
 | |
| 		uint64_t mask = 0;
 | |
| 
 | |
| 		for (sym = 0; check_syms[sym].name; sym++) {
 | |
| 			mask = check_syms[sym].grp;
 | |
| 
 | |
| 			/* new group of symbols. If they all appeared together
 | |
| 			 * their use will be consistent. If none appears, it's
 | |
| 			 * just that the lib doesn't use them. If some appear
 | |
| 			 * or disappear, it means the lib relies on a different
 | |
| 			 * dependency and will end up with a mix.
 | |
| 			 */
 | |
| 			if (!(own_fp & mask) || !(lib_fp & mask) ||
 | |
| 			    (own_fp & mask) == (lib_fp & mask))
 | |
| 				continue;
 | |
| 
 | |
| 			/* let's report a symbol that really changes */
 | |
| 			if (!((own_fp ^ lib_fp) & check_syms[sym].bit))
 | |
| 				continue;
 | |
| 
 | |
| 			/* OK it's clear that this symbol was redefined */
 | |
| 			mark_tainted(TAINTED_REDEFINITION);
 | |
| 
 | |
| 			trace = hlua_show_current_location("\n    ");
 | |
| 			ha_warning("dlopen(): shared library '%s' brings a different and inconsistent definition of symbol '%s'. The process cannot be trusted anymore!%s%s\n",
 | |
| 				   filename, check_syms[sym].name,
 | |
| 				   trace ? " Suspected call location: \n    " : "",
 | |
| 				   trace ? trace : "");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int init_tools_per_thread()
 | |
| {
 | |
| 	/* Let's make each thread start from a different position */
 | |
| 	statistical_prng_state += ha_random32();
 | |
| 	if (!statistical_prng_state)
 | |
| 		statistical_prng_state++;
 | |
| 	return 1;
 | |
| }
 | |
| REGISTER_PER_THREAD_INIT(init_tools_per_thread);
 | |
| 
 | |
| /* reads at most one less than <size> from an arbitrary memory buffer and
 | |
|  * imitates the fgets behaviour, i.e. stops at '\n' or at 'EOF' and returns read
 | |
|  * data in the area pointed by <*buf>. <*position> ptr keeps the current
 | |
|  * position, from which we will start/resume reading, <*end> is a ptr to the end
 | |
|  * of the buffer to read, as we suppose don't have the EOF (see more details on
 | |
|  * it in load_cfg_in_mem(), which is now the only one producer of memory buffers
 | |
|  * to read for fgets_from_mem).
 | |
|  */
 | |
| char *fgets_from_mem(char* buf, int size, const char **position, const char *end)
 | |
| {
 | |
| 	char *new_pos;
 | |
| 	int len = 0;
 | |
| 
 | |
| 	/* keep fgets behaviour */
 | |
| 	if (size <= 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* EOF */
 | |
| 	if (*position == end)
 | |
| 		return NULL;
 | |
| 
 | |
| 	size--; /* keep fgets behaviour, reads at most one less than size */
 | |
| 	if (size > end - *position)
 | |
| 		size = end - *position;
 | |
| 
 | |
| 	new_pos = memchr(*position, '\n', size);
 | |
| 	if (new_pos) {
 | |
| 		/* '+1' to grab and copy '\n' at the end of line */
 | |
| 		len = (new_pos + 1) - *position;
 | |
| 	} else {
 | |
| 		/* just copy either the given size, or the rest of the line
 | |
| 		 * until the end
 | |
| 		 */
 | |
| 		len = MIN((end - *position), size);
 | |
| 	}
 | |
| 
 | |
| 	memcpy(buf, *position, len);
 | |
| 	*(buf + len)  = '\0';
 | |
| 	*position += len;
 | |
| 
 | |
| 	return buf;
 | |
| }
 | |
| 
 | |
| /* Does a backup of the process environment variables. Returns 0 on success and
 | |
|  * -1 on failure, which can happen only due to the lack of memory.
 | |
|  */
 | |
| int backup_env(void)
 | |
| {
 | |
| 	char **env = environ;
 | |
| 	char **tmp;
 | |
| 
 | |
| 	/* get size of **environ */
 | |
| 	while (*env++)
 | |
| 		;
 | |
| 
 | |
| 	init_env = malloc((env - environ) * sizeof(*env));
 | |
| 	if (init_env == NULL) {
 | |
| 		ha_alert("Cannot allocate memory to backup env variables.\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	tmp = init_env;
 | |
| 	for (env = environ; *env; env++) {
 | |
| 		*tmp = strdup(*env);
 | |
| 		if (*tmp == NULL) {
 | |
| 			ha_alert("Cannot allocate memory to backup env variable '%s'.\n",
 | |
| 				 *env);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		tmp++;
 | |
| 	}
 | |
| 	/* last entry */
 | |
| 	*tmp = NULL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Unsets all variables presented in **environ. Returns 0 on success and -1 on
 | |
|  * failure, when the process has run out of memory. Emits warnings and continues
 | |
|  * if unsetenv() fails (it fails only with EINVAL) or if the parsed string
 | |
|  * doesn't contain "=" (the latter is mandatory format for strings kept in
 | |
|  * **environ). This allows to terminate the process at the startup stage, if it
 | |
|  * was launched in zero-warning mode and there are some problems with
 | |
|  * environment.
 | |
|  */
 | |
| int clean_env(void)
 | |
| {
 | |
| 	char **env = environ;
 | |
| 	char *name, *pos;
 | |
| 	size_t name_len;
 | |
| 
 | |
| 	while (*env) {
 | |
| 		pos = strchr(*env, '=');
 | |
| 		if (pos)
 | |
| 			name_len = pos - *env;
 | |
| 		else {
 | |
| 			ha_warning("Unsupported env variable format '%s' "
 | |
| 				   "(doesn't contain '='), won't be unset.\n",
 | |
| 				   *env);
 | |
| 			continue;
 | |
| 		}
 | |
| 		name = my_strndup(*env, name_len);
 | |
| 		if (name == NULL) {
 | |
| 			ha_alert("Cannot allocate memory to parse env variable: '%s'.\n",
 | |
| 				 *env);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		if (unsetenv(name) != 0)
 | |
| 			ha_warning("unsetenv() fails for '%s': %s.\n",
 | |
| 				   name, strerror(errno));
 | |
| 		free(name);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Restores **environ from backup created by backup_env(). Must be always
 | |
|  * preceded by clean_env() in order to properly restore the process environment.
 | |
|  * global init_env ptr array must be freed by the upper layers.
 | |
|  * Returns 0 on success and -1 in case if the process has run out of memory. If
 | |
|  * setenv() fails with EINVAL or the parsed string doesn't contain '=' (the
 | |
|  * latter is mandatory format for strings kept in **environ), emits warning and
 | |
|  * continues. This allows to terminate the process at the startup stage, if it
 | |
|  * was launched in zero-warning mode and there are some problems with
 | |
|  * environment.
 | |
|  */
 | |
| int restore_env(void)
 | |
| {
 | |
| 	char **env = init_env;
 | |
| 	char *pos;
 | |
| 	char *value;
 | |
| 
 | |
| 	BUG_ON(!init_env, "Triggered in restore_env(): must be preceded by "
 | |
| 	       "backup_env(), which allocates init_env.");
 | |
| 
 | |
| 	while (*env) {
 | |
| 		pos = strchr(*env, '=');
 | |
| 		if (!pos) {
 | |
| 			ha_warning("Unsupported env variable format '%s' "
 | |
| 				   "(doesn't contain '='), won't be restored.\n",
 | |
| 				   *env);
 | |
| 			env++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* replace '=' with /0 to split on 'NAME' and 'VALUE' tokens */
 | |
| 		*pos = '\0';
 | |
| 		pos++;
 | |
| 		value = pos;
 | |
| 		if (setenv(*env, value, 1) != 0) {
 | |
| 			if (errno == EINVAL)
 | |
| 				ha_warning("setenv() fails for '%s'='%s': %s.\n",
 | |
| 					   *env, value, strerror(errno));
 | |
| 			else {
 | |
| 				ha_alert("Cannot allocate memory to set env variable: '%s'.\n",
 | |
| 					 *env);
 | |
| 				return -1;
 | |
| 			}
 | |
| 		}
 | |
| 		env++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * File Name Lookups. Principle: the file_names struct at the top stores all
 | |
|  * known file names in a tree. Each node is a struct file_name_node. A take()
 | |
|  * call will either locate an existing entry or allocate a new one, and return
 | |
|  * a pointer to the string itself. The returned strings are const so as to
 | |
|  * easily detect unwanted free() calls. Structures using this mechanism only
 | |
|  * need a "const char *" and will never free their entries.
 | |
|  */
 | |
| 
 | |
| /* finds or copies the file name, returns a reference to the char* storage area
 | |
|  * or NULL if name is NULL or upon allocation error.
 | |
|  */
 | |
| const char *copy_file_name(const char *name)
 | |
| {
 | |
| 	struct file_name_node *file;
 | |
| 	struct ceb_node *node;
 | |
| 	size_t len;
 | |
| 
 | |
| 	if (!name)
 | |
| 		return NULL;
 | |
| 
 | |
| 	HA_RWLOCK_RDLOCK(OTHER_LOCK, &file_names.lock);
 | |
| 	node = cebus_lookup(&file_names.root, name);
 | |
| 	HA_RWLOCK_RDUNLOCK(OTHER_LOCK, &file_names.lock);
 | |
| 
 | |
| 	if (node) {
 | |
| 		file = container_of(node, struct file_name_node, node);
 | |
| 		return file->name;
 | |
| 	}
 | |
| 
 | |
| 	len = strlen(name);
 | |
| 	file = malloc(sizeof(struct file_name_node) + len + 1);
 | |
| 	if (!file)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memcpy(file->name, name, len + 1);
 | |
| 	HA_RWLOCK_WRLOCK(OTHER_LOCK, &file_names.lock);
 | |
| 	node = cebus_insert(&file_names.root, &file->node);
 | |
| 	HA_RWLOCK_WRUNLOCK(OTHER_LOCK, &file_names.lock);
 | |
| 
 | |
| 	if (node != &file->node) {
 | |
| 		/* the node was created in between */
 | |
| 		free(file);
 | |
| 		file = container_of(node, struct file_name_node, node);
 | |
| 	}
 | |
| 	return file->name;
 | |
| }
 | |
| 
 | |
| /* free all registered file names */
 | |
| void free_all_file_names()
 | |
| {
 | |
| 	struct file_name_node *file;
 | |
| 	struct ceb_node *node;
 | |
| 
 | |
| 	HA_RWLOCK_WRLOCK(OTHER_LOCK, &file_names.lock);
 | |
| 
 | |
| 	while ((node = cebus_first(&file_names.root))) {
 | |
| 		file = container_of(node, struct file_name_node, node);
 | |
| 		cebus_delete(&file_names.root, node);
 | |
| 		free(file);
 | |
| 	}
 | |
| 
 | |
| 	HA_RWLOCK_WRUNLOCK(OTHER_LOCK, &file_names.lock);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Fill a <dst> buffer with a path. <*dst> must be at least of size PATH_MAX.
 | |
|  * If a <base> is specified and the path does not start with "/", concatenate <base>/<path>
 | |
|  *
 | |
|  */
 | |
| int path_base(const char *path, const char *base, char *dst, char **err)
 | |
| {
 | |
| 	int err_code = 0;
 | |
| 	int rv = 0;
 | |
| 
 | |
| 	if (base && *base && *path != '/')
 | |
| 		rv = snprintf(dst, PATH_MAX, "%s/%s", base, path);
 | |
| 	else
 | |
| 		rv = snprintf(dst, PATH_MAX, "%s", path);
 | |
| 
 | |
| 	if (rv >= PATH_MAX) {
 | |
| 		memprintf(err, "'%s/%s' : path too long", base, path);
 | |
| 		err_code |= ERR_ALERT | ERR_FATAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return err_code;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Local variables:
 | |
|  *  c-indent-level: 8
 | |
|  *  c-basic-offset: 8
 | |
|  * End:
 | |
|  */
 |