mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2025-11-22 19:31:02 +01:00
This puts an end to the occasional confusion between the "now" date that is internal, monotonic and not synchronized with the system's date, and "date" which is the system's date and not necessarily monotonic. Variable "now" was removed and replaced with a 64-bit integer "now_ns" which is a counter of nanoseconds. It wraps every 585 years, so if all goes well (i.e. if humanity does not need haproxy anymore in 500 years), it will just never wrap. This implies that now_ns is never nul and that the zero value can reliably be used as "not set yet" for a timestamp if needed. This will also simplify date checks where it becomes possible again to do "date1<date2". All occurrences of "tv_to_ns(&now)" were simply replaced by "now_ns". Due to the intricacies between now, global_now and now_offset, all 3 had to be turned to nanoseconds at once. It's not a problem since all of them were solely used in 3 functions in clock.c, but they make the patch look bigger than it really is. The clock_update_local_date() and clock_update_global_date() functions are now much simpler as there's no need anymore to perform conversions nor to round the timeval up or down. The wrapping continues to happen by presetting the internal offset in the short future so that the 32-bit now_ms continues to wrap 20 seconds after boot. The start_time used to calculate uptime can still be turned to nanoseconds now. One interrogation concerns global_now_ms which is used only for the freq counters. It's unclear whether there's more value in using two variables that need to be synchronized sequentially like today or to just use global_now_ns divided by 1 million. Both approaches will work equally well on modern systems, the difference might come from smaller ones. Better not change anyhting for now. One benefit of the new approach is that we now have an internal date with a resolution of the nanosecond and the precision of the microsecond, which can be useful to extend some measurements given that timestamps also have this resolution.
471 lines
14 KiB
C
471 lines
14 KiB
C
/*
|
|
* Session management functions.
|
|
*
|
|
* Copyright 2000-2015 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/connection.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/http.h>
|
|
#include <haproxy/listener.h>
|
|
#include <haproxy/log.h>
|
|
#include <haproxy/pool.h>
|
|
#include <haproxy/proxy.h>
|
|
#include <haproxy/session.h>
|
|
#include <haproxy/tcp_rules.h>
|
|
#include <haproxy/tools.h>
|
|
#include <haproxy/vars.h>
|
|
|
|
|
|
DECLARE_POOL(pool_head_session, "session", sizeof(struct session));
|
|
DECLARE_POOL(pool_head_sess_srv_list, "session server list",
|
|
sizeof(struct sess_srv_list));
|
|
|
|
int conn_complete_session(struct connection *conn);
|
|
|
|
/* Create a a new session and assign it to frontend <fe>, listener <li>,
|
|
* origin <origin>, set the current date and clear the stick counters pointers.
|
|
* Returns the session upon success or NULL. The session may be released using
|
|
* session_free(). Note: <li> may be NULL.
|
|
*/
|
|
struct session *session_new(struct proxy *fe, struct listener *li, enum obj_type *origin)
|
|
{
|
|
struct session *sess;
|
|
|
|
sess = pool_alloc(pool_head_session);
|
|
if (sess) {
|
|
sess->listener = li;
|
|
sess->fe = fe;
|
|
sess->origin = origin;
|
|
sess->accept_date = date; /* user-visible date for logging */
|
|
sess->accept_ts = now_ns; /* corrected date for internal use */
|
|
sess->stkctr = NULL;
|
|
if (pool_head_stk_ctr) {
|
|
sess->stkctr = pool_alloc(pool_head_stk_ctr);
|
|
if (!sess->stkctr)
|
|
goto out_fail_alloc;
|
|
memset(sess->stkctr, 0, sizeof(sess->stkctr[0]) * global.tune.nb_stk_ctr);
|
|
}
|
|
vars_init_head(&sess->vars, SCOPE_SESS);
|
|
sess->task = NULL;
|
|
sess->t_handshake = -1; /* handshake not done yet */
|
|
sess->t_idle = -1;
|
|
_HA_ATOMIC_INC(&totalconn);
|
|
_HA_ATOMIC_INC(&jobs);
|
|
LIST_INIT(&sess->srv_list);
|
|
sess->idle_conns = 0;
|
|
sess->flags = SESS_FL_NONE;
|
|
sess->src = NULL;
|
|
sess->dst = NULL;
|
|
}
|
|
return sess;
|
|
out_fail_alloc:
|
|
pool_free(pool_head_session, sess);
|
|
return NULL;
|
|
}
|
|
|
|
void session_free(struct session *sess)
|
|
{
|
|
struct connection *conn, *conn_back;
|
|
struct sess_srv_list *srv_list, *srv_list_back;
|
|
|
|
if (sess->listener)
|
|
listener_release(sess->listener);
|
|
session_store_counters(sess);
|
|
pool_free(pool_head_stk_ctr, sess->stkctr);
|
|
vars_prune_per_sess(&sess->vars);
|
|
conn = objt_conn(sess->origin);
|
|
if (conn != NULL && conn->mux)
|
|
conn->mux->destroy(conn->ctx);
|
|
list_for_each_entry_safe(srv_list, srv_list_back, &sess->srv_list, srv_list) {
|
|
list_for_each_entry_safe(conn, conn_back, &srv_list->conn_list, session_list) {
|
|
LIST_DEL_INIT(&conn->session_list);
|
|
if (conn->mux) {
|
|
conn->owner = NULL;
|
|
conn->flags &= ~CO_FL_SESS_IDLE;
|
|
conn->mux->destroy(conn->ctx);
|
|
} else {
|
|
/* We have a connection, but not yet an associated mux.
|
|
* So destroy it now.
|
|
*/
|
|
conn_stop_tracking(conn);
|
|
conn_full_close(conn);
|
|
conn_free(conn);
|
|
}
|
|
}
|
|
pool_free(pool_head_sess_srv_list, srv_list);
|
|
}
|
|
sockaddr_free(&sess->src);
|
|
sockaddr_free(&sess->dst);
|
|
pool_free(pool_head_session, sess);
|
|
_HA_ATOMIC_DEC(&jobs);
|
|
}
|
|
|
|
/* callback used from the connection/mux layer to notify that a connection is
|
|
* going to be released.
|
|
*/
|
|
void conn_session_free(struct connection *conn)
|
|
{
|
|
session_free(conn->owner);
|
|
conn->owner = NULL;
|
|
}
|
|
|
|
/* count a new session to keep frontend, listener and track stats up to date */
|
|
static void session_count_new(struct session *sess)
|
|
{
|
|
struct stkctr *stkctr;
|
|
void *ptr;
|
|
int i;
|
|
|
|
proxy_inc_fe_sess_ctr(sess->listener, sess->fe);
|
|
|
|
for (i = 0; i < global.tune.nb_stk_ctr; i++) {
|
|
stkctr = &sess->stkctr[i];
|
|
if (!stkctr_entry(stkctr))
|
|
continue;
|
|
|
|
ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_CNT);
|
|
if (ptr)
|
|
HA_ATOMIC_INC(&stktable_data_cast(ptr, std_t_uint));
|
|
|
|
ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_RATE);
|
|
if (ptr)
|
|
update_freq_ctr_period(&stktable_data_cast(ptr, std_t_frqp),
|
|
stkctr->table->data_arg[STKTABLE_DT_SESS_RATE].u, 1);
|
|
}
|
|
}
|
|
|
|
/* This function is called from the protocol layer accept() in order to
|
|
* instantiate a new session on behalf of a given listener and frontend. It
|
|
* returns a positive value upon success, 0 if the connection can be ignored,
|
|
* or a negative value upon critical failure. The accepted connection is
|
|
* closed if we return <= 0. If no handshake is needed, it immediately tries
|
|
* to instantiate a new stream. The connection must already have been filled
|
|
* with the incoming connection handle (a fd), a target (the listener) and a
|
|
* source address.
|
|
*/
|
|
int session_accept_fd(struct connection *cli_conn)
|
|
{
|
|
struct listener *l = __objt_listener(cli_conn->target);
|
|
struct proxy *p = l->bind_conf->frontend;
|
|
int cfd = cli_conn->handle.fd;
|
|
struct session *sess;
|
|
int ret;
|
|
|
|
ret = -1; /* assume unrecoverable error by default */
|
|
|
|
cli_conn->proxy_netns = l->rx.settings->netns;
|
|
|
|
if (conn_prepare(cli_conn, l->rx.proto, l->bind_conf->xprt) < 0)
|
|
goto out_free_conn;
|
|
|
|
conn_ctrl_init(cli_conn);
|
|
|
|
/* wait for a PROXY protocol header */
|
|
if (l->bind_conf->options & BC_O_ACC_PROXY)
|
|
cli_conn->flags |= CO_FL_ACCEPT_PROXY;
|
|
|
|
/* wait for a NetScaler client IP insertion protocol header */
|
|
if (l->bind_conf->options & BC_O_ACC_CIP)
|
|
cli_conn->flags |= CO_FL_ACCEPT_CIP;
|
|
|
|
/* Add the handshake pseudo-XPRT */
|
|
if (cli_conn->flags & (CO_FL_ACCEPT_PROXY | CO_FL_ACCEPT_CIP)) {
|
|
if (xprt_add_hs(cli_conn) != 0)
|
|
goto out_free_conn;
|
|
}
|
|
sess = session_new(p, l, &cli_conn->obj_type);
|
|
if (!sess)
|
|
goto out_free_conn;
|
|
|
|
conn_set_owner(cli_conn, sess, NULL);
|
|
|
|
/* now evaluate the tcp-request layer4 rules. We only need a session
|
|
* and no stream for these rules.
|
|
*/
|
|
if (!LIST_ISEMPTY(&p->tcp_req.l4_rules) && !tcp_exec_l4_rules(sess)) {
|
|
/* let's do a no-linger now to close with a single RST. */
|
|
if (!(cli_conn->flags & CO_FL_FDLESS))
|
|
setsockopt(cfd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger));
|
|
ret = 0; /* successful termination */
|
|
goto out_free_sess;
|
|
}
|
|
/* TCP rules may flag the connection as needing proxy protocol, now that it's done we can start ourxprt */
|
|
if (conn_xprt_start(cli_conn) < 0)
|
|
goto out_free_sess;
|
|
|
|
/* FIXME/WTA: we should implement the setsockopt() calls at the proto
|
|
* level instead and let non-inet protocols implement their own equivalent.
|
|
*/
|
|
if (cli_conn->flags & CO_FL_FDLESS)
|
|
goto skip_fd_setup;
|
|
|
|
/* Adjust some socket options */
|
|
if (l->rx.addr.ss_family == AF_INET || l->rx.addr.ss_family == AF_INET6) {
|
|
setsockopt(cfd, IPPROTO_TCP, TCP_NODELAY, (char *) &one, sizeof(one));
|
|
|
|
if (p->options & PR_O_TCP_CLI_KA) {
|
|
setsockopt(cfd, SOL_SOCKET, SO_KEEPALIVE, (char *) &one, sizeof(one));
|
|
|
|
#ifdef TCP_KEEPCNT
|
|
if (p->clitcpka_cnt)
|
|
setsockopt(cfd, IPPROTO_TCP, TCP_KEEPCNT, &p->clitcpka_cnt, sizeof(p->clitcpka_cnt));
|
|
#endif
|
|
|
|
#ifdef TCP_KEEPIDLE
|
|
if (p->clitcpka_idle)
|
|
setsockopt(cfd, IPPROTO_TCP, TCP_KEEPIDLE, &p->clitcpka_idle, sizeof(p->clitcpka_idle));
|
|
#endif
|
|
|
|
#ifdef TCP_KEEPINTVL
|
|
if (p->clitcpka_intvl)
|
|
setsockopt(cfd, IPPROTO_TCP, TCP_KEEPINTVL, &p->clitcpka_intvl, sizeof(p->clitcpka_intvl));
|
|
#endif
|
|
}
|
|
|
|
if (p->options & PR_O_TCP_NOLING)
|
|
HA_ATOMIC_OR(&fdtab[cfd].state, FD_LINGER_RISK);
|
|
|
|
#if defined(TCP_MAXSEG)
|
|
if (l->bind_conf->maxseg < 0) {
|
|
/* we just want to reduce the current MSS by that value */
|
|
int mss;
|
|
socklen_t mss_len = sizeof(mss);
|
|
if (getsockopt(cfd, IPPROTO_TCP, TCP_MAXSEG, &mss, &mss_len) == 0) {
|
|
mss += l->bind_conf->maxseg; /* remember, it's < 0 */
|
|
setsockopt(cfd, IPPROTO_TCP, TCP_MAXSEG, &mss, sizeof(mss));
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (global.tune.client_sndbuf)
|
|
setsockopt(cfd, SOL_SOCKET, SO_SNDBUF, &global.tune.client_sndbuf, sizeof(global.tune.client_sndbuf));
|
|
|
|
if (global.tune.client_rcvbuf)
|
|
setsockopt(cfd, SOL_SOCKET, SO_RCVBUF, &global.tune.client_rcvbuf, sizeof(global.tune.client_rcvbuf));
|
|
|
|
skip_fd_setup:
|
|
/* OK, now either we have a pending handshake to execute with and then
|
|
* we must return to the I/O layer, or we can proceed with the end of
|
|
* the stream initialization. In case of handshake, we also set the I/O
|
|
* timeout to the frontend's client timeout and register a task in the
|
|
* session for this purpose. The connection's owner is left to the
|
|
* session during this period.
|
|
*
|
|
* At this point we set the relation between sess/task/conn this way :
|
|
*
|
|
* +----------------- task
|
|
* | |
|
|
* orig -- sess <-- context |
|
|
* | ^ | |
|
|
* v | | |
|
|
* conn -- owner ---> task <-----+
|
|
*/
|
|
if (cli_conn->flags & (CO_FL_WAIT_XPRT | CO_FL_EARLY_SSL_HS)) {
|
|
if (unlikely((sess->task = task_new_here()) == NULL))
|
|
goto out_free_sess;
|
|
|
|
sess->task->context = sess;
|
|
sess->task->nice = l->bind_conf->nice;
|
|
sess->task->process = session_expire_embryonic;
|
|
sess->task->expire = tick_add_ifset(now_ms, p->timeout.client);
|
|
task_queue(sess->task);
|
|
return 1;
|
|
}
|
|
|
|
/* OK let's complete stream initialization since there is no handshake */
|
|
if (conn_complete_session(cli_conn) >= 0)
|
|
return 1;
|
|
|
|
/* if we reach here we have deliberately decided not to keep this
|
|
* session (e.g. tcp-request rule), so that's not an error we should
|
|
* try to protect against.
|
|
*/
|
|
ret = 0;
|
|
|
|
/* error unrolling */
|
|
out_free_sess:
|
|
/* prevent call to listener_release during session_free. It will be
|
|
* done below, for all errors. */
|
|
sess->listener = NULL;
|
|
session_free(sess);
|
|
|
|
out_free_conn:
|
|
if (ret < 0 && l->bind_conf->xprt == xprt_get(XPRT_RAW) &&
|
|
p->mode == PR_MODE_HTTP && l->bind_conf->mux_proto == NULL &&
|
|
!(cli_conn->flags & CO_FL_FDLESS)) {
|
|
/* critical error, no more memory, try to emit a 500 response */
|
|
send(cfd, http_err_msgs[HTTP_ERR_500], strlen(http_err_msgs[HTTP_ERR_500]),
|
|
MSG_DONTWAIT|MSG_NOSIGNAL);
|
|
}
|
|
|
|
conn_stop_tracking(cli_conn);
|
|
conn_full_close(cli_conn);
|
|
conn_free(cli_conn);
|
|
listener_release(l);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* prepare the trash with a log prefix for session <sess>. It only works with
|
|
* embryonic sessions based on a real connection. This function requires that
|
|
* at sess->origin points to the incoming connection.
|
|
*/
|
|
static void session_prepare_log_prefix(struct session *sess)
|
|
{
|
|
const struct sockaddr_storage *src;
|
|
struct tm tm;
|
|
char pn[INET6_ADDRSTRLEN];
|
|
int ret;
|
|
char *end;
|
|
|
|
src = sess_src(sess);
|
|
ret = (src ? addr_to_str(src, pn, sizeof(pn)) : 0);
|
|
if (ret <= 0)
|
|
chunk_printf(&trash, "unknown [");
|
|
else if (ret == AF_UNIX)
|
|
chunk_printf(&trash, "%s:%d [", pn, sess->listener->luid);
|
|
else
|
|
chunk_printf(&trash, "%s:%d [", pn, get_host_port(src));
|
|
|
|
get_localtime(sess->accept_date.tv_sec, &tm);
|
|
end = date2str_log(trash.area + trash.data, &tm, &(sess->accept_date),
|
|
trash.size - trash.data);
|
|
trash.data = end - trash.area;
|
|
if (sess->listener->name)
|
|
chunk_appendf(&trash, "] %s/%s", sess->fe->id, sess->listener->name);
|
|
else
|
|
chunk_appendf(&trash, "] %s/%d", sess->fe->id, sess->listener->luid);
|
|
}
|
|
|
|
/* This function kills an existing embryonic session. It stops the connection's
|
|
* transport layer, releases assigned resources, resumes the listener if it was
|
|
* disabled and finally kills the file descriptor. This function requires that
|
|
* sess->origin points to the incoming connection.
|
|
*/
|
|
static void session_kill_embryonic(struct session *sess, unsigned int state)
|
|
{
|
|
int level = LOG_INFO;
|
|
struct connection *conn = __objt_conn(sess->origin);
|
|
struct task *task = sess->task;
|
|
unsigned int log = sess->fe->to_log;
|
|
const char *err_msg;
|
|
|
|
if (sess->fe->options2 & PR_O2_LOGERRORS)
|
|
level = LOG_ERR;
|
|
|
|
if (log && (sess->fe->options & PR_O_NULLNOLOG)) {
|
|
/* with "option dontlognull", we don't log connections with no transfer */
|
|
if (!conn->err_code ||
|
|
conn->err_code == CO_ER_PRX_EMPTY || conn->err_code == CO_ER_PRX_ABORT ||
|
|
conn->err_code == CO_ER_CIP_EMPTY || conn->err_code == CO_ER_CIP_ABORT ||
|
|
conn->err_code == CO_ER_SSL_EMPTY || conn->err_code == CO_ER_SSL_ABORT)
|
|
log = 0;
|
|
}
|
|
|
|
if (log) {
|
|
if (!conn->err_code && (state & TASK_WOKEN_TIMER)) {
|
|
if (conn->flags & CO_FL_ACCEPT_PROXY)
|
|
conn->err_code = CO_ER_PRX_TIMEOUT;
|
|
else if (conn->flags & CO_FL_ACCEPT_CIP)
|
|
conn->err_code = CO_ER_CIP_TIMEOUT;
|
|
else if (conn->flags & CO_FL_SSL_WAIT_HS)
|
|
conn->err_code = CO_ER_SSL_TIMEOUT;
|
|
}
|
|
|
|
if(!LIST_ISEMPTY(&sess->fe->logformat_error)) {
|
|
/* Display a log line following the configured error-log-format. */
|
|
sess_log(sess);
|
|
}
|
|
else {
|
|
session_prepare_log_prefix(sess);
|
|
err_msg = conn_err_code_str(conn);
|
|
if (err_msg)
|
|
send_log(sess->fe, level, "%s: %s\n", trash.area,
|
|
err_msg);
|
|
else
|
|
send_log(sess->fe, level, "%s: unknown connection error (code=%d flags=%08x)\n",
|
|
trash.area, conn->err_code, conn->flags);
|
|
}
|
|
}
|
|
|
|
/* kill the connection now */
|
|
conn_stop_tracking(conn);
|
|
conn_full_close(conn);
|
|
conn_free(conn);
|
|
sess->origin = NULL;
|
|
|
|
task_destroy(task);
|
|
session_free(sess);
|
|
}
|
|
|
|
/* Manages the embryonic session timeout. It is only called when the timeout
|
|
* strikes and performs the required cleanup. It's only exported to make it
|
|
* resolve in "show tasks".
|
|
*/
|
|
struct task *session_expire_embryonic(struct task *t, void *context, unsigned int state)
|
|
{
|
|
struct session *sess = context;
|
|
|
|
if (!(state & TASK_WOKEN_TIMER))
|
|
return t;
|
|
|
|
session_kill_embryonic(sess, state);
|
|
return NULL;
|
|
}
|
|
|
|
/* Finish initializing a session from a connection, or kills it if the
|
|
* connection shows and error. Returns <0 if the connection was killed. It may
|
|
* be called either asynchronously when ssl handshake is done with an embryonic
|
|
* session, or synchronously to finalize the session. The distinction is made
|
|
* on sess->task which is only set in the embryonic session case.
|
|
*/
|
|
int conn_complete_session(struct connection *conn)
|
|
{
|
|
struct session *sess = conn->owner;
|
|
|
|
sess->t_handshake = ns_to_ms(now_ns - sess->accept_ts);
|
|
|
|
if (conn->flags & CO_FL_ERROR)
|
|
goto fail;
|
|
|
|
/* if logs require transport layer information, note it on the connection */
|
|
if (sess->fe->to_log & LW_XPRT)
|
|
conn->flags |= CO_FL_XPRT_TRACKED;
|
|
|
|
/* we may have some tcp-request-session rules */
|
|
if (!LIST_ISEMPTY(&sess->fe->tcp_req.l5_rules) && !tcp_exec_l5_rules(sess))
|
|
goto fail;
|
|
|
|
session_count_new(sess);
|
|
if (conn_install_mux_fe(conn, NULL) < 0)
|
|
goto fail;
|
|
|
|
/* the embryonic session's task is not needed anymore */
|
|
task_destroy(sess->task);
|
|
sess->task = NULL;
|
|
conn_set_owner(conn, sess, conn_session_free);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
if (sess->task)
|
|
session_kill_embryonic(sess, 0);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|