mirror of
				https://git.haproxy.org/git/haproxy.git/
				synced 2025-10-31 00:21:00 +01:00 
			
		
		
		
	This prevents DNS from resolving IPv6-only servers in 1.7. Note, this patch depends on the previous series : 1. BUG/MINOR: tools: fix off-by-one in port size check 2. BUG/MEDIUM: server: consider AF_UNSPEC as a valid address family 3. MEDIUM: server: split the address and the port into two different fields 4. MINOR: tools: make str2sa_range() return the port in a separate argument 5. MINOR: server: take the destination port from the port field, not the addr 6. MEDIUM: server: disable protocol validations when the server doesn't resolve This fix (hence the whole series) must be backported to 1.7.
		
			
				
	
	
		
			3814 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3814 lines
		
	
	
		
			95 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * General purpose functions.
 | |
|  *
 | |
|  * Copyright 2000-2010 Willy Tarreau <w@1wt.eu>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <ctype.h>
 | |
| #include <errno.h>
 | |
| #include <netdb.h>
 | |
| #include <stdarg.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <time.h>
 | |
| #include <unistd.h>
 | |
| #include <sys/socket.h>
 | |
| #include <sys/un.h>
 | |
| #include <netinet/in.h>
 | |
| #include <arpa/inet.h>
 | |
| 
 | |
| #include <common/chunk.h>
 | |
| #include <common/config.h>
 | |
| #include <common/standard.h>
 | |
| #include <common/tools.h>
 | |
| #include <types/global.h>
 | |
| #include <proto/dns.h>
 | |
| #include <eb32tree.h>
 | |
| 
 | |
| /* This macro returns false if the test __x is false. Many
 | |
|  * of the following parsing function must be abort the processing
 | |
|  * if it returns 0, so this macro is useful for writing light code.
 | |
|  */
 | |
| #define RET0_UNLESS(__x) do { if (!(__x)) return 0; } while (0)
 | |
| 
 | |
| /* enough to store NB_ITOA_STR integers of :
 | |
|  *   2^64-1 = 18446744073709551615 or
 | |
|  *    -2^63 = -9223372036854775808
 | |
|  *
 | |
|  * The HTML version needs room for adding the 25 characters
 | |
|  * '<span class="rls"></span>' around digits at positions 3N+1 in order
 | |
|  * to add spacing at up to 6 positions : 18 446 744 073 709 551 615
 | |
|  */
 | |
| char itoa_str[NB_ITOA_STR][171];
 | |
| int itoa_idx = 0; /* index of next itoa_str to use */
 | |
| 
 | |
| /* sometimes we'll need to quote strings (eg: in stats), and we don't expect
 | |
|  * to quote strings larger than a max configuration line.
 | |
|  */
 | |
| char quoted_str[NB_QSTR][QSTR_SIZE + 1];
 | |
| int quoted_idx = 0;
 | |
| 
 | |
| /*
 | |
|  * unsigned long long ASCII representation
 | |
|  *
 | |
|  * return the last char '\0' or NULL if no enough
 | |
|  * space in dst
 | |
|  */
 | |
| char *ulltoa(unsigned long long n, char *dst, size_t size)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	char *res;
 | |
| 
 | |
| 	switch(n) {
 | |
| 		case 1ULL ... 9ULL:
 | |
| 			i = 0;
 | |
| 			break;
 | |
| 
 | |
| 		case 10ULL ... 99ULL:
 | |
| 			i = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case 100ULL ... 999ULL:
 | |
| 			i = 2;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000ULL ... 9999ULL:
 | |
| 			i = 3;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000ULL ... 99999ULL:
 | |
| 			i = 4;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000ULL ... 999999ULL:
 | |
| 			i = 5;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000ULL ... 9999999ULL:
 | |
| 			i = 6;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000ULL ... 99999999ULL:
 | |
| 			i = 7;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000ULL ... 999999999ULL:
 | |
| 			i = 8;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000ULL ... 9999999999ULL:
 | |
| 			i = 9;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000ULL ... 99999999999ULL:
 | |
| 			i = 10;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000000ULL ... 999999999999ULL:
 | |
| 			i = 11;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000000ULL ... 9999999999999ULL:
 | |
| 			i = 12;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000000ULL ... 99999999999999ULL:
 | |
| 			i = 13;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000000000ULL ... 999999999999999ULL:
 | |
| 			i = 14;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000000000ULL ... 9999999999999999ULL:
 | |
| 			i = 15;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000000000ULL ... 99999999999999999ULL:
 | |
| 			i = 16;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000000000000ULL ... 999999999999999999ULL:
 | |
| 			i = 17;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000000000000ULL ... 9999999999999999999ULL:
 | |
| 			i = 18;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000000000000ULL ... ULLONG_MAX:
 | |
| 			i = 19;
 | |
| 			break;
 | |
| 	}
 | |
| 	if (i + 2 > size) // (i + 1) + '\0'
 | |
| 		return NULL;  // too long
 | |
| 	res = dst + i + 1;
 | |
| 	*res = '\0';
 | |
| 	for (; i >= 0; i--) {
 | |
| 		dst[i] = n % 10ULL + '0';
 | |
| 		n /= 10ULL;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * unsigned long ASCII representation
 | |
|  *
 | |
|  * return the last char '\0' or NULL if no enough
 | |
|  * space in dst
 | |
|  */
 | |
| char *ultoa_o(unsigned long n, char *dst, size_t size)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	char *res;
 | |
| 
 | |
| 	switch (n) {
 | |
| 		case 0U ... 9UL:
 | |
| 			i = 0;
 | |
| 			break;
 | |
| 
 | |
| 		case 10U ... 99UL:
 | |
| 			i = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case 100U ... 999UL:
 | |
| 			i = 2;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000U ... 9999UL:
 | |
| 			i = 3;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000U ... 99999UL:
 | |
| 			i = 4;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000U ... 999999UL:
 | |
| 			i = 5;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000U ... 9999999UL:
 | |
| 			i = 6;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000U ... 99999999UL:
 | |
| 			i = 7;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000U ... 999999999UL:
 | |
| 			i = 8;
 | |
| 			break;
 | |
| #if __WORDSIZE == 32
 | |
| 
 | |
| 		case 1000000000ULL ... ULONG_MAX:
 | |
| 			i = 9;
 | |
| 			break;
 | |
| 
 | |
| #elif __WORDSIZE == 64
 | |
| 
 | |
| 		case 1000000000ULL ... 9999999999UL:
 | |
| 			i = 9;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000ULL ... 99999999999UL:
 | |
| 			i = 10;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000000ULL ... 999999999999UL:
 | |
| 			i = 11;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000000ULL ... 9999999999999UL:
 | |
| 			i = 12;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000000ULL ... 99999999999999UL:
 | |
| 			i = 13;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000000000ULL ... 999999999999999UL:
 | |
| 			i = 14;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000000000ULL ... 9999999999999999UL:
 | |
| 			i = 15;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000000000ULL ... 99999999999999999UL:
 | |
| 			i = 16;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000000000000ULL ... 999999999999999999UL:
 | |
| 			i = 17;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000000000000ULL ... 9999999999999999999UL:
 | |
| 			i = 18;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000000000000000ULL ... ULONG_MAX:
 | |
| 			i = 19;
 | |
| 			break;
 | |
| 
 | |
| #endif
 | |
| 	}
 | |
| 	if (i + 2 > size) // (i + 1) + '\0'
 | |
| 		return NULL;  // too long
 | |
| 	res = dst + i + 1;
 | |
| 	*res = '\0';
 | |
| 	for (; i >= 0; i--) {
 | |
| 		dst[i] = n % 10U + '0';
 | |
| 		n /= 10U;
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * signed long ASCII representation
 | |
|  *
 | |
|  * return the last char '\0' or NULL if no enough
 | |
|  * space in dst
 | |
|  */
 | |
| char *ltoa_o(long int n, char *dst, size_t size)
 | |
| {
 | |
| 	char *pos = dst;
 | |
| 
 | |
| 	if (n < 0) {
 | |
| 		if (size < 3)
 | |
| 			return NULL; // min size is '-' + digit + '\0' but another test in ultoa
 | |
| 		*pos = '-';
 | |
| 		pos++;
 | |
| 		dst = ultoa_o(-n, pos, size - 1);
 | |
| 	} else {
 | |
| 		dst = ultoa_o(n, dst, size);
 | |
| 	}
 | |
| 	return dst;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * signed long long ASCII representation
 | |
|  *
 | |
|  * return the last char '\0' or NULL if no enough
 | |
|  * space in dst
 | |
|  */
 | |
| char *lltoa(long long n, char *dst, size_t size)
 | |
| {
 | |
| 	char *pos = dst;
 | |
| 
 | |
| 	if (n < 0) {
 | |
| 		if (size < 3)
 | |
| 			return NULL; // min size is '-' + digit + '\0' but another test in ulltoa
 | |
| 		*pos = '-';
 | |
| 		pos++;
 | |
| 		dst = ulltoa(-n, pos, size - 1);
 | |
| 	} else {
 | |
| 		dst = ulltoa(n, dst, size);
 | |
| 	}
 | |
| 	return dst;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * write a ascii representation of a unsigned into dst,
 | |
|  * return a pointer to the last character
 | |
|  * Pad the ascii representation with '0', using size.
 | |
|  */
 | |
| char *utoa_pad(unsigned int n, char *dst, size_t size)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	char *ret;
 | |
| 
 | |
| 	switch(n) {
 | |
| 		case 0U ... 9U:
 | |
| 			i = 0;
 | |
| 			break;
 | |
| 
 | |
| 		case 10U ... 99U:
 | |
| 			i = 1;
 | |
| 			break;
 | |
| 
 | |
| 		case 100U ... 999U:
 | |
| 			i = 2;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000U ... 9999U:
 | |
| 			i = 3;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000U ... 99999U:
 | |
| 			i = 4;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000U ... 999999U:
 | |
| 			i = 5;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000U ... 9999999U:
 | |
| 			i = 6;
 | |
| 			break;
 | |
| 
 | |
| 		case 10000000U ... 99999999U:
 | |
| 			i = 7;
 | |
| 			break;
 | |
| 
 | |
| 		case 100000000U ... 999999999U:
 | |
| 			i = 8;
 | |
| 			break;
 | |
| 
 | |
| 		case 1000000000U ... 4294967295U:
 | |
| 			i = 9;
 | |
| 			break;
 | |
| 	}
 | |
| 	if (i + 2 > size) // (i + 1) + '\0'
 | |
| 		return NULL;  // too long
 | |
| 	if (i < size)
 | |
| 		i = size - 2; // padding - '\0'
 | |
| 
 | |
| 	ret = dst + i + 1;
 | |
| 	*ret = '\0';
 | |
| 	for (; i >= 0; i--) {
 | |
| 		dst[i] = n % 10U + '0';
 | |
| 		n /= 10U;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * copies at most <size-1> chars from <src> to <dst>. Last char is always
 | |
|  * set to 0, unless <size> is 0. The number of chars copied is returned
 | |
|  * (excluding the terminating zero).
 | |
|  * This code has been optimized for size and speed : on x86, it's 45 bytes
 | |
|  * long, uses only registers, and consumes only 4 cycles per char.
 | |
|  */
 | |
| int strlcpy2(char *dst, const char *src, int size)
 | |
| {
 | |
| 	char *orig = dst;
 | |
| 	if (size) {
 | |
| 		while (--size && (*dst = *src)) {
 | |
| 			src++; dst++;
 | |
| 		}
 | |
| 		*dst = 0;
 | |
| 	}
 | |
| 	return dst - orig;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function simply returns a locally allocated string containing
 | |
|  * the ascii representation for number 'n' in decimal.
 | |
|  */
 | |
| char *ultoa_r(unsigned long n, char *buffer, int size)
 | |
| {
 | |
| 	char *pos;
 | |
| 	
 | |
| 	pos = buffer + size - 1;
 | |
| 	*pos-- = '\0';
 | |
| 	
 | |
| 	do {
 | |
| 		*pos-- = '0' + n % 10;
 | |
| 		n /= 10;
 | |
| 	} while (n && pos >= buffer);
 | |
| 	return pos + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function simply returns a locally allocated string containing
 | |
|  * the ascii representation for number 'n' in decimal.
 | |
|  */
 | |
| char *lltoa_r(long long int in, char *buffer, int size)
 | |
| {
 | |
| 	char *pos;
 | |
| 	int neg = 0;
 | |
| 	unsigned long long int n;
 | |
| 
 | |
| 	pos = buffer + size - 1;
 | |
| 	*pos-- = '\0';
 | |
| 
 | |
| 	if (in < 0) {
 | |
| 		neg = 1;
 | |
| 		n = -in;
 | |
| 	}
 | |
| 	else
 | |
| 		n = in;
 | |
| 
 | |
| 	do {
 | |
| 		*pos-- = '0' + n % 10;
 | |
| 		n /= 10;
 | |
| 	} while (n && pos >= buffer);
 | |
| 	if (neg && pos > buffer)
 | |
| 		*pos-- = '-';
 | |
| 	return pos + 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function simply returns a locally allocated string containing
 | |
|  * the ascii representation for signed number 'n' in decimal.
 | |
|  */
 | |
| char *sltoa_r(long n, char *buffer, int size)
 | |
| {
 | |
| 	char *pos;
 | |
| 
 | |
| 	if (n >= 0)
 | |
| 		return ultoa_r(n, buffer, size);
 | |
| 
 | |
| 	pos = ultoa_r(-n, buffer + 1, size - 1) - 1;
 | |
| 	*pos = '-';
 | |
| 	return pos;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function simply returns a locally allocated string containing
 | |
|  * the ascii representation for number 'n' in decimal, formatted for
 | |
|  * HTML output with tags to create visual grouping by 3 digits. The
 | |
|  * output needs to support at least 171 characters.
 | |
|  */
 | |
| const char *ulltoh_r(unsigned long long n, char *buffer, int size)
 | |
| {
 | |
| 	char *start;
 | |
| 	int digit = 0;
 | |
| 	
 | |
| 	start = buffer + size;
 | |
| 	*--start = '\0';
 | |
| 	
 | |
| 	do {
 | |
| 		if (digit == 3 && start >= buffer + 7)
 | |
| 			memcpy(start -= 7, "</span>", 7);
 | |
| 
 | |
| 		if (start >= buffer + 1) {
 | |
| 			*--start = '0' + n % 10;
 | |
| 			n /= 10;
 | |
| 		}
 | |
| 
 | |
| 		if (digit == 3 && start >= buffer + 18)
 | |
| 			memcpy(start -= 18, "<span class=\"rls\">", 18);
 | |
| 
 | |
| 		if (digit++ == 3)
 | |
| 			digit = 1;
 | |
| 	} while (n && start > buffer);
 | |
| 	return start;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function simply returns a locally allocated string containing the ascii
 | |
|  * representation for number 'n' in decimal, unless n is 0 in which case it
 | |
|  * returns the alternate string (or an empty string if the alternate string is
 | |
|  * NULL). It use is intended for limits reported in reports, where it's
 | |
|  * desirable not to display anything if there is no limit. Warning! it shares
 | |
|  * the same vector as ultoa_r().
 | |
|  */
 | |
| const char *limit_r(unsigned long n, char *buffer, int size, const char *alt)
 | |
| {
 | |
| 	return (n) ? ultoa_r(n, buffer, size) : (alt ? alt : "");
 | |
| }
 | |
| 
 | |
| /* returns a locally allocated string containing the quoted encoding of the
 | |
|  * input string. The output may be truncated to QSTR_SIZE chars, but it is
 | |
|  * guaranteed that the string will always be properly terminated. Quotes are
 | |
|  * encoded by doubling them as is commonly done in CSV files. QSTR_SIZE must
 | |
|  * always be at least 4 chars.
 | |
|  */
 | |
| const char *qstr(const char *str)
 | |
| {
 | |
| 	char *ret = quoted_str[quoted_idx];
 | |
| 	char *p, *end;
 | |
| 
 | |
| 	if (++quoted_idx >= NB_QSTR)
 | |
| 		quoted_idx = 0;
 | |
| 
 | |
| 	p = ret;
 | |
| 	end = ret + QSTR_SIZE;
 | |
| 
 | |
| 	*p++ = '"';
 | |
| 
 | |
| 	/* always keep 3 chars to support passing "" and the ending " */
 | |
| 	while (*str && p < end - 3) {
 | |
| 		if (*str == '"') {
 | |
| 			*p++ = '"';
 | |
| 			*p++ = '"';
 | |
| 		}
 | |
| 		else
 | |
| 			*p++ = *str;
 | |
| 		str++;
 | |
| 	}
 | |
| 	*p++ = '"';
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns non-zero if character <s> is a hex digit (0-9, a-f, A-F), else zero.
 | |
|  *
 | |
|  * It looks like this one would be a good candidate for inlining, but this is
 | |
|  * not interesting because it around 35 bytes long and often called multiple
 | |
|  * times within the same function.
 | |
|  */
 | |
| int ishex(char s)
 | |
| {
 | |
| 	s -= '0';
 | |
| 	if ((unsigned char)s <= 9)
 | |
| 		return 1;
 | |
| 	s -= 'A' - '0';
 | |
| 	if ((unsigned char)s <= 5)
 | |
| 		return 1;
 | |
| 	s -= 'a' - 'A';
 | |
| 	if ((unsigned char)s <= 5)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* rounds <i> down to the closest value having max 2 digits */
 | |
| unsigned int round_2dig(unsigned int i)
 | |
| {
 | |
| 	unsigned int mul = 1;
 | |
| 
 | |
| 	while (i >= 100) {
 | |
| 		i /= 10;
 | |
| 		mul *= 10;
 | |
| 	}
 | |
| 	return i * mul;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks <name> for invalid characters. Valid chars are [A-Za-z0-9_:.-]. If an
 | |
|  * invalid character is found, a pointer to it is returned. If everything is
 | |
|  * fine, NULL is returned.
 | |
|  */
 | |
| const char *invalid_char(const char *name)
 | |
| {
 | |
| 	if (!*name)
 | |
| 		return name;
 | |
| 
 | |
| 	while (*name) {
 | |
| 		if (!isalnum((int)(unsigned char)*name) && *name != '.' && *name != ':' &&
 | |
| 		    *name != '_' && *name != '-')
 | |
| 			return name;
 | |
| 		name++;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks <domainname> for invalid characters. Valid chars are [A-Za-z0-9_.-].
 | |
|  * If an invalid character is found, a pointer to it is returned.
 | |
|  * If everything is fine, NULL is returned.
 | |
|  */
 | |
| const char *invalid_domainchar(const char *name) {
 | |
| 
 | |
| 	if (!*name)
 | |
| 		return name;
 | |
| 
 | |
| 	while (*name) {
 | |
| 		if (!isalnum((int)(unsigned char)*name) && *name != '.' &&
 | |
| 		    *name != '_' && *name != '-')
 | |
| 			return name;
 | |
| 
 | |
| 		name++;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * converts <str> to a struct sockaddr_storage* provided by the caller. The
 | |
|  * caller must have zeroed <sa> first, and may have set sa->ss_family to force
 | |
|  * parse a specific address format. If the ss_family is 0 or AF_UNSPEC, then
 | |
|  * the function tries to guess the address family from the syntax. If the
 | |
|  * family is forced and the format doesn't match, an error is returned. The
 | |
|  * string is assumed to contain only an address, no port. The address can be a
 | |
|  * dotted IPv4 address, an IPv6 address, a host name, or empty or "*" to
 | |
|  * indicate INADDR_ANY. NULL is returned if the host part cannot be resolved.
 | |
|  * The return address will only have the address family and the address set,
 | |
|  * all other fields remain zero. The string is not supposed to be modified.
 | |
|  * The IPv6 '::' address is IN6ADDR_ANY. If <resolve> is non-zero, the hostname
 | |
|  * is resolved, otherwise only IP addresses are resolved, and anything else
 | |
|  * returns NULL. If the address contains a port, this one is preserved.
 | |
|  */
 | |
| struct sockaddr_storage *str2ip2(const char *str, struct sockaddr_storage *sa, int resolve)
 | |
| {
 | |
| 	struct hostent *he;
 | |
| 	/* max IPv6 length, including brackets and terminating NULL */
 | |
| 	char tmpip[48];
 | |
| 	int port = get_host_port(sa);
 | |
| 
 | |
| 	/* check IPv6 with square brackets */
 | |
| 	if (str[0] == '[') {
 | |
| 		size_t iplength = strlen(str);
 | |
| 
 | |
| 		if (iplength < 4) {
 | |
| 			/* minimal size is 4 when using brackets "[::]" */
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		else if (iplength >= sizeof(tmpip)) {
 | |
| 			/* IPv6 literal can not be larger than tmpip */
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		else {
 | |
| 			if (str[iplength - 1] != ']') {
 | |
| 				/* if address started with bracket, it should end with bracket */
 | |
| 				goto fail;
 | |
| 			}
 | |
| 			else {
 | |
| 				memcpy(tmpip, str + 1, iplength - 2);
 | |
| 				tmpip[iplength - 2] = '\0';
 | |
| 				str = tmpip;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Any IPv6 address */
 | |
| 	if (str[0] == ':' && str[1] == ':' && !str[2]) {
 | |
| 		if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
 | |
| 			sa->ss_family = AF_INET6;
 | |
| 		else if (sa->ss_family != AF_INET6)
 | |
| 			goto fail;
 | |
| 		set_host_port(sa, port);
 | |
| 		return sa;
 | |
| 	}
 | |
| 
 | |
| 	/* Any address for the family, defaults to IPv4 */
 | |
| 	if (!str[0] || (str[0] == '*' && !str[1])) {
 | |
| 		if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
 | |
| 			sa->ss_family = AF_INET;
 | |
| 		set_host_port(sa, port);
 | |
| 		return sa;
 | |
| 	}
 | |
| 
 | |
| 	/* check for IPv6 first */
 | |
| 	if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET6) &&
 | |
| 	    inet_pton(AF_INET6, str, &((struct sockaddr_in6 *)sa)->sin6_addr)) {
 | |
| 		sa->ss_family = AF_INET6;
 | |
| 		set_host_port(sa, port);
 | |
| 		return sa;
 | |
| 	}
 | |
| 
 | |
| 	/* then check for IPv4 */
 | |
| 	if ((!sa->ss_family || sa->ss_family == AF_UNSPEC || sa->ss_family == AF_INET) &&
 | |
| 	    inet_pton(AF_INET, str, &((struct sockaddr_in *)sa)->sin_addr)) {
 | |
| 		sa->ss_family = AF_INET;
 | |
| 		set_host_port(sa, port);
 | |
| 		return sa;
 | |
| 	}
 | |
| 
 | |
| 	if (!resolve)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!dns_hostname_validation(str, NULL))
 | |
| 		return NULL;
 | |
| 
 | |
| #ifdef USE_GETADDRINFO
 | |
| 	if (global.tune.options & GTUNE_USE_GAI) {
 | |
| 		struct addrinfo hints, *result;
 | |
| 
 | |
| 		memset(&result, 0, sizeof(result));
 | |
| 		memset(&hints, 0, sizeof(hints));
 | |
| 		hints.ai_family = sa->ss_family ? sa->ss_family : AF_UNSPEC;
 | |
| 		hints.ai_socktype = SOCK_DGRAM;
 | |
| 		hints.ai_flags = 0;
 | |
| 		hints.ai_protocol = 0;
 | |
| 
 | |
| 		if (getaddrinfo(str, NULL, &hints, &result) == 0) {
 | |
| 			if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
 | |
| 				sa->ss_family = result->ai_family;
 | |
| 			else if (sa->ss_family != result->ai_family)
 | |
| 				goto fail;
 | |
| 
 | |
| 			switch (result->ai_family) {
 | |
| 			case AF_INET:
 | |
| 				memcpy((struct sockaddr_in *)sa, result->ai_addr, result->ai_addrlen);
 | |
| 				set_host_port(sa, port);
 | |
| 				return sa;
 | |
| 			case AF_INET6:
 | |
| 				memcpy((struct sockaddr_in6 *)sa, result->ai_addr, result->ai_addrlen);
 | |
| 				set_host_port(sa, port);
 | |
| 				return sa;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (result)
 | |
| 			freeaddrinfo(result);
 | |
| 	}
 | |
| #endif
 | |
| 	/* try to resolve an IPv4/IPv6 hostname */
 | |
| 	he = gethostbyname(str);
 | |
| 	if (he) {
 | |
| 		if (!sa->ss_family || sa->ss_family == AF_UNSPEC)
 | |
| 			sa->ss_family = he->h_addrtype;
 | |
| 		else if (sa->ss_family != he->h_addrtype)
 | |
| 			goto fail;
 | |
| 
 | |
| 		switch (sa->ss_family) {
 | |
| 		case AF_INET:
 | |
| 			((struct sockaddr_in *)sa)->sin_addr = *(struct in_addr *) *(he->h_addr_list);
 | |
| 			set_host_port(sa, port);
 | |
| 			return sa;
 | |
| 		case AF_INET6:
 | |
| 			((struct sockaddr_in6 *)sa)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list);
 | |
| 			set_host_port(sa, port);
 | |
| 			return sa;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* unsupported address family */
 | |
|  fail:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Converts <str> to a locally allocated struct sockaddr_storage *, and a port
 | |
|  * range or offset consisting in two integers that the caller will have to
 | |
|  * check to find the relevant input format. The following format are supported :
 | |
|  *
 | |
|  *   String format           | address |  port  |  low   |  high
 | |
|  *    addr                   | <addr>  |   0    |   0    |   0
 | |
|  *    addr:                  | <addr>  |   0    |   0    |   0
 | |
|  *    addr:port              | <addr>  | <port> | <port> | <port>
 | |
|  *    addr:pl-ph             | <addr>  |  <pl>  |  <pl>  |  <ph>
 | |
|  *    addr:+port             | <addr>  | <port> |   0    | <port>
 | |
|  *    addr:-port             | <addr>  |-<port> | <port> |   0
 | |
|  *
 | |
|  * The detection of a port range or increment by the caller is made by
 | |
|  * comparing <low> and <high>. If both are equal, then port 0 means no port
 | |
|  * was specified. The caller may pass NULL for <low> and <high> if it is not
 | |
|  * interested in retrieving port ranges.
 | |
|  *
 | |
|  * Note that <addr> above may also be :
 | |
|  *    - empty ("")  => family will be AF_INET and address will be INADDR_ANY
 | |
|  *    - "*"         => family will be AF_INET and address will be INADDR_ANY
 | |
|  *    - "::"        => family will be AF_INET6 and address will be IN6ADDR_ANY
 | |
|  *    - a host name => family and address will depend on host name resolving.
 | |
|  *
 | |
|  * A prefix may be passed in before the address above to force the family :
 | |
|  *    - "ipv4@"  => force address to resolve as IPv4 and fail if not possible.
 | |
|  *    - "ipv6@"  => force address to resolve as IPv6 and fail if not possible.
 | |
|  *    - "unix@"  => force address to be a path to a UNIX socket even if the
 | |
|  *                  path does not start with a '/'
 | |
|  *    - 'abns@'  -> force address to belong to the abstract namespace (Linux
 | |
|  *                  only). These sockets are just like Unix sockets but without
 | |
|  *                  the need for an underlying file system. The address is a
 | |
|  *                  string. Technically it's like a Unix socket with a zero in
 | |
|  *                  the first byte of the address.
 | |
|  *    - "fd@"    => an integer must follow, and is a file descriptor number.
 | |
|  *
 | |
|  * IPv6 addresses can be declared with or without square brackets. When using
 | |
|  * square brackets for IPv6 addresses, the port separator (colon) is optional.
 | |
|  * If not using square brackets, and in order to avoid any ambiguity with
 | |
|  * IPv6 addresses, the last colon ':' is mandatory even when no port is specified.
 | |
|  * NULL is returned if the address cannot be parsed. The <low> and <high> ports
 | |
|  * are always initialized if non-null, even for non-IP families.
 | |
|  *
 | |
|  * If <pfx> is non-null, it is used as a string prefix before any path-based
 | |
|  * address (typically the path to a unix socket).
 | |
|  *
 | |
|  * if <fqdn> is non-null, it will be filled with :
 | |
|  *   - a pointer to the FQDN of the server name to resolve if there's one, and
 | |
|  *     that the caller will have to free(),
 | |
|  *   - NULL if there was an explicit address that doesn't require resolution.
 | |
|  *
 | |
|  * Hostnames are only resolved if <resolve> is non-null. Note that if <resolve>
 | |
|  * is null, <fqdn> is still honnored so it is possible for the caller to know
 | |
|  * whether a resolution failed by setting <resolve> to null and checking if
 | |
|  * <fqdn> was filled, indicating the need for a resolution.
 | |
|  *
 | |
|  * When a file descriptor is passed, its value is put into the s_addr part of
 | |
|  * the address when cast to sockaddr_in and the address family is AF_UNSPEC.
 | |
|  */
 | |
| struct sockaddr_storage *str2sa_range(const char *str, int *port, int *low, int *high, char **err, const char *pfx, char **fqdn, int resolve)
 | |
| {
 | |
| 	static struct sockaddr_storage ss;
 | |
| 	struct sockaddr_storage *ret = NULL;
 | |
| 	char *back, *str2;
 | |
| 	char *port1, *port2;
 | |
| 	int portl, porth, porta;
 | |
| 	int abstract = 0;
 | |
| 
 | |
| 	portl = porth = porta = 0;
 | |
| 	if (fqdn)
 | |
| 		*fqdn = NULL;
 | |
| 
 | |
| 	str2 = back = env_expand(strdup(str));
 | |
| 	if (str2 == NULL) {
 | |
| 		memprintf(err, "out of memory in '%s'\n", __FUNCTION__);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!*str2) {
 | |
| 		memprintf(err, "'%s' resolves to an empty address (environment variable missing?)\n", str);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	memset(&ss, 0, sizeof(ss));
 | |
| 
 | |
| 	if (strncmp(str2, "unix@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		abstract = 0;
 | |
| 		ss.ss_family = AF_UNIX;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "abns@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		abstract = 1;
 | |
| 		ss.ss_family = AF_UNIX;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "ipv4@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		ss.ss_family = AF_INET;
 | |
| 	}
 | |
| 	else if (strncmp(str2, "ipv6@", 5) == 0) {
 | |
| 		str2 += 5;
 | |
| 		ss.ss_family = AF_INET6;
 | |
| 	}
 | |
| 	else if (*str2 == '/') {
 | |
| 		ss.ss_family = AF_UNIX;
 | |
| 	}
 | |
| 	else
 | |
| 		ss.ss_family = AF_UNSPEC;
 | |
| 
 | |
| 	if (ss.ss_family == AF_UNSPEC && strncmp(str2, "fd@", 3) == 0) {
 | |
| 		char *endptr;
 | |
| 
 | |
| 		str2 += 3;
 | |
| 		((struct sockaddr_in *)&ss)->sin_addr.s_addr = strtol(str2, &endptr, 10);
 | |
| 
 | |
| 		if (!*str2 || *endptr) {
 | |
| 			memprintf(err, "file descriptor '%s' is not a valid integer in '%s'\n", str2, str);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* we return AF_UNSPEC if we use a file descriptor number */
 | |
| 		ss.ss_family = AF_UNSPEC;
 | |
| 	}
 | |
| 	else if (ss.ss_family == AF_UNIX) {
 | |
| 		int prefix_path_len;
 | |
| 		int max_path_len;
 | |
| 		int adr_len;
 | |
| 
 | |
| 		/* complete unix socket path name during startup or soft-restart is
 | |
| 		 * <unix_bind_prefix><path>.<pid>.<bak|tmp>
 | |
| 		 */
 | |
| 		prefix_path_len = (pfx && !abstract) ? strlen(pfx) : 0;
 | |
| 		max_path_len = (sizeof(((struct sockaddr_un *)&ss)->sun_path) - 1) -
 | |
| 			(prefix_path_len ? prefix_path_len + 1 + 5 + 1 + 3 : 0);
 | |
| 
 | |
| 		adr_len = strlen(str2);
 | |
| 		if (adr_len > max_path_len) {
 | |
| 			memprintf(err, "socket path '%s' too long (max %d)\n", str, max_path_len);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* when abstract==1, we skip the first zero and copy all bytes except the trailing zero */
 | |
| 		memset(((struct sockaddr_un *)&ss)->sun_path, 0, sizeof(((struct sockaddr_un *)&ss)->sun_path));
 | |
| 		if (prefix_path_len)
 | |
| 			memcpy(((struct sockaddr_un *)&ss)->sun_path, pfx, prefix_path_len);
 | |
| 		memcpy(((struct sockaddr_un *)&ss)->sun_path + prefix_path_len + abstract, str2, adr_len + 1 - abstract);
 | |
| 	}
 | |
| 	else { /* IPv4 and IPv6 */
 | |
| 		char *end = str2 + strlen(str2);
 | |
| 		char *chr;
 | |
| 
 | |
| 		/* search for : or ] whatever comes first */
 | |
| 		for (chr = end-1; chr > str2; chr--) {
 | |
| 			if (*chr == ']' || *chr == ':')
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (*chr == ':') {
 | |
| 			/* Found a colon before a closing-bracket, must be a port separator.
 | |
| 			 * This guarantee backward compatibility.
 | |
| 			 */
 | |
| 			*chr++ = '\0';
 | |
| 			port1 = chr;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* Either no colon and no closing-bracket
 | |
| 			 * or directly ending with a closing-bracket.
 | |
| 			 * However, no port.
 | |
| 			 */
 | |
| 			port1 = "";
 | |
| 		}
 | |
| 
 | |
| 		if (isdigit((int)(unsigned char)*port1)) {	/* single port or range */
 | |
| 			port2 = strchr(port1, '-');
 | |
| 			if (port2)
 | |
| 				*port2++ = '\0';
 | |
| 			else
 | |
| 				port2 = port1;
 | |
| 			portl = atoi(port1);
 | |
| 			porth = atoi(port2);
 | |
| 			porta = portl;
 | |
| 		}
 | |
| 		else if (*port1 == '-') { /* negative offset */
 | |
| 			portl = atoi(port1 + 1);
 | |
| 			porta = -portl;
 | |
| 		}
 | |
| 		else if (*port1 == '+') { /* positive offset */
 | |
| 			porth = atoi(port1 + 1);
 | |
| 			porta = porth;
 | |
| 		}
 | |
| 		else if (*port1) { /* other any unexpected char */
 | |
| 			memprintf(err, "invalid character '%c' in port number '%s' in '%s'\n", *port1, port1, str);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* first try to parse the IP without resolving. If it fails, it
 | |
| 		 * tells us we need to keep a copy of the FQDN to resolve later
 | |
| 		 * and to enable DNS. In this case we can proceed if <fqdn> is
 | |
| 		 * set or if resolve is set, otherwise it's an error.
 | |
| 		 */
 | |
| 		if (str2ip2(str2, &ss, 0) == NULL) {
 | |
| 			if ((!resolve && !fqdn) ||
 | |
| 				 (resolve && str2ip2(str2, &ss, 1) == NULL)) {
 | |
| 				memprintf(err, "invalid address: '%s' in '%s'\n", str2, str);
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			if (fqdn) {
 | |
| 				if (str2 != back)
 | |
| 					memmove(back, str2, strlen(str2) + 1);
 | |
| 				*fqdn = back;
 | |
| 				back = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		set_host_port(&ss, porta);
 | |
| 	}
 | |
| 
 | |
| 	ret = &ss;
 | |
|  out:
 | |
| 	if (port)
 | |
| 		*port = porta;
 | |
| 	if (low)
 | |
| 		*low = portl;
 | |
| 	if (high)
 | |
| 		*high = porth;
 | |
| 	free(back);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* converts <str> to a struct in_addr containing a network mask. It can be
 | |
|  * passed in dotted form (255.255.255.0) or in CIDR form (24). It returns 1
 | |
|  * if the conversion succeeds otherwise non-zero.
 | |
|  */
 | |
| int str2mask(const char *str, struct in_addr *mask)
 | |
| {
 | |
| 	if (strchr(str, '.') != NULL) {	    /* dotted notation */
 | |
| 		if (!inet_pton(AF_INET, str, mask))
 | |
| 			return 0;
 | |
| 	}
 | |
| 	else { /* mask length */
 | |
| 		char *err;
 | |
| 		unsigned long len = strtol(str, &err, 10);
 | |
| 
 | |
| 		if (!*str || (err && *err) || (unsigned)len > 32)
 | |
| 			return 0;
 | |
| 		if (len)
 | |
| 			mask->s_addr = htonl(~0UL << (32 - len));
 | |
| 		else
 | |
| 			mask->s_addr = 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* convert <cidr> to struct in_addr <mask>. It returns 1 if the conversion
 | |
|  * succeeds otherwise zero.
 | |
|  */
 | |
| int cidr2dotted(int cidr, struct in_addr *mask) {
 | |
| 
 | |
| 	if (cidr < 0 || cidr > 32)
 | |
| 		return 0;
 | |
| 
 | |
| 	mask->s_addr = cidr ? htonl(~0UL << (32 - cidr)) : 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Convert mask from bit length form to in_addr form.
 | |
|  * This function never fails.
 | |
|  */
 | |
| void len2mask4(int len, struct in_addr *addr)
 | |
| {
 | |
| 	if (len >= 32) {
 | |
| 		addr->s_addr = 0xffffffff;
 | |
| 		return;
 | |
| 	}
 | |
| 	if (len <= 0) {
 | |
| 		addr->s_addr = 0x00000000;
 | |
| 		return;
 | |
| 	}
 | |
| 	addr->s_addr = 0xffffffff << (32 - len);
 | |
| 	addr->s_addr = htonl(addr->s_addr);
 | |
| }
 | |
| 
 | |
| /* Convert mask from bit length form to in6_addr form.
 | |
|  * This function never fails.
 | |
|  */
 | |
| void len2mask6(int len, struct in6_addr *addr)
 | |
| {
 | |
| 	len2mask4(len, (struct in_addr *)&addr->s6_addr[0]); /* msb */
 | |
| 	len -= 32;
 | |
| 	len2mask4(len, (struct in_addr *)&addr->s6_addr[4]);
 | |
| 	len -= 32;
 | |
| 	len2mask4(len, (struct in_addr *)&addr->s6_addr[8]);
 | |
| 	len -= 32;
 | |
| 	len2mask4(len, (struct in_addr *)&addr->s6_addr[12]); /* lsb */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * converts <str> to two struct in_addr* which must be pre-allocated.
 | |
|  * The format is "addr[/mask]", where "addr" cannot be empty, and mask
 | |
|  * is optionnal and either in the dotted or CIDR notation.
 | |
|  * Note: "addr" can also be a hostname. Returns 1 if OK, 0 if error.
 | |
|  */
 | |
| int str2net(const char *str, int resolve, struct in_addr *addr, struct in_addr *mask)
 | |
| {
 | |
| 	__label__ out_free, out_err;
 | |
| 	char *c, *s;
 | |
| 	int ret_val;
 | |
| 
 | |
| 	s = strdup(str);
 | |
| 	if (!s)
 | |
| 		return 0;
 | |
| 
 | |
| 	memset(mask, 0, sizeof(*mask));
 | |
| 	memset(addr, 0, sizeof(*addr));
 | |
| 
 | |
| 	if ((c = strrchr(s, '/')) != NULL) {
 | |
| 		*c++ = '\0';
 | |
| 		/* c points to the mask */
 | |
| 		if (!str2mask(c, mask))
 | |
| 			goto out_err;
 | |
| 	}
 | |
| 	else {
 | |
| 		mask->s_addr = ~0U;
 | |
| 	}
 | |
| 	if (!inet_pton(AF_INET, s, addr)) {
 | |
| 		struct hostent *he;
 | |
| 
 | |
| 		if (!resolve)
 | |
| 			goto out_err;
 | |
| 
 | |
| 		if ((he = gethostbyname(s)) == NULL) {
 | |
| 			goto out_err;
 | |
| 		}
 | |
| 		else
 | |
| 			*addr = *(struct in_addr *) *(he->h_addr_list);
 | |
| 	}
 | |
| 
 | |
| 	ret_val = 1;
 | |
|  out_free:
 | |
| 	free(s);
 | |
| 	return ret_val;
 | |
|  out_err:
 | |
| 	ret_val = 0;
 | |
| 	goto out_free;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * converts <str> to two struct in6_addr* which must be pre-allocated.
 | |
|  * The format is "addr[/mask]", where "addr" cannot be empty, and mask
 | |
|  * is an optionnal number of bits (128 being the default).
 | |
|  * Returns 1 if OK, 0 if error.
 | |
|  */
 | |
| int str62net(const char *str, struct in6_addr *addr, unsigned char *mask)
 | |
| {
 | |
| 	char *c, *s;
 | |
| 	int ret_val = 0;
 | |
| 	char *err;
 | |
| 	unsigned long len = 128;
 | |
| 
 | |
| 	s = strdup(str);
 | |
| 	if (!s)
 | |
| 		return 0;
 | |
| 
 | |
| 	memset(mask, 0, sizeof(*mask));
 | |
| 	memset(addr, 0, sizeof(*addr));
 | |
| 
 | |
| 	if ((c = strrchr(s, '/')) != NULL) {
 | |
| 		*c++ = '\0'; /* c points to the mask */
 | |
| 		if (!*c)
 | |
| 			goto out_free;
 | |
| 
 | |
| 		len = strtoul(c, &err, 10);
 | |
| 		if ((err && *err) || (unsigned)len > 128)
 | |
| 			goto out_free;
 | |
| 	}
 | |
| 	*mask = len; /* OK we have a valid mask in <len> */
 | |
| 
 | |
| 	if (!inet_pton(AF_INET6, s, addr))
 | |
| 		goto out_free;
 | |
| 
 | |
| 	ret_val = 1;
 | |
|  out_free:
 | |
| 	free(s);
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Parse IPv4 address found in url.
 | |
|  */
 | |
| int url2ipv4(const char *addr, struct in_addr *dst)
 | |
| {
 | |
| 	int saw_digit, octets, ch;
 | |
| 	u_char tmp[4], *tp;
 | |
| 	const char *cp = addr;
 | |
| 
 | |
| 	saw_digit = 0;
 | |
| 	octets = 0;
 | |
| 	*(tp = tmp) = 0;
 | |
| 
 | |
| 	while (*addr) {
 | |
| 		unsigned char digit = (ch = *addr++) - '0';
 | |
| 		if (digit > 9 && ch != '.')
 | |
| 			break;
 | |
| 		if (digit <= 9) {
 | |
| 			u_int new = *tp * 10 + digit;
 | |
| 			if (new > 255)
 | |
| 				return 0;
 | |
| 			*tp = new;
 | |
| 			if (!saw_digit) {
 | |
| 				if (++octets > 4)
 | |
| 					return 0;
 | |
| 				saw_digit = 1;
 | |
| 			}
 | |
| 		} else if (ch == '.' && saw_digit) {
 | |
| 			if (octets == 4)
 | |
| 				return 0;
 | |
| 			*++tp = 0;
 | |
| 			saw_digit = 0;
 | |
| 		} else
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (octets < 4)
 | |
| 		return 0;
 | |
| 
 | |
| 	memcpy(&dst->s_addr, tmp, 4);
 | |
| 	return addr-cp-1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Resolve destination server from URL. Convert <str> to a sockaddr_storage.
 | |
|  * <out> contain the code of the dectected scheme, the start and length of
 | |
|  * the hostname. Actually only http and https are supported. <out> can be NULL.
 | |
|  * This function returns the consumed length. It is useful if you parse complete
 | |
|  * url like http://host:port/path, because the consumed length corresponds to
 | |
|  * the first character of the path. If the conversion fails, it returns -1.
 | |
|  *
 | |
|  * This function tries to resolve the DNS name if haproxy is in starting mode.
 | |
|  * So, this function may be used during the configuration parsing.
 | |
|  */
 | |
| int url2sa(const char *url, int ulen, struct sockaddr_storage *addr, struct split_url *out)
 | |
| {
 | |
| 	const char *curr = url, *cp = url;
 | |
| 	const char *end;
 | |
| 	int ret, url_code = 0;
 | |
| 	unsigned long long int http_code = 0;
 | |
| 	int default_port;
 | |
| 	struct hostent *he;
 | |
| 	char *p;
 | |
| 
 | |
| 	/* Firstly, try to find :// pattern */
 | |
| 	while (curr < url+ulen && url_code != 0x3a2f2f) {
 | |
| 		url_code = ((url_code & 0xffff) << 8);
 | |
| 		url_code += (unsigned char)*curr++;
 | |
| 	}
 | |
| 
 | |
| 	/* Secondly, if :// pattern is found, verify parsed stuff
 | |
| 	 * before pattern is matching our http pattern.
 | |
| 	 * If so parse ip address and port in uri.
 | |
| 	 * 
 | |
| 	 * WARNING: Current code doesn't support dynamic async dns resolver.
 | |
| 	 */
 | |
| 	if (url_code != 0x3a2f2f)
 | |
| 		return -1;
 | |
| 
 | |
| 	/* Copy scheme, and utrn to lower case. */
 | |
| 	while (cp < curr - 3)
 | |
| 		http_code = (http_code << 8) + *cp++;
 | |
| 	http_code |= 0x2020202020202020ULL;			/* Turn everything to lower case */
 | |
| 		
 | |
| 	/* HTTP or HTTPS url matching */
 | |
| 	if (http_code == 0x2020202068747470ULL) {
 | |
| 		default_port = 80;
 | |
| 		if (out)
 | |
| 			out->scheme = SCH_HTTP;
 | |
| 	}
 | |
| 	else if (http_code == 0x2020206874747073ULL) {
 | |
| 		default_port = 443;
 | |
| 		if (out)
 | |
| 			out->scheme = SCH_HTTPS;
 | |
| 	}
 | |
| 	else
 | |
| 		return -1;
 | |
| 
 | |
| 	/* If the next char is '[', the host address is IPv6. */
 | |
| 	if (*curr == '[') {
 | |
| 		curr++;
 | |
| 
 | |
| 		/* Check trash size */
 | |
| 		if (trash.size < ulen)
 | |
| 			return -1;
 | |
| 
 | |
| 		/* Look for ']' and copy the address in a trash buffer. */
 | |
| 		p = trash.str;
 | |
| 		for (end = curr;
 | |
| 		     end < url + ulen && *end != ']';
 | |
| 		     end++, p++)
 | |
| 			*p = *end;
 | |
| 		if (*end != ']')
 | |
| 			return -1;
 | |
| 		*p = '\0';
 | |
| 
 | |
| 		/* Update out. */
 | |
| 		if (out) {
 | |
| 			out->host = curr;
 | |
| 			out->host_len = end - curr;
 | |
| 		}
 | |
| 
 | |
| 		/* Try IPv6 decoding. */
 | |
| 		if (!inet_pton(AF_INET6, trash.str, &((struct sockaddr_in6 *)addr)->sin6_addr))
 | |
| 			return -1;
 | |
| 		end++;
 | |
| 
 | |
| 		/* Decode port. */
 | |
| 		if (*end == ':') {
 | |
| 			end++;
 | |
| 			default_port = read_uint(&end, url + ulen);
 | |
| 		}
 | |
| 		((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port);
 | |
| 		((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6;
 | |
| 		return end - url;
 | |
| 	}
 | |
| 	else {
 | |
| 		/* We are looking for IP address. If you want to parse and
 | |
| 		 * resolve hostname found in url, you can use str2sa_range(), but
 | |
| 		 * be warned this can slow down global daemon performances
 | |
| 		 * while handling lagging dns responses.
 | |
| 		 */
 | |
| 		ret = url2ipv4(curr, &((struct sockaddr_in *)addr)->sin_addr);
 | |
| 		if (ret) {
 | |
| 			/* Update out. */
 | |
| 			if (out) {
 | |
| 				out->host = curr;
 | |
| 				out->host_len = ret;
 | |
| 			}
 | |
| 
 | |
| 			curr += ret;
 | |
| 
 | |
| 			/* Decode port. */
 | |
| 			if (*curr == ':') {
 | |
| 				curr++;
 | |
| 				default_port = read_uint(&curr, url + ulen);
 | |
| 			}
 | |
| 			((struct sockaddr_in *)addr)->sin_port = htons(default_port);
 | |
| 
 | |
| 			/* Set family. */
 | |
| 			((struct sockaddr_in *)addr)->sin_family = AF_INET;
 | |
| 			return curr - url;
 | |
| 		}
 | |
| 		else if (global.mode & MODE_STARTING) {
 | |
| 			/* The IPv4 and IPv6 decoding fails, maybe the url contain name. Try to execute
 | |
| 			 * synchronous DNS request only if HAProxy is in the start state.
 | |
| 			 */
 | |
| 
 | |
| 			/* look for : or / or end */
 | |
| 			for (end = curr;
 | |
| 			     end < url + ulen && *end != '/' && *end != ':';
 | |
| 			     end++);
 | |
| 			memcpy(trash.str, curr, end - curr);
 | |
| 			trash.str[end - curr] = '\0';
 | |
| 
 | |
| 			/* try to resolve an IPv4/IPv6 hostname */
 | |
| 			he = gethostbyname(trash.str);
 | |
| 			if (!he)
 | |
| 				return -1;
 | |
| 
 | |
| 			/* Update out. */
 | |
| 			if (out) {
 | |
| 				out->host = curr;
 | |
| 				out->host_len = end - curr;
 | |
| 			}
 | |
| 
 | |
| 			/* Decode port. */
 | |
| 			if (*end == ':') {
 | |
| 				end++;
 | |
| 				default_port = read_uint(&end, url + ulen);
 | |
| 			}
 | |
| 
 | |
| 			/* Copy IP address, set port and family. */
 | |
| 			switch (he->h_addrtype) {
 | |
| 			case AF_INET:
 | |
| 				((struct sockaddr_in *)addr)->sin_addr = *(struct in_addr *) *(he->h_addr_list);
 | |
| 				((struct sockaddr_in *)addr)->sin_port = htons(default_port);
 | |
| 				((struct sockaddr_in *)addr)->sin_family = AF_INET;
 | |
| 				return end - url;
 | |
| 
 | |
| 			case AF_INET6:
 | |
| 				((struct sockaddr_in6 *)addr)->sin6_addr = *(struct in6_addr *) *(he->h_addr_list);
 | |
| 				((struct sockaddr_in6 *)addr)->sin6_port = htons(default_port);
 | |
| 				((struct sockaddr_in6 *)addr)->sin6_family = AF_INET6;
 | |
| 				return end - url;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Tries to convert a sockaddr_storage address to text form. Upon success, the
 | |
|  * address family is returned so that it's easy for the caller to adapt to the
 | |
|  * output format. Zero is returned if the address family is not supported. -1
 | |
|  * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are
 | |
|  * supported.
 | |
|  */
 | |
| int addr_to_str(struct sockaddr_storage *addr, char *str, int size)
 | |
| {
 | |
| 
 | |
| 	void *ptr;
 | |
| 
 | |
| 	if (size < 5)
 | |
| 		return 0;
 | |
| 	*str = '\0';
 | |
| 
 | |
| 	switch (addr->ss_family) {
 | |
| 	case AF_INET:
 | |
| 		ptr = &((struct sockaddr_in *)addr)->sin_addr;
 | |
| 		break;
 | |
| 	case AF_INET6:
 | |
| 		ptr = &((struct sockaddr_in6 *)addr)->sin6_addr;
 | |
| 		break;
 | |
| 	case AF_UNIX:
 | |
| 		memcpy(str, "unix", 5);
 | |
| 		return addr->ss_family;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (inet_ntop(addr->ss_family, ptr, str, size))
 | |
| 		return addr->ss_family;
 | |
| 
 | |
| 	/* failed */
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Tries to convert a sockaddr_storage port to text form. Upon success, the
 | |
|  * address family is returned so that it's easy for the caller to adapt to the
 | |
|  * output format. Zero is returned if the address family is not supported. -1
 | |
|  * is returned upon error, with errno set. AF_INET, AF_INET6 and AF_UNIX are
 | |
|  * supported.
 | |
|  */
 | |
| int port_to_str(struct sockaddr_storage *addr, char *str, int size)
 | |
| {
 | |
| 
 | |
| 	uint16_t port;
 | |
| 
 | |
| 
 | |
| 	if (size < 6)
 | |
| 		return 0;
 | |
| 	*str = '\0';
 | |
| 
 | |
| 	switch (addr->ss_family) {
 | |
| 	case AF_INET:
 | |
| 		port = ((struct sockaddr_in *)addr)->sin_port;
 | |
| 		break;
 | |
| 	case AF_INET6:
 | |
| 		port = ((struct sockaddr_in6 *)addr)->sin6_port;
 | |
| 		break;
 | |
| 	case AF_UNIX:
 | |
| 		memcpy(str, "unix", 5);
 | |
| 		return addr->ss_family;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	snprintf(str, size, "%u", ntohs(port));
 | |
| 	return addr->ss_family;
 | |
| }
 | |
| 
 | |
| /* check if the given address is local to the system or not. It will return
 | |
|  * -1 when it's not possible to know, 0 when the address is not local, 1 when
 | |
|  * it is. We don't want to iterate over all interfaces for this (and it is not
 | |
|  * portable). So instead we try to bind in UDP to this address on a free non
 | |
|  * privileged port and to connect to the same address, port 0 (connect doesn't
 | |
|  * care). If it succeeds, we own the address. Note that non-inet addresses are
 | |
|  * considered local since they're most likely AF_UNIX.
 | |
|  */
 | |
| int addr_is_local(const struct netns_entry *ns,
 | |
|                   const struct sockaddr_storage *orig)
 | |
| {
 | |
| 	struct sockaddr_storage addr;
 | |
| 	int result;
 | |
| 	int fd;
 | |
| 
 | |
| 	if (!is_inet_addr(orig))
 | |
| 		return 1;
 | |
| 
 | |
| 	memcpy(&addr, orig, sizeof(addr));
 | |
| 	set_host_port(&addr, 0);
 | |
| 
 | |
| 	fd = my_socketat(ns, addr.ss_family, SOCK_DGRAM, IPPROTO_UDP);
 | |
| 	if (fd < 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	result = -1;
 | |
| 	if (bind(fd, (struct sockaddr *)&addr, get_addr_len(&addr)) == 0) {
 | |
| 		if (connect(fd, (struct sockaddr *)&addr, get_addr_len(&addr)) == -1)
 | |
| 			result = 0; // fail, non-local address
 | |
| 		else
 | |
| 			result = 1; // success, local address
 | |
| 	}
 | |
| 	else {
 | |
| 		if (errno == EADDRNOTAVAIL)
 | |
| 			result = 0; // definitely not local :-)
 | |
| 	}
 | |
| 	close(fd);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /* will try to encode the string <string> replacing all characters tagged in
 | |
|  * <map> with the hexadecimal representation of their ASCII-code (2 digits)
 | |
|  * prefixed by <escape>, and will store the result between <start> (included)
 | |
|  * and <stop> (excluded), and will always terminate the string with a '\0'
 | |
|  * before <stop>. The position of the '\0' is returned if the conversion
 | |
|  * completes. If bytes are missing between <start> and <stop>, then the
 | |
|  * conversion will be incomplete and truncated. If <stop> <= <start>, the '\0'
 | |
|  * cannot even be stored so we return <start> without writing the 0.
 | |
|  * The input string must also be zero-terminated.
 | |
|  */
 | |
| const char hextab[16] = "0123456789ABCDEF";
 | |
| char *encode_string(char *start, char *stop,
 | |
| 		    const char escape, const fd_set *map,
 | |
| 		    const char *string)
 | |
| {
 | |
| 	if (start < stop) {
 | |
| 		stop--; /* reserve one byte for the final '\0' */
 | |
| 		while (start < stop && *string != '\0') {
 | |
| 			if (!FD_ISSET((unsigned char)(*string), map))
 | |
| 				*start++ = *string;
 | |
| 			else {
 | |
| 				if (start + 3 >= stop)
 | |
| 					break;
 | |
| 				*start++ = escape;
 | |
| 				*start++ = hextab[(*string >> 4) & 15];
 | |
| 				*start++ = hextab[*string & 15];
 | |
| 			}
 | |
| 			string++;
 | |
| 		}
 | |
| 		*start = '\0';
 | |
| 	}
 | |
| 	return start;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Same behavior as encode_string() above, except that it encodes chunk
 | |
|  * <chunk> instead of a string.
 | |
|  */
 | |
| char *encode_chunk(char *start, char *stop,
 | |
| 		    const char escape, const fd_set *map,
 | |
| 		    const struct chunk *chunk)
 | |
| {
 | |
| 	char *str = chunk->str;
 | |
| 	char *end = chunk->str + chunk->len;
 | |
| 
 | |
| 	if (start < stop) {
 | |
| 		stop--; /* reserve one byte for the final '\0' */
 | |
| 		while (start < stop && str < end) {
 | |
| 			if (!FD_ISSET((unsigned char)(*str), map))
 | |
| 				*start++ = *str;
 | |
| 			else {
 | |
| 				if (start + 3 >= stop)
 | |
| 					break;
 | |
| 				*start++ = escape;
 | |
| 				*start++ = hextab[(*str >> 4) & 15];
 | |
| 				*start++ = hextab[*str & 15];
 | |
| 			}
 | |
| 			str++;
 | |
| 		}
 | |
| 		*start = '\0';
 | |
| 	}
 | |
| 	return start;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tries to prefix characters tagged in the <map> with the <escape>
 | |
|  * character. The input <string> must be zero-terminated. The result will
 | |
|  * be stored between <start> (included) and <stop> (excluded). This
 | |
|  * function will always try to terminate the resulting string with a '\0'
 | |
|  * before <stop>, and will return its position if the conversion
 | |
|  * completes.
 | |
|  */
 | |
| char *escape_string(char *start, char *stop,
 | |
| 		    const char escape, const fd_set *map,
 | |
| 		    const char *string)
 | |
| {
 | |
| 	if (start < stop) {
 | |
| 		stop--; /* reserve one byte for the final '\0' */
 | |
| 		while (start < stop && *string != '\0') {
 | |
| 			if (!FD_ISSET((unsigned char)(*string), map))
 | |
| 				*start++ = *string;
 | |
| 			else {
 | |
| 				if (start + 2 >= stop)
 | |
| 					break;
 | |
| 				*start++ = escape;
 | |
| 				*start++ = *string;
 | |
| 			}
 | |
| 			string++;
 | |
| 		}
 | |
| 		*start = '\0';
 | |
| 	}
 | |
| 	return start;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Tries to prefix characters tagged in the <map> with the <escape>
 | |
|  * character. <chunk> contains the input to be escaped. The result will be
 | |
|  * stored between <start> (included) and <stop> (excluded). The function
 | |
|  * will always try to terminate the resulting string with a '\0' before
 | |
|  * <stop>, and will return its position if the conversion completes.
 | |
|  */
 | |
| char *escape_chunk(char *start, char *stop,
 | |
| 		   const char escape, const fd_set *map,
 | |
| 		   const struct chunk *chunk)
 | |
| {
 | |
| 	char *str = chunk->str;
 | |
| 	char *end = chunk->str + chunk->len;
 | |
| 
 | |
| 	if (start < stop) {
 | |
| 		stop--; /* reserve one byte for the final '\0' */
 | |
| 		while (start < stop && str < end) {
 | |
| 			if (!FD_ISSET((unsigned char)(*str), map))
 | |
| 				*start++ = *str;
 | |
| 			else {
 | |
| 				if (start + 2 >= stop)
 | |
| 					break;
 | |
| 				*start++ = escape;
 | |
| 				*start++ = *str;
 | |
| 			}
 | |
| 			str++;
 | |
| 		}
 | |
| 		*start = '\0';
 | |
| 	}
 | |
| 	return start;
 | |
| }
 | |
| 
 | |
| /* Check a string for using it in a CSV output format. If the string contains
 | |
|  * one of the following four char <">, <,>, CR or LF, the string is
 | |
|  * encapsulated between <"> and the <"> are escaped by a <""> sequence.
 | |
|  * <str> is the input string to be escaped. The function assumes that
 | |
|  * the input string is null-terminated.
 | |
|  *
 | |
|  * If <quote> is 0, the result is returned escaped but without double quote.
 | |
|  * It is useful if the escaped string is used between double quotes in the
 | |
|  * format.
 | |
|  *
 | |
|  *    printf("..., \"%s\", ...\r\n", csv_enc(str, 0, &trash));
 | |
|  *
 | |
|  * If <quote> is 1, the converter puts the quotes only if any reserved character
 | |
|  * is present. If <quote> is 2, the converter always puts the quotes.
 | |
|  *
 | |
|  * <output> is a struct chunk used for storing the output string.
 | |
|  *
 | |
|  * The function returns the converted string on its output. If an error
 | |
|  * occurs, the function returns an empty string. This type of output is useful
 | |
|  * for using the function directly as printf() argument.
 | |
|  *
 | |
|  * If the output buffer is too short to contain the input string, the result
 | |
|  * is truncated.
 | |
|  *
 | |
|  * This function appends the encoding to the existing output chunk, and it
 | |
|  * guarantees that it starts immediately at the first available character of
 | |
|  * the chunk. Please use csv_enc() instead if you want to replace the output
 | |
|  * chunk.
 | |
|  */
 | |
| const char *csv_enc_append(const char *str, int quote, struct chunk *output)
 | |
| {
 | |
| 	char *end = output->str + output->size;
 | |
| 	char *out = output->str + output->len;
 | |
| 	char *ptr = out;
 | |
| 
 | |
| 	if (quote == 1) {
 | |
| 		/* automatic quoting: first verify if we'll have to quote the string */
 | |
| 		if (!strpbrk(str, "\n\r,\""))
 | |
| 			quote = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (quote)
 | |
| 		*ptr++ = '"';
 | |
| 
 | |
| 	while (*str && ptr < end - 2) { /* -2 for reserving space for <"> and \0. */
 | |
| 		*ptr = *str;
 | |
| 		if (*str == '"') {
 | |
| 			ptr++;
 | |
| 			if (ptr >= end - 2) {
 | |
| 				ptr--;
 | |
| 				break;
 | |
| 			}
 | |
| 			*ptr = '"';
 | |
| 		}
 | |
| 		ptr++;
 | |
| 		str++;
 | |
| 	}
 | |
| 
 | |
| 	if (quote)
 | |
| 		*ptr++ = '"';
 | |
| 
 | |
| 	*ptr = '\0';
 | |
| 	output->len = ptr - output->str;
 | |
| 	return out;
 | |
| }
 | |
| 
 | |
| /* Decode an URL-encoded string in-place. The resulting string might
 | |
|  * be shorter. If some forbidden characters are found, the conversion is
 | |
|  * aborted, the string is truncated before the issue and a negative value is
 | |
|  * returned, otherwise the operation returns the length of the decoded string.
 | |
|  */
 | |
| int url_decode(char *string)
 | |
| {
 | |
| 	char *in, *out;
 | |
| 	int ret = -1;
 | |
| 
 | |
| 	in = string;
 | |
| 	out = string;
 | |
| 	while (*in) {
 | |
| 		switch (*in) {
 | |
| 		case '+' :
 | |
| 			*out++ = ' ';
 | |
| 			break;
 | |
| 		case '%' :
 | |
| 			if (!ishex(in[1]) || !ishex(in[2]))
 | |
| 				goto end;
 | |
| 			*out++ = (hex2i(in[1]) << 4) + hex2i(in[2]);
 | |
| 			in += 2;
 | |
| 			break;
 | |
| 		default:
 | |
| 			*out++ = *in;
 | |
| 			break;
 | |
| 		}
 | |
| 		in++;
 | |
| 	}
 | |
| 	ret = out - string; /* success */
 | |
|  end:
 | |
| 	*out = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| unsigned int str2ui(const char *s)
 | |
| {
 | |
| 	return __str2ui(s);
 | |
| }
 | |
| 
 | |
| unsigned int str2uic(const char *s)
 | |
| {
 | |
| 	return __str2uic(s);
 | |
| }
 | |
| 
 | |
| unsigned int strl2ui(const char *s, int len)
 | |
| {
 | |
| 	return __strl2ui(s, len);
 | |
| }
 | |
| 
 | |
| unsigned int strl2uic(const char *s, int len)
 | |
| {
 | |
| 	return __strl2uic(s, len);
 | |
| }
 | |
| 
 | |
| unsigned int read_uint(const char **s, const char *end)
 | |
| {
 | |
| 	return __read_uint(s, end);
 | |
| }
 | |
| 
 | |
| /* This function reads an unsigned integer from the string pointed to by <s> and
 | |
|  * returns it. The <s> pointer is adjusted to point to the first unread char. The
 | |
|  * function automatically stops at <end>. If the number overflows, the 2^64-1
 | |
|  * value is returned.
 | |
|  */
 | |
| unsigned long long int read_uint64(const char **s, const char *end)
 | |
| {
 | |
| 	const char *ptr = *s;
 | |
| 	unsigned long long int i = 0, tmp;
 | |
| 	unsigned int j;
 | |
| 
 | |
| 	while (ptr < end) {
 | |
| 
 | |
| 		/* read next char */
 | |
| 		j = *ptr - '0';
 | |
| 		if (j > 9)
 | |
| 			goto read_uint64_end;
 | |
| 
 | |
| 		/* add char to the number and check overflow. */
 | |
| 		tmp = i * 10;
 | |
| 		if (tmp / 10 != i) {
 | |
| 			i = ULLONG_MAX;
 | |
| 			goto read_uint64_eat;
 | |
| 		}
 | |
| 		if (ULLONG_MAX - tmp < j) {
 | |
| 			i = ULLONG_MAX;
 | |
| 			goto read_uint64_eat;
 | |
| 		}
 | |
| 		i = tmp + j;
 | |
| 		ptr++;
 | |
| 	}
 | |
| read_uint64_eat:
 | |
| 	/* eat each numeric char */
 | |
| 	while (ptr < end) {
 | |
| 		if ((unsigned int)(*ptr - '0') > 9)
 | |
| 			break;
 | |
| 		ptr++;
 | |
| 	}
 | |
| read_uint64_end:
 | |
| 	*s = ptr;
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /* This function reads an integer from the string pointed to by <s> and returns
 | |
|  * it. The <s> pointer is adjusted to point to the first unread char. The function
 | |
|  * automatically stops at <end>. Il the number is bigger than 2^63-2, the 2^63-1
 | |
|  * value is returned. If the number is lowest than -2^63-1, the -2^63 value is
 | |
|  * returned.
 | |
|  */
 | |
| long long int read_int64(const char **s, const char *end)
 | |
| {
 | |
| 	unsigned long long int i = 0;
 | |
| 	int neg = 0;
 | |
| 
 | |
| 	/* Look for minus char. */
 | |
| 	if (**s == '-') {
 | |
| 		neg = 1;
 | |
| 		(*s)++;
 | |
| 	}
 | |
| 	else if (**s == '+')
 | |
| 		(*s)++;
 | |
| 
 | |
| 	/* convert as positive number. */
 | |
| 	i = read_uint64(s, end);
 | |
| 
 | |
| 	if (neg) {
 | |
| 		if (i > 0x8000000000000000ULL)
 | |
| 			return LLONG_MIN;
 | |
| 		return -i;
 | |
| 	}
 | |
| 	if (i > 0x7fffffffffffffffULL)
 | |
| 		return LLONG_MAX;
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /* This one is 7 times faster than strtol() on athlon with checks.
 | |
|  * It returns the value of the number composed of all valid digits read,
 | |
|  * and can process negative numbers too.
 | |
|  */
 | |
| int strl2ic(const char *s, int len)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	int j, k;
 | |
| 
 | |
| 	if (len > 0) {
 | |
| 		if (*s != '-') {
 | |
| 			/* positive number */
 | |
| 			while (len-- > 0) {
 | |
| 				j = (*s++) - '0';
 | |
| 				k = i * 10;
 | |
| 				if (j > 9)
 | |
| 					break;
 | |
| 				i = k + j;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* negative number */
 | |
| 			s++;
 | |
| 			while (--len > 0) {
 | |
| 				j = (*s++) - '0';
 | |
| 				k = i * 10;
 | |
| 				if (j > 9)
 | |
| 					break;
 | |
| 				i = k - j;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This function reads exactly <len> chars from <s> and converts them to a
 | |
|  * signed integer which it stores into <ret>. It accurately detects any error
 | |
|  * (truncated string, invalid chars, overflows). It is meant to be used in
 | |
|  * applications designed for hostile environments. It returns zero when the
 | |
|  * number has successfully been converted, non-zero otherwise. When an error
 | |
|  * is returned, the <ret> value is left untouched. It is yet 5 to 40 times
 | |
|  * faster than strtol().
 | |
|  */
 | |
| int strl2irc(const char *s, int len, int *ret)
 | |
| {
 | |
| 	int i = 0;
 | |
| 	int j;
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (*s != '-') {
 | |
| 		/* positive number */
 | |
| 		while (len-- > 0) {
 | |
| 			j = (*s++) - '0';
 | |
| 			if (j > 9)            return 1; /* invalid char */
 | |
| 			if (i > INT_MAX / 10) return 1; /* check for multiply overflow */
 | |
| 			i = i * 10;
 | |
| 			if (i + j < i)        return 1; /* check for addition overflow */
 | |
| 			i = i + j;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* negative number */
 | |
| 		s++;
 | |
| 		while (--len > 0) {
 | |
| 			j = (*s++) - '0';
 | |
| 			if (j > 9)             return 1; /* invalid char */
 | |
| 			if (i < INT_MIN / 10)  return 1; /* check for multiply overflow */
 | |
| 			i = i * 10;
 | |
| 			if (i - j > i)         return 1; /* check for subtract overflow */
 | |
| 			i = i - j;
 | |
| 		}
 | |
| 	}
 | |
| 	*ret = i;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This function reads exactly <len> chars from <s> and converts them to a
 | |
|  * signed integer which it stores into <ret>. It accurately detects any error
 | |
|  * (truncated string, invalid chars, overflows). It is meant to be used in
 | |
|  * applications designed for hostile environments. It returns zero when the
 | |
|  * number has successfully been converted, non-zero otherwise. When an error
 | |
|  * is returned, the <ret> value is left untouched. It is about 3 times slower
 | |
|  * than str2irc().
 | |
|  */
 | |
| 
 | |
| int strl2llrc(const char *s, int len, long long *ret)
 | |
| {
 | |
| 	long long i = 0;
 | |
| 	int j;
 | |
| 
 | |
| 	if (!len)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (*s != '-') {
 | |
| 		/* positive number */
 | |
| 		while (len-- > 0) {
 | |
| 			j = (*s++) - '0';
 | |
| 			if (j > 9)              return 1; /* invalid char */
 | |
| 			if (i > LLONG_MAX / 10LL) return 1; /* check for multiply overflow */
 | |
| 			i = i * 10LL;
 | |
| 			if (i + j < i)          return 1; /* check for addition overflow */
 | |
| 			i = i + j;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* negative number */
 | |
| 		s++;
 | |
| 		while (--len > 0) {
 | |
| 			j = (*s++) - '0';
 | |
| 			if (j > 9)              return 1; /* invalid char */
 | |
| 			if (i < LLONG_MIN / 10LL) return 1; /* check for multiply overflow */
 | |
| 			i = i * 10LL;
 | |
| 			if (i - j > i)          return 1; /* check for subtract overflow */
 | |
| 			i = i - j;
 | |
| 		}
 | |
| 	}
 | |
| 	*ret = i;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This function is used with pat_parse_dotted_ver(). It converts a string
 | |
|  * composed by two number separated by a dot. Each part must contain in 16 bits
 | |
|  * because internally they will be represented as a 32-bit quantity stored in
 | |
|  * a 64-bit integer. It returns zero when the number has successfully been
 | |
|  * converted, non-zero otherwise. When an error is returned, the <ret> value
 | |
|  * is left untouched.
 | |
|  *
 | |
|  *    "1.3"         -> 0x0000000000010003
 | |
|  *    "65535.65535" -> 0x00000000ffffffff
 | |
|  */
 | |
| int strl2llrc_dotted(const char *text, int len, long long *ret)
 | |
| {
 | |
| 	const char *end = &text[len];
 | |
| 	const char *p;
 | |
| 	long long major, minor;
 | |
| 
 | |
| 	/* Look for dot. */
 | |
| 	for (p = text; p < end; p++)
 | |
| 		if (*p == '.')
 | |
| 			break;
 | |
| 
 | |
| 	/* Convert major. */
 | |
| 	if (strl2llrc(text, p - text, &major) != 0)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Check major. */
 | |
| 	if (major >= 65536)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Convert minor. */
 | |
| 	minor = 0;
 | |
| 	if (p < end)
 | |
| 		if (strl2llrc(p + 1, end - (p + 1), &minor) != 0)
 | |
| 			return 1;
 | |
| 
 | |
| 	/* Check minor. */
 | |
| 	if (minor >= 65536)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Compose value. */
 | |
| 	*ret = (major << 16) | (minor & 0xffff);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This function parses a time value optionally followed by a unit suffix among
 | |
|  * "d", "h", "m", "s", "ms" or "us". It converts the value into the unit
 | |
|  * expected by the caller. The computation does its best to avoid overflows.
 | |
|  * The value is returned in <ret> if everything is fine, and a NULL is returned
 | |
|  * by the function. In case of error, a pointer to the error is returned and
 | |
|  * <ret> is left untouched. Values are automatically rounded up when needed.
 | |
|  */
 | |
| const char *parse_time_err(const char *text, unsigned *ret, unsigned unit_flags)
 | |
| {
 | |
| 	unsigned imult, idiv;
 | |
| 	unsigned omult, odiv;
 | |
| 	unsigned value;
 | |
| 
 | |
| 	omult = odiv = 1;
 | |
| 
 | |
| 	switch (unit_flags & TIME_UNIT_MASK) {
 | |
| 	case TIME_UNIT_US:   omult = 1000000; break;
 | |
| 	case TIME_UNIT_MS:   omult = 1000; break;
 | |
| 	case TIME_UNIT_S:    break;
 | |
| 	case TIME_UNIT_MIN:  odiv = 60; break;
 | |
| 	case TIME_UNIT_HOUR: odiv = 3600; break;
 | |
| 	case TIME_UNIT_DAY:  odiv = 86400; break;
 | |
| 	default: break;
 | |
| 	}
 | |
| 
 | |
| 	value = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		unsigned int j;
 | |
| 
 | |
| 		j = *text - '0';
 | |
| 		if (j > 9)
 | |
| 			break;
 | |
| 		text++;
 | |
| 		value *= 10;
 | |
| 		value += j;
 | |
| 	}
 | |
| 
 | |
| 	imult = idiv = 1;
 | |
| 	switch (*text) {
 | |
| 	case '\0': /* no unit = default unit */
 | |
| 		imult = omult = idiv = odiv = 1;
 | |
| 		break;
 | |
| 	case 's': /* second = unscaled unit */
 | |
| 		break;
 | |
| 	case 'u': /* microsecond : "us" */
 | |
| 		if (text[1] == 's') {
 | |
| 			idiv = 1000000;
 | |
| 			text++;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 'm': /* millisecond : "ms" or minute: "m" */
 | |
| 		if (text[1] == 's') {
 | |
| 			idiv = 1000;
 | |
| 			text++;
 | |
| 		} else
 | |
| 			imult = 60;
 | |
| 		break;
 | |
| 	case 'h': /* hour : "h" */
 | |
| 		imult = 3600;
 | |
| 		break;
 | |
| 	case 'd': /* day : "d" */
 | |
| 		imult = 86400;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return text;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (omult % idiv == 0) { omult /= idiv; idiv = 1; }
 | |
| 	if (idiv % omult == 0) { idiv /= omult; omult = 1; }
 | |
| 	if (imult % odiv == 0) { imult /= odiv; odiv = 1; }
 | |
| 	if (odiv % imult == 0) { odiv /= imult; imult = 1; }
 | |
| 
 | |
| 	value = (value * (imult * omult) + (idiv * odiv - 1)) / (idiv * odiv);
 | |
| 	*ret = value;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* this function converts the string starting at <text> to an unsigned int
 | |
|  * stored in <ret>. If an error is detected, the pointer to the unexpected
 | |
|  * character is returned. If the conversio is succesful, NULL is returned.
 | |
|  */
 | |
| const char *parse_size_err(const char *text, unsigned *ret) {
 | |
| 	unsigned value = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		unsigned int j;
 | |
| 
 | |
| 		j = *text - '0';
 | |
| 		if (j > 9)
 | |
| 			break;
 | |
| 		if (value > ~0U / 10)
 | |
| 			return text;
 | |
| 		value *= 10;
 | |
| 		if (value > (value + j))
 | |
| 			return text;
 | |
| 		value += j;
 | |
| 		text++;
 | |
| 	}
 | |
| 
 | |
| 	switch (*text) {
 | |
| 	case '\0':
 | |
| 		break;
 | |
| 	case 'K':
 | |
| 	case 'k':
 | |
| 		if (value > ~0U >> 10)
 | |
| 			return text;
 | |
| 		value = value << 10;
 | |
| 		break;
 | |
| 	case 'M':
 | |
| 	case 'm':
 | |
| 		if (value > ~0U >> 20)
 | |
| 			return text;
 | |
| 		value = value << 20;
 | |
| 		break;
 | |
| 	case 'G':
 | |
| 	case 'g':
 | |
| 		if (value > ~0U >> 30)
 | |
| 			return text;
 | |
| 		value = value << 30;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return text;
 | |
| 	}
 | |
| 
 | |
| 	if (*text != '\0' && *++text != '\0')
 | |
| 		return text;
 | |
| 
 | |
| 	*ret = value;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parse binary string written in hexadecimal (source) and store the decoded
 | |
|  * result into binstr and set binstrlen to the lengh of binstr. Memory for
 | |
|  * binstr is allocated by the function. In case of error, returns 0 with an
 | |
|  * error message in err. In succes case, it returns the consumed length.
 | |
|  */
 | |
| int parse_binary(const char *source, char **binstr, int *binstrlen, char **err)
 | |
| {
 | |
| 	int len;
 | |
| 	const char *p = source;
 | |
| 	int i,j;
 | |
| 	int alloc;
 | |
| 
 | |
| 	len = strlen(source);
 | |
| 	if (len % 2) {
 | |
| 		memprintf(err, "an even number of hex digit is expected");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	len = len >> 1;
 | |
| 
 | |
| 	if (!*binstr) {
 | |
| 		*binstr = calloc(len, sizeof(char));
 | |
| 		if (!*binstr) {
 | |
| 			memprintf(err, "out of memory while loading string pattern");
 | |
| 			return 0;
 | |
| 		}
 | |
| 		alloc = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		if (*binstrlen < len) {
 | |
| 			memprintf(err, "no space avalaible in the buffer. expect %d, provides %d",
 | |
| 			          len, *binstrlen);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		alloc = 0;
 | |
| 	}
 | |
| 	*binstrlen = len;
 | |
| 
 | |
| 	i = j = 0;
 | |
| 	while (j < len) {
 | |
| 		if (!ishex(p[i++]))
 | |
| 			goto bad_input;
 | |
| 		if (!ishex(p[i++]))
 | |
| 			goto bad_input;
 | |
| 		(*binstr)[j++] =  (hex2i(p[i-2]) << 4) + hex2i(p[i-1]);
 | |
| 	}
 | |
| 	return len << 1;
 | |
| 
 | |
| bad_input:
 | |
| 	memprintf(err, "an hex digit is expected (found '%c')", p[i-1]);
 | |
| 	if (alloc) {
 | |
| 		free(*binstr);
 | |
| 		*binstr = NULL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* copies at most <n> characters from <src> and always terminates with '\0' */
 | |
| char *my_strndup(const char *src, int n)
 | |
| {
 | |
| 	int len = 0;
 | |
| 	char *ret;
 | |
| 
 | |
| 	while (len < n && src[len])
 | |
| 		len++;
 | |
| 
 | |
| 	ret = malloc(len + 1);
 | |
| 	if (!ret)
 | |
| 		return ret;
 | |
| 	memcpy(ret, src, len);
 | |
| 	ret[len] = '\0';
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * search needle in haystack
 | |
|  * returns the pointer if found, returns NULL otherwise
 | |
|  */
 | |
| const void *my_memmem(const void *haystack, size_t haystacklen, const void *needle, size_t needlelen)
 | |
| {
 | |
| 	const void *c = NULL;
 | |
| 	unsigned char f;
 | |
| 
 | |
| 	if ((haystack == NULL) || (needle == NULL) || (haystacklen < needlelen))
 | |
| 		return NULL;
 | |
| 
 | |
| 	f = *(char *)needle;
 | |
| 	c = haystack;
 | |
| 	while ((c = memchr(c, f, haystacklen - (c - haystack))) != NULL) {
 | |
| 		if ((haystacklen - (c - haystack)) < needlelen)
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (memcmp(c, needle, needlelen) == 0)
 | |
| 			return c;
 | |
| 		++c;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* This function returns the first unused key greater than or equal to <key> in
 | |
|  * ID tree <root>. Zero is returned if no place is found.
 | |
|  */
 | |
| unsigned int get_next_id(struct eb_root *root, unsigned int key)
 | |
| {
 | |
| 	struct eb32_node *used;
 | |
| 
 | |
| 	do {
 | |
| 		used = eb32_lookup_ge(root, key);
 | |
| 		if (!used || used->key > key)
 | |
| 			return key; /* key is available */
 | |
| 		key++;
 | |
| 	} while (key);
 | |
| 	return key;
 | |
| }
 | |
| 
 | |
| /* This function compares a sample word possibly followed by blanks to another
 | |
|  * clean word. The compare is case-insensitive. 1 is returned if both are equal,
 | |
|  * otherwise zero. This intends to be used when checking HTTP headers for some
 | |
|  * values. Note that it validates a word followed only by blanks but does not
 | |
|  * validate a word followed by blanks then other chars.
 | |
|  */
 | |
| int word_match(const char *sample, int slen, const char *word, int wlen)
 | |
| {
 | |
| 	if (slen < wlen)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (wlen) {
 | |
| 		char c = *sample ^ *word;
 | |
| 		if (c && c != ('A' ^ 'a'))
 | |
| 			return 0;
 | |
| 		sample++;
 | |
| 		word++;
 | |
| 		slen--;
 | |
| 		wlen--;
 | |
| 	}
 | |
| 
 | |
| 	while (slen) {
 | |
| 		if (*sample != ' ' && *sample != '\t')
 | |
| 			return 0;
 | |
| 		sample++;
 | |
| 		slen--;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Converts any text-formatted IPv4 address to a host-order IPv4 address. It
 | |
|  * is particularly fast because it avoids expensive operations such as
 | |
|  * multiplies, which are optimized away at the end. It requires a properly
 | |
|  * formated address though (3 points).
 | |
|  */
 | |
| unsigned int inetaddr_host(const char *text)
 | |
| {
 | |
| 	const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
 | |
| 	register unsigned int dig100, dig10, dig1;
 | |
| 	int s;
 | |
| 	const char *p, *d;
 | |
| 
 | |
| 	dig1 = dig10 = dig100 = ascii_zero;
 | |
| 	s = 24;
 | |
| 
 | |
| 	p = text;
 | |
| 	while (1) {
 | |
| 		if (((unsigned)(*p - '0')) <= 9) {
 | |
| 			p++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* here, we have a complete byte between <text> and <p> (exclusive) */
 | |
| 		if (p == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d = p - 1;
 | |
| 		dig1   |= (unsigned int)(*d << s);
 | |
| 		if (d == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d--;
 | |
| 		dig10  |= (unsigned int)(*d << s);
 | |
| 		if (d == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d--;
 | |
| 		dig100 |= (unsigned int)(*d << s);
 | |
| 	end:
 | |
| 		if (!s || *p != '.')
 | |
| 			break;
 | |
| 
 | |
| 		s -= 8;
 | |
| 		text = ++p;
 | |
| 	}
 | |
| 
 | |
| 	dig100 -= ascii_zero;
 | |
| 	dig10  -= ascii_zero;
 | |
| 	dig1   -= ascii_zero;
 | |
| 	return ((dig100 * 10) + dig10) * 10 + dig1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Idem except the first unparsed character has to be passed in <stop>.
 | |
|  */
 | |
| unsigned int inetaddr_host_lim(const char *text, const char *stop)
 | |
| {
 | |
| 	const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
 | |
| 	register unsigned int dig100, dig10, dig1;
 | |
| 	int s;
 | |
| 	const char *p, *d;
 | |
| 
 | |
| 	dig1 = dig10 = dig100 = ascii_zero;
 | |
| 	s = 24;
 | |
| 
 | |
| 	p = text;
 | |
| 	while (1) {
 | |
| 		if (((unsigned)(*p - '0')) <= 9 && p < stop) {
 | |
| 			p++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* here, we have a complete byte between <text> and <p> (exclusive) */
 | |
| 		if (p == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d = p - 1;
 | |
| 		dig1   |= (unsigned int)(*d << s);
 | |
| 		if (d == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d--;
 | |
| 		dig10  |= (unsigned int)(*d << s);
 | |
| 		if (d == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d--;
 | |
| 		dig100 |= (unsigned int)(*d << s);
 | |
| 	end:
 | |
| 		if (!s || p == stop || *p != '.')
 | |
| 			break;
 | |
| 
 | |
| 		s -= 8;
 | |
| 		text = ++p;
 | |
| 	}
 | |
| 
 | |
| 	dig100 -= ascii_zero;
 | |
| 	dig10  -= ascii_zero;
 | |
| 	dig1   -= ascii_zero;
 | |
| 	return ((dig100 * 10) + dig10) * 10 + dig1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Idem except the pointer to first unparsed byte is returned into <ret> which
 | |
|  * must not be NULL.
 | |
|  */
 | |
| unsigned int inetaddr_host_lim_ret(char *text, char *stop, char **ret)
 | |
| {
 | |
| 	const unsigned int ascii_zero = ('0' << 24) | ('0' << 16) | ('0' << 8) | '0';
 | |
| 	register unsigned int dig100, dig10, dig1;
 | |
| 	int s;
 | |
| 	char *p, *d;
 | |
| 
 | |
| 	dig1 = dig10 = dig100 = ascii_zero;
 | |
| 	s = 24;
 | |
| 
 | |
| 	p = text;
 | |
| 	while (1) {
 | |
| 		if (((unsigned)(*p - '0')) <= 9 && p < stop) {
 | |
| 			p++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* here, we have a complete byte between <text> and <p> (exclusive) */
 | |
| 		if (p == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d = p - 1;
 | |
| 		dig1   |= (unsigned int)(*d << s);
 | |
| 		if (d == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d--;
 | |
| 		dig10  |= (unsigned int)(*d << s);
 | |
| 		if (d == text)
 | |
| 			goto end;
 | |
| 
 | |
| 		d--;
 | |
| 		dig100 |= (unsigned int)(*d << s);
 | |
| 	end:
 | |
| 		if (!s || p == stop || *p != '.')
 | |
| 			break;
 | |
| 
 | |
| 		s -= 8;
 | |
| 		text = ++p;
 | |
| 	}
 | |
| 
 | |
| 	*ret = p;
 | |
| 	dig100 -= ascii_zero;
 | |
| 	dig10  -= ascii_zero;
 | |
| 	dig1   -= ascii_zero;
 | |
| 	return ((dig100 * 10) + dig10) * 10 + dig1;
 | |
| }
 | |
| 
 | |
| /* Convert a fixed-length string to an IP address. Returns 0 in case of error,
 | |
|  * or the number of chars read in case of success. Maybe this could be replaced
 | |
|  * by one of the functions above. Also, apparently this function does not support
 | |
|  * hosts above 255 and requires exactly 4 octets.
 | |
|  * The destination is only modified on success.
 | |
|  */
 | |
| int buf2ip(const char *buf, size_t len, struct in_addr *dst)
 | |
| {
 | |
| 	const char *addr;
 | |
| 	int saw_digit, octets, ch;
 | |
| 	u_char tmp[4], *tp;
 | |
| 	const char *cp = buf;
 | |
| 
 | |
| 	saw_digit = 0;
 | |
| 	octets = 0;
 | |
| 	*(tp = tmp) = 0;
 | |
| 
 | |
| 	for (addr = buf; addr - buf < len; addr++) {
 | |
| 		unsigned char digit = (ch = *addr) - '0';
 | |
| 
 | |
| 		if (digit > 9 && ch != '.')
 | |
| 			break;
 | |
| 
 | |
| 		if (digit <= 9) {
 | |
| 			u_int new = *tp * 10 + digit;
 | |
| 
 | |
| 			if (new > 255)
 | |
| 				return 0;
 | |
| 
 | |
| 			*tp = new;
 | |
| 
 | |
| 			if (!saw_digit) {
 | |
| 				if (++octets > 4)
 | |
| 					return 0;
 | |
| 				saw_digit = 1;
 | |
| 			}
 | |
| 		} else if (ch == '.' && saw_digit) {
 | |
| 			if (octets == 4)
 | |
| 				return 0;
 | |
| 
 | |
| 			*++tp = 0;
 | |
| 			saw_digit = 0;
 | |
| 		} else
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (octets < 4)
 | |
| 		return 0;
 | |
| 
 | |
| 	memcpy(&dst->s_addr, tmp, 4);
 | |
| 	return addr - cp;
 | |
| }
 | |
| 
 | |
| /* This function converts the string in <buf> of the len <len> to
 | |
|  * struct in6_addr <dst> which must be allocated by the caller.
 | |
|  * This function returns 1 in success case, otherwise zero.
 | |
|  * The destination is only modified on success.
 | |
|  */
 | |
| int buf2ip6(const char *buf, size_t len, struct in6_addr *dst)
 | |
| {
 | |
| 	char null_term_ip6[INET6_ADDRSTRLEN + 1];
 | |
| 	struct in6_addr out;
 | |
| 
 | |
| 	if (len > INET6_ADDRSTRLEN)
 | |
| 		return 0;
 | |
| 
 | |
| 	memcpy(null_term_ip6, buf, len);
 | |
| 	null_term_ip6[len] = '\0';
 | |
| 
 | |
| 	if (!inet_pton(AF_INET6, null_term_ip6, &out))
 | |
| 		return 0;
 | |
| 
 | |
| 	*dst = out;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* To be used to quote config arg positions. Returns the short string at <ptr>
 | |
|  * surrounded by simple quotes if <ptr> is valid and non-empty, or "end of line"
 | |
|  * if ptr is NULL or empty. The string is locally allocated.
 | |
|  */
 | |
| const char *quote_arg(const char *ptr)
 | |
| {
 | |
| 	static char val[32];
 | |
| 	int i;
 | |
| 
 | |
| 	if (!ptr || !*ptr)
 | |
| 		return "end of line";
 | |
| 	val[0] = '\'';
 | |
| 	for (i = 1; i < sizeof(val) - 2 && *ptr; i++)
 | |
| 		val[i] = *ptr++;
 | |
| 	val[i++] = '\'';
 | |
| 	val[i] = '\0';
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /* returns an operator among STD_OP_* for string <str> or < 0 if unknown */
 | |
| int get_std_op(const char *str)
 | |
| {
 | |
| 	int ret = -1;
 | |
| 
 | |
| 	if (*str == 'e' && str[1] == 'q')
 | |
| 		ret = STD_OP_EQ;
 | |
| 	else if (*str == 'n' && str[1] == 'e')
 | |
| 		ret = STD_OP_NE;
 | |
| 	else if (*str == 'l') {
 | |
| 		if (str[1] == 'e') ret = STD_OP_LE;
 | |
| 		else if (str[1] == 't') ret = STD_OP_LT;
 | |
| 	}
 | |
| 	else if (*str == 'g') {
 | |
| 		if (str[1] == 'e') ret = STD_OP_GE;
 | |
| 		else if (str[1] == 't') ret = STD_OP_GT;
 | |
| 	}
 | |
| 
 | |
| 	if (ret == -1 || str[2] != '\0')
 | |
| 		return -1;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* hash a 32-bit integer to another 32-bit integer */
 | |
| unsigned int full_hash(unsigned int a)
 | |
| {
 | |
| 	return __full_hash(a);
 | |
| }
 | |
| 
 | |
| /* Return non-zero if IPv4 address is part of the network,
 | |
|  * otherwise zero. Note that <addr> may not necessarily be aligned
 | |
|  * while the two other ones must.
 | |
|  */
 | |
| int in_net_ipv4(const void *addr, const struct in_addr *mask, const struct in_addr *net)
 | |
| {
 | |
| 	struct in_addr addr_copy;
 | |
| 
 | |
| 	memcpy(&addr_copy, addr, sizeof(addr_copy));
 | |
| 	return((addr_copy.s_addr & mask->s_addr) == (net->s_addr & mask->s_addr));
 | |
| }
 | |
| 
 | |
| /* Return non-zero if IPv6 address is part of the network,
 | |
|  * otherwise zero. Note that <addr> may not necessarily be aligned
 | |
|  * while the two other ones must.
 | |
|  */
 | |
| int in_net_ipv6(const void *addr, const struct in6_addr *mask, const struct in6_addr *net)
 | |
| {
 | |
| 	int i;
 | |
| 	struct in6_addr addr_copy;
 | |
| 
 | |
| 	memcpy(&addr_copy, addr, sizeof(addr_copy));
 | |
| 	for (i = 0; i < sizeof(struct in6_addr) / sizeof(int); i++)
 | |
| 		if (((((int *)&addr_copy)[i] & ((int *)mask)[i])) !=
 | |
| 		    (((int *)net)[i] & ((int *)mask)[i]))
 | |
| 			return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* RFC 4291 prefix */
 | |
| const char rfc4291_pfx[] = { 0x00, 0x00, 0x00, 0x00,
 | |
| 			     0x00, 0x00, 0x00, 0x00,
 | |
| 			     0x00, 0x00, 0xFF, 0xFF };
 | |
| 
 | |
| /* Map IPv4 adress on IPv6 address, as specified in RFC 3513.
 | |
|  * Input and output may overlap.
 | |
|  */
 | |
| void v4tov6(struct in6_addr *sin6_addr, struct in_addr *sin_addr)
 | |
| {
 | |
| 	struct in_addr tmp_addr;
 | |
| 
 | |
| 	tmp_addr.s_addr = sin_addr->s_addr;
 | |
| 	memcpy(sin6_addr->s6_addr, rfc4291_pfx, sizeof(rfc4291_pfx));
 | |
| 	memcpy(sin6_addr->s6_addr+12, &tmp_addr.s_addr, 4);
 | |
| }
 | |
| 
 | |
| /* Map IPv6 adress on IPv4 address, as specified in RFC 3513.
 | |
|  * Return true if conversion is possible and false otherwise.
 | |
|  */
 | |
| int v6tov4(struct in_addr *sin_addr, struct in6_addr *sin6_addr)
 | |
| {
 | |
| 	if (memcmp(sin6_addr->s6_addr, rfc4291_pfx, sizeof(rfc4291_pfx)) == 0) {
 | |
| 		memcpy(&(sin_addr->s_addr), &(sin6_addr->s6_addr[12]),
 | |
| 			sizeof(struct in_addr));
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* compare two struct sockaddr_storage and return:
 | |
|  *  0 (true)  if the addr is the same in both
 | |
|  *  1 (false) if the addr is not the same in both
 | |
|  *  -1 (unable) if one of the addr is not AF_INET*
 | |
|  */
 | |
| int ipcmp(struct sockaddr_storage *ss1, struct sockaddr_storage *ss2)
 | |
| {
 | |
| 	if ((ss1->ss_family != AF_INET) && (ss1->ss_family != AF_INET6))
 | |
| 		return -1;
 | |
| 
 | |
| 	if ((ss2->ss_family != AF_INET) && (ss2->ss_family != AF_INET6))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (ss1->ss_family != ss2->ss_family)
 | |
| 		return 1;
 | |
| 
 | |
| 	switch (ss1->ss_family) {
 | |
| 		case AF_INET:
 | |
| 			return memcmp(&((struct sockaddr_in *)ss1)->sin_addr,
 | |
| 				      &((struct sockaddr_in *)ss2)->sin_addr,
 | |
| 				      sizeof(struct in_addr)) != 0;
 | |
| 		case AF_INET6:
 | |
| 			return memcmp(&((struct sockaddr_in6 *)ss1)->sin6_addr,
 | |
| 				      &((struct sockaddr_in6 *)ss2)->sin6_addr,
 | |
| 				      sizeof(struct in6_addr)) != 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* copy IP address from <source> into <dest>
 | |
|  * The caller must allocate and clear <dest> before calling.
 | |
|  * The source must be in either AF_INET or AF_INET6 family, or the destination
 | |
|  * address will be undefined. If the destination address used to hold a port,
 | |
|  * it is preserved, so that this function can be used to switch to another
 | |
|  * address family with no risk. Returns a pointer to the destination.
 | |
|  */
 | |
| struct sockaddr_storage *ipcpy(struct sockaddr_storage *source, struct sockaddr_storage *dest)
 | |
| {
 | |
| 	int prev_port;
 | |
| 
 | |
| 	prev_port = get_net_port(dest);
 | |
| 	memset(dest, 0, sizeof(*dest));
 | |
| 	dest->ss_family = source->ss_family;
 | |
| 
 | |
| 	/* copy new addr and apply it */
 | |
| 	switch (source->ss_family) {
 | |
| 		case AF_INET:
 | |
| 			((struct sockaddr_in *)dest)->sin_addr.s_addr = ((struct sockaddr_in *)source)->sin_addr.s_addr;
 | |
| 			((struct sockaddr_in *)dest)->sin_port = prev_port;
 | |
| 			break;
 | |
| 		case AF_INET6:
 | |
| 			memcpy(((struct sockaddr_in6 *)dest)->sin6_addr.s6_addr, ((struct sockaddr_in6 *)source)->sin6_addr.s6_addr, sizeof(struct in6_addr));
 | |
| 			((struct sockaddr_in6 *)dest)->sin6_port = prev_port;
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return dest;
 | |
| }
 | |
| 
 | |
| char *human_time(int t, short hz_div) {
 | |
| 	static char rv[sizeof("24855d23h")+1];	// longest of "23h59m" and "59m59s"
 | |
| 	char *p = rv;
 | |
| 	char *end = rv + sizeof(rv);
 | |
| 	int cnt=2;				// print two numbers
 | |
| 
 | |
| 	if (unlikely(t < 0 || hz_div <= 0)) {
 | |
| 		snprintf(p, end - p, "?");
 | |
| 		return rv;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(hz_div > 1))
 | |
| 		t /= hz_div;
 | |
| 
 | |
| 	if (t >= DAY) {
 | |
| 		p += snprintf(p, end - p, "%dd", t / DAY);
 | |
| 		cnt--;
 | |
| 	}
 | |
| 
 | |
| 	if (cnt && t % DAY / HOUR) {
 | |
| 		p += snprintf(p, end - p, "%dh", t % DAY / HOUR);
 | |
| 		cnt--;
 | |
| 	}
 | |
| 
 | |
| 	if (cnt && t % HOUR / MINUTE) {
 | |
| 		p += snprintf(p, end - p, "%dm", t % HOUR / MINUTE);
 | |
| 		cnt--;
 | |
| 	}
 | |
| 
 | |
| 	if ((cnt && t % MINUTE) || !t)					// also display '0s'
 | |
| 		p += snprintf(p, end - p, "%ds", t % MINUTE / SEC);
 | |
| 
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| const char *monthname[12] = {
 | |
| 	"Jan", "Feb", "Mar", "Apr", "May", "Jun",
 | |
| 	"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
 | |
| };
 | |
| 
 | |
| /* date2str_log: write a date in the format :
 | |
|  * 	sprintf(str, "%02d/%s/%04d:%02d:%02d:%02d.%03d",
 | |
|  *		tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
 | |
|  *		tm.tm_hour, tm.tm_min, tm.tm_sec, (int)date.tv_usec/1000);
 | |
|  *
 | |
|  * without using sprintf. return a pointer to the last char written (\0) or
 | |
|  * NULL if there isn't enough space.
 | |
|  */
 | |
| char *date2str_log(char *dst, struct tm *tm, struct timeval *date, size_t size)
 | |
| {
 | |
| 
 | |
| 	if (size < 25) /* the size is fixed: 24 chars + \0 */
 | |
| 		return NULL;
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
 | |
| 	*dst++ = '/';
 | |
| 	memcpy(dst, monthname[tm->tm_mon], 3); // month
 | |
| 	dst += 3;
 | |
| 	*dst++ = '/';
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
 | |
| 	*dst++ = ':';
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
 | |
| 	*dst++ = ':';
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
 | |
| 	*dst++ = ':';
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
 | |
| 	*dst++ = '.';
 | |
| 	utoa_pad((unsigned int)(date->tv_usec/1000), dst, 4); // millisecondes
 | |
| 	dst += 3;  // only the 3 first digits
 | |
| 	*dst = '\0';
 | |
| 
 | |
| 	return dst;
 | |
| }
 | |
| 
 | |
| /* Base year used to compute leap years */
 | |
| #define TM_YEAR_BASE 1900
 | |
| 
 | |
| /* Return the difference in seconds between two times (leap seconds are ignored).
 | |
|  * Retrieved from glibc 2.18 source code.
 | |
|  */
 | |
| static int my_tm_diff(const struct tm *a, const struct tm *b)
 | |
| {
 | |
| 	/* Compute intervening leap days correctly even if year is negative.
 | |
| 	 * Take care to avoid int overflow in leap day calculations,
 | |
| 	 * but it's OK to assume that A and B are close to each other.
 | |
| 	 */
 | |
| 	int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3);
 | |
| 	int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3);
 | |
| 	int a100 = a4 / 25 - (a4 % 25 < 0);
 | |
| 	int b100 = b4 / 25 - (b4 % 25 < 0);
 | |
| 	int a400 = a100 >> 2;
 | |
| 	int b400 = b100 >> 2;
 | |
| 	int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
 | |
| 	int years = a->tm_year - b->tm_year;
 | |
| 	int days = (365 * years + intervening_leap_days
 | |
| 	         + (a->tm_yday - b->tm_yday));
 | |
| 	return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour))
 | |
| 	       + (a->tm_min - b->tm_min))
 | |
| 	       + (a->tm_sec - b->tm_sec));
 | |
| }
 | |
| 
 | |
| /* Return the GMT offset for a specific local time.
 | |
|  * Both t and tm must represent the same time.
 | |
|  * The string returned has the same format as returned by strftime(... "%z", tm).
 | |
|  * Offsets are kept in an internal cache for better performances.
 | |
|  */
 | |
| const char *get_gmt_offset(time_t t, struct tm *tm)
 | |
| {
 | |
| 	/* Cache offsets from GMT (depending on whether DST is active or not) */
 | |
| 	static char gmt_offsets[2][5+1] = { "", "" };
 | |
| 
 | |
| 	char *gmt_offset;
 | |
| 	struct tm tm_gmt;
 | |
| 	int diff;
 | |
| 	int isdst = tm->tm_isdst;
 | |
| 
 | |
| 	/* Pretend DST not active if its status is unknown */
 | |
| 	if (isdst < 0)
 | |
| 		isdst = 0;
 | |
| 
 | |
| 	/* Fetch the offset and initialize it if needed */
 | |
| 	gmt_offset = gmt_offsets[isdst & 0x01];
 | |
| 	if (unlikely(!*gmt_offset)) {
 | |
| 		get_gmtime(t, &tm_gmt);
 | |
| 		diff = my_tm_diff(tm, &tm_gmt);
 | |
| 		if (diff < 0) {
 | |
| 			diff = -diff;
 | |
| 			*gmt_offset = '-';
 | |
| 		} else {
 | |
| 			*gmt_offset = '+';
 | |
| 		}
 | |
| 		diff /= 60; /* Convert to minutes */
 | |
| 		snprintf(gmt_offset+1, 4+1, "%02d%02d", diff/60, diff%60);
 | |
| 	}
 | |
| 
 | |
|     return gmt_offset;
 | |
| }
 | |
| 
 | |
| /* gmt2str_log: write a date in the format :
 | |
|  * "%02d/%s/%04d:%02d:%02d:%02d +0000" without using snprintf
 | |
|  * return a pointer to the last char written (\0) or
 | |
|  * NULL if there isn't enough space.
 | |
|  */
 | |
| char *gmt2str_log(char *dst, struct tm *tm, size_t size)
 | |
| {
 | |
| 	if (size < 27) /* the size is fixed: 26 chars + \0 */
 | |
| 		return NULL;
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
 | |
| 	*dst++ = '/';
 | |
| 	memcpy(dst, monthname[tm->tm_mon], 3); // month
 | |
| 	dst += 3;
 | |
| 	*dst++ = '/';
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
 | |
| 	*dst++ = ':';
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
 | |
| 	*dst++ = ':';
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
 | |
| 	*dst++ = ':';
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
 | |
| 	*dst++ = ' ';
 | |
| 	*dst++ = '+';
 | |
| 	*dst++ = '0';
 | |
| 	*dst++ = '0';
 | |
| 	*dst++ = '0';
 | |
| 	*dst++ = '0';
 | |
| 	*dst = '\0';
 | |
| 
 | |
| 	return dst;
 | |
| }
 | |
| 
 | |
| /* localdate2str_log: write a date in the format :
 | |
|  * "%02d/%s/%04d:%02d:%02d:%02d +0000(local timezone)" without using snprintf
 | |
|  * Both t and tm must represent the same time.
 | |
|  * return a pointer to the last char written (\0) or
 | |
|  * NULL if there isn't enough space.
 | |
|  */
 | |
| char *localdate2str_log(char *dst, time_t t, struct tm *tm, size_t size)
 | |
| {
 | |
| 	const char *gmt_offset;
 | |
| 	if (size < 27) /* the size is fixed: 26 chars + \0 */
 | |
| 		return NULL;
 | |
| 
 | |
| 	gmt_offset = get_gmt_offset(t, tm);
 | |
| 
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_mday, dst, 3); // day
 | |
| 	*dst++ = '/';
 | |
| 	memcpy(dst, monthname[tm->tm_mon], 3); // month
 | |
| 	dst += 3;
 | |
| 	*dst++ = '/';
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_year+1900, dst, 5); // year
 | |
| 	*dst++ = ':';
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_hour, dst, 3); // hour
 | |
| 	*dst++ = ':';
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_min, dst, 3); // minutes
 | |
| 	*dst++ = ':';
 | |
| 	dst = utoa_pad((unsigned int)tm->tm_sec, dst, 3); // secondes
 | |
| 	*dst++ = ' ';
 | |
| 	memcpy(dst, gmt_offset, 5); // Offset from local time to GMT
 | |
| 	dst += 5;
 | |
| 	*dst = '\0';
 | |
| 
 | |
| 	return dst;
 | |
| }
 | |
| 
 | |
| /* This function check a char. It returns true and updates
 | |
|  * <date> and <len> pointer to the new position if the
 | |
|  * character is found.
 | |
|  */
 | |
| static inline int parse_expect_char(const char **date, int *len, char c)
 | |
| {
 | |
| 	if (*len < 1 || **date != c)
 | |
| 		return 0;
 | |
| 	(*len)--;
 | |
| 	(*date)++;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* This function expects a string <str> of len <l>. It return true and updates.
 | |
|  * <date> and <len> if the string matches, otherwise, it returns false.
 | |
|  */
 | |
| static inline int parse_strcmp(const char **date, int *len, char *str, int l)
 | |
| {
 | |
| 	if (*len < l || strncmp(*date, str, l) != 0)
 | |
| 		return 0;
 | |
| 	(*len) -= l;
 | |
| 	(*date) += l;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* This macro converts 3 chars name in integer. */
 | |
| #define STR2I3(__a, __b, __c) ((__a) * 65536 + (__b) * 256 + (__c))
 | |
| 
 | |
| /* day-name     = %x4D.6F.6E ; "Mon", case-sensitive
 | |
|  *              / %x54.75.65 ; "Tue", case-sensitive
 | |
|  *              / %x57.65.64 ; "Wed", case-sensitive
 | |
|  *              / %x54.68.75 ; "Thu", case-sensitive
 | |
|  *              / %x46.72.69 ; "Fri", case-sensitive
 | |
|  *              / %x53.61.74 ; "Sat", case-sensitive
 | |
|  *              / %x53.75.6E ; "Sun", case-sensitive
 | |
|  *
 | |
|  * This array must be alphabetically sorted
 | |
|  */
 | |
| static inline int parse_http_dayname(const char **date, int *len, struct tm *tm)
 | |
| {
 | |
| 	if (*len < 3)
 | |
| 		return 0;
 | |
| 	switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
 | |
| 	case STR2I3('M','o','n'): tm->tm_wday = 1;  break;
 | |
| 	case STR2I3('T','u','e'): tm->tm_wday = 2;  break;
 | |
| 	case STR2I3('W','e','d'): tm->tm_wday = 3;  break;
 | |
| 	case STR2I3('T','h','u'): tm->tm_wday = 4;  break;
 | |
| 	case STR2I3('F','r','i'): tm->tm_wday = 5;  break;
 | |
| 	case STR2I3('S','a','t'): tm->tm_wday = 6;  break;
 | |
| 	case STR2I3('S','u','n'): tm->tm_wday = 7;  break;
 | |
| 	default: return 0;
 | |
| 	}
 | |
| 	*len -= 3;
 | |
| 	*date  += 3;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* month        = %x4A.61.6E ; "Jan", case-sensitive
 | |
|  *              / %x46.65.62 ; "Feb", case-sensitive
 | |
|  *              / %x4D.61.72 ; "Mar", case-sensitive
 | |
|  *              / %x41.70.72 ; "Apr", case-sensitive
 | |
|  *              / %x4D.61.79 ; "May", case-sensitive
 | |
|  *              / %x4A.75.6E ; "Jun", case-sensitive
 | |
|  *              / %x4A.75.6C ; "Jul", case-sensitive
 | |
|  *              / %x41.75.67 ; "Aug", case-sensitive
 | |
|  *              / %x53.65.70 ; "Sep", case-sensitive
 | |
|  *              / %x4F.63.74 ; "Oct", case-sensitive
 | |
|  *              / %x4E.6F.76 ; "Nov", case-sensitive
 | |
|  *              / %x44.65.63 ; "Dec", case-sensitive
 | |
|  *
 | |
|  * This array must be alphabetically sorted
 | |
|  */
 | |
| static inline int parse_http_monthname(const char **date, int *len, struct tm *tm)
 | |
| {
 | |
| 	if (*len < 3)
 | |
| 		return 0;
 | |
| 	switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
 | |
| 	case STR2I3('J','a','n'): tm->tm_mon = 0;  break;
 | |
| 	case STR2I3('F','e','b'): tm->tm_mon = 1;  break;
 | |
| 	case STR2I3('M','a','r'): tm->tm_mon = 2;  break;
 | |
| 	case STR2I3('A','p','r'): tm->tm_mon = 3;  break;
 | |
| 	case STR2I3('M','a','y'): tm->tm_mon = 4;  break;
 | |
| 	case STR2I3('J','u','n'): tm->tm_mon = 5;  break;
 | |
| 	case STR2I3('J','u','l'): tm->tm_mon = 6;  break;
 | |
| 	case STR2I3('A','u','g'): tm->tm_mon = 7;  break;
 | |
| 	case STR2I3('S','e','p'): tm->tm_mon = 8;  break;
 | |
| 	case STR2I3('O','c','t'): tm->tm_mon = 9;  break;
 | |
| 	case STR2I3('N','o','v'): tm->tm_mon = 10; break;
 | |
| 	case STR2I3('D','e','c'): tm->tm_mon = 11; break;
 | |
| 	default: return 0;
 | |
| 	}
 | |
| 	*len -= 3;
 | |
| 	*date  += 3;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* day-name-l   = %x4D.6F.6E.64.61.79    ; "Monday", case-sensitive
 | |
|  *        / %x54.75.65.73.64.61.79       ; "Tuesday", case-sensitive
 | |
|  *        / %x57.65.64.6E.65.73.64.61.79 ; "Wednesday", case-sensitive
 | |
|  *        / %x54.68.75.72.73.64.61.79    ; "Thursday", case-sensitive
 | |
|  *        / %x46.72.69.64.61.79          ; "Friday", case-sensitive
 | |
|  *        / %x53.61.74.75.72.64.61.79    ; "Saturday", case-sensitive
 | |
|  *        / %x53.75.6E.64.61.79          ; "Sunday", case-sensitive
 | |
|  *
 | |
|  * This array must be alphabetically sorted
 | |
|  */
 | |
| static inline int parse_http_ldayname(const char **date, int *len, struct tm *tm)
 | |
| {
 | |
| 	if (*len < 6) /* Minimum length. */
 | |
| 		return 0;
 | |
| 	switch (STR2I3((*date)[0], (*date)[1], (*date)[2])) {
 | |
| 	case STR2I3('M','o','n'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Monday", 6));
 | |
| 		tm->tm_wday = 1;
 | |
| 		return 1;
 | |
| 	case STR2I3('T','u','e'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Tuesday", 7));
 | |
| 		tm->tm_wday = 2;
 | |
| 		return 1;
 | |
| 	case STR2I3('W','e','d'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Wednesday", 9));
 | |
| 		tm->tm_wday = 3;
 | |
| 		return 1;
 | |
| 	case STR2I3('T','h','u'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Thursday", 8));
 | |
| 		tm->tm_wday = 4;
 | |
| 		return 1;
 | |
| 	case STR2I3('F','r','i'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Friday", 6));
 | |
| 		tm->tm_wday = 5;
 | |
| 		return 1;
 | |
| 	case STR2I3('S','a','t'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Saturday", 8));
 | |
| 		tm->tm_wday = 6;
 | |
| 		return 1;
 | |
| 	case STR2I3('S','u','n'):
 | |
| 		RET0_UNLESS(parse_strcmp(date, len, "Sunday", 6));
 | |
| 		tm->tm_wday = 7;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* This function parses exactly 1 digit and returns the numeric value in "digit". */
 | |
| static inline int parse_digit(const char **date, int *len, int *digit)
 | |
| {
 | |
| 	if (*len < 1 || **date < '0' || **date > '9')
 | |
| 		return 0;
 | |
| 	*digit = (**date - '0');
 | |
| 	(*date)++;
 | |
| 	(*len)--;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* This function parses exactly 2 digits and returns the numeric value in "digit". */
 | |
| static inline int parse_2digit(const char **date, int *len, int *digit)
 | |
| {
 | |
| 	int value;
 | |
| 
 | |
| 	RET0_UNLESS(parse_digit(date, len, &value));
 | |
| 	(*digit) = value * 10;
 | |
| 	RET0_UNLESS(parse_digit(date, len, &value));
 | |
| 	(*digit) += value;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* This function parses exactly 4 digits and returns the numeric value in "digit". */
 | |
| static inline int parse_4digit(const char **date, int *len, int *digit)
 | |
| {
 | |
| 	int value;
 | |
| 
 | |
| 	RET0_UNLESS(parse_digit(date, len, &value));
 | |
| 	(*digit) = value * 1000;
 | |
| 
 | |
| 	RET0_UNLESS(parse_digit(date, len, &value));
 | |
| 	(*digit) += value * 100;
 | |
| 
 | |
| 	RET0_UNLESS(parse_digit(date, len, &value));
 | |
| 	(*digit) += value * 10;
 | |
| 
 | |
| 	RET0_UNLESS(parse_digit(date, len, &value));
 | |
| 	(*digit) += value;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* time-of-day  = hour ":" minute ":" second
 | |
|  *              ; 00:00:00 - 23:59:60 (leap second)
 | |
|  *
 | |
|  * hour         = 2DIGIT
 | |
|  * minute       = 2DIGIT
 | |
|  * second       = 2DIGIT
 | |
|  */
 | |
| static inline int parse_http_time(const char **date, int *len, struct tm *tm)
 | |
| {
 | |
| 	RET0_UNLESS(parse_2digit(date, len, &tm->tm_hour)); /* hour 2DIGIT */
 | |
| 	RET0_UNLESS(parse_expect_char(date, len, ':'));     /* expect ":"  */
 | |
| 	RET0_UNLESS(parse_2digit(date, len, &tm->tm_min));  /* min 2DIGIT  */
 | |
| 	RET0_UNLESS(parse_expect_char(date, len, ':'));     /* expect ":"  */
 | |
| 	RET0_UNLESS(parse_2digit(date, len, &tm->tm_sec));  /* sec 2DIGIT  */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* From RFC7231
 | |
|  * https://tools.ietf.org/html/rfc7231#section-7.1.1.1
 | |
|  *
 | |
|  * IMF-fixdate  = day-name "," SP date1 SP time-of-day SP GMT
 | |
|  * ; fixed length/zone/capitalization subset of the format
 | |
|  * ; see Section 3.3 of [RFC5322]
 | |
|  *
 | |
|  *
 | |
|  * date1        = day SP month SP year
 | |
|  *              ; e.g., 02 Jun 1982
 | |
|  *
 | |
|  * day          = 2DIGIT
 | |
|  * year         = 4DIGIT
 | |
|  *
 | |
|  * GMT          = %x47.4D.54 ; "GMT", case-sensitive
 | |
|  *
 | |
|  * time-of-day  = hour ":" minute ":" second
 | |
|  *              ; 00:00:00 - 23:59:60 (leap second)
 | |
|  *
 | |
|  * hour         = 2DIGIT
 | |
|  * minute       = 2DIGIT
 | |
|  * second       = 2DIGIT
 | |
|  *
 | |
|  * DIGIT        = decimal 0-9
 | |
|  */
 | |
| int parse_imf_date(const char *date, int len, struct tm *tm)
 | |
| {
 | |
| 	/* tm_gmtoff, if present, ought to be zero'ed */
 | |
| 	memset(tm, 0, sizeof(*tm));
 | |
| 
 | |
| 	RET0_UNLESS(parse_http_dayname(&date, &len, tm));     /* day-name */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ','));     /* expect "," */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_http_monthname(&date, &len, tm));   /* Month */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */
 | |
| 	tm->tm_year -= 1900;
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_http_time(&date, &len, tm));        /* Parse time. */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3));     /* GMT = %x47.4D.54 ; "GMT", case-sensitive */
 | |
| 	tm->tm_isdst = -1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* From RFC7231
 | |
|  * https://tools.ietf.org/html/rfc7231#section-7.1.1.1
 | |
|  *
 | |
|  * rfc850-date  = day-name-l "," SP date2 SP time-of-day SP GMT
 | |
|  * date2        = day "-" month "-" 2DIGIT
 | |
|  *              ; e.g., 02-Jun-82
 | |
|  *
 | |
|  * day          = 2DIGIT
 | |
|  */
 | |
| int parse_rfc850_date(const char *date, int len, struct tm *tm)
 | |
| {
 | |
| 	int year;
 | |
| 
 | |
| 	/* tm_gmtoff, if present, ought to be zero'ed */
 | |
| 	memset(tm, 0, sizeof(*tm));
 | |
| 
 | |
| 	RET0_UNLESS(parse_http_ldayname(&date, &len, tm));    /* Read the day name */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ','));     /* expect "," */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday)); /* day 2DIGIT */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, '-'));     /* expect "-" */
 | |
| 	RET0_UNLESS(parse_http_monthname(&date, &len, tm));   /* Month */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, '-'));     /* expect "-" */
 | |
| 
 | |
| 	/* year = 2DIGIT
 | |
| 	 *
 | |
| 	 * Recipients of a timestamp value in rfc850-(*date) format, which uses a
 | |
| 	 * two-digit year, MUST interpret a timestamp that appears to be more
 | |
| 	 * than 50 years in the future as representing the most recent year in
 | |
| 	 * the past that had the same last two digits.
 | |
| 	 */
 | |
| 	RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_year));
 | |
| 
 | |
| 	/* expect SP */
 | |
| 	if (!parse_expect_char(&date, &len, ' ')) {
 | |
| 		/* Maybe we have the date with 4 digits. */
 | |
| 		RET0_UNLESS(parse_2digit(&date, &len, &year));
 | |
| 		tm->tm_year = (tm->tm_year * 100 + year) - 1900;
 | |
| 		/* expect SP */
 | |
| 		RET0_UNLESS(parse_expect_char(&date, &len, ' '));
 | |
| 	} else {
 | |
| 		/* I fix 60 as pivot: >60: +1900, <60: +2000. Note that the
 | |
| 		 * tm_year is the number of year since 1900, so for +1900, we
 | |
| 		 * do nothing, and for +2000, we add 100.
 | |
| 		 */
 | |
| 		if (tm->tm_year <= 60)
 | |
| 			tm->tm_year += 100;
 | |
| 	}
 | |
| 
 | |
| 	RET0_UNLESS(parse_http_time(&date, &len, tm));    /* Parse time. */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' ')); /* expect SP */
 | |
| 	RET0_UNLESS(parse_strcmp(&date, &len, "GMT", 3)); /* GMT = %x47.4D.54 ; "GMT", case-sensitive */
 | |
| 	tm->tm_isdst = -1;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* From RFC7231
 | |
|  * https://tools.ietf.org/html/rfc7231#section-7.1.1.1
 | |
|  *
 | |
|  * asctime-date = day-name SP date3 SP time-of-day SP year
 | |
|  * date3        = month SP ( 2DIGIT / ( SP 1DIGIT ))
 | |
|  *              ; e.g., Jun  2
 | |
|  *
 | |
|  * HTTP-date is case sensitive.  A sender MUST NOT generate additional
 | |
|  * whitespace in an HTTP-date beyond that specifically included as SP in
 | |
|  * the grammar.
 | |
|  */
 | |
| int parse_asctime_date(const char *date, int len, struct tm *tm)
 | |
| {
 | |
| 	/* tm_gmtoff, if present, ought to be zero'ed */
 | |
| 	memset(tm, 0, sizeof(*tm));
 | |
| 
 | |
| 	RET0_UNLESS(parse_http_dayname(&date, &len, tm));   /* day-name */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));   /* expect SP */
 | |
| 	RET0_UNLESS(parse_http_monthname(&date, &len, tm)); /* expect month */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));   /* expect SP */
 | |
| 
 | |
| 	/* expect SP and 1DIGIT or 2DIGIT */
 | |
| 	if (parse_expect_char(&date, &len, ' '))
 | |
| 		RET0_UNLESS(parse_digit(&date, &len, &tm->tm_mday));
 | |
| 	else
 | |
| 		RET0_UNLESS(parse_2digit(&date, &len, &tm->tm_mday));
 | |
| 
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_http_time(&date, &len, tm));        /* Parse time. */
 | |
| 	RET0_UNLESS(parse_expect_char(&date, &len, ' '));     /* expect SP */
 | |
| 	RET0_UNLESS(parse_4digit(&date, &len, &tm->tm_year)); /* year = 4DIGIT */
 | |
| 	tm->tm_year -= 1900;
 | |
| 	tm->tm_isdst = -1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* From RFC7231
 | |
|  * https://tools.ietf.org/html/rfc7231#section-7.1.1.1
 | |
|  *
 | |
|  * HTTP-date    = IMF-fixdate / obs-date
 | |
|  * obs-date     = rfc850-date / asctime-date
 | |
|  *
 | |
|  * parses an HTTP date in the RFC format and is accepted
 | |
|  * alternatives. <date> is the strinf containing the date,
 | |
|  * len is the len of the string. <tm> is filled with the
 | |
|  * parsed time. We must considers this time as GMT.
 | |
|  */
 | |
| int parse_http_date(const char *date, int len, struct tm *tm)
 | |
| {
 | |
| 	if (parse_imf_date(date, len, tm))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (parse_rfc850_date(date, len, tm))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (parse_asctime_date(date, len, tm))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Dynamically allocates a string of the proper length to hold the formatted
 | |
|  * output. NULL is returned on error. The caller is responsible for freeing the
 | |
|  * memory area using free(). The resulting string is returned in <out> if the
 | |
|  * pointer is not NULL. A previous version of <out> might be used to build the
 | |
|  * new string, and it will be freed before returning if it is not NULL, which
 | |
|  * makes it possible to build complex strings from iterative calls without
 | |
|  * having to care about freeing intermediate values, as in the example below :
 | |
|  *
 | |
|  *     memprintf(&err, "invalid argument: '%s'", arg);
 | |
|  *     ...
 | |
|  *     memprintf(&err, "parser said : <%s>\n", *err);
 | |
|  *     ...
 | |
|  *     free(*err);
 | |
|  *
 | |
|  * This means that <err> must be initialized to NULL before first invocation.
 | |
|  * The return value also holds the allocated string, which eases error checking
 | |
|  * and immediate consumption. If the output pointer is not used, NULL must be
 | |
|  * passed instead and it will be ignored. The returned message will then also
 | |
|  * be NULL so that the caller does not have to bother with freeing anything.
 | |
|  *
 | |
|  * It is also convenient to use it without any free except the last one :
 | |
|  *    err = NULL;
 | |
|  *    if (!fct1(err)) report(*err);
 | |
|  *    if (!fct2(err)) report(*err);
 | |
|  *    if (!fct3(err)) report(*err);
 | |
|  *    free(*err);
 | |
|  */
 | |
| char *memprintf(char **out, const char *format, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	char *ret = NULL;
 | |
| 	int allocated = 0;
 | |
| 	int needed = 0;
 | |
| 
 | |
| 	if (!out)
 | |
| 		return NULL;
 | |
| 
 | |
| 	do {
 | |
| 		/* vsnprintf() will return the required length even when the
 | |
| 		 * target buffer is NULL. We do this in a loop just in case
 | |
| 		 * intermediate evaluations get wrong.
 | |
| 		 */
 | |
| 		va_start(args, format);
 | |
| 		needed = vsnprintf(ret, allocated, format, args);
 | |
| 		va_end(args);
 | |
| 
 | |
| 		if (needed < allocated) {
 | |
| 			/* Note: on Solaris 8, the first iteration always
 | |
| 			 * returns -1 if allocated is zero, so we force a
 | |
| 			 * retry.
 | |
| 			 */
 | |
| 			if (!allocated)
 | |
| 				needed = 0;
 | |
| 			else
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		allocated = needed + 1;
 | |
| 		ret = my_realloc2(ret, allocated);
 | |
| 	} while (ret);
 | |
| 
 | |
| 	if (needed < 0) {
 | |
| 		/* an error was encountered */
 | |
| 		free(ret);
 | |
| 		ret = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (out) {
 | |
| 		free(*out);
 | |
| 		*out = ret;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Used to add <level> spaces before each line of <out>, unless there is only one line.
 | |
|  * The input argument is automatically freed and reassigned. The result will have to be
 | |
|  * freed by the caller. It also supports being passed a NULL which results in the same
 | |
|  * output.
 | |
|  * Example of use :
 | |
|  *   parse(cmd, &err); (callee: memprintf(&err, ...))
 | |
|  *   fprintf(stderr, "Parser said: %s\n", indent_error(&err));
 | |
|  *   free(err);
 | |
|  */
 | |
| char *indent_msg(char **out, int level)
 | |
| {
 | |
| 	char *ret, *in, *p;
 | |
| 	int needed = 0;
 | |
| 	int lf = 0;
 | |
| 	int lastlf = 0;
 | |
| 	int len;
 | |
| 
 | |
| 	if (!out || !*out)
 | |
| 		return NULL;
 | |
| 
 | |
| 	in = *out - 1;
 | |
| 	while ((in = strchr(in + 1, '\n')) != NULL) {
 | |
| 		lastlf = in - *out;
 | |
| 		lf++;
 | |
| 	}
 | |
| 
 | |
| 	if (!lf) /* single line, no LF, return it as-is */
 | |
| 		return *out;
 | |
| 
 | |
| 	len = strlen(*out);
 | |
| 
 | |
| 	if (lf == 1 && lastlf == len - 1) {
 | |
| 		/* single line, LF at end, strip it and return as-is */
 | |
| 		(*out)[lastlf] = 0;
 | |
| 		return *out;
 | |
| 	}
 | |
| 
 | |
| 	/* OK now we have at least one LF, we need to process the whole string
 | |
| 	 * as a multi-line string. What we'll do :
 | |
| 	 *   - prefix with an LF if there is none
 | |
| 	 *   - add <level> spaces before each line
 | |
| 	 * This means at most ( 1 + level + (len-lf) + lf*<1+level) ) =
 | |
| 	 *   1 + level + len + lf * level = 1 + level * (lf + 1) + len.
 | |
| 	 */
 | |
| 
 | |
| 	needed = 1 + level * (lf + 1) + len + 1;
 | |
| 	p = ret = malloc(needed);
 | |
| 	in = *out;
 | |
| 
 | |
| 	/* skip initial LFs */
 | |
| 	while (*in == '\n')
 | |
| 		in++;
 | |
| 
 | |
| 	/* copy each line, prefixed with LF and <level> spaces, and without the trailing LF */
 | |
| 	while (*in) {
 | |
| 		*p++ = '\n';
 | |
| 		memset(p, ' ', level);
 | |
| 		p += level;
 | |
| 		do {
 | |
| 			*p++ = *in++;
 | |
| 		} while (*in && *in != '\n');
 | |
| 		if (*in)
 | |
| 			in++;
 | |
| 	}
 | |
| 	*p = 0;
 | |
| 
 | |
| 	free(*out);
 | |
| 	*out = ret;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Convert occurrences of environment variables in the input string to their
 | |
|  * corresponding value. A variable is identified as a series of alphanumeric
 | |
|  * characters or underscores following a '$' sign. The <in> string must be
 | |
|  * free()able. NULL returns NULL. The resulting string might be reallocated if
 | |
|  * some expansion is made. Variable names may also be enclosed into braces if
 | |
|  * needed (eg: to concatenate alphanum characters).
 | |
|  */
 | |
| char *env_expand(char *in)
 | |
| {
 | |
| 	char *txt_beg;
 | |
| 	char *out;
 | |
| 	char *txt_end;
 | |
| 	char *var_beg;
 | |
| 	char *var_end;
 | |
| 	char *value;
 | |
| 	char *next;
 | |
| 	int out_len;
 | |
| 	int val_len;
 | |
| 
 | |
| 	if (!in)
 | |
| 		return in;
 | |
| 
 | |
| 	value = out = NULL;
 | |
| 	out_len = 0;
 | |
| 
 | |
| 	txt_beg = in;
 | |
| 	do {
 | |
| 		/* look for next '$' sign in <in> */
 | |
| 		for (txt_end = txt_beg; *txt_end && *txt_end != '$'; txt_end++);
 | |
| 
 | |
| 		if (!*txt_end && !out) /* end and no expansion performed */
 | |
| 			return in;
 | |
| 
 | |
| 		val_len = 0;
 | |
| 		next = txt_end;
 | |
| 		if (*txt_end == '$') {
 | |
| 			char save;
 | |
| 
 | |
| 			var_beg = txt_end + 1;
 | |
| 			if (*var_beg == '{')
 | |
| 				var_beg++;
 | |
| 
 | |
| 			var_end = var_beg;
 | |
| 			while (isalnum((int)(unsigned char)*var_end) || *var_end == '_') {
 | |
| 				var_end++;
 | |
| 			}
 | |
| 
 | |
| 			next = var_end;
 | |
| 			if (*var_end == '}' && (var_beg > txt_end + 1))
 | |
| 				next++;
 | |
| 
 | |
| 			/* get value of the variable name at this location */
 | |
| 			save = *var_end;
 | |
| 			*var_end = '\0';
 | |
| 			value = getenv(var_beg);
 | |
| 			*var_end = save;
 | |
| 			val_len = value ? strlen(value) : 0;
 | |
| 		}
 | |
| 
 | |
| 		out = my_realloc2(out, out_len + (txt_end - txt_beg) + val_len + 1);
 | |
| 		if (txt_end > txt_beg) {
 | |
| 			memcpy(out + out_len, txt_beg, txt_end - txt_beg);
 | |
| 			out_len += txt_end - txt_beg;
 | |
| 		}
 | |
| 		if (val_len) {
 | |
| 			memcpy(out + out_len, value, val_len);
 | |
| 			out_len += val_len;
 | |
| 		}
 | |
| 		out[out_len] = 0;
 | |
| 		txt_beg = next;
 | |
| 	} while (*txt_beg);
 | |
| 
 | |
| 	/* here we know that <out> was allocated and that we don't need <in> anymore */
 | |
| 	free(in);
 | |
| 	return out;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* same as strstr() but case-insensitive and with limit length */
 | |
| const char *strnistr(const char *str1, int len_str1, const char *str2, int len_str2)
 | |
| {
 | |
| 	char *pptr, *sptr, *start;
 | |
| 	unsigned int slen, plen;
 | |
| 	unsigned int tmp1, tmp2;
 | |
| 
 | |
| 	if (str1 == NULL || len_str1 == 0) // search pattern into an empty string => search is not found
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (str2 == NULL || len_str2 == 0) // pattern is empty => every str1 match
 | |
| 		return str1;
 | |
| 
 | |
| 	if (len_str1 < len_str2) // pattern is longer than string => search is not found
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (tmp1 = 0, start = (char *)str1, pptr = (char *)str2, slen = len_str1, plen = len_str2; slen >= plen; start++, slen--) {
 | |
| 		while (toupper(*start) != toupper(*str2)) {
 | |
| 			start++;
 | |
| 			slen--;
 | |
| 			tmp1++;
 | |
| 
 | |
| 			if (tmp1 >= len_str1)
 | |
| 				return NULL;
 | |
| 
 | |
| 			/* if pattern longer than string */
 | |
| 			if (slen < plen)
 | |
| 				return NULL;
 | |
| 		}
 | |
| 
 | |
| 		sptr = start;
 | |
| 		pptr = (char *)str2;
 | |
| 
 | |
| 		tmp2 = 0;
 | |
| 		while (toupper(*sptr) == toupper(*pptr)) {
 | |
| 			sptr++;
 | |
| 			pptr++;
 | |
| 			tmp2++;
 | |
| 
 | |
| 			if (*pptr == '\0' || tmp2 == len_str2) /* end of pattern found */
 | |
| 				return start;
 | |
| 			if (*sptr == '\0' || tmp2 == len_str1) /* end of string found and the pattern is not fully found */
 | |
| 				return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* This function read the next valid utf8 char.
 | |
|  * <s> is the byte srray to be decode, <len> is its length.
 | |
|  * The function returns decoded char encoded like this:
 | |
|  * The 4 msb are the return code (UTF8_CODE_*), the 4 lsb
 | |
|  * are the length read. The decoded character is stored in <c>.
 | |
|  */
 | |
| unsigned char utf8_next(const char *s, int len, unsigned int *c)
 | |
| {
 | |
| 	const unsigned char *p = (unsigned char *)s;
 | |
| 	int dec;
 | |
| 	unsigned char code = UTF8_CODE_OK;
 | |
| 
 | |
| 	if (len < 1)
 | |
| 		return UTF8_CODE_OK;
 | |
| 
 | |
| 	/* Check the type of UTF8 sequence
 | |
| 	 *
 | |
| 	 * 0... ....  0x00 <= x <= 0x7f : 1 byte: ascii char
 | |
| 	 * 10.. ....  0x80 <= x <= 0xbf : invalid sequence
 | |
| 	 * 110. ....  0xc0 <= x <= 0xdf : 2 bytes
 | |
| 	 * 1110 ....  0xe0 <= x <= 0xef : 3 bytes
 | |
| 	 * 1111 0...  0xf0 <= x <= 0xf7 : 4 bytes
 | |
| 	 * 1111 10..  0xf8 <= x <= 0xfb : 5 bytes
 | |
| 	 * 1111 110.  0xfc <= x <= 0xfd : 6 bytes
 | |
| 	 * 1111 111.  0xfe <= x <= 0xff : invalid sequence
 | |
| 	 */
 | |
| 	switch (*p) {
 | |
| 	case 0x00 ... 0x7f:
 | |
| 		*c = *p;
 | |
| 		return UTF8_CODE_OK | 1;
 | |
| 
 | |
| 	case 0x80 ... 0xbf:
 | |
| 		*c = *p;
 | |
| 		return UTF8_CODE_BADSEQ | 1;
 | |
| 
 | |
| 	case 0xc0 ... 0xdf:
 | |
| 		if (len < 2) {
 | |
| 			*c = *p;
 | |
| 			return UTF8_CODE_BADSEQ | 1;
 | |
| 		}
 | |
| 		*c = *p & 0x1f;
 | |
| 		dec = 1;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xe0 ... 0xef:
 | |
| 		if (len < 3) {
 | |
| 			*c = *p;
 | |
| 			return UTF8_CODE_BADSEQ | 1;
 | |
| 		}
 | |
| 		*c = *p & 0x0f;
 | |
| 		dec = 2;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xf0 ... 0xf7:
 | |
| 		if (len < 4) {
 | |
| 			*c = *p;
 | |
| 			return UTF8_CODE_BADSEQ | 1;
 | |
| 		}
 | |
| 		*c = *p & 0x07;
 | |
| 		dec = 3;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xf8 ... 0xfb:
 | |
| 		if (len < 5) {
 | |
| 			*c = *p;
 | |
| 			return UTF8_CODE_BADSEQ | 1;
 | |
| 		}
 | |
| 		*c = *p & 0x03;
 | |
| 		dec = 4;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xfc ... 0xfd:
 | |
| 		if (len < 6) {
 | |
| 			*c = *p;
 | |
| 			return UTF8_CODE_BADSEQ | 1;
 | |
| 		}
 | |
| 		*c = *p & 0x01;
 | |
| 		dec = 5;
 | |
| 		break;
 | |
| 
 | |
| 	case 0xfe ... 0xff:
 | |
| 	default:
 | |
| 		*c = *p;
 | |
| 		return UTF8_CODE_BADSEQ | 1;
 | |
| 	}
 | |
| 
 | |
| 	p++;
 | |
| 
 | |
| 	while (dec > 0) {
 | |
| 
 | |
| 		/* need 0x10 for the 2 first bits */
 | |
| 		if ( ( *p & 0xc0 ) != 0x80 )
 | |
| 			return UTF8_CODE_BADSEQ | ((p-(unsigned char *)s)&0xffff);
 | |
| 
 | |
| 		/* add data at char */
 | |
| 		*c = ( *c << 6 ) | ( *p & 0x3f );
 | |
| 
 | |
| 		dec--;
 | |
| 		p++;
 | |
| 	}
 | |
| 
 | |
| 	/* Check ovelong encoding.
 | |
| 	 * 1 byte  : 5 + 6         : 11 : 0x80    ... 0x7ff
 | |
| 	 * 2 bytes : 4 + 6 + 6     : 16 : 0x800   ... 0xffff
 | |
| 	 * 3 bytes : 3 + 6 + 6 + 6 : 21 : 0x10000 ... 0x1fffff
 | |
| 	 */
 | |
| 	if ((                 *c <= 0x7f     && (p-(unsigned char *)s) > 1) ||
 | |
| 	    (*c >= 0x80    && *c <= 0x7ff    && (p-(unsigned char *)s) > 2) ||
 | |
| 	    (*c >= 0x800   && *c <= 0xffff   && (p-(unsigned char *)s) > 3) ||
 | |
| 	    (*c >= 0x10000 && *c <= 0x1fffff && (p-(unsigned char *)s) > 4))
 | |
| 		code |= UTF8_CODE_OVERLONG;
 | |
| 
 | |
| 	/* Check invalid UTF8 range. */
 | |
| 	if ((*c >= 0xd800 && *c <= 0xdfff) ||
 | |
| 	    (*c >= 0xfffe && *c <= 0xffff))
 | |
| 		code |= UTF8_CODE_INVRANGE;
 | |
| 
 | |
| 	return code | ((p-(unsigned char *)s)&0x0f);
 | |
| }
 | |
| 
 | |
| /* append a copy of string <str> (in a wordlist) at the end of the list <li>
 | |
|  * On failure : return 0 and <err> filled with an error message.
 | |
|  * The caller is responsible for freeing the <err> and <str> copy
 | |
|  * memory area using free()
 | |
|  */
 | |
| int list_append_word(struct list *li, const char *str, char **err)
 | |
| {
 | |
| 	struct wordlist *wl;
 | |
| 
 | |
| 	wl = calloc(1, sizeof(*wl));
 | |
| 	if (!wl) {
 | |
| 		memprintf(err, "out of memory");
 | |
| 		goto fail_wl;
 | |
| 	}
 | |
| 
 | |
| 	wl->s = strdup(str);
 | |
| 	if (!wl->s) {
 | |
| 		memprintf(err, "out of memory");
 | |
| 		goto fail_wl_s;
 | |
| 	}
 | |
| 
 | |
| 	LIST_ADDQ(li, &wl->list);
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| fail_wl_s:
 | |
| 	free(wl->s);
 | |
| fail_wl:
 | |
| 	free(wl);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* print a string of text buffer to <out>. The format is :
 | |
|  * Non-printable chars \t, \n, \r and \e are * encoded in C format.
 | |
|  * Other non-printable chars are encoded "\xHH". Space, '\', and '=' are also escaped.
 | |
|  * Print stopped if null char or <bsize> is reached, or if no more place in the chunk.
 | |
|  */
 | |
| int dump_text(struct chunk *out, const char *buf, int bsize)
 | |
| {
 | |
| 	unsigned char c;
 | |
| 	int ptr = 0;
 | |
| 
 | |
| 	while (buf[ptr] && ptr < bsize) {
 | |
| 		c = buf[ptr];
 | |
| 		if (isprint(c) && isascii(c) && c != '\\' && c != ' ' && c != '=') {
 | |
| 			if (out->len > out->size - 1)
 | |
| 				break;
 | |
| 			out->str[out->len++] = c;
 | |
| 		}
 | |
| 		else if (c == '\t' || c == '\n' || c == '\r' || c == '\e' || c == '\\' || c == ' ' || c == '=') {
 | |
| 			if (out->len > out->size - 2)
 | |
| 				break;
 | |
| 			out->str[out->len++] = '\\';
 | |
| 			switch (c) {
 | |
| 			case ' ': c = ' '; break;
 | |
| 			case '\t': c = 't'; break;
 | |
| 			case '\n': c = 'n'; break;
 | |
| 			case '\r': c = 'r'; break;
 | |
| 			case '\e': c = 'e'; break;
 | |
| 			case '\\': c = '\\'; break;
 | |
| 			case '=': c = '='; break;
 | |
| 			}
 | |
| 			out->str[out->len++] = c;
 | |
| 		}
 | |
| 		else {
 | |
| 			if (out->len > out->size - 4)
 | |
| 				break;
 | |
| 			out->str[out->len++] = '\\';
 | |
| 			out->str[out->len++] = 'x';
 | |
| 			out->str[out->len++] = hextab[(c >> 4) & 0xF];
 | |
| 			out->str[out->len++] = hextab[c & 0xF];
 | |
| 		}
 | |
| 		ptr++;
 | |
| 	}
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| /* print a buffer in hexa.
 | |
|  * Print stopped if <bsize> is reached, or if no more place in the chunk.
 | |
|  */
 | |
| int dump_binary(struct chunk *out, const char *buf, int bsize)
 | |
| {
 | |
| 	unsigned char c;
 | |
| 	int ptr = 0;
 | |
| 
 | |
| 	while (ptr < bsize) {
 | |
| 		c = buf[ptr];
 | |
| 
 | |
| 		if (out->len > out->size - 2)
 | |
| 			break;
 | |
| 		out->str[out->len++] = hextab[(c >> 4) & 0xF];
 | |
| 		out->str[out->len++] = hextab[c & 0xF];
 | |
| 
 | |
| 		ptr++;
 | |
| 	}
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| /* print a line of text buffer (limited to 70 bytes) to <out>. The format is :
 | |
|  * <2 spaces> <offset=5 digits> <space or plus> <space> <70 chars max> <\n>
 | |
|  * which is 60 chars per line. Non-printable chars \t, \n, \r and \e are
 | |
|  * encoded in C format. Other non-printable chars are encoded "\xHH". Original
 | |
|  * lines are respected within the limit of 70 output chars. Lines that are
 | |
|  * continuation of a previous truncated line begin with "+" instead of " "
 | |
|  * after the offset. The new pointer is returned.
 | |
|  */
 | |
| int dump_text_line(struct chunk *out, const char *buf, int bsize, int len,
 | |
|                    int *line, int ptr)
 | |
| {
 | |
| 	int end;
 | |
| 	unsigned char c;
 | |
| 
 | |
| 	end = out->len + 80;
 | |
| 	if (end > out->size)
 | |
| 		return ptr;
 | |
| 
 | |
| 	chunk_appendf(out, "  %05d%c ", ptr, (ptr == *line) ? ' ' : '+');
 | |
| 
 | |
| 	while (ptr < len && ptr < bsize) {
 | |
| 		c = buf[ptr];
 | |
| 		if (isprint(c) && isascii(c) && c != '\\') {
 | |
| 			if (out->len > end - 2)
 | |
| 				break;
 | |
| 			out->str[out->len++] = c;
 | |
| 		} else if (c == '\t' || c == '\n' || c == '\r' || c == '\e' || c == '\\') {
 | |
| 			if (out->len > end - 3)
 | |
| 				break;
 | |
| 			out->str[out->len++] = '\\';
 | |
| 			switch (c) {
 | |
| 			case '\t': c = 't'; break;
 | |
| 			case '\n': c = 'n'; break;
 | |
| 			case '\r': c = 'r'; break;
 | |
| 			case '\e': c = 'e'; break;
 | |
| 			case '\\': c = '\\'; break;
 | |
| 			}
 | |
| 			out->str[out->len++] = c;
 | |
| 		} else {
 | |
| 			if (out->len > end - 5)
 | |
| 				break;
 | |
| 			out->str[out->len++] = '\\';
 | |
| 			out->str[out->len++] = 'x';
 | |
| 			out->str[out->len++] = hextab[(c >> 4) & 0xF];
 | |
| 			out->str[out->len++] = hextab[c & 0xF];
 | |
| 		}
 | |
| 		if (buf[ptr++] == '\n') {
 | |
| 			/* we had a line break, let's return now */
 | |
| 			out->str[out->len++] = '\n';
 | |
| 			*line = ptr;
 | |
| 			return ptr;
 | |
| 		}
 | |
| 	}
 | |
| 	/* we have an incomplete line, we return it as-is */
 | |
| 	out->str[out->len++] = '\n';
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| /* displays a <len> long memory block at <buf>, assuming first byte of <buf>
 | |
|  * has address <baseaddr>. The output is emitted to file <out>.
 | |
|  */
 | |
| void debug_hexdump(FILE *out, char *buf, unsigned int baseaddr, int len)
 | |
| {
 | |
| 	unsigned int i, j;
 | |
| 	int b;
 | |
| 
 | |
| 	for (i = 0; i < (len + (baseaddr & 15)); i += 16) {
 | |
| 		b = i - (baseaddr & 15);
 | |
| 		fprintf(out, "%08x: ", i + (baseaddr & ~15));
 | |
| 		for (j = 0; j < 8; j++) {
 | |
| 			if (b + j >= 0 && b + j < len)
 | |
| 				fprintf(out, "%02x ", (unsigned char)buf[b + j]);
 | |
| 			else
 | |
| 				fprintf(out, "   ");
 | |
| 		}
 | |
| 
 | |
| 		if (b + j >= 0 && b + j < len)
 | |
| 			fputc('-', out);
 | |
| 		else
 | |
| 			fputc(' ', out);
 | |
| 
 | |
| 		for (j = 8; j < 16; j++) {
 | |
| 			if (b + j >= 0 && b + j < len)
 | |
| 				fprintf(out, " %02x", (unsigned char)buf[b + j]);
 | |
| 			else
 | |
| 				fprintf(out, "   ");
 | |
| 		}
 | |
| 
 | |
| 		fprintf(out, "   ");
 | |
| 		for (j = 0; j < 16; j++) {
 | |
| 			if (b + j >= 0 && b + j < len) {
 | |
| 				if (isprint((unsigned char)buf[b + j]))
 | |
| 					fputc((unsigned char)buf[b + j], out);
 | |
| 				else
 | |
| 					fputc('.', out);
 | |
| 			}
 | |
| 			else
 | |
| 				fputc(' ', out);
 | |
| 		}
 | |
| 		fputc('\n', out);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Local variables:
 | |
|  *  c-indent-level: 8
 | |
|  *  c-basic-offset: 8
 | |
|  * End:
 | |
|  */
 |