haproxy/src/session.c
Amaury Denoyelle 12c40c25a9 MEDIUM: rhttp: create session for active preconnect
Modify rhttp preconnect by instantiating a new session for each
connection attempt. Connection is thus linked to a session directly on
its instantiation contrary to previously where no session existed until
listener_accept().

This patch will allow to extend rhttp usage. Most notably, it will be
useful to use various sample fetches on the server line and extend
logging capabilities.

Changes are minimal, yet consequences are considered not trivial as for
the first time a FE connection session is instantiated before
listener_accept(). This requires an extra explicit check in
session_accept_fd() to not overwrite an existing session. Also, flag
SESS_FL_RELEASE_LI is not set immediately as listener counters must note
be decremented if connection and its session are freed before reversal
is completed, or else listener counters will be invalid.

conn_session_free() is used as connection destroy callback to ensure the
session will be freed automatically on connection release.
2024-05-22 10:01:57 +02:00

543 lines
17 KiB
C

/*
* Session management functions.
*
* Copyright 2000-2015 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <haproxy/ssl_sock-t.h>
#include <haproxy/api.h>
#include <haproxy/connection.h>
#include <haproxy/global.h>
#include <haproxy/http.h>
#include <haproxy/listener.h>
#include <haproxy/log.h>
#include <haproxy/pool.h>
#include <haproxy/proxy.h>
#include <haproxy/session.h>
#include <haproxy/tcp_rules.h>
#include <haproxy/tools.h>
#include <haproxy/vars.h>
DECLARE_POOL(pool_head_session, "session", sizeof(struct session));
DECLARE_POOL(pool_head_sess_priv_conns, "session priv conns list",
sizeof(struct sess_priv_conns));
int conn_complete_session(struct connection *conn);
/* Create a a new session and assign it to frontend <fe>, listener <li>,
* origin <origin>, set the current date and clear the stick counters pointers.
* Returns the session upon success or NULL. The session may be released using
* session_free(). Note: <li> may be NULL.
*/
struct session *session_new(struct proxy *fe, struct listener *li, enum obj_type *origin)
{
struct session *sess;
sess = pool_alloc(pool_head_session);
if (sess) {
sess->listener = li;
sess->fe = fe;
sess->origin = origin;
sess->accept_date = date; /* user-visible date for logging */
sess->accept_ts = now_ns; /* corrected date for internal use */
sess->stkctr = NULL;
if (pool_head_stk_ctr) {
sess->stkctr = pool_alloc(pool_head_stk_ctr);
if (!sess->stkctr)
goto out_fail_alloc;
memset(sess->stkctr, 0, sizeof(sess->stkctr[0]) * global.tune.nb_stk_ctr);
}
vars_init_head(&sess->vars, SCOPE_SESS);
sess->task = NULL;
sess->t_handshake = -1; /* handshake not done yet */
sess->t_idle = -1;
_HA_ATOMIC_INC(&totalconn);
_HA_ATOMIC_INC(&jobs);
LIST_INIT(&sess->priv_conns);
sess->idle_conns = 0;
sess->flags = SESS_FL_NONE;
sess->src = NULL;
sess->dst = NULL;
}
return sess;
out_fail_alloc:
pool_free(pool_head_session, sess);
return NULL;
}
void session_free(struct session *sess)
{
struct connection *conn, *conn_back;
struct sess_priv_conns *pconns, *pconns_back;
if (sess->flags & SESS_FL_RELEASE_LI) {
/* listener must be set for session used to account FE conns. */
BUG_ON(!sess->listener);
listener_release(sess->listener);
}
session_store_counters(sess);
pool_free(pool_head_stk_ctr, sess->stkctr);
vars_prune_per_sess(&sess->vars);
conn = objt_conn(sess->origin);
if (conn != NULL && conn->mux)
conn->mux->destroy(conn->ctx);
list_for_each_entry_safe(pconns, pconns_back, &sess->priv_conns, sess_el) {
list_for_each_entry_safe(conn, conn_back, &pconns->conn_list, sess_el) {
LIST_DEL_INIT(&conn->sess_el);
conn->owner = NULL;
conn->flags &= ~CO_FL_SESS_IDLE;
conn_release(conn);
}
MT_LIST_DELETE(&pconns->srv_el);
pool_free(pool_head_sess_priv_conns, pconns);
}
sockaddr_free(&sess->src);
sockaddr_free(&sess->dst);
pool_free(pool_head_session, sess);
_HA_ATOMIC_DEC(&jobs);
}
/* callback used from the connection/mux layer to notify that a connection is
* going to be released.
*/
void conn_session_free(struct connection *conn)
{
session_free(conn->owner);
conn->owner = NULL;
}
/* count a new session to keep frontend, listener and track stats up to date */
static void session_count_new(struct session *sess)
{
struct stkctr *stkctr;
void *ptr;
int i;
proxy_inc_fe_sess_ctr(sess->listener, sess->fe);
for (i = 0; i < global.tune.nb_stk_ctr; i++) {
stkctr = &sess->stkctr[i];
if (!stkctr_entry(stkctr))
continue;
ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_CNT);
if (ptr)
HA_ATOMIC_INC(&stktable_data_cast(ptr, std_t_uint));
ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_RATE);
if (ptr)
update_freq_ctr_period(&stktable_data_cast(ptr, std_t_frqp),
stkctr->table->data_arg[STKTABLE_DT_SESS_RATE].u, 1);
}
}
/* This function is called from the protocol layer accept() in order to
* instantiate a new session on behalf of a given listener and frontend. It
* returns a positive value upon success, 0 if the connection can be ignored,
* or a negative value upon critical failure. The accepted connection is
* closed if we return <= 0. If no handshake is needed, it immediately tries
* to instantiate a new stream. The connection must already have been filled
* with the incoming connection handle (a fd), a target (the listener) and a
* source address.
*/
int session_accept_fd(struct connection *cli_conn)
{
struct listener *l = __objt_listener(cli_conn->target);
struct proxy *p = l->bind_conf->frontend;
int cfd = cli_conn->handle.fd;
struct session *sess;
int ret;
ret = -1; /* assume unrecoverable error by default */
cli_conn->proxy_netns = l->rx.settings->netns;
/* Active reversed connection has already been initialized before being
* accepted. It must not be reset.
* TODO use a dedicated accept_fd callback for reverse protocol
*/
if (!cli_conn->xprt) {
if (conn_prepare(cli_conn, l->rx.proto, l->bind_conf->xprt) < 0)
goto out_free_conn;
conn_ctrl_init(cli_conn);
/* wait for a PROXY protocol header */
if (l->bind_conf->options & BC_O_ACC_PROXY)
cli_conn->flags |= CO_FL_ACCEPT_PROXY;
/* wait for a NetScaler client IP insertion protocol header */
if (l->bind_conf->options & BC_O_ACC_CIP)
cli_conn->flags |= CO_FL_ACCEPT_CIP;
/* Add the handshake pseudo-XPRT */
if (cli_conn->flags & (CO_FL_ACCEPT_PROXY | CO_FL_ACCEPT_CIP)) {
if (xprt_add_hs(cli_conn) != 0)
goto out_free_conn;
}
}
/* Reversed conns already have an assigned session, do not recreate it. */
if (!(cli_conn->flags & CO_FL_REVERSED)) {
sess = session_new(p, l, &cli_conn->obj_type);
if (!sess)
goto out_free_conn;
conn_set_owner(cli_conn, sess, NULL);
}
else {
sess = cli_conn->owner;
}
/* now evaluate the tcp-request layer4 rules. We only need a session
* and no stream for these rules.
*/
if (!LIST_ISEMPTY(&p->tcp_req.l4_rules) && !tcp_exec_l4_rules(sess)) {
/* let's do a no-linger now to close with a single RST. */
if (!(cli_conn->flags & CO_FL_FDLESS))
setsockopt(cfd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger));
ret = 0; /* successful termination */
goto out_free_sess;
}
/* TCP rules may flag the connection as needing proxy protocol, now that it's done we can start ourxprt */
if (conn_xprt_start(cli_conn) < 0)
goto out_free_sess;
/* FIXME/WTA: we should implement the setsockopt() calls at the proto
* level instead and let non-inet protocols implement their own equivalent.
*/
if (cli_conn->flags & CO_FL_FDLESS)
goto skip_fd_setup;
/* Adjust some socket options */
if (l->rx.addr.ss_family == AF_INET || l->rx.addr.ss_family == AF_INET6) {
setsockopt(cfd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one));
if (p->options & PR_O_TCP_CLI_KA) {
setsockopt(cfd, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(one));
#ifdef TCP_KEEPCNT
if (p->clitcpka_cnt)
setsockopt(cfd, IPPROTO_TCP, TCP_KEEPCNT, &p->clitcpka_cnt, sizeof(p->clitcpka_cnt));
#endif
#ifdef TCP_KEEPIDLE
if (p->clitcpka_idle)
setsockopt(cfd, IPPROTO_TCP, TCP_KEEPIDLE, &p->clitcpka_idle, sizeof(p->clitcpka_idle));
#endif
#ifdef TCP_KEEPINTVL
if (p->clitcpka_intvl)
setsockopt(cfd, IPPROTO_TCP, TCP_KEEPINTVL, &p->clitcpka_intvl, sizeof(p->clitcpka_intvl));
#endif
}
if (p->options & PR_O_TCP_NOLING)
HA_ATOMIC_OR(&fdtab[cfd].state, FD_LINGER_RISK);
#if defined(TCP_MAXSEG)
if (l->bind_conf->maxseg < 0) {
/* we just want to reduce the current MSS by that value */
int mss;
socklen_t mss_len = sizeof(mss);
if (getsockopt(cfd, IPPROTO_TCP, TCP_MAXSEG, &mss, &mss_len) == 0) {
mss += l->bind_conf->maxseg; /* remember, it's < 0 */
setsockopt(cfd, IPPROTO_TCP, TCP_MAXSEG, &mss, sizeof(mss));
}
}
#endif
}
if (global.tune.client_sndbuf)
setsockopt(cfd, SOL_SOCKET, SO_SNDBUF, &global.tune.client_sndbuf, sizeof(global.tune.client_sndbuf));
if (global.tune.client_rcvbuf)
setsockopt(cfd, SOL_SOCKET, SO_RCVBUF, &global.tune.client_rcvbuf, sizeof(global.tune.client_rcvbuf));
skip_fd_setup:
/* OK, now either we have a pending handshake to execute with and then
* we must return to the I/O layer, or we can proceed with the end of
* the stream initialization. In case of handshake, we also set the I/O
* timeout to the frontend's client timeout and register a task in the
* session for this purpose. The connection's owner is left to the
* session during this period.
*
* At this point we set the relation between sess/task/conn this way :
*
* +----------------- task
* | |
* orig -- sess <-- context |
* | ^ | |
* v | | |
* conn -- owner ---> task <-----+
*/
if (cli_conn->flags & (CO_FL_WAIT_XPRT | CO_FL_EARLY_SSL_HS)) {
int timeout;
int clt_tmt = p->timeout.client;
int hs_tmt = p->timeout.client_hs;
if (unlikely((sess->task = task_new_here()) == NULL))
goto out_free_sess;
/* Handshake timeout as default timeout */
timeout = hs_tmt ? hs_tmt : clt_tmt;
sess->task->context = sess;
sess->task->nice = l->bind_conf->nice;
sess->task->process = session_expire_embryonic;
sess->task->expire = tick_add_ifset(now_ms, timeout);
task_queue(sess->task);
/* Session is responsible to decrement listener conns counters. */
sess->flags |= SESS_FL_RELEASE_LI;
return 1;
}
/* OK let's complete stream initialization since there is no handshake */
if (conn_complete_session(cli_conn) >= 0) {
/* Session is responsible to decrement listener conns counters. */
sess->flags |= SESS_FL_RELEASE_LI;
return 1;
}
/* if we reach here we have deliberately decided not to keep this
* session (e.g. tcp-request rule), so that's not an error we should
* try to protect against.
*/
ret = 0;
/* error unrolling */
out_free_sess:
/* SESS_FL_RELEASE_LI must not be set here as listener_release() is
* called manually for all errors.
*/
session_free(sess);
out_free_conn:
if (ret < 0 && l->bind_conf->xprt == xprt_get(XPRT_RAW) &&
p->mode == PR_MODE_HTTP && l->bind_conf->mux_proto == NULL &&
!(cli_conn->flags & CO_FL_FDLESS)) {
/* critical error, no more memory, try to emit a 500 response */
send(cfd, http_err_msgs[HTTP_ERR_500], strlen(http_err_msgs[HTTP_ERR_500]),
MSG_DONTWAIT|MSG_NOSIGNAL);
}
/* Mux is already initialized for active reversed connection. */
conn_release(cli_conn);
listener_release(l);
return ret;
}
/* prepare the trash with a log prefix for session <sess>. It only works with
* embryonic sessions based on a real connection. This function requires that
* at sess->origin points to the incoming connection.
*/
static void session_prepare_log_prefix(struct session *sess)
{
const struct sockaddr_storage *src;
struct tm tm;
char pn[INET6_ADDRSTRLEN];
int ret;
char *end;
src = sess_src(sess);
ret = (src ? addr_to_str(src, pn, sizeof(pn)) : 0);
if (ret <= 0)
chunk_printf(&trash, "unknown [");
else if (ret == AF_UNIX)
chunk_printf(&trash, "%s:%d [", pn, sess->listener->luid);
else
chunk_printf(&trash, "%s:%d [", pn, get_host_port(src));
get_localtime(sess->accept_date.tv_sec, &tm);
end = date2str_log(trash.area + trash.data, &tm, &(sess->accept_date),
trash.size - trash.data);
trash.data = end - trash.area;
if (sess->listener->name)
chunk_appendf(&trash, "] %s/%s", sess->fe->id, sess->listener->name);
else
chunk_appendf(&trash, "] %s/%d", sess->fe->id, sess->listener->luid);
}
/* fill the trash buffer with the string to use for send_log during
* session_kill_embryonic(). Add log prefix and error string.
*
* The function is able to dump an SSL error string when CO_ER_SSL_HANDSHAKE
* is met.
*/
static void session_build_err_string(struct session *sess)
{
struct connection *conn = __objt_conn(sess->origin);
const char *err_msg;
struct ssl_sock_ctx __maybe_unused *ssl_ctx;
err_msg = conn_err_code_str(conn);
session_prepare_log_prefix(sess); /* use trash buffer */
#ifdef USE_OPENSSL
ssl_ctx = conn_get_ssl_sock_ctx(conn);
/* when the SSL error code is present and during a SSL Handshake failure,
* try to dump the error string from OpenSSL */
if (conn->err_code == CO_ER_SSL_HANDSHAKE && ssl_ctx && ssl_ctx->error_code != 0) {
chunk_appendf(&trash, ": SSL handshake failure (");
ERR_error_string_n(ssl_ctx->error_code, b_orig(&trash)+b_data(&trash), b_room(&trash));
trash.data = strlen(b_orig(&trash));
chunk_appendf(&trash, ")\n");
}
else
#endif /* ! USE_OPENSSL */
if (err_msg)
chunk_appendf(&trash, ": %s\n", err_msg);
else
chunk_appendf(&trash, ": unknown connection error (code=%d flags=%08x)\n",
conn->err_code, conn->flags);
return;
}
/* This function kills an existing embryonic session. It stops the connection's
* transport layer, releases assigned resources, resumes the listener if it was
* disabled and finally kills the file descriptor. This function requires that
* sess->origin points to the incoming connection.
*/
static void session_kill_embryonic(struct session *sess, unsigned int state)
{
int level = LOG_INFO;
struct connection *conn = __objt_conn(sess->origin);
struct task *task = sess->task;
unsigned int log = sess->fe->to_log;
if (sess->fe->options2 & PR_O2_LOGERRORS)
level = LOG_ERR;
if (log && (sess->fe->options & PR_O_NULLNOLOG)) {
/* with "option dontlognull", we don't log connections with no transfer */
if (!conn->err_code ||
conn->err_code == CO_ER_PRX_EMPTY || conn->err_code == CO_ER_PRX_ABORT ||
conn->err_code == CO_ER_CIP_EMPTY || conn->err_code == CO_ER_CIP_ABORT ||
conn->err_code == CO_ER_SSL_EMPTY || conn->err_code == CO_ER_SSL_ABORT)
log = 0;
}
if (log) {
if (!conn->err_code && (state & TASK_WOKEN_TIMER)) {
if (conn->flags & CO_FL_ACCEPT_PROXY)
conn->err_code = CO_ER_PRX_TIMEOUT;
else if (conn->flags & CO_FL_ACCEPT_CIP)
conn->err_code = CO_ER_CIP_TIMEOUT;
else if (conn->flags & CO_FL_SSL_WAIT_HS)
conn->err_code = CO_ER_SSL_TIMEOUT;
}
if(!lf_expr_isempty(&sess->fe->logformat_error)) {
/* Display a log line following the configured error-log-format. */
sess_log(sess);
}
else {
session_build_err_string(sess);
send_log(sess->fe, level, "%s", trash.area);
}
}
/* kill the connection now */
conn_stop_tracking(conn);
conn_full_close(conn);
conn_free(conn);
sess->origin = NULL;
task_destroy(task);
session_free(sess);
}
/* Manages the embryonic session timeout. It is only called when the timeout
* strikes and performs the required cleanup. It's only exported to make it
* resolve in "show tasks".
*/
struct task *session_expire_embryonic(struct task *t, void *context, unsigned int state)
{
struct session *sess = context;
if (!(state & TASK_WOKEN_TIMER))
return t;
session_kill_embryonic(sess, state);
return NULL;
}
/* Finish initializing a session from a connection, or kills it if the
* connection shows and error. Returns <0 if the connection was killed. It may
* be called either asynchronously when ssl handshake is done with an embryonic
* session, or synchronously to finalize the session. The distinction is made
* on sess->task which is only set in the embryonic session case.
*/
int conn_complete_session(struct connection *conn)
{
struct session *sess = conn->owner;
sess->t_handshake = ns_to_ms(now_ns - sess->accept_ts);
if (conn->flags & CO_FL_ERROR)
goto fail;
/* if logs require transport layer information, note it on the connection */
if (sess->fe->to_log & LW_XPRT)
conn->flags |= CO_FL_XPRT_TRACKED;
/* we may have some tcp-request-session rules */
if (!LIST_ISEMPTY(&sess->fe->tcp_req.l5_rules) && !tcp_exec_l5_rules(sess))
goto fail;
session_count_new(sess);
if (!conn->mux) {
if (conn_install_mux_fe(conn, NULL) < 0)
goto fail;
}
/* the embryonic session's task is not needed anymore */
task_destroy(sess->task);
sess->task = NULL;
conn_set_owner(conn, sess, conn_session_free);
return 0;
fail:
if (sess->task)
session_kill_embryonic(sess, 0);
return -1;
}
/* Add <inc> to the number of cumulated glitches in the tracked counters for
* session <sess> which is known for being tracked, and implicitly update the
* rate if also tracked.
*/
void __session_add_glitch_ctr(struct session *sess, uint inc)
{
int i;
for (i = 0; i < global.tune.nb_stk_ctr; i++)
stkctr_add_glitch_ctr(&sess->stkctr[i], inc);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/