mirror of
				https://git.haproxy.org/git/haproxy.git/
				synced 2025-10-31 00:21:00 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			1618 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1618 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * activity measurement functions.
 | |
|  *
 | |
|  * Copyright 2000-2018 Willy Tarreau <w@1wt.eu>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <errno.h>
 | |
| #include <haproxy/activity-t.h>
 | |
| #include <haproxy/api.h>
 | |
| #include <haproxy/applet.h>
 | |
| #include <haproxy/cfgparse.h>
 | |
| #include <haproxy/clock.h>
 | |
| #include <haproxy/channel.h>
 | |
| #include <haproxy/cli.h>
 | |
| #include <haproxy/freq_ctr.h>
 | |
| #include <haproxy/listener.h>
 | |
| #include <haproxy/sc_strm.h>
 | |
| #include <haproxy/stconn.h>
 | |
| #include <haproxy/tools.h>
 | |
| 
 | |
| /* CLI context for the "show profiling" command */
 | |
| struct show_prof_ctx {
 | |
| 	int dump_step;  /* 0,1,2,4,5,6; see cli_iohandler_show_profiling() */
 | |
| 	int linenum;    /* next line to be dumped (starts at 0) */
 | |
| 	int maxcnt;     /* max line count per step (0=not set)  */
 | |
| 	int by_what;    /* 0=sort by usage, 1=sort by address, 2=sort by time */
 | |
| 	int aggr;       /* 0=dump raw, 1=aggregate on callee    */
 | |
| };
 | |
| 
 | |
| /* CLI context for the "show activity" command */
 | |
| struct show_activity_ctx {
 | |
| 	int thr;         /* thread ID to show or -1 for all */
 | |
| 	int line;        /* line number being dumped */
 | |
| 	int col;         /* columnline being dumped, 0 to nbt+1 */
 | |
| };
 | |
| 
 | |
| #if defined(DEBUG_MEM_STATS)
 | |
| /* these ones are macros in bug.h when DEBUG_MEM_STATS is set, and will
 | |
|  * prevent the new ones from being redefined.
 | |
|  */
 | |
| #undef calloc
 | |
| #undef malloc
 | |
| #undef realloc
 | |
| #undef strdup
 | |
| #endif
 | |
| 
 | |
| /* bit field of profiling options. Beware, may be modified at runtime! */
 | |
| unsigned int profiling __read_mostly = HA_PROF_TASKS_AOFF;
 | |
| 
 | |
| /* start/stop dates of profiling */
 | |
| uint64_t prof_task_start_ns = 0;
 | |
| uint64_t prof_task_stop_ns = 0;
 | |
| uint64_t prof_mem_start_ns = 0;
 | |
| uint64_t prof_mem_stop_ns = 0;
 | |
| 
 | |
| /* One struct per thread containing all collected measurements */
 | |
| struct activity activity[MAX_THREADS] __attribute__((aligned(64))) = { };
 | |
| 
 | |
| /* One struct per function pointer hash entry (SCHED_ACT_HASH_BUCKETS values, 0=collision) */
 | |
| struct sched_activity sched_activity[SCHED_ACT_HASH_BUCKETS] __attribute__((aligned(64))) = { };
 | |
| 
 | |
| 
 | |
| #ifdef USE_MEMORY_PROFILING
 | |
| 
 | |
| static const char *const memprof_methods[MEMPROF_METH_METHODS] = {
 | |
| 	"unknown", "malloc", "calloc", "realloc", "strdup", "free", "p_alloc", "p_free",
 | |
| 	"strndup", "valloc", "aligned_valloc", "posix_memalign", "memalign", "pvalloc",
 | |
| };
 | |
| 
 | |
| /* last one is for hash collisions ("others") and has no caller address */
 | |
| struct memprof_stats memprof_stats[MEMPROF_HASH_BUCKETS + 1] = { };
 | |
| 
 | |
| /* used to detect recursive calls */
 | |
| static THREAD_LOCAL int in_memprof = 0;
 | |
| 
 | |
| /* These ones are used by glibc and will be called early. They are in charge of
 | |
|  * initializing the handlers with the original functions.
 | |
|  */
 | |
| static void *memprof_malloc_initial_handler(size_t size);
 | |
| static void *memprof_calloc_initial_handler(size_t nmemb, size_t size);
 | |
| static void *memprof_realloc_initial_handler(void *ptr, size_t size);
 | |
| static char *memprof_strdup_initial_handler(const char *s);
 | |
| static void  memprof_free_initial_handler(void *ptr);
 | |
| 
 | |
| /* these ones are optional but may be used by some dependencies */
 | |
| static char *memprof_strndup_initial_handler(const char *s, size_t n);
 | |
| static void *memprof_valloc_initial_handler(size_t sz);
 | |
| static void *memprof_pvalloc_initial_handler(size_t sz);
 | |
| static void *memprof_memalign_initial_handler(size_t al, size_t sz);
 | |
| static void *memprof_aligned_alloc_initial_handler(size_t al, size_t sz);
 | |
| static int   memprof_posix_memalign_initial_handler(void **ptr, size_t al, size_t sz);
 | |
| 
 | |
| /* Fallback handlers for the main alloc/free functions. They are preset to
 | |
|  * the initializer in order to save a test in the functions's critical path.
 | |
|  */
 | |
| static void *(*memprof_malloc_handler)(size_t size)               = memprof_malloc_initial_handler;
 | |
| static void *(*memprof_calloc_handler)(size_t nmemb, size_t size) = memprof_calloc_initial_handler;
 | |
| static void *(*memprof_realloc_handler)(void *ptr, size_t size)   = memprof_realloc_initial_handler;
 | |
| static char *(*memprof_strdup_handler)(const char *s)             = memprof_strdup_initial_handler;
 | |
| static void  (*memprof_free_handler)(void *ptr)                   = memprof_free_initial_handler;
 | |
| 
 | |
| /* these ones are optional but may be used by some dependencies */
 | |
| static char *(*memprof_strndup_handler)(const char *s, size_t n)                 = memprof_strndup_initial_handler;
 | |
| static void *(*memprof_valloc_handler)(size_t sz)                                = memprof_valloc_initial_handler;
 | |
| static void *(*memprof_pvalloc_handler)(size_t sz)                               = memprof_pvalloc_initial_handler;
 | |
| static void *(*memprof_memalign_handler)(size_t al, size_t sz)                   = memprof_memalign_initial_handler;
 | |
| static void *(*memprof_aligned_alloc_handler)(size_t al, size_t sz)              = memprof_aligned_alloc_initial_handler;
 | |
| static int   (*memprof_posix_memalign_handler)(void **ptr, size_t al, size_t sz) = memprof_posix_memalign_initial_handler;
 | |
| 
 | |
| /* Used to force to die if it's not possible to retrieve the allocation
 | |
|  * functions. We cannot even use stdio in this case.
 | |
|  */
 | |
| static __attribute__((noreturn)) void memprof_die(const char *msg)
 | |
| {
 | |
| 	DISGUISE(write(2, msg, strlen(msg)));
 | |
| 	exit(1);
 | |
| }
 | |
| 
 | |
| /* Resolve original allocation functions and initialize all handlers.
 | |
|  * This must be called very early at boot, before the very first malloc()
 | |
|  * call, and is not thread-safe! It's not even possible to use stdio there.
 | |
|  * Worse, we have to account for the risk of reentrance from dlsym() when
 | |
|  * it tries to prepare its error messages. Here its ahndled by in_memprof
 | |
|  * that makes allocators return NULL. dlsym() handles it gracefully. An
 | |
|  * alternate approach consists in calling aligned_alloc() from these places
 | |
|  * but that would mean not being able to intercept it later if considered
 | |
|  * useful to do so.
 | |
|  */
 | |
| static void memprof_init()
 | |
| {
 | |
| 	in_memprof++;
 | |
| 	memprof_malloc_handler  = get_sym_next_addr("malloc");
 | |
| 	if (!memprof_malloc_handler)
 | |
| 		memprof_die("FATAL: malloc() function not found.\n");
 | |
| 
 | |
| 	memprof_calloc_handler  = get_sym_next_addr("calloc");
 | |
| 	if (!memprof_calloc_handler)
 | |
| 		memprof_die("FATAL: calloc() function not found.\n");
 | |
| 
 | |
| 	memprof_realloc_handler = get_sym_next_addr("realloc");
 | |
| 	if (!memprof_realloc_handler)
 | |
| 		memprof_die("FATAL: realloc() function not found.\n");
 | |
| 
 | |
| 	memprof_strdup_handler  = get_sym_next_addr("strdup");
 | |
| 	if (!memprof_strdup_handler)
 | |
| 		memprof_die("FATAL: strdup() function not found.\n");
 | |
| 
 | |
| 	memprof_free_handler    = get_sym_next_addr("free");
 | |
| 	if (!memprof_free_handler)
 | |
| 		memprof_die("FATAL: free() function not found.\n");
 | |
| 
 | |
| 	/* these ones are not always implemented, rarely used and may not exist
 | |
| 	 * so we don't fail on them.
 | |
| 	 */
 | |
| 	memprof_strndup_handler        = get_sym_next_addr("strndup");
 | |
| 	memprof_valloc_handler         = get_sym_next_addr("valloc");
 | |
| 	memprof_pvalloc_handler        = get_sym_next_addr("pvalloc");
 | |
| 	memprof_memalign_handler       = get_sym_next_addr("memalign");
 | |
| 	memprof_aligned_alloc_handler  = get_sym_next_addr("aligned_alloc");
 | |
| 	memprof_posix_memalign_handler = get_sym_next_addr("posix_memalign");
 | |
| 
 | |
| 	in_memprof--;
 | |
| }
 | |
| 
 | |
| /* the initial handlers will initialize all regular handlers and will call the
 | |
|  * one they correspond to. A single one of these functions will typically be
 | |
|  * called, though it's unknown which one (as any might be called before main).
 | |
|  */
 | |
| static void *memprof_malloc_initial_handler(size_t size)
 | |
| {
 | |
| 	if (in_memprof) {
 | |
| 		/* it's likely that dlsym() needs malloc(), let's fail */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	memprof_init();
 | |
| 	return memprof_malloc_handler(size);
 | |
| }
 | |
| 
 | |
| static void *memprof_calloc_initial_handler(size_t nmemb, size_t size)
 | |
| {
 | |
| 	if (in_memprof) {
 | |
| 		/* it's likely that dlsym() needs calloc(), let's fail */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	memprof_init();
 | |
| 	return memprof_calloc_handler(nmemb, size);
 | |
| }
 | |
| 
 | |
| static void *memprof_realloc_initial_handler(void *ptr, size_t size)
 | |
| {
 | |
| 	if (in_memprof) {
 | |
| 		/* it's likely that dlsym() needs realloc(), let's fail */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	memprof_init();
 | |
| 	return memprof_realloc_handler(ptr, size);
 | |
| }
 | |
| 
 | |
| static char *memprof_strdup_initial_handler(const char *s)
 | |
| {
 | |
| 	if (in_memprof) {
 | |
| 		/* probably that dlsym() needs strdup(), let's fail */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	memprof_init();
 | |
| 	return memprof_strdup_handler(s);
 | |
| }
 | |
| 
 | |
| static void  memprof_free_initial_handler(void *ptr)
 | |
| {
 | |
| 	memprof_init();
 | |
| 	memprof_free_handler(ptr);
 | |
| }
 | |
| 
 | |
| /* optional handlers */
 | |
| 
 | |
| static char *memprof_strndup_initial_handler(const char *s, size_t n)
 | |
| {
 | |
| 	if (in_memprof) {
 | |
| 		/* probably that dlsym() needs strndup(), let's fail */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	memprof_init();
 | |
| 	return memprof_strndup_handler(s, n);
 | |
| }
 | |
| 
 | |
| static void *memprof_valloc_initial_handler(size_t sz)
 | |
| {
 | |
| 	if (in_memprof) {
 | |
| 		/* probably that dlsym() needs valloc(), let's fail */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	memprof_init();
 | |
| 	return memprof_valloc_handler(sz);
 | |
| }
 | |
| 
 | |
| static void *memprof_pvalloc_initial_handler(size_t sz)
 | |
| {
 | |
| 	if (in_memprof) {
 | |
| 		/* probably that dlsym() needs pvalloc(), let's fail */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	memprof_init();
 | |
| 	return memprof_pvalloc_handler(sz);
 | |
| }
 | |
| 
 | |
| static void *memprof_memalign_initial_handler(size_t al, size_t sz)
 | |
| {
 | |
| 	if (in_memprof) {
 | |
| 		/* probably that dlsym() needs memalign(), let's fail */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	memprof_init();
 | |
| 	return memprof_memalign_handler(al, sz);
 | |
| }
 | |
| 
 | |
| static void *memprof_aligned_alloc_initial_handler(size_t al, size_t sz)
 | |
| {
 | |
| 	if (in_memprof) {
 | |
| 		/* probably that dlsym() needs aligned_alloc(), let's fail */
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	memprof_init();
 | |
| 	return memprof_aligned_alloc_handler(al, sz);
 | |
| }
 | |
| 
 | |
| static int memprof_posix_memalign_initial_handler(void **ptr, size_t al, size_t sz)
 | |
| {
 | |
| 	if (in_memprof) {
 | |
| 		/* probably that dlsym() needs posix_memalign(), let's fail */
 | |
| 		return ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	memprof_init();
 | |
| 	return memprof_posix_memalign_handler(ptr, al, sz);
 | |
| }
 | |
| 
 | |
| /* Assign a bin for the memprof_stats to the return address. May perform a few
 | |
|  * attempts before finding the right one, but always succeeds (in the worst
 | |
|  * case, returns a default bin). The caller address is atomically set except
 | |
|  * for the default one which is never set.
 | |
|  */
 | |
| struct memprof_stats *memprof_get_bin(const void *ra, enum memprof_method meth)
 | |
| {
 | |
| 	int retries = 16; // up to 16 consecutive entries may be tested.
 | |
| 	const void *old;
 | |
| 	unsigned int bin;
 | |
| 
 | |
| 	if (unlikely(!ra)) {
 | |
| 		bin = MEMPROF_HASH_BUCKETS;
 | |
| 		goto leave;
 | |
| 	}
 | |
| 	bin = ptr_hash(ra, MEMPROF_HASH_BITS);
 | |
| 	for (; memprof_stats[bin].caller != ra; bin = (bin + 1) & (MEMPROF_HASH_BUCKETS - 1)) {
 | |
| 		if (!--retries) {
 | |
| 			bin = MEMPROF_HASH_BUCKETS;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		old = NULL;
 | |
| 		if (!memprof_stats[bin].caller &&
 | |
| 		    HA_ATOMIC_CAS(&memprof_stats[bin].caller, &old, ra)) {
 | |
| 			memprof_stats[bin].method = meth;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| leave:
 | |
| 	return &memprof_stats[bin];
 | |
| }
 | |
| 
 | |
| /* This is the new global malloc() function. It must optimize for the normal
 | |
|  * case (i.e. profiling disabled) hence the first test to permit a direct jump.
 | |
|  * It must remain simple to guarantee the lack of reentrance. stdio is not
 | |
|  * possible there even for debugging. The reported size is the really allocated
 | |
|  * one as returned by malloc_usable_size(), because this will allow it to be
 | |
|  * compared to the one before realloc() or free(). This is a GNU and jemalloc
 | |
|  * extension but other systems may also store this size in ptr[-1].
 | |
|  */
 | |
| void *malloc(size_t size)
 | |
| {
 | |
| 	struct memprof_stats *bin;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (likely(!(profiling & HA_PROF_MEMORY)))
 | |
| 		return memprof_malloc_handler(size);
 | |
| 
 | |
| 	ret = memprof_malloc_handler(size);
 | |
| 	size = malloc_usable_size(ret) + sizeof(void *);
 | |
| 
 | |
| 	bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_MALLOC);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_tot, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* This is the new global calloc() function. It must optimize for the normal
 | |
|  * case (i.e. profiling disabled) hence the first test to permit a direct jump.
 | |
|  * It must remain simple to guarantee the lack of reentrance. stdio is not
 | |
|  * possible there even for debugging. The reported size is the really allocated
 | |
|  * one as returned by malloc_usable_size(), because this will allow it to be
 | |
|  * compared to the one before realloc() or free(). This is a GNU and jemalloc
 | |
|  * extension but other systems may also store this size in ptr[-1].
 | |
|  */
 | |
| void *calloc(size_t nmemb, size_t size)
 | |
| {
 | |
| 	struct memprof_stats *bin;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (likely(!(profiling & HA_PROF_MEMORY)))
 | |
| 		return memprof_calloc_handler(nmemb, size);
 | |
| 
 | |
| 	ret = memprof_calloc_handler(nmemb, size);
 | |
| 	size = malloc_usable_size(ret) + sizeof(void *);
 | |
| 
 | |
| 	bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_CALLOC);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_tot, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* This is the new global realloc() function. It must optimize for the normal
 | |
|  * case (i.e. profiling disabled) hence the first test to permit a direct jump.
 | |
|  * It must remain simple to guarantee the lack of reentrance. stdio is not
 | |
|  * possible there even for debugging. The reported size is the really allocated
 | |
|  * one as returned by malloc_usable_size(), because this will allow it to be
 | |
|  * compared to the one before realloc() or free(). This is a GNU and jemalloc
 | |
|  * extension but other systems may also store this size in ptr[-1].
 | |
|  * Depending on the old vs new size, it's considered as an allocation or a free
 | |
|  * (or neither if the size remains the same).
 | |
|  */
 | |
| void *realloc(void *ptr, size_t size)
 | |
| {
 | |
| 	struct memprof_stats *bin;
 | |
| 	size_t size_before;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (likely(!(profiling & HA_PROF_MEMORY)))
 | |
| 		return memprof_realloc_handler(ptr, size);
 | |
| 
 | |
| 	size_before = malloc_usable_size(ptr);
 | |
| 	ret = memprof_realloc_handler(ptr, size);
 | |
| 	size = malloc_usable_size(ret);
 | |
| 
 | |
| 	/* only count the extra link for new allocations */
 | |
| 	if (!ptr)
 | |
| 		size += sizeof(void *);
 | |
| 
 | |
| 	bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_REALLOC);
 | |
| 	if (size > size_before) {
 | |
| 		_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
 | |
| 		_HA_ATOMIC_ADD(&bin->alloc_tot, size - size_before);
 | |
| 	} else if (size < size_before) {
 | |
| 		_HA_ATOMIC_ADD(&bin->free_calls, 1);
 | |
| 		_HA_ATOMIC_ADD(&bin->free_tot, size_before - size);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* This is the new global strdup() function. It must optimize for the normal
 | |
|  * case (i.e. profiling disabled) hence the first test to permit a direct jump.
 | |
|  * It must remain simple to guarantee the lack of reentrance. stdio is not
 | |
|  * possible there even for debugging. The reported size is the really allocated
 | |
|  * one as returned by malloc_usable_size(), because this will allow it to be
 | |
|  * compared to the one before realloc() or free(). This is a GNU and jemalloc
 | |
|  * extension but other systems may also store this size in ptr[-1].
 | |
|  */
 | |
| char *strdup(const char *s)
 | |
| {
 | |
| 	struct memprof_stats *bin;
 | |
| 	size_t size;
 | |
| 	char *ret;
 | |
| 
 | |
| 	if (likely(!(profiling & HA_PROF_MEMORY)))
 | |
| 		return memprof_strdup_handler(s);
 | |
| 
 | |
| 	ret = memprof_strdup_handler(s);
 | |
| 	size = malloc_usable_size(ret) + sizeof(void *);
 | |
| 
 | |
| 	bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_STRDUP);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_tot, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* This is the new global free() function. It must optimize for the normal
 | |
|  * case (i.e. profiling disabled) hence the first test to permit a direct jump.
 | |
|  * It must remain simple to guarantee the lack of reentrance. stdio is not
 | |
|  * possible there even for debugging. The reported size is the really allocated
 | |
|  * one as returned by malloc_usable_size(), because this will allow it to be
 | |
|  * compared to the one before realloc() or free(). This is a GNU and jemalloc
 | |
|  * extension but other systems may also store this size in ptr[-1]. Since
 | |
|  * free() is often called on NULL pointers to collect garbage at the end of
 | |
|  * many functions or during config parsing, as a special case free(NULL)
 | |
|  * doesn't update any stats.
 | |
|  */
 | |
| void free(void *ptr)
 | |
| {
 | |
| 	struct memprof_stats *bin;
 | |
| 	size_t size_before;
 | |
| 
 | |
| 	if (likely(!(profiling & HA_PROF_MEMORY) || !ptr)) {
 | |
| 		memprof_free_handler(ptr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	size_before = malloc_usable_size(ptr) + sizeof(void *);
 | |
| 	memprof_free_handler(ptr);
 | |
| 
 | |
| 	bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_FREE);
 | |
| 	_HA_ATOMIC_ADD(&bin->free_calls, 1);
 | |
| 	_HA_ATOMIC_ADD(&bin->free_tot, size_before);
 | |
| }
 | |
| 
 | |
| /* optional handlers below, essentially to monitor libs activities */
 | |
| 
 | |
| char *strndup(const char *s, size_t size)
 | |
| {
 | |
| 	struct memprof_stats *bin;
 | |
| 	char *ret;
 | |
| 
 | |
| 	if (!memprof_strndup_handler)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ret = memprof_strndup_handler(s, size);
 | |
| 	if (likely(!(profiling & HA_PROF_MEMORY)))
 | |
| 		return ret;
 | |
| 
 | |
| 	size = malloc_usable_size(ret) + sizeof(void *);
 | |
| 	bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_STRNDUP);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_tot, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void *valloc(size_t size)
 | |
| {
 | |
| 	struct memprof_stats *bin;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (!memprof_valloc_handler)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ret = memprof_valloc_handler(size);
 | |
| 	if (likely(!(profiling & HA_PROF_MEMORY)))
 | |
| 		return ret;
 | |
| 
 | |
| 	size = malloc_usable_size(ret) + sizeof(void *);
 | |
| 	bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_VALLOC);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_tot, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void *pvalloc(size_t size)
 | |
| {
 | |
| 	struct memprof_stats *bin;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (!memprof_pvalloc_handler)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ret = memprof_pvalloc_handler(size);
 | |
| 	if (likely(!(profiling & HA_PROF_MEMORY)))
 | |
| 		return ret;
 | |
| 
 | |
| 	size = malloc_usable_size(ret) + sizeof(void *);
 | |
| 	bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_PVALLOC);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_tot, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void *memalign(size_t align, size_t size)
 | |
| {
 | |
| 	struct memprof_stats *bin;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (!memprof_memalign_handler)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ret = memprof_memalign_handler(align, size);
 | |
| 	if (likely(!(profiling & HA_PROF_MEMORY)))
 | |
| 		return ret;
 | |
| 
 | |
| 	size = malloc_usable_size(ret) + sizeof(void *);
 | |
| 	bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_MEMALIGN);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_tot, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void *aligned_alloc(size_t align, size_t size)
 | |
| {
 | |
| 	struct memprof_stats *bin;
 | |
| 	void *ret;
 | |
| 
 | |
| 	if (!memprof_aligned_alloc_handler)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ret = memprof_aligned_alloc_handler(align, size);
 | |
| 	if (likely(!(profiling & HA_PROF_MEMORY)))
 | |
| 		return ret;
 | |
| 
 | |
| 	size = malloc_usable_size(ret) + sizeof(void *);
 | |
| 	bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_ALIGNED_ALLOC);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_tot, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int posix_memalign(void **ptr, size_t align, size_t size)
 | |
| {
 | |
| 	struct memprof_stats *bin;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!memprof_posix_memalign_handler)
 | |
| 		return ENOMEM;
 | |
| 
 | |
| 	ret = memprof_posix_memalign_handler(ptr, align, size);
 | |
| 	if (likely(!(profiling & HA_PROF_MEMORY)))
 | |
| 		return ret;
 | |
| 
 | |
| 	if (ret != 0) // error
 | |
| 		return ret;
 | |
| 
 | |
| 	size = malloc_usable_size(*ptr) + sizeof(void *);
 | |
| 	bin = memprof_get_bin(__builtin_return_address(0), MEMPROF_METH_POSIX_MEMALIGN);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_calls, 1);
 | |
| 	_HA_ATOMIC_ADD(&bin->alloc_tot, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* remove info from entries matching <info>. This needs to be used by callers
 | |
|  * of pool_destroy() so that we don't keep a reference to a dead pool. Nothing
 | |
|  * is done if <info> is NULL.
 | |
|  */
 | |
| void memprof_remove_stale_info(const void *info)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!info)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < MEMPROF_HASH_BUCKETS; i++) {
 | |
| 		if (_HA_ATOMIC_LOAD(&memprof_stats[i].info) == info)
 | |
| 			_HA_ATOMIC_STORE(&memprof_stats[i].info, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif // USE_MEMORY_PROFILING
 | |
| 
 | |
| /* Updates the current thread's statistics about stolen CPU time. The unit for
 | |
|  * <stolen> is half-milliseconds.
 | |
|  */
 | |
| void report_stolen_time(uint64_t stolen)
 | |
| {
 | |
| 	activity[tid].cpust_total += stolen;
 | |
| 	update_freq_ctr(&activity[tid].cpust_1s, stolen);
 | |
| 	update_freq_ctr_period(&activity[tid].cpust_15s, 15000, stolen);
 | |
| }
 | |
| 
 | |
| /* Update avg_loop value for the current thread and possibly decide to enable
 | |
|  * task-level profiling on the current thread based on its average run time.
 | |
|  * The <run_time> argument is the number of microseconds elapsed since the
 | |
|  * last time poll() returned.
 | |
|  */
 | |
| void activity_count_runtime(uint32_t run_time)
 | |
| {
 | |
| 	uint32_t up, down;
 | |
| 
 | |
| 	/* 1 millisecond per loop on average over last 1024 iterations is
 | |
| 	 * enough to turn on profiling.
 | |
| 	 */
 | |
| 	up = 1000;
 | |
| 	down = up * 99 / 100;
 | |
| 
 | |
| 	run_time = swrate_add(&activity[tid].avg_loop_us, TIME_STATS_SAMPLES, run_time);
 | |
| 
 | |
| 	/* In automatic mode, reaching the "up" threshold on average switches
 | |
| 	 * profiling to "on" when automatic, and going back below the "down"
 | |
| 	 * threshold switches to off. The forced modes don't check the load.
 | |
| 	 */
 | |
| 	if (!(_HA_ATOMIC_LOAD(&th_ctx->flags) & TH_FL_TASK_PROFILING)) {
 | |
| 		if (unlikely((profiling & HA_PROF_TASKS_MASK) == HA_PROF_TASKS_ON ||
 | |
| 		             ((profiling & HA_PROF_TASKS_MASK) == HA_PROF_TASKS_AON &&
 | |
| 		             swrate_avg(run_time, TIME_STATS_SAMPLES) >= up)))
 | |
| 			_HA_ATOMIC_OR(&th_ctx->flags, TH_FL_TASK_PROFILING);
 | |
| 	} else {
 | |
| 		if (unlikely((profiling & HA_PROF_TASKS_MASK) == HA_PROF_TASKS_OFF ||
 | |
| 		             ((profiling & HA_PROF_TASKS_MASK) == HA_PROF_TASKS_AOFF &&
 | |
| 		             swrate_avg(run_time, TIME_STATS_SAMPLES) <= down)))
 | |
| 			_HA_ATOMIC_AND(&th_ctx->flags, ~TH_FL_TASK_PROFILING);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef USE_MEMORY_PROFILING
 | |
| /* config parser for global "profiling.memory", accepts "on" or "off" */
 | |
| static int cfg_parse_prof_memory(char **args, int section_type, struct proxy *curpx,
 | |
|                                 const struct proxy *defpx, const char *file, int line,
 | |
|                                 char **err)
 | |
| {
 | |
| 	if (too_many_args(1, args, err, NULL))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (strcmp(args[1], "on") == 0) {
 | |
| 		profiling |= HA_PROF_MEMORY;
 | |
| 		HA_ATOMIC_STORE(&prof_mem_start_ns, now_ns);
 | |
| 	}
 | |
| 	else if (strcmp(args[1], "off") == 0)
 | |
| 		profiling &= ~HA_PROF_MEMORY;
 | |
| 	else {
 | |
| 		memprintf(err, "'%s' expects either 'on' or 'off' but got '%s'.", args[0], args[1]);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif // USE_MEMORY_PROFILING
 | |
| 
 | |
| /* config parser for global "profiling.tasks", accepts "on" or "off" */
 | |
| static int cfg_parse_prof_tasks(char **args, int section_type, struct proxy *curpx,
 | |
|                                 const struct proxy *defpx, const char *file, int line,
 | |
|                                 char **err)
 | |
| {
 | |
| 	if (too_many_args(1, args, err, NULL))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (strcmp(args[1], "on") == 0) {
 | |
| 		profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_ON;
 | |
| 		HA_ATOMIC_STORE(&prof_task_start_ns, now_ns);
 | |
| 	}
 | |
| 	else if (strcmp(args[1], "auto") == 0) {
 | |
| 		profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AOFF;
 | |
| 		HA_ATOMIC_STORE(&prof_task_start_ns, now_ns);
 | |
| 	}
 | |
| 	else if (strcmp(args[1], "off") == 0)
 | |
| 		profiling = (profiling & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_OFF;
 | |
| 	else {
 | |
| 		memprintf(err, "'%s' expects either 'on', 'auto', or 'off' but got '%s'.", args[0], args[1]);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* parse a "set profiling" command. It always returns 1. */
 | |
| static int cli_parse_set_profiling(char **args, char *payload, struct appctx *appctx, void *private)
 | |
| {
 | |
| 	if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (strcmp(args[2], "memory") == 0) {
 | |
| #ifdef USE_MEMORY_PROFILING
 | |
| 		if (strcmp(args[3], "on") == 0) {
 | |
| 			unsigned int old = profiling;
 | |
| 			int i;
 | |
| 
 | |
| 			while (!_HA_ATOMIC_CAS(&profiling, &old, old | HA_PROF_MEMORY))
 | |
| 				;
 | |
| 
 | |
| 			HA_ATOMIC_STORE(&prof_mem_start_ns, now_ns);
 | |
| 			HA_ATOMIC_STORE(&prof_mem_stop_ns, 0);
 | |
| 
 | |
| 			/* also flush current profiling stats */
 | |
| 			for (i = 0; i < sizeof(memprof_stats) / sizeof(memprof_stats[0]); i++) {
 | |
| 				HA_ATOMIC_STORE(&memprof_stats[i].alloc_calls, 0);
 | |
| 				HA_ATOMIC_STORE(&memprof_stats[i].free_calls, 0);
 | |
| 				HA_ATOMIC_STORE(&memprof_stats[i].alloc_tot, 0);
 | |
| 				HA_ATOMIC_STORE(&memprof_stats[i].free_tot, 0);
 | |
| 				HA_ATOMIC_STORE(&memprof_stats[i].caller, NULL);
 | |
| 			}
 | |
| 		}
 | |
| 		else if (strcmp(args[3], "off") == 0) {
 | |
| 			unsigned int old = profiling;
 | |
| 
 | |
| 			while (!_HA_ATOMIC_CAS(&profiling, &old, old & ~HA_PROF_MEMORY))
 | |
| 				;
 | |
| 
 | |
| 			if (HA_ATOMIC_LOAD(&prof_mem_start_ns))
 | |
| 				HA_ATOMIC_STORE(&prof_mem_stop_ns, now_ns);
 | |
| 		}
 | |
| 		else
 | |
| 			return cli_err(appctx, "Expects either 'on' or 'off'.\n");
 | |
| 		return 1;
 | |
| #else
 | |
| 		return cli_err(appctx, "Memory profiling not compiled in.\n");
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (strcmp(args[2], "tasks") != 0)
 | |
| 		return cli_err(appctx, "Expects either 'tasks' or 'memory'.\n");
 | |
| 
 | |
| 	if (strcmp(args[3], "on") == 0) {
 | |
| 		unsigned int old = profiling;
 | |
| 		int i;
 | |
| 
 | |
| 		while (!_HA_ATOMIC_CAS(&profiling, &old, (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_ON))
 | |
| 			;
 | |
| 
 | |
| 		HA_ATOMIC_STORE(&prof_task_start_ns, now_ns);
 | |
| 		HA_ATOMIC_STORE(&prof_task_stop_ns, 0);
 | |
| 
 | |
| 		/* also flush current profiling stats */
 | |
| 		for (i = 0; i < SCHED_ACT_HASH_BUCKETS; i++) {
 | |
| 			HA_ATOMIC_STORE(&sched_activity[i].calls, 0);
 | |
| 			HA_ATOMIC_STORE(&sched_activity[i].cpu_time, 0);
 | |
| 			HA_ATOMIC_STORE(&sched_activity[i].lat_time, 0);
 | |
| 			HA_ATOMIC_STORE(&sched_activity[i].func, NULL);
 | |
| 			HA_ATOMIC_STORE(&sched_activity[i].caller, NULL);
 | |
| 		}
 | |
| 	}
 | |
| 	else if (strcmp(args[3], "auto") == 0) {
 | |
| 		unsigned int old = profiling;
 | |
| 		unsigned int new;
 | |
| 
 | |
| 		do {
 | |
| 			if ((old & HA_PROF_TASKS_MASK) >= HA_PROF_TASKS_AON)
 | |
| 				new = (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AON;
 | |
| 			else
 | |
| 				new = (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_AOFF;
 | |
| 		} while (!_HA_ATOMIC_CAS(&profiling, &old, new));
 | |
| 
 | |
| 		HA_ATOMIC_STORE(&prof_task_start_ns, now_ns);
 | |
| 		HA_ATOMIC_STORE(&prof_task_stop_ns, 0);
 | |
| 	}
 | |
| 	else if (strcmp(args[3], "off") == 0) {
 | |
| 		unsigned int old = profiling;
 | |
| 		while (!_HA_ATOMIC_CAS(&profiling, &old, (old & ~HA_PROF_TASKS_MASK) | HA_PROF_TASKS_OFF))
 | |
| 			;
 | |
| 
 | |
| 		if (HA_ATOMIC_LOAD(&prof_task_start_ns))
 | |
| 			HA_ATOMIC_STORE(&prof_task_stop_ns, now_ns);
 | |
| 	}
 | |
| 	else
 | |
| 		return cli_err(appctx, "Expects 'on', 'auto', or 'off'.\n");
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int cmp_sched_activity_calls(const void *a, const void *b)
 | |
| {
 | |
| 	const struct sched_activity *l = (const struct sched_activity *)a;
 | |
| 	const struct sched_activity *r = (const struct sched_activity *)b;
 | |
| 
 | |
| 	if (l->calls > r->calls)
 | |
| 		return -1;
 | |
| 	else if (l->calls < r->calls)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| /* sort by address first, then by call count */
 | |
| static int cmp_sched_activity_addr(const void *a, const void *b)
 | |
| {
 | |
| 	const struct sched_activity *l = (const struct sched_activity *)a;
 | |
| 	const struct sched_activity *r = (const struct sched_activity *)b;
 | |
| 
 | |
| 	if (l->func > r->func)
 | |
| 		return -1;
 | |
| 	else if (l->func < r->func)
 | |
| 		return 1;
 | |
| 	else if (l->calls > r->calls)
 | |
| 		return -1;
 | |
| 	else if (l->calls < r->calls)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| /* sort by cpu time first, then by inverse call count (to spot highest offenders) */
 | |
| static int cmp_sched_activity_cpu(const void *a, const void *b)
 | |
| {
 | |
| 	const struct sched_activity *l = (const struct sched_activity *)a;
 | |
| 	const struct sched_activity *r = (const struct sched_activity *)b;
 | |
| 
 | |
| 	if (l->cpu_time > r->cpu_time)
 | |
| 		return -1;
 | |
| 	else if (l->cpu_time < r->cpu_time)
 | |
| 		return 1;
 | |
| 	else if (l->calls < r->calls)
 | |
| 		return -1;
 | |
| 	else if (l->calls > r->calls)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| #ifdef USE_MEMORY_PROFILING
 | |
| /* used by qsort below */
 | |
| static int cmp_memprof_stats(const void *a, const void *b)
 | |
| {
 | |
| 	const struct memprof_stats *l = (const struct memprof_stats *)a;
 | |
| 	const struct memprof_stats *r = (const struct memprof_stats *)b;
 | |
| 
 | |
| 	if (l->alloc_tot + l->free_tot > r->alloc_tot + r->free_tot)
 | |
| 		return -1;
 | |
| 	else if (l->alloc_tot + l->free_tot < r->alloc_tot + r->free_tot)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| static int cmp_memprof_addr(const void *a, const void *b)
 | |
| {
 | |
| 	const struct memprof_stats *l = (const struct memprof_stats *)a;
 | |
| 	const struct memprof_stats *r = (const struct memprof_stats *)b;
 | |
| 
 | |
| 	if (l->caller > r->caller)
 | |
| 		return -1;
 | |
| 	else if (l->caller < r->caller)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| #endif // USE_MEMORY_PROFILING
 | |
| 
 | |
| /* Computes the index of function pointer <func> and caller <caller> for use
 | |
|  * with sched_activity[] or any other similar array passed in <array>, and
 | |
|  * returns a pointer to the entry after having atomically assigned it to this
 | |
|  * function pointer and caller combination. Note that in case of collision,
 | |
|  * the first entry is returned instead ("other").
 | |
|  */
 | |
| struct sched_activity *sched_activity_entry(struct sched_activity *array, const void *func, const void *caller)
 | |
| {
 | |
| 	uint32_t hash = ptr2_hash(func, caller, SCHED_ACT_HASH_BITS);
 | |
| 	struct sched_activity *ret;
 | |
| 	const void *old;
 | |
| 	int tries = 16;
 | |
| 
 | |
| 	for (tries = 16; tries > 0; tries--, hash++) {
 | |
| 		ret = &array[hash];
 | |
| 
 | |
| 		while (1) {
 | |
| 			if (likely(ret->func)) {
 | |
| 				if (likely(ret->func == func && ret->caller == caller))
 | |
| 					return ret;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* try to create the new entry. Func is sufficient to
 | |
| 			 * reserve the node.
 | |
| 			 */
 | |
| 			old = NULL;
 | |
| 			if (HA_ATOMIC_CAS(&ret->func, &old, func)) {
 | |
| 				ret->caller = caller;
 | |
| 				return ret;
 | |
| 			}
 | |
| 			/* changed in parallel, check again */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return array;
 | |
| }
 | |
| 
 | |
| /* This function dumps all profiling settings. It returns 0 if the output
 | |
|  * buffer is full and it needs to be called again, otherwise non-zero.
 | |
|  * It dumps some parts depending on the following states from show_prof_ctx:
 | |
|  *    dump_step:
 | |
|  *       0, 4: dump status, then jump to 1 if 0
 | |
|  *       1, 5: dump tasks, then jump to 2 if 1
 | |
|  *       2, 6: dump memory, then stop
 | |
|  *    linenum:
 | |
|  *       restart line for each step (starts at zero)
 | |
|  *    maxcnt:
 | |
|  *       may contain a configured max line count for each step (0=not set)
 | |
|  *    byaddr:
 | |
|  *       0: sort by usage
 | |
|  *       1: sort by address
 | |
|  */
 | |
| static int cli_io_handler_show_profiling(struct appctx *appctx)
 | |
| {
 | |
| 	struct show_prof_ctx *ctx = appctx->svcctx;
 | |
| 	struct sched_activity tmp_activity[SCHED_ACT_HASH_BUCKETS] __attribute__((aligned(64)));
 | |
| #ifdef USE_MEMORY_PROFILING
 | |
| 	struct memprof_stats tmp_memstats[MEMPROF_HASH_BUCKETS + 1];
 | |
| 	unsigned long long tot_alloc_calls, tot_free_calls;
 | |
| 	unsigned long long tot_alloc_bytes, tot_free_bytes;
 | |
| #endif
 | |
| 	struct buffer *name_buffer = get_trash_chunk();
 | |
| 	const struct ha_caller *caller;
 | |
| 	const char *str;
 | |
| 	int max_lines;
 | |
| 	int i, j, max;
 | |
| 	int dumped;
 | |
| 
 | |
| 	chunk_reset(&trash);
 | |
| 
 | |
| 	switch (profiling & HA_PROF_TASKS_MASK) {
 | |
| 	case HA_PROF_TASKS_AOFF: str="auto-off"; break;
 | |
| 	case HA_PROF_TASKS_AON:  str="auto-on"; break;
 | |
| 	case HA_PROF_TASKS_ON:   str="on"; break;
 | |
| 	default:                 str="off"; break;
 | |
| 	}
 | |
| 
 | |
| 	if ((ctx->dump_step & 3) != 0)
 | |
| 		goto skip_status;
 | |
| 
 | |
| 	chunk_printf(&trash,
 | |
| 	             "Per-task CPU profiling              : %-8s      # set profiling tasks {on|auto|off}\n"
 | |
| 	             "Memory usage profiling              : %-8s      # set profiling memory {on|off}\n",
 | |
| 	             str, (profiling & HA_PROF_MEMORY) ? "on" : "off");
 | |
| 
 | |
| 	if (applet_putchk(appctx, &trash) == -1) {
 | |
| 		/* failed, try again */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ctx->linenum = 0; // reset first line to dump
 | |
| 	if ((ctx->dump_step & 4) == 0)
 | |
| 		ctx->dump_step++; // next step
 | |
| 
 | |
|  skip_status:
 | |
| 	if ((ctx->dump_step & 3) != 1)
 | |
| 		goto skip_tasks;
 | |
| 
 | |
| 	memcpy(tmp_activity, sched_activity, sizeof(tmp_activity));
 | |
| 	/* for addr sort and for callee aggregation we have to first sort by address */
 | |
| 	if (ctx->aggr || ctx->by_what == 1) // sort by addr
 | |
| 		qsort(tmp_activity, SCHED_ACT_HASH_BUCKETS, sizeof(tmp_activity[0]), cmp_sched_activity_addr);	
 | |
| 
 | |
| 	if (ctx->aggr) {
 | |
| 		/* merge entries for the same callee and reset their count */
 | |
| 		for (i = j = 0; i < SCHED_ACT_HASH_BUCKETS; i = j) {
 | |
| 			for (j = i + 1; j < SCHED_ACT_HASH_BUCKETS && tmp_activity[j].func == tmp_activity[i].func; j++) {
 | |
| 				tmp_activity[i].calls    += tmp_activity[j].calls;
 | |
| 				tmp_activity[i].cpu_time += tmp_activity[j].cpu_time;
 | |
| 				tmp_activity[i].lat_time += tmp_activity[j].lat_time;
 | |
| 				tmp_activity[j].calls = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!ctx->by_what) // sort by usage
 | |
| 		qsort(tmp_activity, SCHED_ACT_HASH_BUCKETS, sizeof(tmp_activity[0]), cmp_sched_activity_calls);
 | |
| 	else if (ctx->by_what == 2) // by cpu_tot
 | |
| 		qsort(tmp_activity, SCHED_ACT_HASH_BUCKETS, sizeof(tmp_activity[0]), cmp_sched_activity_cpu);
 | |
| 
 | |
| 	if (!ctx->linenum)
 | |
| 		chunk_appendf(&trash, "Tasks activity over %.3f sec till %.3f sec ago:\n"
 | |
| 		                      "  function                      calls   cpu_tot   cpu_avg   lat_tot   lat_avg\n",
 | |
| 			      (prof_task_start_ns ? (prof_task_stop_ns ? prof_task_stop_ns : now_ns) - prof_task_start_ns : 0) / 1000000000.0,
 | |
| 			      (prof_task_stop_ns ? now_ns - prof_task_stop_ns : 0) / 1000000000.0);
 | |
| 
 | |
| 	max_lines = ctx->maxcnt;
 | |
| 	if (!max_lines)
 | |
| 		max_lines = SCHED_ACT_HASH_BUCKETS;
 | |
| 
 | |
| 	dumped = 0;
 | |
| 	for (i = ctx->linenum; i < max_lines; i++) {
 | |
| 		if (!tmp_activity[i].calls)
 | |
| 			continue; // skip aggregated or empty entries
 | |
| 
 | |
| 		ctx->linenum = i;
 | |
| 
 | |
| 		/* resolve_sym_name() may be slow, better dump a few entries at a time */
 | |
| 		if (dumped >= 10)
 | |
| 			return 0;
 | |
| 
 | |
| 		chunk_reset(name_buffer);
 | |
| 		caller = HA_ATOMIC_LOAD(&tmp_activity[i].caller);
 | |
| 
 | |
| 		if (!tmp_activity[i].func)
 | |
| 			chunk_printf(name_buffer, "other");
 | |
| 		else
 | |
| 			resolve_sym_name(name_buffer, "", tmp_activity[i].func);
 | |
| 
 | |
| 		/* reserve 35 chars for name+' '+#calls, knowing that longer names
 | |
| 		 * are often used for less often called functions.
 | |
| 		 */
 | |
| 		max = 35 - name_buffer->data;
 | |
| 		if (max < 1)
 | |
| 			max = 1;
 | |
| 		chunk_appendf(&trash, "  %s%*llu", name_buffer->area, max, (unsigned long long)tmp_activity[i].calls);
 | |
| 
 | |
| 		print_time_short(&trash, "   ", tmp_activity[i].cpu_time, "");
 | |
| 		print_time_short(&trash, "   ", tmp_activity[i].cpu_time / tmp_activity[i].calls, "");
 | |
| 		print_time_short(&trash, "   ", tmp_activity[i].lat_time, "");
 | |
| 		print_time_short(&trash, "   ", tmp_activity[i].lat_time / tmp_activity[i].calls, "");
 | |
| 
 | |
| 		if (caller && !ctx->aggr && caller->what <= WAKEUP_TYPE_APPCTX_WAKEUP)
 | |
| 			chunk_appendf(&trash, " <- %s@%s:%d %s",
 | |
| 				      caller->func, caller->file, caller->line,
 | |
| 				      task_wakeup_type_str(caller->what));
 | |
| 
 | |
| 		b_putchr(&trash, '\n');
 | |
| 
 | |
| 		if (applet_putchk(appctx, &trash) == -1) {
 | |
| 			/* failed, try again */
 | |
| 			return 0;
 | |
| 		}
 | |
| 		dumped++;
 | |
| 	}
 | |
| 
 | |
| 	if (applet_putchk(appctx, &trash) == -1) {
 | |
| 		/* failed, try again */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ctx->linenum = 0; // reset first line to dump
 | |
| 	if ((ctx->dump_step & 4) == 0)
 | |
| 		ctx->dump_step++; // next step
 | |
| 
 | |
|  skip_tasks:
 | |
| 
 | |
| #ifdef USE_MEMORY_PROFILING
 | |
| 	if ((ctx->dump_step & 3) != 2)
 | |
| 		goto skip_mem;
 | |
| 
 | |
| 	memcpy(tmp_memstats, memprof_stats, sizeof(tmp_memstats));
 | |
| 	if (ctx->by_what)
 | |
| 		qsort(tmp_memstats, MEMPROF_HASH_BUCKETS+1, sizeof(tmp_memstats[0]), cmp_memprof_addr);
 | |
| 	else
 | |
| 		qsort(tmp_memstats, MEMPROF_HASH_BUCKETS+1, sizeof(tmp_memstats[0]), cmp_memprof_stats);
 | |
| 
 | |
| 	if (!ctx->linenum)
 | |
| 		chunk_appendf(&trash,
 | |
| 		              "Alloc/Free statistics by call place over %.3f sec till %.3f sec ago:\n"
 | |
| 		              "         Calls         |         Tot Bytes           |       Caller and method\n"
 | |
| 		              "<- alloc -> <- free  ->|<-- alloc ---> <-- free ---->|\n",
 | |
| 			      (prof_mem_start_ns ? (prof_mem_stop_ns ? prof_mem_stop_ns : now_ns) - prof_mem_start_ns : 0) / 1000000000.0,
 | |
| 			      (prof_mem_stop_ns ? now_ns - prof_mem_stop_ns : 0) / 1000000000.0);
 | |
| 
 | |
| 	max_lines = ctx->maxcnt;
 | |
| 	if (!max_lines)
 | |
| 		max_lines = MEMPROF_HASH_BUCKETS + 1;
 | |
| 
 | |
| 	dumped = 0;
 | |
| 	for (i = ctx->linenum; i < max_lines; i++) {
 | |
| 		struct memprof_stats *entry = &tmp_memstats[i];
 | |
| 
 | |
| 		ctx->linenum = i;
 | |
| 		if (!entry->alloc_calls && !entry->free_calls)
 | |
| 			continue;
 | |
| 
 | |
| 		/* resolve_sym_name() may be slow, better dump a few entries at a time */
 | |
| 		if (dumped >= 10)
 | |
| 			return 0;
 | |
| 
 | |
| 		chunk_appendf(&trash, "%11llu %11llu %14llu %14llu| %16p ",
 | |
| 			      entry->alloc_calls, entry->free_calls,
 | |
| 			      entry->alloc_tot, entry->free_tot,
 | |
| 			      entry->caller);
 | |
| 
 | |
| 		if (entry->caller)
 | |
| 			resolve_sym_name(&trash, NULL, entry->caller);
 | |
| 		else
 | |
| 			chunk_appendf(&trash, "[other]");
 | |
| 
 | |
| 		if (((1UL << tmp_memstats[i].method) & MEMPROF_FREE_MASK) || !entry->alloc_calls) {
 | |
| 			chunk_appendf(&trash," %s(%lld)", memprof_methods[entry->method],
 | |
| 				(long long)(entry->alloc_tot - entry->free_tot) / (long long)(entry->alloc_calls + entry->free_calls));
 | |
| 		} else
 | |
| 			chunk_appendf(&trash," %s(%lld)", memprof_methods[entry->method],
 | |
| 				(long long)(entry->alloc_tot) / (long long)(entry->alloc_calls));
 | |
| 
 | |
| 		if (entry->alloc_tot && entry->free_tot) {
 | |
| 			/* that's a realloc, show the total diff to help spot leaks */
 | |
| 			chunk_appendf(&trash," [delta=%lld]", (long long)(entry->alloc_tot - entry->free_tot));
 | |
| 		}
 | |
| 
 | |
| 		if (entry->info) {
 | |
| 			/* that's a pool name */
 | |
| 			const struct pool_head *pool = entry->info;
 | |
| 			chunk_appendf(&trash," [pool=%s]", pool->name);
 | |
| 		}
 | |
| 
 | |
| 		chunk_appendf(&trash, "\n");
 | |
| 
 | |
| 		if (applet_putchk(appctx, &trash) == -1)
 | |
| 			return 0;
 | |
| 
 | |
| 		dumped++;
 | |
| 	}
 | |
| 
 | |
| 	if (applet_putchk(appctx, &trash) == -1)
 | |
| 		return 0;
 | |
| 
 | |
| 	tot_alloc_calls = tot_free_calls = tot_alloc_bytes = tot_free_bytes = 0;
 | |
| 	for (i = 0; i < max_lines; i++) {
 | |
| 		tot_alloc_calls += tmp_memstats[i].alloc_calls;
 | |
| 		tot_alloc_bytes += tmp_memstats[i].alloc_tot;
 | |
| 		if ((1UL << tmp_memstats[i].method) & MEMPROF_FREE_MASK) {
 | |
| 			tot_free_calls  += tmp_memstats[i].free_calls;
 | |
| 			tot_free_bytes  += tmp_memstats[i].free_tot;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* last step: summarize by DSO. We create one entry per new DSO in
 | |
| 	 * tmp_memstats, which is thus destroyed. The DSO's name is allocated
 | |
| 	 * and stored into tmp_stats.info. Must be freed at the end. We store
 | |
| 	 * <max> dso entries total. There are very few so we do that in a single
 | |
| 	 * pass and append it after the total.
 | |
| 	 */
 | |
| 	for (i = max = 0; i < max_lines; i++) {
 | |
| 		struct memprof_stats *entry = &tmp_memstats[i];
 | |
| 
 | |
| 		if (!entry->alloc_calls && !entry->free_calls)
 | |
| 			continue;
 | |
| 
 | |
| 		chunk_reset(name_buffer);
 | |
| 		if (!entry->caller)
 | |
| 			chunk_printf(name_buffer, "other");
 | |
| 		else
 | |
| 			resolve_dso_name(name_buffer, "", entry->caller);
 | |
| 
 | |
| 		/* look it up among known names (0..max) */
 | |
| 		for (j = 0; j < max; j++) {
 | |
| 			if (tmp_memstats[j].info && strcmp(name_buffer->area, tmp_memstats[j].info) == 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (j == max) {
 | |
| 			/* not found, create a new entry at <j>. We need to be
 | |
| 			 * careful as it could be the same as <entry> (i)!
 | |
| 			 */
 | |
| 			max++;
 | |
| 
 | |
| 			if (j != i) // set max to keep min caller's address
 | |
| 				tmp_memstats[j].caller = (void*)-1;
 | |
| 
 | |
| 			tmp_memstats[j].info = strdup(name_buffer->area);   // may fail, but checked when used
 | |
| 			tmp_memstats[j].alloc_calls = entry->alloc_calls;
 | |
| 			tmp_memstats[j].alloc_tot   = entry->alloc_tot;
 | |
| 			if ((1UL << entry->method) & MEMPROF_FREE_MASK) {
 | |
| 				tmp_memstats[j].free_calls  = entry->free_calls;
 | |
| 				tmp_memstats[j].free_tot    = entry->free_tot;
 | |
| 			} else {
 | |
| 				tmp_memstats[j].free_calls  = 0;
 | |
| 				tmp_memstats[j].free_tot    = 0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			tmp_memstats[j].alloc_calls += entry->alloc_calls;
 | |
| 			tmp_memstats[j].alloc_tot += entry->alloc_tot;
 | |
| 			if ((1UL << entry->method) & MEMPROF_FREE_MASK) {
 | |
| 				tmp_memstats[j].free_calls  += entry->free_calls;
 | |
| 				tmp_memstats[j].free_tot  += entry->free_tot;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (entry->caller &&
 | |
| 		    tmp_memstats[j].caller > entry->caller)
 | |
| 			tmp_memstats[j].caller = entry->caller; // keep lowest address
 | |
| 	}
 | |
| 
 | |
| 	/* now we have entries 0..max-1 that are filled with per-DSO stats. This is
 | |
| 	 * compact enough to fit next to the total line in one buffer, hence no
 | |
| 	 * state kept.
 | |
| 	 */
 | |
| 	chunk_appendf(&trash,
 | |
| 	              "-----------------------|-----------------------------| "
 | |
| 		      " - min caller - | -- by DSO below --\n");
 | |
| 
 | |
| 	for (i = 0; i < max; i++) {
 | |
| 		struct memprof_stats *entry = &tmp_memstats[i];
 | |
| 
 | |
| 		chunk_appendf(&trash, "%11llu %11llu %14llu %14llu| %16p DSO:%s;",
 | |
| 			      entry->alloc_calls, entry->free_calls,
 | |
| 			      entry->alloc_tot, entry->free_tot,
 | |
| 			      entry->caller == (void*)-1 ? 0 : entry->caller, entry->info ? (const char*)entry->info : "other");
 | |
| 
 | |
| 		if (entry->alloc_tot != entry->free_tot)
 | |
| 			chunk_appendf(&trash, " delta_calls=%lld; delta_bytes=%lld",
 | |
| 				      (long long)(entry->alloc_calls - entry->free_calls),
 | |
| 				      (long long)(entry->alloc_tot - entry->free_tot));
 | |
| 		chunk_appendf(&trash, "\n");
 | |
| 	}
 | |
| 
 | |
| 	chunk_appendf(&trash,
 | |
| 	              "-----------------------|-----------------------------|\n"
 | |
| 		      "%11llu %11llu %14llu %14llu| <- Total; Delta_calls=%lld; Delta_bytes=%lld\n",
 | |
| 		      tot_alloc_calls, tot_free_calls,
 | |
| 		      tot_alloc_bytes, tot_free_bytes,
 | |
| 		      tot_alloc_calls - tot_free_calls,
 | |
| 		      tot_alloc_bytes - tot_free_bytes);
 | |
| 
 | |
| 	if (applet_putchk(appctx, &trash) == -1)
 | |
| 		return 0;
 | |
| 
 | |
| 	ctx->linenum = 0; // reset first line to dump
 | |
| 	if ((ctx->dump_step & 4) == 0)
 | |
| 		ctx->dump_step++; // next step
 | |
| 
 | |
|  skip_mem:
 | |
| #endif // USE_MEMORY_PROFILING
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* parse a "show profiling" command. It returns 1 on failure, 0 if it starts to dump.
 | |
|  *  - cli.i0 is set to the first state (0=all, 4=status, 5=tasks, 6=memory)
 | |
|  *  - cli.o1 is set to 1 if the output must be sorted by addr instead of usage
 | |
|  *  - cli.o0 is set to the number of lines of output
 | |
|  */
 | |
| static int cli_parse_show_profiling(char **args, char *payload, struct appctx *appctx, void *private)
 | |
| {
 | |
| 	struct show_prof_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
 | |
| 	int arg;
 | |
| 
 | |
| 	if (!cli_has_level(appctx, ACCESS_LVL_ADMIN))
 | |
| 		return 1;
 | |
| 
 | |
| 	for (arg = 2; *args[arg]; arg++) {
 | |
| 		if (strcmp(args[arg], "all") == 0) {
 | |
| 			ctx->dump_step = 0; // will cycle through 0,1,2; default
 | |
| 		}
 | |
| 		else if (strcmp(args[arg], "status") == 0) {
 | |
| 			ctx->dump_step = 4; // will visit status only
 | |
| 		}
 | |
| 		else if (strcmp(args[arg], "tasks") == 0) {
 | |
| 			ctx->dump_step = 5; // will visit tasks only
 | |
| 		}
 | |
| 		else if (strcmp(args[arg], "memory") == 0) {
 | |
| 			ctx->dump_step = 6; // will visit memory only
 | |
| 		}
 | |
| 		else if (strcmp(args[arg], "byaddr") == 0) {
 | |
| 			ctx->by_what = 1; // sort output by address instead of usage
 | |
| 		}
 | |
| 		else if (strcmp(args[arg], "bytime") == 0) {
 | |
| 			ctx->by_what = 2; // sort output by total time instead of usage
 | |
| 		}
 | |
| 		else if (strcmp(args[arg], "aggr") == 0) {
 | |
| 			ctx->aggr = 1;    // aggregate output by callee
 | |
| 		}
 | |
| 		else if (isdigit((unsigned char)*args[arg])) {
 | |
| 			ctx->maxcnt = atoi(args[arg]); // number of entries to dump
 | |
| 		}
 | |
| 		else
 | |
| 			return cli_err(appctx, "Expects either 'all', 'status', 'tasks', 'memory', 'byaddr', 'bytime', 'aggr' or a max number of output lines.\n");
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This function scans all threads' run queues and collects statistics about
 | |
|  * running tasks. It returns 0 if the output buffer is full and it needs to be
 | |
|  * called again, otherwise non-zero.
 | |
|  */
 | |
| static int cli_io_handler_show_tasks(struct appctx *appctx)
 | |
| {
 | |
| 	struct sched_activity tmp_activity[SCHED_ACT_HASH_BUCKETS] __attribute__((aligned(64)));
 | |
| 	struct buffer *name_buffer = get_trash_chunk();
 | |
| 	struct sched_activity *entry;
 | |
| 	const struct tasklet *tl;
 | |
| 	const struct task *t;
 | |
| 	uint64_t now_ns, lat;
 | |
| 	struct eb32_node *rqnode;
 | |
| 	uint64_t tot_calls;
 | |
| 	int thr, queue;
 | |
| 	int i, max;
 | |
| 
 | |
| 	/* It's not possible to scan queues in small chunks and yield in the
 | |
| 	 * middle of the dump and come back again. So what we're doing instead
 | |
| 	 * is to freeze all threads and inspect their queues at once as fast as
 | |
| 	 * possible, using a sched_activity array to collect metrics with
 | |
| 	 * limited collision, then we'll report statistics only. The tasks'
 | |
| 	 * #calls will reflect the number of occurrences, and the lat_time will
 | |
| 	 * reflect the latency when set. We prefer to take the time before
 | |
| 	 * calling thread_isolate() so that the wait time doesn't impact the
 | |
| 	 * measurement accuracy. However this requires to take care of negative
 | |
| 	 * times since tasks might be queued after we retrieve it.
 | |
| 	 */
 | |
| 
 | |
| 	now_ns = now_mono_time();
 | |
| 	memset(tmp_activity, 0, sizeof(tmp_activity));
 | |
| 
 | |
| 	thread_isolate();
 | |
| 
 | |
| 	/* 1. global run queue */
 | |
| 
 | |
| #ifdef USE_THREAD
 | |
| 	for (thr = 0; thr < global.nbthread; thr++) {
 | |
| 		/* task run queue */
 | |
| 		rqnode = eb32_first(&ha_thread_ctx[thr].rqueue_shared);
 | |
| 		while (rqnode) {
 | |
| 			t = eb32_entry(rqnode, struct task, rq);
 | |
| 			entry = sched_activity_entry(tmp_activity, t->process, NULL);
 | |
| 			if (t->wake_date) {
 | |
| 				lat = now_ns - t->wake_date;
 | |
| 				if ((int64_t)lat > 0)
 | |
| 					entry->lat_time += lat;
 | |
| 			}
 | |
| 			entry->calls++;
 | |
| 			rqnode = eb32_next(rqnode);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	/* 2. all threads's local run queues */
 | |
| 	for (thr = 0; thr < global.nbthread; thr++) {
 | |
| 		/* task run queue */
 | |
| 		rqnode = eb32_first(&ha_thread_ctx[thr].rqueue);
 | |
| 		while (rqnode) {
 | |
| 			t = eb32_entry(rqnode, struct task, rq);
 | |
| 			entry = sched_activity_entry(tmp_activity, t->process, NULL);
 | |
| 			if (t->wake_date) {
 | |
| 				lat = now_ns - t->wake_date;
 | |
| 				if ((int64_t)lat > 0)
 | |
| 					entry->lat_time += lat;
 | |
| 			}
 | |
| 			entry->calls++;
 | |
| 			rqnode = eb32_next(rqnode);
 | |
| 		}
 | |
| 
 | |
| 		/* shared tasklet list */
 | |
| 		list_for_each_entry(tl, mt_list_to_list(&ha_thread_ctx[thr].shared_tasklet_list), list) {
 | |
| 			t = (const struct task *)tl;
 | |
| 			entry = sched_activity_entry(tmp_activity, t->process, NULL);
 | |
| 			if (!TASK_IS_TASKLET(t) && t->wake_date) {
 | |
| 				lat = now_ns - t->wake_date;
 | |
| 				if ((int64_t)lat > 0)
 | |
| 					entry->lat_time += lat;
 | |
| 			}
 | |
| 			entry->calls++;
 | |
| 		}
 | |
| 
 | |
| 		/* classful tasklets */
 | |
| 		for (queue = 0; queue < TL_CLASSES; queue++) {
 | |
| 			list_for_each_entry(tl, &ha_thread_ctx[thr].tasklets[queue], list) {
 | |
| 				t = (const struct task *)tl;
 | |
| 				entry = sched_activity_entry(tmp_activity, t->process, NULL);
 | |
| 				if (!TASK_IS_TASKLET(t) && t->wake_date) {
 | |
| 					lat = now_ns - t->wake_date;
 | |
| 					if ((int64_t)lat > 0)
 | |
| 						entry->lat_time += lat;
 | |
| 				}
 | |
| 				entry->calls++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* hopefully we're done */
 | |
| 	thread_release();
 | |
| 
 | |
| 	chunk_reset(&trash);
 | |
| 
 | |
| 	tot_calls = 0;
 | |
| 	for (i = 0; i < SCHED_ACT_HASH_BUCKETS; i++)
 | |
| 		tot_calls += tmp_activity[i].calls;
 | |
| 
 | |
| 	qsort(tmp_activity, SCHED_ACT_HASH_BUCKETS, sizeof(tmp_activity[0]), cmp_sched_activity_calls);
 | |
| 
 | |
| 	chunk_appendf(&trash, "Running tasks: %d (%d threads)\n"
 | |
| 		      "  function                     places     %%    lat_tot   lat_avg\n",
 | |
| 		      (int)tot_calls, global.nbthread);
 | |
| 
 | |
| 	for (i = 0; i < SCHED_ACT_HASH_BUCKETS && tmp_activity[i].calls; i++) {
 | |
| 		chunk_reset(name_buffer);
 | |
| 
 | |
| 		if (!tmp_activity[i].func)
 | |
| 			chunk_printf(name_buffer, "other");
 | |
| 		else
 | |
| 			resolve_sym_name(name_buffer, "", tmp_activity[i].func);
 | |
| 
 | |
| 		/* reserve 35 chars for name+' '+#calls, knowing that longer names
 | |
| 		 * are often used for less often called functions.
 | |
| 		 */
 | |
| 		max = 35 - name_buffer->data;
 | |
| 		if (max < 1)
 | |
| 			max = 1;
 | |
| 		chunk_appendf(&trash, "  %s%*llu  %3d.%1d",
 | |
| 		              name_buffer->area, max, (unsigned long long)tmp_activity[i].calls,
 | |
| 		              (int)(100ULL * tmp_activity[i].calls / tot_calls),
 | |
| 		              (int)((1000ULL * tmp_activity[i].calls / tot_calls)%10));
 | |
| 		print_time_short(&trash, "   ", tmp_activity[i].lat_time, "");
 | |
| 		print_time_short(&trash, "   ", tmp_activity[i].lat_time / tmp_activity[i].calls, "\n");
 | |
| 	}
 | |
| 
 | |
| 	if (applet_putchk(appctx, &trash) == -1) {
 | |
| 		/* failed, try again */
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* This function dumps some activity counters used by developers and support to
 | |
|  * rule out some hypothesis during bug reports. It returns 0 if the output
 | |
|  * buffer is full and it needs to be called again, otherwise non-zero. It dumps
 | |
|  * everything at once in the buffer and is not designed to do it in multiple
 | |
|  * passes.
 | |
|  */
 | |
| static int cli_io_handler_show_activity(struct appctx *appctx)
 | |
| {
 | |
| 	struct show_activity_ctx *actctx = appctx->svcctx;
 | |
| 	int tgt = actctx->thr; // target thread, -1 for all, 0 for total only
 | |
| 	uint up_sec, up_usec;
 | |
| 	int base_line;
 | |
| 	ullong up;
 | |
| 
 | |
| 	/* this macro is used below to dump values. The thread number is "thr",
 | |
| 	 * and runs from 0 to nbt-1 when values are printed using the formula.
 | |
| 	 * We normally try to dmup integral lines in order to keep counters
 | |
| 	 * consistent. If we fail once on a line, we'll detect it next time
 | |
| 	 * because we'll have committed actctx->col=1 thanks to the header
 | |
| 	 * always being dumped individually. We'll be called again thanks to
 | |
| 	 * the header being present, leaving some data in the buffer. In this
 | |
| 	 * case once we restart we'll proceed one column at a time to make sure
 | |
| 	 * we don't overflow the buffer again.
 | |
| 	 */
 | |
| #undef SHOW_VAL
 | |
| #define SHOW_VAL(header, x, formula)					\
 | |
| 	do {								\
 | |
| 		unsigned int _v[MAX_THREADS];				\
 | |
| 		unsigned int _tot;					\
 | |
| 		const int _nbt = global.nbthread;			\
 | |
| 		int restarted = actctx->col > 0;			\
 | |
| 		int thr;						\
 | |
| 		_tot = thr = 0;						\
 | |
| 		do {							\
 | |
| 			_tot += _v[thr] = (x);				\
 | |
| 		} while (++thr < _nbt);					\
 | |
| 		for (thr = actctx->col - 2; thr <= _nbt; thr++) {	\
 | |
| 			if (thr == -2) {				\
 | |
| 				/* line header */			\
 | |
| 				chunk_appendf(&trash, "%s", header);	\
 | |
| 			}						\
 | |
| 			else if (thr == -1) {				\
 | |
| 				/* aggregate value only for multi-thread: all & 0 */ \
 | |
| 				if (_nbt > 1 && tgt <= 0)		\
 | |
| 					chunk_appendf(&trash, " %u%s",	\
 | |
| 						      (formula),	\
 | |
| 						      (tgt < 0) ?	\
 | |
| 						      " [" : "");	\
 | |
| 			}						\
 | |
| 			else if (thr < _nbt) {				\
 | |
| 				/* individual value only for all or exact value */ \
 | |
| 				if (tgt == -1 || tgt == thr+1)		\
 | |
| 					chunk_appendf(&trash, " %u",	\
 | |
| 						      _v[thr]);		\
 | |
| 			}						\
 | |
| 			else /* thr == _nbt */ {			\
 | |
| 				chunk_appendf(&trash, "%s\n",		\
 | |
| 					      (_nbt > 1 && tgt < 0) ?	\
 | |
| 					      " ]" : "");		\
 | |
| 			}						\
 | |
| 			if (thr == -2 || restarted) {			\
 | |
| 				/* failed once, emit one column at a time */\
 | |
| 				if (applet_putchk(appctx, &trash) == -1) \
 | |
| 					break; /* main loop handles it */ \
 | |
| 				chunk_reset(&trash);			\
 | |
| 				actctx->col = thr + 3;			\
 | |
| 			}						\
 | |
| 		}							\
 | |
| 		if (applet_putchk(appctx, &trash) == -1)		\
 | |
| 			break; /* main loop will handle it */		\
 | |
| 		/* OK dump done for this line */			\
 | |
| 		chunk_reset(&trash);					\
 | |
| 		if (thr > _nbt)						\
 | |
| 			actctx->col = 0;				\
 | |
| 	} while (0)
 | |
| 
 | |
| 	/* retrieve uptime */
 | |
| 	up = now_ns - start_time_ns;
 | |
| 	up_sec = ns_to_sec(up);
 | |
| 	up_usec = (up / 1000U) % 1000000U;
 | |
| 
 | |
| 	/* iterate over all dump lines. It happily skips over holes so it's
 | |
| 	 * not a problem not to have an exact match, we just need to have
 | |
| 	 * stable and consistent lines during a dump.
 | |
| 	 */
 | |
| 	base_line = __LINE__;
 | |
| 	do {
 | |
| 		chunk_reset(&trash);
 | |
| 
 | |
| 		switch (actctx->line + base_line) {
 | |
| 		case __LINE__: chunk_appendf(&trash, "thread_id: %u (%u..%u)\n", tid + 1, 1, global.nbthread); break;
 | |
| 		case __LINE__: chunk_appendf(&trash, "date_now: %lu.%06lu\n", (ulong)date.tv_sec, (ulong)date.tv_usec); break;
 | |
| 		case __LINE__: chunk_appendf(&trash, "uptime_now: %u.%06u\n", up_sec, up_usec); break;
 | |
| 		case __LINE__: SHOW_VAL("ctxsw:",        activity[thr].ctxsw, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("tasksw:",       activity[thr].tasksw, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("empty_rq:",     activity[thr].empty_rq, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("long_rq:",      activity[thr].long_rq, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("curr_rq:",      _HA_ATOMIC_LOAD(&ha_thread_ctx[thr].rq_total), _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("loops:",        activity[thr].loops, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("wake_tasks:",   activity[thr].wake_tasks, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("wake_signal:",  activity[thr].wake_signal, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("poll_io:",      activity[thr].poll_io, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("poll_exp:",     activity[thr].poll_exp, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("poll_drop_fd:", activity[thr].poll_drop_fd, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("poll_skip_fd:", activity[thr].poll_skip_fd, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("conn_dead:",    activity[thr].conn_dead, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("stream_calls:", activity[thr].stream_calls, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("pool_fail:",    activity[thr].pool_fail, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("buf_wait:",     activity[thr].buf_wait, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("cpust_ms_tot:", activity[thr].cpust_total / 2, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("cpust_ms_1s:",  read_freq_ctr(&activity[thr].cpust_1s) / 2, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("cpust_ms_15s:", read_freq_ctr_period(&activity[thr].cpust_15s, 15000) / 2, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("avg_cpu_pct:",  (100 - ha_thread_ctx[thr].idle_pct), (_tot + _nbt/2) / _nbt); break;
 | |
| 		case __LINE__: SHOW_VAL("avg_loop_us:",  swrate_avg(activity[thr].avg_loop_us, TIME_STATS_SAMPLES), (_tot + _nbt/2) / _nbt); break;
 | |
| 		case __LINE__: SHOW_VAL("accepted:",     activity[thr].accepted, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("accq_pushed:",  activity[thr].accq_pushed, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("accq_full:",    activity[thr].accq_full, _tot); break;
 | |
| #ifdef USE_THREAD
 | |
| 		case __LINE__: SHOW_VAL("accq_ring:",    accept_queue_ring_len(&accept_queue_rings[thr]), _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("fd_takeover:",  activity[thr].fd_takeover, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("check_adopted:",activity[thr].check_adopted, _tot); break;
 | |
| #endif
 | |
| 		case __LINE__: SHOW_VAL("check_started:",activity[thr].check_started, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("check_active:", _HA_ATOMIC_LOAD(&ha_thread_ctx[thr].active_checks), _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("check_running:",_HA_ATOMIC_LOAD(&ha_thread_ctx[thr].running_checks), _tot); break;
 | |
| 
 | |
| #if defined(DEBUG_DEV)
 | |
| 			/* keep these ones at the end */
 | |
| 		case __LINE__: SHOW_VAL("ctr0:",         activity[thr].ctr0, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("ctr1:",         activity[thr].ctr1, _tot); break;
 | |
| 		case __LINE__: SHOW_VAL("ctr2:",         activity[thr].ctr2, _tot); break;
 | |
| #endif
 | |
| 		}
 | |
| #undef SHOW_VAL
 | |
| 
 | |
| 		/* try to dump what was possibly not dumped yet */
 | |
| 
 | |
| 		if (applet_putchk(appctx, &trash) == -1) {
 | |
| 			/* buffer full, retry later */
 | |
| 			return 0;
 | |
| 		}
 | |
| 		/* line was dumped, let's commit it */
 | |
| 		actctx->line++;
 | |
| 	} while (actctx->line + base_line < __LINE__);
 | |
| 
 | |
| 	/* dump complete */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* parse a "show activity" CLI request. Returns 0 if it needs to continue, 1 if it
 | |
|  * wants to stop here. It sets a show_activity_ctx context where, if a specific
 | |
|  * thread is requested, it puts the thread number into ->thr otherwise sets it to
 | |
|  * -1.
 | |
|  */
 | |
| static int cli_parse_show_activity(char **args, char *payload, struct appctx *appctx, void *private)
 | |
| {
 | |
| 	struct show_activity_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
 | |
| 
 | |
| 	if (!cli_has_level(appctx, ACCESS_LVL_OPER))
 | |
| 		return 1;
 | |
| 
 | |
| 	ctx->thr = -1; // show all by default
 | |
| 	if (*args[2])
 | |
| 		ctx->thr = atoi(args[2]);
 | |
| 
 | |
| 	if (ctx->thr < -1 || ctx->thr > global.nbthread)
 | |
| 		return cli_err(appctx, "Thread ID number must be between -1 and nbthread\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* config keyword parsers */
 | |
| static struct cfg_kw_list cfg_kws = {ILH, {
 | |
| #ifdef USE_MEMORY_PROFILING
 | |
| 	{ CFG_GLOBAL, "profiling.memory",     cfg_parse_prof_memory     },
 | |
| #endif
 | |
| 	{ CFG_GLOBAL, "profiling.tasks",      cfg_parse_prof_tasks      },
 | |
| 	{ 0, NULL, NULL }
 | |
| }};
 | |
| 
 | |
| INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
 | |
| 
 | |
| /* register cli keywords */
 | |
| static struct cli_kw_list cli_kws = {{ },{
 | |
| 	{ { "set",  "profiling", NULL }, "set profiling <what> {auto|on|off}      : enable/disable resource profiling (tasks,memory)", cli_parse_set_profiling,  NULL },
 | |
| 	{ { "show", "activity", NULL },  "show activity [-1|0|thread_num]         : show per-thread activity stats (for support/developers)", cli_parse_show_activity, cli_io_handler_show_activity, NULL },
 | |
| 	{ { "show", "profiling", NULL }, "show profiling [<what>|<#lines>|<opts>]*: show profiling state (all,status,tasks,memory)",   cli_parse_show_profiling, cli_io_handler_show_profiling, NULL },
 | |
| 	{ { "show", "tasks", NULL },     "show tasks                              : show running tasks",                               NULL, cli_io_handler_show_tasks,     NULL },
 | |
| 	{{},}
 | |
| }};
 | |
| 
 | |
| INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
 |