haproxy/src/stats.c
Amaury Denoyelle 8dbb74542f MINOR: stats: rename info stats
Info are used to expose haproxy global metrics. It is similar to proxy
statistics and any other module. As such, rename info indexes using
SI_I_INF_* prefix. Also info variable is renamed stat_line_info.

Thanks to this, naming is now consistent between info and other
statistics. It will help to integrate it as a "global" statistics
module.
2024-04-22 16:25:18 +02:00

2992 lines
120 KiB
C

/*
* Functions dedicated to statistics output and the stats socket
*
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
* Copyright 2007-2009 Krzysztof Piotr Oledzki <ole@ans.pl>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pwd.h>
#include <grp.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <haproxy/api.h>
#include <haproxy/activity.h>
#include <haproxy/applet.h>
#include <haproxy/backend.h>
#include <haproxy/base64.h>
#include <haproxy/cfgparse.h>
#include <haproxy/channel.h>
#include <haproxy/check.h>
#include <haproxy/cli.h>
#include <haproxy/clock.h>
#include <haproxy/compression.h>
#include <haproxy/debug.h>
#include <haproxy/errors.h>
#include <haproxy/fd.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/frontend.h>
#include <haproxy/global.h>
#include <haproxy/http.h>
#include <haproxy/http_ana.h>
#include <haproxy/http_htx.h>
#include <haproxy/htx.h>
#include <haproxy/list.h>
#include <haproxy/listener.h>
#include <haproxy/log.h>
#include <haproxy/map-t.h>
#include <haproxy/pattern-t.h>
#include <haproxy/pipe.h>
#include <haproxy/pool.h>
#include <haproxy/proxy.h>
#include <haproxy/resolvers.h>
#include <haproxy/sc_strm.h>
#include <haproxy/server.h>
#include <haproxy/session.h>
#include <haproxy/stats.h>
#include <haproxy/stats-html.h>
#include <haproxy/stats-json.h>
#include <haproxy/stconn.h>
#include <haproxy/stream.h>
#include <haproxy/task.h>
#include <haproxy/ticks.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
#include <haproxy/uri_auth-t.h>
#include <haproxy/version.h>
/* status codes available for the stats admin page (strictly 4 chars length) */
const char *stat_status_codes[STAT_STATUS_SIZE] = {
[STAT_STATUS_DENY] = "DENY",
[STAT_STATUS_DONE] = "DONE",
[STAT_STATUS_ERRP] = "ERRP",
[STAT_STATUS_EXCD] = "EXCD",
[STAT_STATUS_NONE] = "NONE",
[STAT_STATUS_PART] = "PART",
[STAT_STATUS_UNKN] = "UNKN",
[STAT_STATUS_IVAL] = "IVAL",
};
/* These are the field names for each ST_I_INF_* field position. Please pay attention
* to always use the exact same name except that the strings for new names must
* be lower case or CamelCase while the enum entries must be upper case.
*/
const struct name_desc metrics_info[ST_I_INF_MAX] = {
[ST_I_INF_NAME] = { .name = "Name", .desc = "Product name" },
[ST_I_INF_VERSION] = { .name = "Version", .desc = "Product version" },
[ST_I_INF_RELEASE_DATE] = { .name = "Release_date", .desc = "Date of latest source code update" },
[ST_I_INF_NBTHREAD] = { .name = "Nbthread", .desc = "Number of started threads (global.nbthread)" },
[ST_I_INF_NBPROC] = { .name = "Nbproc", .desc = "Number of started worker processes (historical, always 1)" },
[ST_I_INF_PROCESS_NUM] = { .name = "Process_num", .desc = "Relative worker process number (1)" },
[ST_I_INF_PID] = { .name = "Pid", .desc = "This worker process identifier for the system" },
[ST_I_INF_UPTIME] = { .name = "Uptime", .desc = "How long ago this worker process was started (days+hours+minutes+seconds)" },
[ST_I_INF_UPTIME_SEC] = { .name = "Uptime_sec", .desc = "How long ago this worker process was started (seconds)" },
[ST_I_INF_START_TIME_SEC] = { .name = "Start_time_sec", .desc = "Start time in seconds" },
[ST_I_INF_MEMMAX_MB] = { .name = "Memmax_MB", .desc = "Worker process's hard limit on memory usage in MB (-m on command line)" },
[ST_I_INF_MEMMAX_BYTES] = { .name = "Memmax_bytes", .desc = "Worker process's hard limit on memory usage in byes (-m on command line)" },
[ST_I_INF_POOL_ALLOC_MB] = { .name = "PoolAlloc_MB", .desc = "Amount of memory allocated in pools (in MB)" },
[ST_I_INF_POOL_ALLOC_BYTES] = { .name = "PoolAlloc_bytes", .desc = "Amount of memory allocated in pools (in bytes)" },
[ST_I_INF_POOL_USED_MB] = { .name = "PoolUsed_MB", .desc = "Amount of pool memory currently used (in MB)" },
[ST_I_INF_POOL_USED_BYTES] = { .name = "PoolUsed_bytes", .desc = "Amount of pool memory currently used (in bytes)" },
[ST_I_INF_POOL_FAILED] = { .name = "PoolFailed", .desc = "Number of failed pool allocations since this worker was started" },
[ST_I_INF_ULIMIT_N] = { .name = "Ulimit-n", .desc = "Hard limit on the number of per-process file descriptors" },
[ST_I_INF_MAXSOCK] = { .name = "Maxsock", .desc = "Hard limit on the number of per-process sockets" },
[ST_I_INF_MAXCONN] = { .name = "Maxconn", .desc = "Hard limit on the number of per-process connections (configured or imposed by Ulimit-n)" },
[ST_I_INF_HARD_MAXCONN] = { .name = "Hard_maxconn", .desc = "Hard limit on the number of per-process connections (imposed by Memmax_MB or Ulimit-n)" },
[ST_I_INF_CURR_CONN] = { .name = "CurrConns", .desc = "Current number of connections on this worker process" },
[ST_I_INF_CUM_CONN] = { .name = "CumConns", .desc = "Total number of connections on this worker process since started" },
[ST_I_INF_CUM_REQ] = { .name = "CumReq", .desc = "Total number of requests on this worker process since started" },
[ST_I_INF_MAX_SSL_CONNS] = { .name = "MaxSslConns", .desc = "Hard limit on the number of per-process SSL endpoints (front+back), 0=unlimited" },
[ST_I_INF_CURR_SSL_CONNS] = { .name = "CurrSslConns", .desc = "Current number of SSL endpoints on this worker process (front+back)" },
[ST_I_INF_CUM_SSL_CONNS] = { .name = "CumSslConns", .desc = "Total number of SSL endpoints on this worker process since started (front+back)" },
[ST_I_INF_MAXPIPES] = { .name = "Maxpipes", .desc = "Hard limit on the number of pipes for splicing, 0=unlimited" },
[ST_I_INF_PIPES_USED] = { .name = "PipesUsed", .desc = "Current number of pipes in use in this worker process" },
[ST_I_INF_PIPES_FREE] = { .name = "PipesFree", .desc = "Current number of allocated and available pipes in this worker process" },
[ST_I_INF_CONN_RATE] = { .name = "ConnRate", .desc = "Number of front connections created on this worker process over the last second" },
[ST_I_INF_CONN_RATE_LIMIT] = { .name = "ConnRateLimit", .desc = "Hard limit for ConnRate (global.maxconnrate)" },
[ST_I_INF_MAX_CONN_RATE] = { .name = "MaxConnRate", .desc = "Highest ConnRate reached on this worker process since started (in connections per second)" },
[ST_I_INF_SESS_RATE] = { .name = "SessRate", .desc = "Number of sessions created on this worker process over the last second" },
[ST_I_INF_SESS_RATE_LIMIT] = { .name = "SessRateLimit", .desc = "Hard limit for SessRate (global.maxsessrate)" },
[ST_I_INF_MAX_SESS_RATE] = { .name = "MaxSessRate", .desc = "Highest SessRate reached on this worker process since started (in sessions per second)" },
[ST_I_INF_SSL_RATE] = { .name = "SslRate", .desc = "Number of SSL connections created on this worker process over the last second" },
[ST_I_INF_SSL_RATE_LIMIT] = { .name = "SslRateLimit", .desc = "Hard limit for SslRate (global.maxsslrate)" },
[ST_I_INF_MAX_SSL_RATE] = { .name = "MaxSslRate", .desc = "Highest SslRate reached on this worker process since started (in connections per second)" },
[ST_I_INF_SSL_FRONTEND_KEY_RATE] = { .name = "SslFrontendKeyRate", .desc = "Number of SSL keys created on frontends in this worker process over the last second" },
[ST_I_INF_SSL_FRONTEND_MAX_KEY_RATE] = { .name = "SslFrontendMaxKeyRate", .desc = "Highest SslFrontendKeyRate reached on this worker process since started (in SSL keys per second)" },
[ST_I_INF_SSL_FRONTEND_SESSION_REUSE_PCT] = { .name = "SslFrontendSessionReuse_pct", .desc = "Percent of frontend SSL connections which did not require a new key" },
[ST_I_INF_SSL_BACKEND_KEY_RATE] = { .name = "SslBackendKeyRate", .desc = "Number of SSL keys created on backends in this worker process over the last second" },
[ST_I_INF_SSL_BACKEND_MAX_KEY_RATE] = { .name = "SslBackendMaxKeyRate", .desc = "Highest SslBackendKeyRate reached on this worker process since started (in SSL keys per second)" },
[ST_I_INF_SSL_CACHE_LOOKUPS] = { .name = "SslCacheLookups", .desc = "Total number of SSL session ID lookups in the SSL session cache on this worker since started" },
[ST_I_INF_SSL_CACHE_MISSES] = { .name = "SslCacheMisses", .desc = "Total number of SSL session ID lookups that didn't find a session in the SSL session cache on this worker since started" },
[ST_I_INF_COMPRESS_BPS_IN] = { .name = "CompressBpsIn", .desc = "Number of bytes submitted to the HTTP compressor in this worker process over the last second" },
[ST_I_INF_COMPRESS_BPS_OUT] = { .name = "CompressBpsOut", .desc = "Number of bytes emitted by the HTTP compressor in this worker process over the last second" },
[ST_I_INF_COMPRESS_BPS_RATE_LIM] = { .name = "CompressBpsRateLim", .desc = "Limit of CompressBpsOut beyond which HTTP compression is automatically disabled" },
[ST_I_INF_ZLIB_MEM_USAGE] = { .name = "ZlibMemUsage", .desc = "Amount of memory currently used by HTTP compression on the current worker process (in bytes)" },
[ST_I_INF_MAX_ZLIB_MEM_USAGE] = { .name = "MaxZlibMemUsage", .desc = "Limit on the amount of memory used by HTTP compression above which it is automatically disabled (in bytes, see global.maxzlibmem)" },
[ST_I_INF_TASKS] = { .name = "Tasks", .desc = "Total number of tasks in the current worker process (active + sleeping)" },
[ST_I_INF_RUN_QUEUE] = { .name = "Run_queue", .desc = "Total number of active tasks+tasklets in the current worker process" },
[ST_I_INF_IDLE_PCT] = { .name = "Idle_pct", .desc = "Percentage of last second spent waiting in the current worker thread" },
[ST_I_INF_NODE] = { .name = "node", .desc = "Node name (global.node)" },
[ST_I_INF_DESCRIPTION] = { .name = "description", .desc = "Node description (global.description)" },
[ST_I_INF_STOPPING] = { .name = "Stopping", .desc = "1 if the worker process is currently stopping, otherwise zero" },
[ST_I_INF_JOBS] = { .name = "Jobs", .desc = "Current number of active jobs on the current worker process (frontend connections, master connections, listeners)" },
[ST_I_INF_UNSTOPPABLE_JOBS] = { .name = "Unstoppable Jobs", .desc = "Current number of unstoppable jobs on the current worker process (master connections)" },
[ST_I_INF_LISTENERS] = { .name = "Listeners", .desc = "Current number of active listeners on the current worker process" },
[ST_I_INF_ACTIVE_PEERS] = { .name = "ActivePeers", .desc = "Current number of verified active peers connections on the current worker process" },
[ST_I_INF_CONNECTED_PEERS] = { .name = "ConnectedPeers", .desc = "Current number of peers having passed the connection step on the current worker process" },
[ST_I_INF_DROPPED_LOGS] = { .name = "DroppedLogs", .desc = "Total number of dropped logs for current worker process since started" },
[ST_I_INF_BUSY_POLLING] = { .name = "BusyPolling", .desc = "1 if busy-polling is currently in use on the worker process, otherwise zero (config.busy-polling)" },
[ST_I_INF_FAILED_RESOLUTIONS] = { .name = "FailedResolutions", .desc = "Total number of failed DNS resolutions in current worker process since started" },
[ST_I_INF_TOTAL_BYTES_OUT] = { .name = "TotalBytesOut", .desc = "Total number of bytes emitted by current worker process since started" },
[ST_I_INF_TOTAL_SPLICED_BYTES_OUT] = { .name = "TotalSplicedBytesOut", .desc = "Total number of bytes emitted by current worker process through a kernel pipe since started" },
[ST_I_INF_BYTES_OUT_RATE] = { .name = "BytesOutRate", .desc = "Number of bytes emitted by current worker process over the last second" },
[ST_I_INF_DEBUG_COMMANDS_ISSUED] = { .name = "DebugCommandsIssued", .desc = "Number of debug commands issued on this process (anything > 0 is unsafe)" },
[ST_I_INF_CUM_LOG_MSGS] = { .name = "CumRecvLogs", .desc = "Total number of log messages received by log-forwarding listeners on this worker process since started" },
[ST_I_INF_BUILD_INFO] = { .name = "Build info", .desc = "Build info" },
[ST_I_INF_TAINTED] = { .name = "Tainted", .desc = "Experimental features used" },
[ST_I_INF_WARNINGS] = { .name = "TotalWarnings", .desc = "Total warnings issued" },
[ST_I_INF_MAXCONN_REACHED] = { .name = "MaxconnReached", .desc = "Number of times an accepted connection resulted in Maxconn being reached" },
[ST_I_INF_BOOTTIME_MS] = { .name = "BootTime_ms", .desc = "How long ago it took to parse and process the config before being ready (milliseconds)" },
[ST_I_INF_NICED_TASKS] = { .name = "Niced_tasks", .desc = "Total number of active tasks+tasklets in the current worker process (Run_queue) that are niced" },
};
/* one line of info */
THREAD_LOCAL struct field stat_line_info[ST_I_INF_MAX];
const struct name_desc metrics_px[ST_I_PX_MAX] = {
[ST_I_PX_PXNAME] = { .name = "pxname", .desc = "Proxy name" },
[ST_I_PX_SVNAME] = { .name = "svname", .desc = "Server name" },
[ST_I_PX_QCUR] = { .name = "qcur", .desc = "Number of current queued connections" },
[ST_I_PX_QMAX] = { .name = "qmax", .desc = "Highest value of queued connections encountered since process started" },
[ST_I_PX_SCUR] = { .name = "scur", .desc = "Number of current sessions on the frontend, backend or server" },
[ST_I_PX_SMAX] = { .name = "smax", .desc = "Highest value of current sessions encountered since process started" },
[ST_I_PX_SLIM] = { .name = "slim", .desc = "Frontend/listener/server's maxconn, backend's fullconn" },
[ST_I_PX_STOT] = { .name = "stot", .desc = "Total number of sessions since process started" },
[ST_I_PX_BIN] = { .name = "bin", .desc = "Total number of request bytes since process started" },
[ST_I_PX_BOUT] = { .name = "bout", .desc = "Total number of response bytes since process started" },
[ST_I_PX_DREQ] = { .name = "dreq", .desc = "Total number of denied requests since process started" },
[ST_I_PX_DRESP] = { .name = "dresp", .desc = "Total number of denied responses since process started" },
[ST_I_PX_EREQ] = { .name = "ereq", .desc = "Total number of invalid requests since process started" },
[ST_I_PX_ECON] = { .name = "econ", .desc = "Total number of failed connections to server since the worker process started" },
[ST_I_PX_ERESP] = { .name = "eresp", .desc = "Total number of invalid responses since the worker process started" },
[ST_I_PX_WRETR] = { .name = "wretr", .desc = "Total number of server connection retries since the worker process started" },
[ST_I_PX_WREDIS] = { .name = "wredis", .desc = "Total number of server redispatches due to connection failures since the worker process started" },
[ST_I_PX_STATUS] = { .name = "status", .desc = "Frontend/listen status: OPEN/WAITING/FULL/STOP; backend: UP/DOWN; server: last check status" },
[ST_I_PX_WEIGHT] = { .name = "weight", .desc = "Server's effective weight, or sum of active servers' effective weights for a backend" },
[ST_I_PX_ACT] = { .name = "act", .desc = "Total number of active UP servers with a non-zero weight" },
[ST_I_PX_BCK] = { .name = "bck", .desc = "Total number of backup UP servers with a non-zero weight" },
[ST_I_PX_CHKFAIL] = { .name = "chkfail", .desc = "Total number of failed individual health checks per server/backend, since the worker process started" },
[ST_I_PX_CHKDOWN] = { .name = "chkdown", .desc = "Total number of failed checks causing UP to DOWN server transitions, per server/backend, since the worker process started" },
[ST_I_PX_LASTCHG] = { .name = "lastchg", .desc = "How long ago the last server state changed, in seconds" },
[ST_I_PX_DOWNTIME] = { .name = "downtime", .desc = "Total time spent in DOWN state, for server or backend" },
[ST_I_PX_QLIMIT] = { .name = "qlimit", .desc = "Limit on the number of connections in queue, for servers only (maxqueue argument)" },
[ST_I_PX_PID] = { .name = "pid", .desc = "Relative worker process number (1)" },
[ST_I_PX_IID] = { .name = "iid", .desc = "Frontend or Backend numeric identifier ('id' setting)" },
[ST_I_PX_SID] = { .name = "sid", .desc = "Server numeric identifier ('id' setting)" },
[ST_I_PX_THROTTLE] = { .name = "throttle", .desc = "Throttling ratio applied to a server's maxconn and weight during the slowstart period (0 to 100%)" },
[ST_I_PX_LBTOT] = { .name = "lbtot", .desc = "Total number of requests routed by load balancing since the worker process started (ignores queue pop and stickiness)" },
[ST_I_PX_TRACKED] = { .name = "tracked", .desc = "Name of the other server this server tracks for its state" },
[ST_I_PX_TYPE] = { .name = "type", .desc = "Type of the object (Listener, Frontend, Backend, Server)" },
[ST_I_PX_RATE] = { .name = "rate", .desc = "Total number of sessions processed by this object over the last second (sessions for listeners/frontends, requests for backends/servers)" },
[ST_I_PX_RATE_LIM] = { .name = "rate_lim", .desc = "Limit on the number of sessions accepted in a second (frontend only, 'rate-limit sessions' setting)" },
[ST_I_PX_RATE_MAX] = { .name = "rate_max", .desc = "Highest value of sessions per second observed since the worker process started" },
[ST_I_PX_CHECK_STATUS] = { .name = "check_status", .desc = "Status report of the server's latest health check, prefixed with '*' if a check is currently in progress" },
[ST_I_PX_CHECK_CODE] = { .name = "check_code", .desc = "HTTP/SMTP/LDAP status code reported by the latest server health check" },
[ST_I_PX_CHECK_DURATION] = { .name = "check_duration", .desc = "Total duration of the latest server health check, in milliseconds" },
[ST_I_PX_HRSP_1XX] = { .name = "hrsp_1xx", .desc = "Total number of HTTP responses with status 100-199 returned by this object since the worker process started" },
[ST_I_PX_HRSP_2XX] = { .name = "hrsp_2xx", .desc = "Total number of HTTP responses with status 200-299 returned by this object since the worker process started" },
[ST_I_PX_HRSP_3XX] = { .name = "hrsp_3xx", .desc = "Total number of HTTP responses with status 300-399 returned by this object since the worker process started" },
[ST_I_PX_HRSP_4XX] = { .name = "hrsp_4xx", .desc = "Total number of HTTP responses with status 400-499 returned by this object since the worker process started" },
[ST_I_PX_HRSP_5XX] = { .name = "hrsp_5xx", .desc = "Total number of HTTP responses with status 500-599 returned by this object since the worker process started" },
[ST_I_PX_HRSP_OTHER] = { .name = "hrsp_other", .desc = "Total number of HTTP responses with status <100, >599 returned by this object since the worker process started (error -1 included)" },
[ST_I_PX_HANAFAIL] = { .name = "hanafail", .desc = "Total number of failed checks caused by an 'on-error' directive after an 'observe' condition matched" },
[ST_I_PX_REQ_RATE] = { .name = "req_rate", .desc = "Number of HTTP requests processed over the last second on this object" },
[ST_I_PX_REQ_RATE_MAX] = { .name = "req_rate_max", .desc = "Highest value of http requests observed since the worker process started" },
[ST_I_PX_REQ_TOT] = { .name = "req_tot", .desc = "Total number of HTTP requests processed by this object since the worker process started" },
[ST_I_PX_CLI_ABRT] = { .name = "cli_abrt", .desc = "Total number of requests or connections aborted by the client since the worker process started" },
[ST_I_PX_SRV_ABRT] = { .name = "srv_abrt", .desc = "Total number of requests or connections aborted by the server since the worker process started" },
[ST_I_PX_COMP_IN] = { .name = "comp_in", .desc = "Total number of bytes submitted to the HTTP compressor for this object since the worker process started" },
[ST_I_PX_COMP_OUT] = { .name = "comp_out", .desc = "Total number of bytes emitted by the HTTP compressor for this object since the worker process started" },
[ST_I_PX_COMP_BYP] = { .name = "comp_byp", .desc = "Total number of bytes that bypassed HTTP compression for this object since the worker process started (CPU/memory/bandwidth limitation)" },
[ST_I_PX_COMP_RSP] = { .name = "comp_rsp", .desc = "Total number of HTTP responses that were compressed for this object since the worker process started" },
[ST_I_PX_LASTSESS] = { .name = "lastsess", .desc = "How long ago some traffic was seen on this object on this worker process, in seconds" },
[ST_I_PX_LAST_CHK] = { .name = "last_chk", .desc = "Short description of the latest health check report for this server (see also check_desc)" },
[ST_I_PX_LAST_AGT] = { .name = "last_agt", .desc = "Short description of the latest agent check report for this server (see also agent_desc)" },
[ST_I_PX_QTIME] = { .name = "qtime", .desc = "Time spent in the queue, in milliseconds, averaged over the 1024 last requests (backend/server)" },
[ST_I_PX_CTIME] = { .name = "ctime", .desc = "Time spent waiting for a connection to complete, in milliseconds, averaged over the 1024 last requests (backend/server)" },
[ST_I_PX_RTIME] = { .name = "rtime", .desc = "Time spent waiting for a server response, in milliseconds, averaged over the 1024 last requests (backend/server)" },
[ST_I_PX_TTIME] = { .name = "ttime", .desc = "Total request+response time (request+queue+connect+response+processing), in milliseconds, averaged over the 1024 last requests (backend/server)" },
[ST_I_PX_AGENT_STATUS] = { .name = "agent_status", .desc = "Status report of the server's latest agent check, prefixed with '*' if a check is currently in progress" },
[ST_I_PX_AGENT_CODE] = { .name = "agent_code", .desc = "Status code reported by the latest server agent check" },
[ST_I_PX_AGENT_DURATION] = { .name = "agent_duration", .desc = "Total duration of the latest server agent check, in milliseconds" },
[ST_I_PX_CHECK_DESC] = { .name = "check_desc", .desc = "Textual description of the latest health check report for this server" },
[ST_I_PX_AGENT_DESC] = { .name = "agent_desc", .desc = "Textual description of the latest agent check report for this server" },
[ST_I_PX_CHECK_RISE] = { .name = "check_rise", .desc = "Number of successful health checks before declaring a server UP (server 'rise' setting)" },
[ST_I_PX_CHECK_FALL] = { .name = "check_fall", .desc = "Number of failed health checks before declaring a server DOWN (server 'fall' setting)" },
[ST_I_PX_CHECK_HEALTH] = { .name = "check_health", .desc = "Current server health check level (0..fall-1=DOWN, fall..rise-1=UP)" },
[ST_I_PX_AGENT_RISE] = { .name = "agent_rise", .desc = "Number of successful agent checks before declaring a server UP (server 'rise' setting)" },
[ST_I_PX_AGENT_FALL] = { .name = "agent_fall", .desc = "Number of failed agent checks before declaring a server DOWN (server 'fall' setting)" },
[ST_I_PX_AGENT_HEALTH] = { .name = "agent_health", .desc = "Current server agent check level (0..fall-1=DOWN, fall..rise-1=UP)" },
[ST_I_PX_ADDR] = { .name = "addr", .desc = "Server's address:port, shown only if show-legends is set, or at levels oper/admin for the CLI" },
[ST_I_PX_COOKIE] = { .name = "cookie", .desc = "Backend's cookie name or Server's cookie value, shown only if show-legends is set, or at levels oper/admin for the CLI" },
[ST_I_PX_MODE] = { .name = "mode", .desc = "'mode' setting (tcp/http/health/cli)" },
[ST_I_PX_ALGO] = { .name = "algo", .desc = "Backend's load balancing algorithm, shown only if show-legends is set, or at levels oper/admin for the CLI" },
[ST_I_PX_CONN_RATE] = { .name = "conn_rate", .desc = "Number of new connections accepted over the last second on the frontend for this worker process" },
[ST_I_PX_CONN_RATE_MAX] = { .name = "conn_rate_max", .desc = "Highest value of connections per second observed since the worker process started" },
[ST_I_PX_CONN_TOT] = { .name = "conn_tot", .desc = "Total number of new connections accepted on this frontend since the worker process started" },
[ST_I_PX_INTERCEPTED] = { .name = "intercepted", .desc = "Total number of HTTP requests intercepted on the frontend (redirects/stats/services) since the worker process started" },
[ST_I_PX_DCON] = { .name = "dcon", .desc = "Total number of incoming connections blocked on a listener/frontend by a tcp-request connection rule since the worker process started" },
[ST_I_PX_DSES] = { .name = "dses", .desc = "Total number of incoming sessions blocked on a listener/frontend by a tcp-request connection rule since the worker process started" },
[ST_I_PX_WREW] = { .name = "wrew", .desc = "Total number of failed HTTP header rewrites since the worker process started" },
[ST_I_PX_CONNECT] = { .name = "connect", .desc = "Total number of outgoing connection attempts on this backend/server since the worker process started" },
[ST_I_PX_REUSE] = { .name = "reuse", .desc = "Total number of reused connection on this backend/server since the worker process started" },
[ST_I_PX_CACHE_LOOKUPS] = { .name = "cache_lookups", .desc = "Total number of HTTP requests looked up in the cache on this frontend/backend since the worker process started" },
[ST_I_PX_CACHE_HITS] = { .name = "cache_hits", .desc = "Total number of HTTP requests not found in the cache on this frontend/backend since the worker process started" },
[ST_I_PX_SRV_ICUR] = { .name = "srv_icur", .desc = "Current number of idle connections available for reuse on this server" },
[ST_I_PX_SRV_ILIM] = { .name = "src_ilim", .desc = "Limit on the number of available idle connections on this server (server 'pool_max_conn' directive)" },
[ST_I_PX_QT_MAX] = { .name = "qtime_max", .desc = "Maximum observed time spent in the queue, in milliseconds (backend/server)" },
[ST_I_PX_CT_MAX] = { .name = "ctime_max", .desc = "Maximum observed time spent waiting for a connection to complete, in milliseconds (backend/server)" },
[ST_I_PX_RT_MAX] = { .name = "rtime_max", .desc = "Maximum observed time spent waiting for a server response, in milliseconds (backend/server)" },
[ST_I_PX_TT_MAX] = { .name = "ttime_max", .desc = "Maximum observed total request+response time (request+queue+connect+response+processing), in milliseconds (backend/server)" },
[ST_I_PX_EINT] = { .name = "eint", .desc = "Total number of internal errors since process started"},
[ST_I_PX_IDLE_CONN_CUR] = { .name = "idle_conn_cur", .desc = "Current number of unsafe idle connections"},
[ST_I_PX_SAFE_CONN_CUR] = { .name = "safe_conn_cur", .desc = "Current number of safe idle connections"},
[ST_I_PX_USED_CONN_CUR] = { .name = "used_conn_cur", .desc = "Current number of connections in use"},
[ST_I_PX_NEED_CONN_EST] = { .name = "need_conn_est", .desc = "Estimated needed number of connections"},
[ST_I_PX_UWEIGHT] = { .name = "uweight", .desc = "Server's user weight, or sum of active servers' user weights for a backend" },
[ST_I_PX_AGG_SRV_CHECK_STATUS] = { .name = "agg_server_check_status", .desc = "[DEPRECATED] Backend's aggregated gauge of servers' status" },
[ST_I_PX_AGG_SRV_STATUS ] = { .name = "agg_server_status", .desc = "Backend's aggregated gauge of servers' status" },
[ST_I_PX_AGG_CHECK_STATUS] = { .name = "agg_check_status", .desc = "Backend's aggregated gauge of servers' state check status" },
[ST_I_PX_SRID] = { .name = "srid", .desc = "Server id revision, to prevent server id reuse mixups" },
[ST_I_PX_SESS_OTHER] = { .name = "sess_other", .desc = "Total number of sessions other than HTTP since process started" },
[ST_I_PX_H1SESS] = { .name = "h1sess", .desc = "Total number of HTTP/1 sessions since process started" },
[ST_I_PX_H2SESS] = { .name = "h2sess", .desc = "Total number of HTTP/2 sessions since process started" },
[ST_I_PX_H3SESS] = { .name = "h3sess", .desc = "Total number of HTTP/3 sessions since process started" },
[ST_I_PX_REQ_OTHER] = { .name = "req_other", .desc = "Total number of sessions other than HTTP processed by this object since the worker process started" },
[ST_I_PX_H1REQ] = { .name = "h1req", .desc = "Total number of HTTP/1 sessions processed by this object since the worker process started" },
[ST_I_PX_H2REQ] = { .name = "h2req", .desc = "Total number of hTTP/2 sessions processed by this object since the worker process started" },
[ST_I_PX_H3REQ] = { .name = "h3req", .desc = "Total number of HTTP/3 sessions processed by this object since the worker process started" },
[ST_I_PX_PROTO] = { .name = "proto", .desc = "Protocol" },
};
/* one line for stats */
THREAD_LOCAL struct field *stat_lines[STATS_DOMAIN_COUNT];
/* Unified storage for metrics from all stats module
* TODO merge info stats into it as global statistic domain.
*/
struct name_desc *metrics[STATS_DOMAIN_COUNT];
static size_t metrics_len[STATS_DOMAIN_COUNT];
/* list of all registered stats module */
struct list stats_module_list[STATS_DOMAIN_COUNT] = {
LIST_HEAD_INIT(stats_module_list[STATS_DOMAIN_PROXY]),
LIST_HEAD_INIT(stats_module_list[STATS_DOMAIN_RESOLVERS]),
};
THREAD_LOCAL void *trash_counters;
int stats_putchk(struct appctx *appctx, struct buffer *buf, struct htx *htx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
struct buffer *chk = &ctx->chunk;
if (htx) {
if (b_data(chk) > htx_free_data_space(htx)) {
applet_fl_set(appctx, APPCTX_FL_OUTBLK_FULL);
return 0;
}
if (!htx_add_data_atonce(htx, ist2(b_orig(chk), b_data(chk)))) {
applet_fl_set(appctx, APPCTX_FL_OUTBLK_FULL);
return 0;
}
chunk_reset(chk);
}
else if (buf) {
if (b_data(chk) > b_room(buf)) {
se_fl_set(appctx->sedesc, SE_FL_RCV_MORE | SE_FL_WANT_ROOM);
return 0;
}
b_putblk(buf, b_head(chk), b_data(chk));
chunk_reset(chk);
}
else {
if (applet_putchk(appctx, chk) == -1)
return 0;
}
return 1;
}
int stats_is_full(struct appctx *appctx, struct buffer *buf, struct htx *htx)
{
if (htx) {
if (htx_almost_full(htx)) {
applet_fl_set(appctx, APPCTX_FL_OUTBLK_FULL);
goto full;
}
}
else if (buf) {
if (buffer_almost_full(buf)) {
se_fl_set(appctx->sedesc, SE_FL_RCV_MORE | SE_FL_WANT_ROOM);
goto full;
}
}
else {
if (buffer_almost_full(&appctx->outbuf)) {
applet_fl_set(appctx, APPCTX_FL_OUTBLK_FULL);
goto full;
}
}
return 0;
full:
return 1;
}
const char *stats_scope_ptr(struct appctx *appctx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
struct htx *htx = htxbuf(&appctx->inbuf);
struct htx_blk *blk;
struct ist uri;
blk = htx_get_head_blk(htx);
BUG_ON(!blk || htx_get_blk_type(blk) != HTX_BLK_REQ_SL);
ALREADY_CHECKED(blk);
uri = htx_sl_req_uri(htx_get_blk_ptr(htx, blk));
return uri.ptr + ctx->scope_str;
}
/*
* http_stats_io_handler()
* -> stats_dump_stat_to_buffer() // same as above, but used for CSV or HTML
* -> stats_dump_csv_header() // emits the CSV headers (same as above)
* -> stats_dump_json_header() // emits the JSON headers (same as above)
* -> stats_dump_html_head() // emits the HTML headers
* -> stats_dump_html_info() // emits the equivalent of "show info" at the top
* -> stats_dump_proxy_to_buffer() // same as above, valid for CSV and HTML
* -> stats_dump_html_px_hdr()
* -> stats_dump_fe_stats()
* -> stats_dump_li_stats()
* -> stats_dump_sv_stats()
* -> stats_dump_be_stats()
* -> stats_dump_html_px_end()
* -> stats_dump_html_end() // emits HTML trailer
* -> stats_dump_json_end() // emits JSON trailer
*/
/* Dumps the stats CSV header to <out> buffer. The caller is responsible for
* clearing it if needed.
*
* NOTE: Some tools happen to rely on the field position instead of its name,
* so please only append new fields at the end, never in the middle.
*/
static void stats_dump_csv_header(enum stats_domain domain, struct buffer *out)
{
int field;
chunk_appendf(out, "# ");
if (metrics[domain]) {
for (field = 0; field < metrics_len[domain]; ++field) {
chunk_appendf(out, "%s,", metrics[domain][field].name);
/* print special delimiter on proxy stats to mark end of
static fields */
if (domain == STATS_DOMAIN_PROXY && field + 1 == ST_I_PX_MAX)
chunk_appendf(out, "-,");
}
}
chunk_appendf(out, "\n");
}
/* Emits a stats field without any surrounding element and properly encoded to
* resist CSV output. Returns non-zero on success, 0 if the buffer is full.
*/
int stats_emit_raw_data_field(struct buffer *out, const struct field *f)
{
switch (field_format(f, 0)) {
case FF_EMPTY: return 1;
case FF_S32: return chunk_appendf(out, "%d", f->u.s32);
case FF_U32: return chunk_appendf(out, "%u", f->u.u32);
case FF_S64: return chunk_appendf(out, "%lld", (long long)f->u.s64);
case FF_U64: return chunk_appendf(out, "%llu", (unsigned long long)f->u.u64);
case FF_FLT: {
size_t prev_data = out->data;
out->data = flt_trim(out->area, prev_data, chunk_appendf(out, "%f", f->u.flt));
return out->data;
}
case FF_STR: return csv_enc_append(field_str(f, 0), 1, 2, out) != NULL;
default: return chunk_appendf(out, "[INCORRECT_FIELD_TYPE_%08x]", f->type);
}
}
/* Emits a stats field prefixed with its type. No CSV encoding is prepared, the
* output is supposed to be used on its own line. Returns non-zero on success, 0
* if the buffer is full.
*/
int stats_emit_typed_data_field(struct buffer *out, const struct field *f)
{
switch (field_format(f, 0)) {
case FF_EMPTY: return 1;
case FF_S32: return chunk_appendf(out, "s32:%d", f->u.s32);
case FF_U32: return chunk_appendf(out, "u32:%u", f->u.u32);
case FF_S64: return chunk_appendf(out, "s64:%lld", (long long)f->u.s64);
case FF_U64: return chunk_appendf(out, "u64:%llu", (unsigned long long)f->u.u64);
case FF_FLT: {
size_t prev_data = out->data;
out->data = flt_trim(out->area, prev_data, chunk_appendf(out, "flt:%f", f->u.flt));
return out->data;
}
case FF_STR: return chunk_appendf(out, "str:%s", field_str(f, 0));
default: return chunk_appendf(out, "%08x:?", f->type);
}
}
/* Emits an encoding of the field type on 3 characters followed by a delimiter.
* Returns non-zero on success, 0 if the buffer is full.
*/
int stats_emit_field_tags(struct buffer *out, const struct field *f,
char delim)
{
char origin, nature, scope;
switch (field_origin(f, 0)) {
case FO_METRIC: origin = 'M'; break;
case FO_STATUS: origin = 'S'; break;
case FO_KEY: origin = 'K'; break;
case FO_CONFIG: origin = 'C'; break;
case FO_PRODUCT: origin = 'P'; break;
default: origin = '?'; break;
}
switch (field_nature(f, 0)) {
case FN_GAUGE: nature = 'G'; break;
case FN_LIMIT: nature = 'L'; break;
case FN_MIN: nature = 'm'; break;
case FN_MAX: nature = 'M'; break;
case FN_RATE: nature = 'R'; break;
case FN_COUNTER: nature = 'C'; break;
case FN_DURATION: nature = 'D'; break;
case FN_AGE: nature = 'A'; break;
case FN_TIME: nature = 'T'; break;
case FN_NAME: nature = 'N'; break;
case FN_OUTPUT: nature = 'O'; break;
case FN_AVG: nature = 'a'; break;
default: nature = '?'; break;
}
switch (field_scope(f, 0)) {
case FS_PROCESS: scope = 'P'; break;
case FS_SERVICE: scope = 'S'; break;
case FS_SYSTEM: scope = 's'; break;
case FS_CLUSTER: scope = 'C'; break;
default: scope = '?'; break;
}
return chunk_appendf(out, "%c%c%c%c", origin, nature, scope, delim);
}
/* Dump all fields from <stats> into <out> using CSV format */
static int stats_dump_fields_csv(struct buffer *out,
const struct field *stats, size_t stats_count,
struct show_stat_ctx *ctx)
{
int domain = ctx->domain;
int field;
for (field = 0; field < stats_count; ++field) {
if (!stats_emit_raw_data_field(out, &stats[field]))
return 0;
if (!chunk_strcat(out, ","))
return 0;
/* print special delimiter on proxy stats to mark end of
static fields */
if (domain == STATS_DOMAIN_PROXY && field + 1 == ST_I_PX_MAX) {
if (!chunk_strcat(out, "-,"))
return 0;
}
}
chunk_strcat(out, "\n");
return 1;
}
/* Dump all fields from <stats> into <out> using a typed "field:desc:type:value" format */
static int stats_dump_fields_typed(struct buffer *out,
const struct field *stats,
size_t stats_count,
struct show_stat_ctx * ctx)
{
int flags = ctx->flags;
int domain = ctx->domain;
int field;
for (field = 0; field < stats_count; ++field) {
if (!stats[field].type)
continue;
switch (domain) {
case STATS_DOMAIN_PROXY:
chunk_appendf(out, "%c.%u.%u.%d.%s.%u:",
stats[ST_I_PX_TYPE].u.u32 == STATS_TYPE_FE ? 'F' :
stats[ST_I_PX_TYPE].u.u32 == STATS_TYPE_BE ? 'B' :
stats[ST_I_PX_TYPE].u.u32 == STATS_TYPE_SO ? 'L' :
stats[ST_I_PX_TYPE].u.u32 == STATS_TYPE_SV ? 'S' :
'?',
stats[ST_I_PX_IID].u.u32, stats[ST_I_PX_SID].u.u32,
field,
metrics[domain][field].name,
stats[ST_I_PX_PID].u.u32);
break;
case STATS_DOMAIN_RESOLVERS:
chunk_appendf(out, "N.%d.%s:", field,
metrics[domain][field].name);
break;
default:
break;
}
if (!stats_emit_field_tags(out, &stats[field], ':'))
return 0;
if (!stats_emit_typed_data_field(out, &stats[field]))
return 0;
if (flags & STAT_SHOW_FDESC &&
!chunk_appendf(out, ":\"%s\"", metrics[domain][field].desc)) {
return 0;
}
if (!chunk_strcat(out, "\n"))
return 0;
}
return 1;
}
int stats_dump_one_line(const struct field *stats, size_t stats_count,
struct appctx *appctx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
struct buffer *chk = &ctx->chunk;
int ret;
if (ctx->flags & STAT_FMT_HTML)
ret = stats_dump_fields_html(chk, stats, ctx);
else if (ctx->flags & STAT_FMT_TYPED)
ret = stats_dump_fields_typed(chk, stats, stats_count, ctx);
else if (ctx->flags & STAT_FMT_JSON)
ret = stats_dump_fields_json(chk, stats, stats_count, ctx);
else
ret = stats_dump_fields_csv(chk, stats, stats_count, ctx);
return ret;
}
/* Fill <stats> with the frontend statistics. <stats> is preallocated array of
* length <len>. If <selected_field> is != NULL, only fill this one. The length
* of the array must be at least ST_I_PX_MAX. If this length is less than
* this value, or if the selected field is not implemented for frontends, the
* function returns 0, otherwise, it returns 1.
*/
int stats_fill_fe_stats(struct proxy *px, struct field *stats, int len,
enum stat_field *selected_field)
{
enum stat_field current_field = (selected_field != NULL ? *selected_field : 0);
if (len < ST_I_PX_MAX)
return 0;
for (; current_field < ST_I_PX_MAX; current_field++) {
struct field metric = { 0 };
switch (current_field) {
case ST_I_PX_PXNAME:
metric = mkf_str(FO_KEY|FN_NAME|FS_SERVICE, px->id);
break;
case ST_I_PX_SVNAME:
metric = mkf_str(FO_KEY|FN_NAME|FS_SERVICE, "FRONTEND");
break;
case ST_I_PX_MODE:
metric = mkf_str(FO_CONFIG|FS_SERVICE, proxy_mode_str(px->mode));
break;
case ST_I_PX_SCUR:
metric = mkf_u32(0, px->feconn);
break;
case ST_I_PX_SMAX:
metric = mkf_u32(FN_MAX, px->fe_counters.conn_max);
break;
case ST_I_PX_SLIM:
metric = mkf_u32(FO_CONFIG|FN_LIMIT, px->maxconn);
break;
case ST_I_PX_STOT:
metric = mkf_u64(FN_COUNTER, px->fe_counters.cum_sess);
break;
case ST_I_PX_BIN:
metric = mkf_u64(FN_COUNTER, px->fe_counters.bytes_in);
break;
case ST_I_PX_BOUT:
metric = mkf_u64(FN_COUNTER, px->fe_counters.bytes_out);
break;
case ST_I_PX_DREQ:
metric = mkf_u64(FN_COUNTER, px->fe_counters.denied_req);
break;
case ST_I_PX_DRESP:
metric = mkf_u64(FN_COUNTER, px->fe_counters.denied_resp);
break;
case ST_I_PX_EREQ:
metric = mkf_u64(FN_COUNTER, px->fe_counters.failed_req);
break;
case ST_I_PX_DCON:
metric = mkf_u64(FN_COUNTER, px->fe_counters.denied_conn);
break;
case ST_I_PX_DSES:
metric = mkf_u64(FN_COUNTER, px->fe_counters.denied_sess);
break;
case ST_I_PX_STATUS: {
const char *state;
if (px->flags & (PR_FL_DISABLED|PR_FL_STOPPED))
state = "STOP";
else if (px->flags & PR_FL_PAUSED)
state = "PAUSED";
else
state = "OPEN";
metric = mkf_str(FO_STATUS, state);
break;
}
case ST_I_PX_PID:
metric = mkf_u32(FO_KEY, 1);
break;
case ST_I_PX_IID:
metric = mkf_u32(FO_KEY|FS_SERVICE, px->uuid);
break;
case ST_I_PX_SID:
metric = mkf_u32(FO_KEY|FS_SERVICE, 0);
break;
case ST_I_PX_TYPE:
metric = mkf_u32(FO_CONFIG|FS_SERVICE, STATS_TYPE_FE);
break;
case ST_I_PX_RATE:
metric = mkf_u32(FN_RATE, read_freq_ctr(&px->fe_sess_per_sec));
break;
case ST_I_PX_RATE_LIM:
metric = mkf_u32(FO_CONFIG|FN_LIMIT, px->fe_sps_lim);
break;
case ST_I_PX_RATE_MAX:
metric = mkf_u32(FN_MAX, px->fe_counters.sps_max);
break;
case ST_I_PX_WREW:
metric = mkf_u64(FN_COUNTER, px->fe_counters.failed_rewrites);
break;
case ST_I_PX_EINT:
metric = mkf_u64(FN_COUNTER, px->fe_counters.internal_errors);
break;
case ST_I_PX_HRSP_1XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->fe_counters.p.http.rsp[1]);
break;
case ST_I_PX_HRSP_2XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->fe_counters.p.http.rsp[2]);
break;
case ST_I_PX_HRSP_3XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->fe_counters.p.http.rsp[3]);
break;
case ST_I_PX_HRSP_4XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->fe_counters.p.http.rsp[4]);
break;
case ST_I_PX_HRSP_5XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->fe_counters.p.http.rsp[5]);
break;
case ST_I_PX_HRSP_OTHER:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->fe_counters.p.http.rsp[0]);
break;
case ST_I_PX_INTERCEPTED:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->fe_counters.intercepted_req);
break;
case ST_I_PX_CACHE_LOOKUPS:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->fe_counters.p.http.cache_lookups);
break;
case ST_I_PX_CACHE_HITS:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->fe_counters.p.http.cache_hits);
break;
case ST_I_PX_REQ_RATE:
metric = mkf_u32(FN_RATE, read_freq_ctr(&px->fe_req_per_sec));
break;
case ST_I_PX_REQ_RATE_MAX:
metric = mkf_u32(FN_MAX, px->fe_counters.p.http.rps_max);
break;
case ST_I_PX_REQ_TOT: {
int i;
uint64_t total_req;
size_t nb_reqs =
sizeof(px->fe_counters.p.http.cum_req) / sizeof(*px->fe_counters.p.http.cum_req);
total_req = 0;
for (i = 0; i < nb_reqs; i++)
total_req += px->fe_counters.p.http.cum_req[i];
metric = mkf_u64(FN_COUNTER, total_req);
break;
}
case ST_I_PX_COMP_IN:
metric = mkf_u64(FN_COUNTER, px->fe_counters.comp_in[COMP_DIR_RES]);
break;
case ST_I_PX_COMP_OUT:
metric = mkf_u64(FN_COUNTER, px->fe_counters.comp_out[COMP_DIR_RES]);
break;
case ST_I_PX_COMP_BYP:
metric = mkf_u64(FN_COUNTER, px->fe_counters.comp_byp[COMP_DIR_RES]);
break;
case ST_I_PX_COMP_RSP:
metric = mkf_u64(FN_COUNTER, px->fe_counters.p.http.comp_rsp);
break;
case ST_I_PX_CONN_RATE:
metric = mkf_u32(FN_RATE, read_freq_ctr(&px->fe_conn_per_sec));
break;
case ST_I_PX_CONN_RATE_MAX:
metric = mkf_u32(FN_MAX, px->fe_counters.cps_max);
break;
case ST_I_PX_CONN_TOT:
metric = mkf_u64(FN_COUNTER, px->fe_counters.cum_conn);
break;
case ST_I_PX_SESS_OTHER: {
int i;
uint64_t total_sess;
size_t nb_sess =
sizeof(px->fe_counters.cum_sess_ver) / sizeof(*px->fe_counters.cum_sess_ver);
total_sess = px->fe_counters.cum_sess;
for (i = 0; i < nb_sess; i++)
total_sess -= px->fe_counters.cum_sess_ver[i];
total_sess = (int64_t)total_sess < 0 ? 0 : total_sess;
metric = mkf_u64(FN_COUNTER, total_sess);
break;
}
case ST_I_PX_H1SESS:
metric = mkf_u64(FN_COUNTER, px->fe_counters.cum_sess_ver[0]);
break;
case ST_I_PX_H2SESS:
metric = mkf_u64(FN_COUNTER, px->fe_counters.cum_sess_ver[1]);
break;
case ST_I_PX_H3SESS:
metric = mkf_u64(FN_COUNTER, px->fe_counters.cum_sess_ver[2]);
break;
case ST_I_PX_REQ_OTHER:
metric = mkf_u64(FN_COUNTER, px->fe_counters.p.http.cum_req[0]);
break;
case ST_I_PX_H1REQ:
metric = mkf_u64(FN_COUNTER, px->fe_counters.p.http.cum_req[1]);
break;
case ST_I_PX_H2REQ:
metric = mkf_u64(FN_COUNTER, px->fe_counters.p.http.cum_req[2]);
break;
case ST_I_PX_H3REQ:
metric = mkf_u64(FN_COUNTER, px->fe_counters.p.http.cum_req[3]);
break;
default:
/* not used for frontends. If a specific metric
* is requested, return an error. Otherwise continue.
*/
if (selected_field != NULL)
return 0;
continue;
}
stats[current_field] = metric;
if (selected_field != NULL)
break;
}
return 1;
}
/* Dumps a frontend's line to chunk ctx buffer for the current proxy <px> and
* uses the state from stream connector <sc>. The caller is responsible for
* clearing chunk ctx buffer if needed. Returns non-zero if it emits anything,
* zero otherwise.
*/
static int stats_dump_fe_stats(struct stconn *sc, struct proxy *px)
{
struct appctx *appctx = __sc_appctx(sc);
struct show_stat_ctx *ctx = appctx->svcctx;
struct field *stats = stat_lines[STATS_DOMAIN_PROXY];
struct stats_module *mod;
size_t stats_count = ST_I_PX_MAX;
if (!(px->cap & PR_CAP_FE))
return 0;
if ((ctx->flags & STAT_BOUND) && !(ctx->type & (1 << STATS_TYPE_FE)))
return 0;
memset(stats, 0, sizeof(struct field) * metrics_len[STATS_DOMAIN_PROXY]);
if (!stats_fill_fe_stats(px, stats, ST_I_PX_MAX, NULL))
return 0;
list_for_each_entry(mod, &stats_module_list[STATS_DOMAIN_PROXY], list) {
void *counters;
if (!(stats_px_get_cap(mod->domain_flags) & STATS_PX_CAP_FE)) {
stats_count += mod->stats_count;
continue;
}
counters = EXTRA_COUNTERS_GET(px->extra_counters_fe, mod);
if (!mod->fill_stats(counters, stats + stats_count, NULL))
continue;
stats_count += mod->stats_count;
}
return stats_dump_one_line(stats, stats_count, appctx);
}
/* Fill <stats> with the listener statistics. <stats> is preallocated array of
* length <len>. The length of the array must be at least ST_I_PX_MAX. If
* this length is less then this value, the function returns 0, otherwise, it
* returns 1. If selected_field is != NULL, only fill this one. <flags> can
* take the value STAT_SHLGNDS.
*/
int stats_fill_li_stats(struct proxy *px, struct listener *l, int flags,
struct field *stats, int len, enum stat_field *selected_field)
{
enum stat_field current_field = (selected_field != NULL ? *selected_field : 0);
struct buffer *out = get_trash_chunk();
if (len < ST_I_PX_MAX)
return 0;
if (!l->counters)
return 0;
chunk_reset(out);
for (; current_field < ST_I_PX_MAX; current_field++) {
struct field metric = { 0 };
switch (current_field) {
case ST_I_PX_PXNAME:
metric = mkf_str(FO_KEY|FN_NAME|FS_SERVICE, px->id);
break;
case ST_I_PX_SVNAME:
metric = mkf_str(FO_KEY|FN_NAME|FS_SERVICE, l->name);
break;
case ST_I_PX_MODE:
metric = mkf_str(FO_CONFIG|FS_SERVICE, proxy_mode_str(px->mode));
break;
case ST_I_PX_SCUR:
metric = mkf_u32(0, l->nbconn);
break;
case ST_I_PX_SMAX:
metric = mkf_u32(FN_MAX, l->counters->conn_max);
break;
case ST_I_PX_SLIM:
metric = mkf_u32(FO_CONFIG|FN_LIMIT, l->bind_conf->maxconn);
break;
case ST_I_PX_STOT:
metric = mkf_u64(FN_COUNTER, l->counters->cum_sess);
break;
case ST_I_PX_BIN:
metric = mkf_u64(FN_COUNTER, l->counters->bytes_in);
break;
case ST_I_PX_BOUT:
metric = mkf_u64(FN_COUNTER, l->counters->bytes_out);
break;
case ST_I_PX_DREQ:
metric = mkf_u64(FN_COUNTER, l->counters->denied_req);
break;
case ST_I_PX_DRESP:
metric = mkf_u64(FN_COUNTER, l->counters->denied_resp);
break;
case ST_I_PX_EREQ:
metric = mkf_u64(FN_COUNTER, l->counters->failed_req);
break;
case ST_I_PX_DCON:
metric = mkf_u64(FN_COUNTER, l->counters->denied_conn);
break;
case ST_I_PX_DSES:
metric = mkf_u64(FN_COUNTER, l->counters->denied_sess);
break;
case ST_I_PX_STATUS:
metric = mkf_str(FO_STATUS, li_status_st[get_li_status(l)]);
break;
case ST_I_PX_PID:
metric = mkf_u32(FO_KEY, 1);
break;
case ST_I_PX_IID:
metric = mkf_u32(FO_KEY|FS_SERVICE, px->uuid);
break;
case ST_I_PX_SID:
metric = mkf_u32(FO_KEY|FS_SERVICE, l->luid);
break;
case ST_I_PX_TYPE:
metric = mkf_u32(FO_CONFIG|FS_SERVICE, STATS_TYPE_SO);
break;
case ST_I_PX_CONN_TOT:
metric = mkf_u64(FN_COUNTER, l->counters->cum_conn);
break;
case ST_I_PX_WREW:
metric = mkf_u64(FN_COUNTER, l->counters->failed_rewrites);
break;
case ST_I_PX_EINT:
metric = mkf_u64(FN_COUNTER, l->counters->internal_errors);
break;
case ST_I_PX_ADDR:
if (flags & STAT_SHLGNDS) {
char str[INET6_ADDRSTRLEN];
int port;
port = get_host_port(&l->rx.addr);
switch (addr_to_str(&l->rx.addr, str, sizeof(str))) {
case AF_INET:
metric = mkf_str(FO_CONFIG|FS_SERVICE, chunk_newstr(out));
chunk_appendf(out, "%s:%d", str, port);
break;
case AF_INET6:
metric = mkf_str(FO_CONFIG|FS_SERVICE, chunk_newstr(out));
chunk_appendf(out, "[%s]:%d", str, port);
break;
case AF_UNIX:
metric = mkf_str(FO_CONFIG|FS_SERVICE, "unix");
break;
case -1:
metric = mkf_str(FO_CONFIG|FS_SERVICE, chunk_newstr(out));
chunk_strcat(out, strerror(errno));
break;
default: /* address family not supported */
break;
}
}
break;
case ST_I_PX_PROTO:
metric = mkf_str(FO_STATUS, l->rx.proto->name);
break;
default:
/* not used for listen. If a specific metric
* is requested, return an error. Otherwise continue.
*/
if (selected_field != NULL)
return 0;
continue;
}
stats[current_field] = metric;
if (selected_field != NULL)
break;
}
return 1;
}
/* Dumps a line for listener <l> and proxy <px> to chunk ctx buffer and uses
* the state from stream connector <sc>. The caller is responsible for clearing
* chunk ctx buffer if needed. Returns non-zero if it emits anything, zero
* otherwise.
*/
static int stats_dump_li_stats(struct stconn *sc, struct proxy *px, struct listener *l)
{
struct appctx *appctx = __sc_appctx(sc);
struct show_stat_ctx *ctx = appctx->svcctx;
struct field *stats = stat_lines[STATS_DOMAIN_PROXY];
struct stats_module *mod;
size_t stats_count = ST_I_PX_MAX;
memset(stats, 0, sizeof(struct field) * metrics_len[STATS_DOMAIN_PROXY]);
if (!stats_fill_li_stats(px, l, ctx->flags, stats,
ST_I_PX_MAX, NULL))
return 0;
list_for_each_entry(mod, &stats_module_list[STATS_DOMAIN_PROXY], list) {
void *counters;
if (!(stats_px_get_cap(mod->domain_flags) & STATS_PX_CAP_LI)) {
stats_count += mod->stats_count;
continue;
}
counters = EXTRA_COUNTERS_GET(l->extra_counters, mod);
if (!mod->fill_stats(counters, stats + stats_count, NULL))
continue;
stats_count += mod->stats_count;
}
return stats_dump_one_line(stats, stats_count, appctx);
}
enum srv_stats_state {
SRV_STATS_STATE_DOWN = 0,
SRV_STATS_STATE_DOWN_AGENT,
SRV_STATS_STATE_GOING_UP,
SRV_STATS_STATE_UP_GOING_DOWN,
SRV_STATS_STATE_UP,
SRV_STATS_STATE_NOLB_GOING_DOWN,
SRV_STATS_STATE_NOLB,
SRV_STATS_STATE_DRAIN_GOING_DOWN,
SRV_STATS_STATE_DRAIN,
SRV_STATS_STATE_DRAIN_AGENT,
SRV_STATS_STATE_NO_CHECK,
SRV_STATS_STATE_COUNT, /* Must be last */
};
static const char *srv_hlt_st[SRV_STATS_STATE_COUNT] = {
[SRV_STATS_STATE_DOWN] = "DOWN",
[SRV_STATS_STATE_DOWN_AGENT] = "DOWN (agent)",
[SRV_STATS_STATE_GOING_UP] = "DOWN %d/%d",
[SRV_STATS_STATE_UP_GOING_DOWN] = "UP %d/%d",
[SRV_STATS_STATE_UP] = "UP",
[SRV_STATS_STATE_NOLB_GOING_DOWN] = "NOLB %d/%d",
[SRV_STATS_STATE_NOLB] = "NOLB",
[SRV_STATS_STATE_DRAIN_GOING_DOWN] = "DRAIN %d/%d",
[SRV_STATS_STATE_DRAIN] = "DRAIN",
[SRV_STATS_STATE_DRAIN_AGENT] = "DRAIN (agent)",
[SRV_STATS_STATE_NO_CHECK] = "no check"
};
/* Compute server state helper
*/
static void stats_fill_sv_stats_computestate(struct server *sv, struct server *ref,
enum srv_stats_state *state)
{
if (sv->cur_state == SRV_ST_RUNNING || sv->cur_state == SRV_ST_STARTING) {
if ((ref->check.state & CHK_ST_ENABLED) &&
(ref->check.health < ref->check.rise + ref->check.fall - 1)) {
*state = SRV_STATS_STATE_UP_GOING_DOWN;
} else {
*state = SRV_STATS_STATE_UP;
}
if (sv->cur_admin & SRV_ADMF_DRAIN) {
if (ref->agent.state & CHK_ST_ENABLED)
*state = SRV_STATS_STATE_DRAIN_AGENT;
else if (*state == SRV_STATS_STATE_UP_GOING_DOWN)
*state = SRV_STATS_STATE_DRAIN_GOING_DOWN;
else
*state = SRV_STATS_STATE_DRAIN;
}
if (*state == SRV_STATS_STATE_UP && !(ref->check.state & CHK_ST_ENABLED)) {
*state = SRV_STATS_STATE_NO_CHECK;
}
}
else if (sv->cur_state == SRV_ST_STOPPING) {
if ((!(sv->check.state & CHK_ST_ENABLED) && !sv->track) ||
(ref->check.health == ref->check.rise + ref->check.fall - 1)) {
*state = SRV_STATS_STATE_NOLB;
} else {
*state = SRV_STATS_STATE_NOLB_GOING_DOWN;
}
}
else { /* stopped */
if ((ref->agent.state & CHK_ST_ENABLED) && !ref->agent.health) {
*state = SRV_STATS_STATE_DOWN_AGENT;
} else if ((ref->check.state & CHK_ST_ENABLED) && !ref->check.health) {
*state = SRV_STATS_STATE_DOWN; /* DOWN */
} else if ((ref->agent.state & CHK_ST_ENABLED) || (ref->check.state & CHK_ST_ENABLED)) {
*state = SRV_STATS_STATE_GOING_UP;
} else {
*state = SRV_STATS_STATE_DOWN; /* DOWN, unchecked */
}
}
}
/* Fill <stats> with the backend statistics. <stats> is preallocated array of
* length <len>. If <selected_field> is != NULL, only fill this one. The length
* of the array must be at least ST_I_PX_MAX. If this length is less than
* this value, or if the selected field is not implemented for servers, the
* function returns 0, otherwise, it returns 1. <flags> can take the value
* STAT_SHLGNDS.
*/
int stats_fill_sv_stats(struct proxy *px, struct server *sv, int flags,
struct field *stats, int len,
enum stat_field *selected_field)
{
enum stat_field current_field = (selected_field != NULL ? *selected_field : 0);
struct server *via = sv->track ? sv->track : sv;
struct server *ref = via;
enum srv_stats_state state = 0;
char str[INET6_ADDRSTRLEN];
struct buffer *out = get_trash_chunk();
char *fld_status;
long long srv_samples_counter;
unsigned int srv_samples_window = TIME_STATS_SAMPLES;
if (len < ST_I_PX_MAX)
return 0;
chunk_reset(out);
/* compute state for later use */
if (selected_field == NULL || *selected_field == ST_I_PX_STATUS ||
*selected_field == ST_I_PX_CHECK_RISE || *selected_field == ST_I_PX_CHECK_FALL ||
*selected_field == ST_I_PX_CHECK_HEALTH || *selected_field == ST_I_PX_HANAFAIL) {
/* we have "via" which is the tracked server as described in the configuration,
* and "ref" which is the checked server and the end of the chain.
*/
while (ref->track)
ref = ref->track;
stats_fill_sv_stats_computestate(sv, ref, &state);
}
/* compue time values for later use */
if (selected_field == NULL || *selected_field == ST_I_PX_QTIME ||
*selected_field == ST_I_PX_CTIME || *selected_field == ST_I_PX_RTIME ||
*selected_field == ST_I_PX_TTIME) {
srv_samples_counter = (px->mode == PR_MODE_HTTP) ? sv->counters.p.http.cum_req : sv->counters.cum_lbconn;
if (srv_samples_counter < TIME_STATS_SAMPLES && srv_samples_counter > 0)
srv_samples_window = srv_samples_counter;
}
for (; current_field < ST_I_PX_MAX; current_field++) {
struct field metric = { 0 };
switch (current_field) {
case ST_I_PX_PXNAME:
metric = mkf_str(FO_KEY|FN_NAME|FS_SERVICE, px->id);
break;
case ST_I_PX_SVNAME:
metric = mkf_str(FO_KEY|FN_NAME|FS_SERVICE, sv->id);
break;
case ST_I_PX_MODE:
metric = mkf_str(FO_CONFIG|FS_SERVICE, proxy_mode_str(px->mode));
break;
case ST_I_PX_QCUR:
metric = mkf_u32(0, sv->queue.length);
break;
case ST_I_PX_QMAX:
metric = mkf_u32(FN_MAX, sv->counters.nbpend_max);
break;
case ST_I_PX_SCUR:
metric = mkf_u32(0, sv->cur_sess);
break;
case ST_I_PX_SMAX:
metric = mkf_u32(FN_MAX, sv->counters.cur_sess_max);
break;
case ST_I_PX_SLIM:
if (sv->maxconn)
metric = mkf_u32(FO_CONFIG|FN_LIMIT, sv->maxconn);
break;
case ST_I_PX_SRV_ICUR:
metric = mkf_u32(0, sv->curr_idle_conns);
break;
case ST_I_PX_SRV_ILIM:
if (sv->max_idle_conns != -1)
metric = mkf_u32(FO_CONFIG|FN_LIMIT, sv->max_idle_conns);
break;
case ST_I_PX_STOT:
metric = mkf_u64(FN_COUNTER, sv->counters.cum_sess);
break;
case ST_I_PX_BIN:
metric = mkf_u64(FN_COUNTER, sv->counters.bytes_in);
break;
case ST_I_PX_BOUT:
metric = mkf_u64(FN_COUNTER, sv->counters.bytes_out);
break;
case ST_I_PX_DRESP:
metric = mkf_u64(FN_COUNTER, sv->counters.denied_resp);
break;
case ST_I_PX_ECON:
metric = mkf_u64(FN_COUNTER, sv->counters.failed_conns);
break;
case ST_I_PX_ERESP:
metric = mkf_u64(FN_COUNTER, sv->counters.failed_resp);
break;
case ST_I_PX_WRETR:
metric = mkf_u64(FN_COUNTER, sv->counters.retries);
break;
case ST_I_PX_WREDIS:
metric = mkf_u64(FN_COUNTER, sv->counters.redispatches);
break;
case ST_I_PX_WREW:
metric = mkf_u64(FN_COUNTER, sv->counters.failed_rewrites);
break;
case ST_I_PX_EINT:
metric = mkf_u64(FN_COUNTER, sv->counters.internal_errors);
break;
case ST_I_PX_CONNECT:
metric = mkf_u64(FN_COUNTER, sv->counters.connect);
break;
case ST_I_PX_REUSE:
metric = mkf_u64(FN_COUNTER, sv->counters.reuse);
break;
case ST_I_PX_IDLE_CONN_CUR:
metric = mkf_u32(0, sv->curr_idle_nb);
break;
case ST_I_PX_SAFE_CONN_CUR:
metric = mkf_u32(0, sv->curr_safe_nb);
break;
case ST_I_PX_USED_CONN_CUR:
metric = mkf_u32(0, sv->curr_used_conns);
break;
case ST_I_PX_NEED_CONN_EST:
metric = mkf_u32(0, sv->est_need_conns);
break;
case ST_I_PX_STATUS:
fld_status = chunk_newstr(out);
if (sv->cur_admin & SRV_ADMF_RMAINT)
chunk_appendf(out, "MAINT (resolution)");
else if (sv->cur_admin & SRV_ADMF_IMAINT)
chunk_appendf(out, "MAINT (via %s/%s)", via->proxy->id, via->id);
else if (sv->cur_admin & SRV_ADMF_MAINT)
chunk_appendf(out, "MAINT");
else
chunk_appendf(out,
srv_hlt_st[state],
(ref->cur_state != SRV_ST_STOPPED) ? (ref->check.health - ref->check.rise + 1) : (ref->check.health),
(ref->cur_state != SRV_ST_STOPPED) ? (ref->check.fall) : (ref->check.rise));
metric = mkf_str(FO_STATUS, fld_status);
break;
case ST_I_PX_LASTCHG:
metric = mkf_u32(FN_AGE, ns_to_sec(now_ns) - sv->last_change);
break;
case ST_I_PX_WEIGHT:
metric = mkf_u32(FN_AVG, (sv->cur_eweight * px->lbprm.wmult + px->lbprm.wdiv - 1) / px->lbprm.wdiv);
break;
case ST_I_PX_UWEIGHT:
metric = mkf_u32(FN_AVG, sv->uweight);
break;
case ST_I_PX_ACT:
metric = mkf_u32(FO_STATUS, (sv->flags & SRV_F_BACKUP) ? 0 : 1);
break;
case ST_I_PX_BCK:
metric = mkf_u32(FO_STATUS, (sv->flags & SRV_F_BACKUP) ? 1 : 0);
break;
case ST_I_PX_CHKFAIL:
if (sv->check.state & CHK_ST_ENABLED)
metric = mkf_u64(FN_COUNTER, sv->counters.failed_checks);
break;
case ST_I_PX_CHKDOWN:
if (sv->check.state & CHK_ST_ENABLED)
metric = mkf_u64(FN_COUNTER, sv->counters.down_trans);
break;
case ST_I_PX_DOWNTIME:
if (sv->check.state & CHK_ST_ENABLED)
metric = mkf_u32(FN_COUNTER, srv_downtime(sv));
break;
case ST_I_PX_QLIMIT:
if (sv->maxqueue)
metric = mkf_u32(FO_CONFIG|FS_SERVICE, sv->maxqueue);
break;
case ST_I_PX_PID:
metric = mkf_u32(FO_KEY, 1);
break;
case ST_I_PX_IID:
metric = mkf_u32(FO_KEY|FS_SERVICE, px->uuid);
break;
case ST_I_PX_SID:
metric = mkf_u32(FO_KEY|FS_SERVICE, sv->puid);
break;
case ST_I_PX_SRID:
metric = mkf_u32(FN_COUNTER, sv->rid);
break;
case ST_I_PX_THROTTLE:
if (sv->cur_state == SRV_ST_STARTING && !server_is_draining(sv))
metric = mkf_u32(FN_AVG, server_throttle_rate(sv));
break;
case ST_I_PX_LBTOT:
metric = mkf_u64(FN_COUNTER, sv->counters.cum_lbconn);
break;
case ST_I_PX_TRACKED:
if (sv->track) {
char *fld_track = chunk_newstr(out);
chunk_appendf(out, "%s/%s", sv->track->proxy->id, sv->track->id);
metric = mkf_str(FO_CONFIG|FN_NAME|FS_SERVICE, fld_track);
}
break;
case ST_I_PX_TYPE:
metric = mkf_u32(FO_CONFIG|FS_SERVICE, STATS_TYPE_SV);
break;
case ST_I_PX_RATE:
metric = mkf_u32(FN_RATE, read_freq_ctr(&sv->sess_per_sec));
break;
case ST_I_PX_RATE_MAX:
metric = mkf_u32(FN_MAX, sv->counters.sps_max);
break;
case ST_I_PX_CHECK_STATUS:
if ((sv->check.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED) {
const char *fld_chksts;
fld_chksts = chunk_newstr(out);
chunk_strcat(out, "* "); // for check in progress
chunk_strcat(out, get_check_status_info(sv->check.status));
if (!(sv->check.state & CHK_ST_INPROGRESS))
fld_chksts += 2; // skip "* "
metric = mkf_str(FN_OUTPUT, fld_chksts);
}
break;
case ST_I_PX_CHECK_CODE:
if ((sv->check.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED &&
sv->check.status >= HCHK_STATUS_L57DATA)
metric = mkf_u32(FN_OUTPUT, sv->check.code);
break;
case ST_I_PX_CHECK_DURATION:
if ((sv->check.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED &&
sv->check.status >= HCHK_STATUS_CHECKED)
metric = mkf_u64(FN_DURATION, MAX(sv->check.duration, 0));
break;
case ST_I_PX_CHECK_DESC:
if ((sv->check.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED)
metric = mkf_str(FN_OUTPUT, get_check_status_description(sv->check.status));
break;
case ST_I_PX_LAST_CHK:
if ((sv->check.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED)
metric = mkf_str(FN_OUTPUT, sv->check.desc);
break;
case ST_I_PX_CHECK_RISE:
if ((sv->check.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED)
metric = mkf_u32(FO_CONFIG|FS_SERVICE, ref->check.rise);
break;
case ST_I_PX_CHECK_FALL:
if ((sv->check.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED)
metric = mkf_u32(FO_CONFIG|FS_SERVICE, ref->check.fall);
break;
case ST_I_PX_CHECK_HEALTH:
if ((sv->check.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED)
metric = mkf_u32(FO_CONFIG|FS_SERVICE, ref->check.health);
break;
case ST_I_PX_AGENT_STATUS:
if ((sv->agent.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED) {
const char *fld_chksts;
fld_chksts = chunk_newstr(out);
chunk_strcat(out, "* "); // for check in progress
chunk_strcat(out, get_check_status_info(sv->agent.status));
if (!(sv->agent.state & CHK_ST_INPROGRESS))
fld_chksts += 2; // skip "* "
metric = mkf_str(FN_OUTPUT, fld_chksts);
}
break;
case ST_I_PX_AGENT_CODE:
if ((sv->agent.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED &&
(sv->agent.status >= HCHK_STATUS_L57DATA))
metric = mkf_u32(FN_OUTPUT, sv->agent.code);
break;
case ST_I_PX_AGENT_DURATION:
if ((sv->agent.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED)
metric = mkf_u64(FN_DURATION, sv->agent.duration);
break;
case ST_I_PX_AGENT_DESC:
if ((sv->agent.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED)
metric = mkf_str(FN_OUTPUT, get_check_status_description(sv->agent.status));
break;
case ST_I_PX_LAST_AGT:
if ((sv->agent.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED)
metric = mkf_str(FN_OUTPUT, sv->agent.desc);
break;
case ST_I_PX_AGENT_RISE:
if ((sv->agent.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED)
metric = mkf_u32(FO_CONFIG|FS_SERVICE, sv->agent.rise);
break;
case ST_I_PX_AGENT_FALL:
if ((sv->agent.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED)
metric = mkf_u32(FO_CONFIG|FS_SERVICE, sv->agent.fall);
break;
case ST_I_PX_AGENT_HEALTH:
if ((sv->agent.state & (CHK_ST_ENABLED|CHK_ST_PAUSED)) == CHK_ST_ENABLED)
metric = mkf_u32(FO_CONFIG|FS_SERVICE, sv->agent.health);
break;
case ST_I_PX_REQ_TOT:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, sv->counters.p.http.cum_req);
break;
case ST_I_PX_HRSP_1XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, sv->counters.p.http.rsp[1]);
break;
case ST_I_PX_HRSP_2XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, sv->counters.p.http.rsp[2]);
break;
case ST_I_PX_HRSP_3XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, sv->counters.p.http.rsp[3]);
break;
case ST_I_PX_HRSP_4XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, sv->counters.p.http.rsp[4]);
break;
case ST_I_PX_HRSP_5XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, sv->counters.p.http.rsp[5]);
break;
case ST_I_PX_HRSP_OTHER:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, sv->counters.p.http.rsp[0]);
break;
case ST_I_PX_HANAFAIL:
if (ref->observe)
metric = mkf_u64(FN_COUNTER, sv->counters.failed_hana);
break;
case ST_I_PX_CLI_ABRT:
metric = mkf_u64(FN_COUNTER, sv->counters.cli_aborts);
break;
case ST_I_PX_SRV_ABRT:
metric = mkf_u64(FN_COUNTER, sv->counters.srv_aborts);
break;
case ST_I_PX_LASTSESS:
metric = mkf_s32(FN_AGE, srv_lastsession(sv));
break;
case ST_I_PX_QTIME:
metric = mkf_u32(FN_AVG, swrate_avg(sv->counters.q_time, srv_samples_window));
break;
case ST_I_PX_CTIME:
metric = mkf_u32(FN_AVG, swrate_avg(sv->counters.c_time, srv_samples_window));
break;
case ST_I_PX_RTIME:
metric = mkf_u32(FN_AVG, swrate_avg(sv->counters.d_time, srv_samples_window));
break;
case ST_I_PX_TTIME:
metric = mkf_u32(FN_AVG, swrate_avg(sv->counters.t_time, srv_samples_window));
break;
case ST_I_PX_QT_MAX:
metric = mkf_u32(FN_MAX, sv->counters.qtime_max);
break;
case ST_I_PX_CT_MAX:
metric = mkf_u32(FN_MAX, sv->counters.ctime_max);
break;
case ST_I_PX_RT_MAX:
metric = mkf_u32(FN_MAX, sv->counters.dtime_max);
break;
case ST_I_PX_TT_MAX:
metric = mkf_u32(FN_MAX, sv->counters.ttime_max);
break;
case ST_I_PX_ADDR:
if (flags & STAT_SHLGNDS) {
switch (addr_to_str(&sv->addr, str, sizeof(str))) {
case AF_INET:
metric = mkf_str(FO_CONFIG|FS_SERVICE, chunk_newstr(out));
chunk_appendf(out, "%s:%d", str, sv->svc_port);
break;
case AF_INET6:
metric = mkf_str(FO_CONFIG|FS_SERVICE, chunk_newstr(out));
chunk_appendf(out, "[%s]:%d", str, sv->svc_port);
break;
case AF_UNIX:
metric = mkf_str(FO_CONFIG|FS_SERVICE, "unix");
break;
case -1:
metric = mkf_str(FO_CONFIG|FS_SERVICE, chunk_newstr(out));
chunk_strcat(out, strerror(errno));
break;
default: /* address family not supported */
break;
}
}
break;
case ST_I_PX_COOKIE:
if (flags & STAT_SHLGNDS && sv->cookie)
metric = mkf_str(FO_CONFIG|FN_NAME|FS_SERVICE, sv->cookie);
break;
default:
/* not used for servers. If a specific metric
* is requested, return an error. Otherwise continue.
*/
if (selected_field != NULL)
return 0;
continue;
}
stats[current_field] = metric;
if (selected_field != NULL)
break;
}
return 1;
}
/* Dumps a line for server <sv> and proxy <px> to chunk ctx buffer and uses the
* state from stream connector <sc>, and server state <state>. The caller is
* responsible for clearing the chunk ctx buffer if needed. Returns non-zero if
* it emits anything, zero otherwise.
*/
static int stats_dump_sv_stats(struct stconn *sc, struct proxy *px, struct server *sv)
{
struct appctx *appctx = __sc_appctx(sc);
struct show_stat_ctx *ctx = appctx->svcctx;
struct stats_module *mod;
struct field *stats = stat_lines[STATS_DOMAIN_PROXY];
size_t stats_count = ST_I_PX_MAX;
memset(stats, 0, sizeof(struct field) * metrics_len[STATS_DOMAIN_PROXY]);
if (!stats_fill_sv_stats(px, sv, ctx->flags, stats,
ST_I_PX_MAX, NULL))
return 0;
list_for_each_entry(mod, &stats_module_list[STATS_DOMAIN_PROXY], list) {
void *counters;
if (stats_get_domain(mod->domain_flags) != STATS_DOMAIN_PROXY)
continue;
if (!(stats_px_get_cap(mod->domain_flags) & STATS_PX_CAP_SRV)) {
stats_count += mod->stats_count;
continue;
}
counters = EXTRA_COUNTERS_GET(sv->extra_counters, mod);
if (!mod->fill_stats(counters, stats + stats_count, NULL))
continue;
stats_count += mod->stats_count;
}
return stats_dump_one_line(stats, stats_count, appctx);
}
/* Helper to compute srv values for a given backend
*/
static void stats_fill_be_stats_computesrv(struct proxy *px, int *nbup, int *nbsrv, int *totuw)
{
int nbup_tmp, nbsrv_tmp, totuw_tmp;
const struct server *srv;
nbup_tmp = nbsrv_tmp = totuw_tmp = 0;
for (srv = px->srv; srv; srv = srv->next) {
if (srv->cur_state != SRV_ST_STOPPED) {
nbup_tmp++;
if (srv_currently_usable(srv) &&
(!px->srv_act ^ !(srv->flags & SRV_F_BACKUP)))
totuw_tmp += srv->uweight;
}
nbsrv_tmp++;
}
HA_RWLOCK_RDLOCK(LBPRM_LOCK, &px->lbprm.lock);
if (!px->srv_act && px->lbprm.fbck)
totuw_tmp = px->lbprm.fbck->uweight;
HA_RWLOCK_RDUNLOCK(LBPRM_LOCK, &px->lbprm.lock);
/* use tmp variable then assign result to make gcc happy */
*nbup = nbup_tmp;
*nbsrv = nbsrv_tmp;
*totuw = totuw_tmp;
}
/* Fill <stats> with the backend statistics. <stats> is preallocated array of
* length <len>. If <selected_field> is != NULL, only fill this one. The length
* of the array must be at least ST_I_PX_MAX. If this length is less than
* this value, or if the selected field is not implemented for backends, the
* function returns 0, otherwise, it returns 1. <flags> can take the value
* STAT_SHLGNDS.
*/
int stats_fill_be_stats(struct proxy *px, int flags, struct field *stats, int len,
enum stat_field *selected_field)
{
enum stat_field current_field = (selected_field != NULL ? *selected_field : 0);
long long be_samples_counter;
unsigned int be_samples_window = TIME_STATS_SAMPLES;
struct buffer *out = get_trash_chunk();
int nbup, nbsrv, totuw;
char *fld;
if (len < ST_I_PX_MAX)
return 0;
nbup = nbsrv = totuw = 0;
/* some srv values compute for later if we either select all fields or
* need them for one of the mentioned ones */
if (selected_field == NULL || *selected_field == ST_I_PX_STATUS ||
*selected_field == ST_I_PX_UWEIGHT)
stats_fill_be_stats_computesrv(px, &nbup, &nbsrv, &totuw);
/* same here but specific to time fields */
if (selected_field == NULL || *selected_field == ST_I_PX_QTIME ||
*selected_field == ST_I_PX_CTIME || *selected_field == ST_I_PX_RTIME ||
*selected_field == ST_I_PX_TTIME) {
be_samples_counter = (px->mode == PR_MODE_HTTP) ? px->be_counters.p.http.cum_req : px->be_counters.cum_lbconn;
if (be_samples_counter < TIME_STATS_SAMPLES && be_samples_counter > 0)
be_samples_window = be_samples_counter;
}
for (; current_field < ST_I_PX_MAX; current_field++) {
struct field metric = { 0 };
switch (current_field) {
case ST_I_PX_PXNAME:
metric = mkf_str(FO_KEY|FN_NAME|FS_SERVICE, px->id);
break;
case ST_I_PX_SVNAME:
metric = mkf_str(FO_KEY|FN_NAME|FS_SERVICE, "BACKEND");
break;
case ST_I_PX_MODE:
metric = mkf_str(FO_CONFIG|FS_SERVICE, proxy_mode_str(px->mode));
break;
case ST_I_PX_QCUR:
metric = mkf_u32(0, px->queue.length);
break;
case ST_I_PX_QMAX:
metric = mkf_u32(FN_MAX, px->be_counters.nbpend_max);
break;
case ST_I_PX_SCUR:
metric = mkf_u32(0, px->beconn);
break;
case ST_I_PX_SMAX:
metric = mkf_u32(FN_MAX, px->be_counters.conn_max);
break;
case ST_I_PX_SLIM:
metric = mkf_u32(FO_CONFIG|FN_LIMIT, px->fullconn);
break;
case ST_I_PX_STOT:
metric = mkf_u64(FN_COUNTER, px->be_counters.cum_sess);
break;
case ST_I_PX_BIN:
metric = mkf_u64(FN_COUNTER, px->be_counters.bytes_in);
break;
case ST_I_PX_BOUT:
metric = mkf_u64(FN_COUNTER, px->be_counters.bytes_out);
break;
case ST_I_PX_DREQ:
metric = mkf_u64(FN_COUNTER, px->be_counters.denied_req);
break;
case ST_I_PX_DRESP:
metric = mkf_u64(FN_COUNTER, px->be_counters.denied_resp);
break;
case ST_I_PX_ECON:
metric = mkf_u64(FN_COUNTER, px->be_counters.failed_conns);
break;
case ST_I_PX_ERESP:
metric = mkf_u64(FN_COUNTER, px->be_counters.failed_resp);
break;
case ST_I_PX_WRETR:
metric = mkf_u64(FN_COUNTER, px->be_counters.retries);
break;
case ST_I_PX_WREDIS:
metric = mkf_u64(FN_COUNTER, px->be_counters.redispatches);
break;
case ST_I_PX_WREW:
metric = mkf_u64(FN_COUNTER, px->be_counters.failed_rewrites);
break;
case ST_I_PX_EINT:
metric = mkf_u64(FN_COUNTER, px->be_counters.internal_errors);
break;
case ST_I_PX_CONNECT:
metric = mkf_u64(FN_COUNTER, px->be_counters.connect);
break;
case ST_I_PX_REUSE:
metric = mkf_u64(FN_COUNTER, px->be_counters.reuse);
break;
case ST_I_PX_STATUS:
fld = chunk_newstr(out);
chunk_appendf(out, "%s", (px->lbprm.tot_weight > 0 || !px->srv) ? "UP" : "DOWN");
if (flags & (STAT_HIDE_MAINT|STAT_HIDE_DOWN))
chunk_appendf(out, " (%d/%d)", nbup, nbsrv);
metric = mkf_str(FO_STATUS, fld);
break;
case ST_I_PX_AGG_SRV_CHECK_STATUS: // DEPRECATED
case ST_I_PX_AGG_SRV_STATUS:
metric = mkf_u32(FN_GAUGE, 0);
break;
case ST_I_PX_AGG_CHECK_STATUS:
metric = mkf_u32(FN_GAUGE, 0);
break;
case ST_I_PX_WEIGHT:
metric = mkf_u32(FN_AVG, (px->lbprm.tot_weight * px->lbprm.wmult + px->lbprm.wdiv - 1) / px->lbprm.wdiv);
break;
case ST_I_PX_UWEIGHT:
metric = mkf_u32(FN_AVG, totuw);
break;
case ST_I_PX_ACT:
metric = mkf_u32(0, px->srv_act);
break;
case ST_I_PX_BCK:
metric = mkf_u32(0, px->srv_bck);
break;
case ST_I_PX_CHKDOWN:
metric = mkf_u64(FN_COUNTER, px->be_counters.down_trans);
break;
case ST_I_PX_LASTCHG:
metric = mkf_u32(FN_AGE, ns_to_sec(now_ns) - px->last_change);
break;
case ST_I_PX_DOWNTIME:
if (px->srv)
metric = mkf_u32(FN_COUNTER, be_downtime(px));
break;
case ST_I_PX_PID:
metric = mkf_u32(FO_KEY, 1);
break;
case ST_I_PX_IID:
metric = mkf_u32(FO_KEY|FS_SERVICE, px->uuid);
break;
case ST_I_PX_SID:
metric = mkf_u32(FO_KEY|FS_SERVICE, 0);
break;
case ST_I_PX_LBTOT:
metric = mkf_u64(FN_COUNTER, px->be_counters.cum_lbconn);
break;
case ST_I_PX_TYPE:
metric = mkf_u32(FO_CONFIG|FS_SERVICE, STATS_TYPE_BE);
break;
case ST_I_PX_RATE:
metric = mkf_u32(0, read_freq_ctr(&px->be_sess_per_sec));
break;
case ST_I_PX_RATE_MAX:
metric = mkf_u32(0, px->be_counters.sps_max);
break;
case ST_I_PX_COOKIE:
if (flags & STAT_SHLGNDS && px->cookie_name)
metric = mkf_str(FO_CONFIG|FN_NAME|FS_SERVICE, px->cookie_name);
break;
case ST_I_PX_ALGO:
if (flags & STAT_SHLGNDS)
metric = mkf_str(FO_CONFIG|FS_SERVICE, backend_lb_algo_str(px->lbprm.algo & BE_LB_ALGO));
break;
case ST_I_PX_REQ_TOT:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->be_counters.p.http.cum_req);
break;
case ST_I_PX_HRSP_1XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->be_counters.p.http.rsp[1]);
break;
case ST_I_PX_HRSP_2XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->be_counters.p.http.rsp[2]);
break;
case ST_I_PX_HRSP_3XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->be_counters.p.http.rsp[3]);
break;
case ST_I_PX_HRSP_4XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->be_counters.p.http.rsp[4]);
break;
case ST_I_PX_HRSP_5XX:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->be_counters.p.http.rsp[5]);
break;
case ST_I_PX_HRSP_OTHER:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->be_counters.p.http.rsp[0]);
break;
case ST_I_PX_CACHE_LOOKUPS:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->be_counters.p.http.cache_lookups);
break;
case ST_I_PX_CACHE_HITS:
if (px->mode == PR_MODE_HTTP)
metric = mkf_u64(FN_COUNTER, px->be_counters.p.http.cache_hits);
break;
case ST_I_PX_CLI_ABRT:
metric = mkf_u64(FN_COUNTER, px->be_counters.cli_aborts);
break;
case ST_I_PX_SRV_ABRT:
metric = mkf_u64(FN_COUNTER, px->be_counters.srv_aborts);
break;
case ST_I_PX_COMP_IN:
metric = mkf_u64(FN_COUNTER, px->be_counters.comp_in[COMP_DIR_RES]);
break;
case ST_I_PX_COMP_OUT:
metric = mkf_u64(FN_COUNTER, px->be_counters.comp_out[COMP_DIR_RES]);
break;
case ST_I_PX_COMP_BYP:
metric = mkf_u64(FN_COUNTER, px->be_counters.comp_byp[COMP_DIR_RES]);
break;
case ST_I_PX_COMP_RSP:
metric = mkf_u64(FN_COUNTER, px->be_counters.p.http.comp_rsp);
break;
case ST_I_PX_LASTSESS:
metric = mkf_s32(FN_AGE, be_lastsession(px));
break;
case ST_I_PX_QTIME:
metric = mkf_u32(FN_AVG, swrate_avg(px->be_counters.q_time, be_samples_window));
break;
case ST_I_PX_CTIME:
metric = mkf_u32(FN_AVG, swrate_avg(px->be_counters.c_time, be_samples_window));
break;
case ST_I_PX_RTIME:
metric = mkf_u32(FN_AVG, swrate_avg(px->be_counters.d_time, be_samples_window));
break;
case ST_I_PX_TTIME:
metric = mkf_u32(FN_AVG, swrate_avg(px->be_counters.t_time, be_samples_window));
break;
case ST_I_PX_QT_MAX:
metric = mkf_u32(FN_MAX, px->be_counters.qtime_max);
break;
case ST_I_PX_CT_MAX:
metric = mkf_u32(FN_MAX, px->be_counters.ctime_max);
break;
case ST_I_PX_RT_MAX:
metric = mkf_u32(FN_MAX, px->be_counters.dtime_max);
break;
case ST_I_PX_TT_MAX:
metric = mkf_u32(FN_MAX, px->be_counters.ttime_max);
break;
default:
/* not used for backends. If a specific metric
* is requested, return an error. Otherwise continue.
*/
if (selected_field != NULL)
return 0;
continue;
}
stats[current_field] = metric;
if (selected_field != NULL)
break;
}
return 1;
}
/* Dumps a line for backend <px> to chunk ctx buffer and uses the state from
* stream interface <si>. The caller is responsible for clearing chunk buffer
* if needed. Returns non-zero if it emits anything, zero otherwise.
*/
static int stats_dump_be_stats(struct stconn *sc, struct proxy *px)
{
struct appctx *appctx = __sc_appctx(sc);
struct show_stat_ctx *ctx = appctx->svcctx;
struct field *stats = stat_lines[STATS_DOMAIN_PROXY];
struct stats_module *mod;
size_t stats_count = ST_I_PX_MAX;
if (!(px->cap & PR_CAP_BE))
return 0;
if ((ctx->flags & STAT_BOUND) && !(ctx->type & (1 << STATS_TYPE_BE)))
return 0;
memset(stats, 0, sizeof(struct field) * metrics_len[STATS_DOMAIN_PROXY]);
if (!stats_fill_be_stats(px, ctx->flags, stats, ST_I_PX_MAX, NULL))
return 0;
list_for_each_entry(mod, &stats_module_list[STATS_DOMAIN_PROXY], list) {
struct extra_counters *counters;
if (stats_get_domain(mod->domain_flags) != STATS_DOMAIN_PROXY)
continue;
if (!(stats_px_get_cap(mod->domain_flags) & STATS_PX_CAP_BE)) {
stats_count += mod->stats_count;
continue;
}
counters = EXTRA_COUNTERS_GET(px->extra_counters_be, mod);
if (!mod->fill_stats(counters, stats + stats_count, NULL))
continue;
stats_count += mod->stats_count;
}
return stats_dump_one_line(stats, stats_count, appctx);
}
/*
* Dumps statistics for a proxy. The output is sent to the stream connector's
* input buffer. Returns 0 if it had to stop dumping data because of lack of
* buffer space, or non-zero if everything completed. This function is used
* both by the CLI and the HTTP entry points, and is able to dump the output
* in HTML or CSV formats.
*/
int stats_dump_proxy_to_buffer(struct stconn *sc, struct buffer *buf, struct htx *htx,
struct proxy *px)
{
struct appctx *appctx = __sc_appctx(sc);
struct show_stat_ctx *ctx = appctx->svcctx;
struct buffer *chk = &ctx->chunk;
struct server *sv, *svs; /* server and server-state, server-state=server or server->track */
struct listener *l;
struct uri_auth *uri = NULL;
int current_field;
int px_st = ctx->px_st;
if (ctx->http_px)
uri = ctx->http_px->uri_auth;
chunk_reset(chk);
more:
current_field = ctx->field;
switch (ctx->px_st) {
case STAT_PX_ST_INIT:
/* we are on a new proxy */
if (uri && uri->scope) {
/* we have a limited scope, we have to check the proxy name */
struct stat_scope *scope;
int len;
len = strlen(px->id);
scope = uri->scope;
while (scope) {
/* match exact proxy name */
if (scope->px_len == len && !memcmp(px->id, scope->px_id, len))
break;
/* match '.' which means 'self' proxy */
if (strcmp(scope->px_id, ".") == 0 && px == ctx->http_px)
break;
scope = scope->next;
}
/* proxy name not found : don't dump anything */
if (scope == NULL)
return 1;
}
/* if the user has requested a limited output and the proxy
* name does not match, skip it.
*/
if (ctx->scope_len) {
const char *scope_ptr = stats_scope_ptr(appctx);
if (strnistr(px->id, strlen(px->id), scope_ptr, ctx->scope_len) == NULL)
return 1;
}
if ((ctx->flags & STAT_BOUND) &&
(ctx->iid != -1) &&
(px->uuid != ctx->iid))
return 1;
ctx->px_st = STAT_PX_ST_TH;
__fallthrough;
case STAT_PX_ST_TH:
if (ctx->flags & STAT_FMT_HTML) {
stats_dump_html_px_hdr(sc, px);
if (!stats_putchk(appctx, buf, htx))
goto full;
}
ctx->px_st = STAT_PX_ST_FE;
__fallthrough;
case STAT_PX_ST_FE:
/* print the frontend */
if (stats_dump_fe_stats(sc, px)) {
if (!stats_putchk(appctx, buf, htx))
goto full;
ctx->flags |= STAT_STARTED;
if (ctx->field)
goto more;
}
current_field = 0;
ctx->obj2 = px->conf.listeners.n;
ctx->px_st = STAT_PX_ST_LI;
__fallthrough;
case STAT_PX_ST_LI:
/* obj2 points to listeners list as initialized above */
for (; ctx->obj2 != &px->conf.listeners; ctx->obj2 = l->by_fe.n) {
if (stats_is_full(appctx, buf, htx))
goto full;
l = LIST_ELEM(ctx->obj2, struct listener *, by_fe);
if (!l->counters)
continue;
if (ctx->flags & STAT_BOUND) {
if (!(ctx->type & (1 << STATS_TYPE_SO)))
break;
if (ctx->sid != -1 && l->luid != ctx->sid)
continue;
}
/* print the frontend */
if (stats_dump_li_stats(sc, px, l)) {
if (!stats_putchk(appctx, buf, htx))
goto full;
ctx->flags |= STAT_STARTED;
if (ctx->field)
goto more;
}
current_field = 0;
}
ctx->obj2 = px->srv; /* may be NULL */
ctx->px_st = STAT_PX_ST_SV;
__fallthrough;
case STAT_PX_ST_SV:
/* check for dump resumption */
if (px_st == STAT_PX_ST_SV) {
struct server *cur = ctx->obj2;
/* re-entrant dump */
BUG_ON(!cur);
if (cur->flags & SRV_F_DELETED) {
/* the server could have been marked as deleted
* between two dumping attempts, skip it.
*/
cur = cur->next;
}
srv_drop(ctx->obj2); /* drop old srv taken on last dumping attempt */
ctx->obj2 = cur; /* could be NULL */
/* back to normal */
}
/* obj2 points to servers list as initialized above.
*
* A server may be removed during the stats dumping.
* Temporarily increment its refcount to prevent its
* anticipated cleaning. Call srv_drop() to release it.
*/
for (; ctx->obj2 != NULL;
ctx->obj2 = srv_drop(sv)) {
sv = ctx->obj2;
srv_take(sv);
if (stats_is_full(appctx, buf, htx))
goto full;
if (ctx->flags & STAT_BOUND) {
if (!(ctx->type & (1 << STATS_TYPE_SV))) {
srv_drop(sv);
break;
}
if (ctx->sid != -1 && sv->puid != ctx->sid)
continue;
}
/* do not report disabled servers */
if (ctx->flags & STAT_HIDE_MAINT &&
sv->cur_admin & SRV_ADMF_MAINT) {
continue;
}
svs = sv;
while (svs->track)
svs = svs->track;
/* do not report servers which are DOWN and not changing state */
if ((ctx->flags & STAT_HIDE_DOWN) &&
((sv->cur_admin & SRV_ADMF_MAINT) || /* server is in maintenance */
(sv->cur_state == SRV_ST_STOPPED && /* server is down */
(!((svs->agent.state | svs->check.state) & CHK_ST_ENABLED) ||
((svs->agent.state & CHK_ST_ENABLED) && !svs->agent.health) ||
((svs->check.state & CHK_ST_ENABLED) && !svs->check.health))))) {
continue;
}
if (stats_dump_sv_stats(sc, px, sv)) {
if (!stats_putchk(appctx, buf, htx))
goto full;
ctx->flags |= STAT_STARTED;
if (ctx->field)
goto more;
}
current_field = 0;
} /* for sv */
ctx->px_st = STAT_PX_ST_BE;
__fallthrough;
case STAT_PX_ST_BE:
/* print the backend */
if (stats_dump_be_stats(sc, px)) {
if (!stats_putchk(appctx, buf, htx))
goto full;
ctx->flags |= STAT_STARTED;
if (ctx->field)
goto more;
}
current_field = 0;
ctx->px_st = STAT_PX_ST_END;
__fallthrough;
case STAT_PX_ST_END:
if (ctx->flags & STAT_FMT_HTML) {
stats_dump_html_px_end(sc, px);
if (!stats_putchk(appctx, buf, htx))
goto full;
}
ctx->px_st = STAT_PX_ST_FIN;
__fallthrough;
case STAT_PX_ST_FIN:
return 1;
default:
/* unknown state, we should put an abort() here ! */
return 1;
}
full:
/* restore previous field */
ctx->field = current_field;
return 0;
}
/* Uses <appctx.ctx.stats.obj1> as a pointer to the current proxy and <obj2> as
* a pointer to the current server/listener.
*/
static int stats_dump_proxies(struct stconn *sc, struct buffer *buf,
struct htx *htx)
{
struct appctx *appctx = __sc_appctx(sc);
struct show_stat_ctx *ctx = appctx->svcctx;
struct proxy *px;
/* dump proxies */
while (ctx->obj1) {
if (stats_is_full(appctx, buf, htx))
goto full;
px = ctx->obj1;
/* Skip the global frontend proxies and non-networked ones.
* Also skip proxies that were disabled in the configuration
* This change allows retrieving stats from "old" proxies after a reload.
*/
if (!(px->flags & PR_FL_DISABLED) && px->uuid > 0 &&
(px->cap & (PR_CAP_FE | PR_CAP_BE)) && !(px->cap & PR_CAP_INT)) {
if (stats_dump_proxy_to_buffer(sc, buf, htx, px) == 0)
return 0;
}
ctx->obj1 = px->next;
ctx->px_st = STAT_PX_ST_INIT;
ctx->field = 0;
}
return 1;
full:
return 0;
}
/* This function dumps statistics onto the stream connector's read buffer in
* either CSV or HTML format. It returns 0 if it had to stop writing data and
* an I/O is needed, 1 if the dump is finished and the stream must be closed,
* or -1 in case of any error. This function is used by both the CLI and the
* HTTP handlers.
*/
int stats_dump_stat_to_buffer(struct stconn *sc, struct buffer *buf, struct htx *htx)
{
struct appctx *appctx = __sc_appctx(sc);
struct show_stat_ctx *ctx = appctx->svcctx;
enum stats_domain domain = ctx->domain;
struct buffer *chk = &ctx->chunk;
chunk_reset(chk);
switch (ctx->state) {
case STAT_STATE_INIT:
ctx->state = STAT_STATE_HEAD; /* let's start producing data */
__fallthrough;
case STAT_STATE_HEAD:
if (ctx->flags & STAT_FMT_HTML)
stats_dump_html_head(appctx);
else if (ctx->flags & STAT_JSON_SCHM)
stats_dump_json_schema(chk);
else if (ctx->flags & STAT_FMT_JSON)
stats_dump_json_header(chk);
else if (!(ctx->flags & STAT_FMT_TYPED))
stats_dump_csv_header(ctx->domain, chk);
if (!stats_putchk(appctx, buf, htx))
goto full;
if (ctx->flags & STAT_JSON_SCHM) {
ctx->state = STAT_STATE_FIN;
return 1;
}
ctx->state = STAT_STATE_INFO;
__fallthrough;
case STAT_STATE_INFO:
if (ctx->flags & STAT_FMT_HTML) {
stats_dump_html_info(sc);
if (!stats_putchk(appctx, buf, htx))
goto full;
}
if (domain == STATS_DOMAIN_PROXY)
ctx->obj1 = proxies_list;
ctx->px_st = STAT_PX_ST_INIT;
ctx->field = 0;
ctx->state = STAT_STATE_LIST;
__fallthrough;
case STAT_STATE_LIST:
switch (domain) {
case STATS_DOMAIN_RESOLVERS:
if (!stats_dump_resolvers(sc, stat_lines[domain],
metrics_len[domain],
&stats_module_list[domain])) {
return 0;
}
break;
case STATS_DOMAIN_PROXY:
default:
/* dump proxies */
if (!stats_dump_proxies(sc, buf, htx))
return 0;
break;
}
ctx->state = STAT_STATE_END;
__fallthrough;
case STAT_STATE_END:
if (ctx->flags & (STAT_FMT_HTML|STAT_FMT_JSON)) {
if (ctx->flags & STAT_FMT_HTML)
stats_dump_html_end(chk);
else
stats_dump_json_end(chk);
if (!stats_putchk(appctx, buf, htx))
goto full;
}
ctx->state = STAT_STATE_FIN;
__fallthrough;
case STAT_STATE_FIN:
return 1;
default:
/* unknown state ! */
ctx->state = STAT_STATE_FIN;
return -1;
}
full:
return 0;
}
/* Dump all fields from <info> into <out> using the "show info" format (name: value) */
static int stats_dump_info_fields(struct buffer *out,
const struct field *info,
struct show_stat_ctx *ctx)
{
int flags = ctx->flags;
int field;
for (field = 0; field < ST_I_INF_MAX; field++) {
if (!field_format(info, field))
continue;
if (!chunk_appendf(out, "%s: ", metrics_info[field].name))
return 0;
if (!stats_emit_raw_data_field(out, &info[field]))
return 0;
if ((flags & STAT_SHOW_FDESC) && !chunk_appendf(out, ":\"%s\"", metrics_info[field].desc))
return 0;
if (!chunk_strcat(out, "\n"))
return 0;
}
return 1;
}
/* Dump all fields from <info> into <out> using the "show info typed" format */
static int stats_dump_typed_info_fields(struct buffer *out,
const struct field *info,
struct show_stat_ctx *ctx)
{
int flags = ctx->flags;
int field;
for (field = 0; field < ST_I_INF_MAX; field++) {
if (!field_format(info, field))
continue;
if (!chunk_appendf(out, "%d.%s.%u:", field, metrics_info[field].name, info[ST_I_INF_PROCESS_NUM].u.u32))
return 0;
if (!stats_emit_field_tags(out, &info[field], ':'))
return 0;
if (!stats_emit_typed_data_field(out, &info[field]))
return 0;
if ((flags & STAT_SHOW_FDESC) && !chunk_appendf(out, ":\"%s\"", metrics_info[field].desc))
return 0;
if (!chunk_strcat(out, "\n"))
return 0;
}
return 1;
}
/* Fill <info> with HAProxy global info. <info> is preallocated array of length
* <len>. The length of the array must be ST_I_INF_MAX. If this length is
* less then this value, the function returns 0, otherwise, it returns 1. Some
* fields' presence or precision may depend on some of the STAT_* flags present
* in <flags>.
*/
int stats_fill_info(struct field *info, int len, uint flags)
{
struct buffer *out = get_trash_chunk();
uint64_t glob_out_bytes, glob_spl_bytes, glob_out_b32;
uint up_sec, up_usec;
ullong up;
ulong boot;
int thr;
#ifdef USE_OPENSSL
double ssl_sess_rate = read_freq_ctr_flt(&global.ssl_per_sec);
double ssl_key_rate = read_freq_ctr_flt(&global.ssl_fe_keys_per_sec);
double ssl_reuse = 0;
if (ssl_key_rate < ssl_sess_rate)
ssl_reuse = 100.0 * (1.0 - ssl_key_rate / ssl_sess_rate);
#endif
/* sum certain per-thread totals (mostly byte counts) */
glob_out_bytes = glob_spl_bytes = glob_out_b32 = 0;
for (thr = 0; thr < global.nbthread; thr++) {
glob_out_bytes += HA_ATOMIC_LOAD(&ha_thread_ctx[thr].out_bytes);
glob_spl_bytes += HA_ATOMIC_LOAD(&ha_thread_ctx[thr].spliced_out_bytes);
glob_out_b32 += read_freq_ctr(&ha_thread_ctx[thr].out_32bps);
}
glob_out_b32 *= 32; // values are 32-byte units
up = now_ns - start_time_ns;
up_sec = ns_to_sec(up);
up_usec = (up / 1000U) % 1000000U;
boot = tv_ms_remain(&start_date, &ready_date);
if (len < ST_I_INF_MAX)
return 0;
chunk_reset(out);
memset(info, 0, sizeof(*info) * len);
info[ST_I_INF_NAME] = mkf_str(FO_PRODUCT|FN_OUTPUT|FS_SERVICE, PRODUCT_NAME);
info[ST_I_INF_VERSION] = mkf_str(FO_PRODUCT|FN_OUTPUT|FS_SERVICE, haproxy_version);
info[ST_I_INF_BUILD_INFO] = mkf_str(FO_PRODUCT|FN_OUTPUT|FS_SERVICE, haproxy_version);
info[ST_I_INF_RELEASE_DATE] = mkf_str(FO_PRODUCT|FN_OUTPUT|FS_SERVICE, haproxy_date);
info[ST_I_INF_NBTHREAD] = mkf_u32(FO_CONFIG|FS_SERVICE, global.nbthread);
info[ST_I_INF_NBPROC] = mkf_u32(FO_CONFIG|FS_SERVICE, 1);
info[ST_I_INF_PROCESS_NUM] = mkf_u32(FO_KEY, 1);
info[ST_I_INF_PID] = mkf_u32(FO_STATUS, pid);
info[ST_I_INF_UPTIME] = mkf_str(FN_DURATION, chunk_newstr(out));
chunk_appendf(out, "%ud %uh%02um%02us", up_sec / 86400, (up_sec % 86400) / 3600, (up_sec % 3600) / 60, (up_sec % 60));
info[ST_I_INF_UPTIME_SEC] = (flags & STAT_USE_FLOAT) ? mkf_flt(FN_DURATION, up_sec + up_usec / 1000000.0) : mkf_u32(FN_DURATION, up_sec);
info[ST_I_INF_START_TIME_SEC] = (flags & STAT_USE_FLOAT) ? mkf_flt(FN_DURATION, start_date.tv_sec + start_date.tv_usec / 1000000.0) : mkf_u32(FN_DURATION, start_date.tv_sec);
info[ST_I_INF_MEMMAX_MB] = mkf_u32(FO_CONFIG|FN_LIMIT, global.rlimit_memmax);
info[ST_I_INF_MEMMAX_BYTES] = mkf_u32(FO_CONFIG|FN_LIMIT, global.rlimit_memmax * 1048576L);
info[ST_I_INF_POOL_ALLOC_MB] = mkf_u32(0, (unsigned)(pool_total_allocated() / 1048576L));
info[ST_I_INF_POOL_ALLOC_BYTES] = mkf_u64(0, pool_total_allocated());
info[ST_I_INF_POOL_USED_MB] = mkf_u32(0, (unsigned)(pool_total_used() / 1048576L));
info[ST_I_INF_POOL_USED_BYTES] = mkf_u64(0, pool_total_used());
info[ST_I_INF_POOL_FAILED] = mkf_u32(FN_COUNTER, pool_total_failures());
info[ST_I_INF_ULIMIT_N] = mkf_u32(FO_CONFIG|FN_LIMIT, global.rlimit_nofile);
info[ST_I_INF_MAXSOCK] = mkf_u32(FO_CONFIG|FN_LIMIT, global.maxsock);
info[ST_I_INF_MAXCONN] = mkf_u32(FO_CONFIG|FN_LIMIT, global.maxconn);
info[ST_I_INF_HARD_MAXCONN] = mkf_u32(FO_CONFIG|FN_LIMIT, global.hardmaxconn);
info[ST_I_INF_CURR_CONN] = mkf_u32(0, actconn);
info[ST_I_INF_CUM_CONN] = mkf_u32(FN_COUNTER, totalconn);
info[ST_I_INF_CUM_REQ] = mkf_u32(FN_COUNTER, global.req_count);
#ifdef USE_OPENSSL
info[ST_I_INF_MAX_SSL_CONNS] = mkf_u32(FN_MAX, global.maxsslconn);
info[ST_I_INF_CURR_SSL_CONNS] = mkf_u32(0, global.sslconns);
info[ST_I_INF_CUM_SSL_CONNS] = mkf_u32(FN_COUNTER, global.totalsslconns);
#endif
info[ST_I_INF_MAXPIPES] = mkf_u32(FO_CONFIG|FN_LIMIT, global.maxpipes);
info[ST_I_INF_PIPES_USED] = mkf_u32(0, pipes_used);
info[ST_I_INF_PIPES_FREE] = mkf_u32(0, pipes_free);
info[ST_I_INF_CONN_RATE] = (flags & STAT_USE_FLOAT) ? mkf_flt(FN_RATE, read_freq_ctr_flt(&global.conn_per_sec)) : mkf_u32(FN_RATE, read_freq_ctr(&global.conn_per_sec));
info[ST_I_INF_CONN_RATE_LIMIT] = mkf_u32(FO_CONFIG|FN_LIMIT, global.cps_lim);
info[ST_I_INF_MAX_CONN_RATE] = mkf_u32(FN_MAX, global.cps_max);
info[ST_I_INF_SESS_RATE] = (flags & STAT_USE_FLOAT) ? mkf_flt(FN_RATE, read_freq_ctr_flt(&global.sess_per_sec)) : mkf_u32(FN_RATE, read_freq_ctr(&global.sess_per_sec));
info[ST_I_INF_SESS_RATE_LIMIT] = mkf_u32(FO_CONFIG|FN_LIMIT, global.sps_lim);
info[ST_I_INF_MAX_SESS_RATE] = mkf_u32(FN_RATE, global.sps_max);
#ifdef USE_OPENSSL
info[ST_I_INF_SSL_RATE] = (flags & STAT_USE_FLOAT) ? mkf_flt(FN_RATE, ssl_sess_rate) : mkf_u32(FN_RATE, ssl_sess_rate);
info[ST_I_INF_SSL_RATE_LIMIT] = mkf_u32(FO_CONFIG|FN_LIMIT, global.ssl_lim);
info[ST_I_INF_MAX_SSL_RATE] = mkf_u32(FN_MAX, global.ssl_max);
info[ST_I_INF_SSL_FRONTEND_KEY_RATE] = (flags & STAT_USE_FLOAT) ? mkf_flt(FN_RATE, ssl_key_rate) : mkf_u32(0, ssl_key_rate);
info[ST_I_INF_SSL_FRONTEND_MAX_KEY_RATE] = mkf_u32(FN_MAX, global.ssl_fe_keys_max);
info[ST_I_INF_SSL_FRONTEND_SESSION_REUSE_PCT] = (flags & STAT_USE_FLOAT) ? mkf_flt(FN_RATE, ssl_reuse) : mkf_u32(0, ssl_reuse);
info[ST_I_INF_SSL_BACKEND_KEY_RATE] = (flags & STAT_USE_FLOAT) ? mkf_flt(FN_RATE, read_freq_ctr_flt(&global.ssl_be_keys_per_sec)) : mkf_u32(FN_RATE, read_freq_ctr(&global.ssl_be_keys_per_sec));
info[ST_I_INF_SSL_BACKEND_MAX_KEY_RATE] = mkf_u32(FN_MAX, global.ssl_be_keys_max);
info[ST_I_INF_SSL_CACHE_LOOKUPS] = mkf_u32(FN_COUNTER, global.shctx_lookups);
info[ST_I_INF_SSL_CACHE_MISSES] = mkf_u32(FN_COUNTER, global.shctx_misses);
#endif
info[ST_I_INF_COMPRESS_BPS_IN] = (flags & STAT_USE_FLOAT) ? mkf_flt(FN_RATE, read_freq_ctr_flt(&global.comp_bps_in)) : mkf_u32(FN_RATE, read_freq_ctr(&global.comp_bps_in));
info[ST_I_INF_COMPRESS_BPS_OUT] = (flags & STAT_USE_FLOAT) ? mkf_flt(FN_RATE, read_freq_ctr_flt(&global.comp_bps_out)) : mkf_u32(FN_RATE, read_freq_ctr(&global.comp_bps_out));
info[ST_I_INF_COMPRESS_BPS_RATE_LIM] = mkf_u32(FO_CONFIG|FN_LIMIT, global.comp_rate_lim);
#ifdef USE_ZLIB
info[ST_I_INF_ZLIB_MEM_USAGE] = mkf_u32(0, zlib_used_memory);
info[ST_I_INF_MAX_ZLIB_MEM_USAGE] = mkf_u32(FO_CONFIG|FN_LIMIT, global.maxzlibmem);
#endif
info[ST_I_INF_TASKS] = mkf_u32(0, total_allocated_tasks());
info[ST_I_INF_RUN_QUEUE] = mkf_u32(0, total_run_queues());
info[ST_I_INF_IDLE_PCT] = mkf_u32(FN_AVG, clock_report_idle());
info[ST_I_INF_NODE] = mkf_str(FO_CONFIG|FN_OUTPUT|FS_SERVICE, global.node);
if (global.desc)
info[ST_I_INF_DESCRIPTION] = mkf_str(FO_CONFIG|FN_OUTPUT|FS_SERVICE, global.desc);
info[ST_I_INF_STOPPING] = mkf_u32(0, stopping);
info[ST_I_INF_JOBS] = mkf_u32(0, jobs);
info[ST_I_INF_UNSTOPPABLE_JOBS] = mkf_u32(0, unstoppable_jobs);
info[ST_I_INF_LISTENERS] = mkf_u32(0, listeners);
info[ST_I_INF_ACTIVE_PEERS] = mkf_u32(0, active_peers);
info[ST_I_INF_CONNECTED_PEERS] = mkf_u32(0, connected_peers);
info[ST_I_INF_DROPPED_LOGS] = mkf_u32(0, dropped_logs);
info[ST_I_INF_BUSY_POLLING] = mkf_u32(0, !!(global.tune.options & GTUNE_BUSY_POLLING));
info[ST_I_INF_FAILED_RESOLUTIONS] = mkf_u32(0, resolv_failed_resolutions);
info[ST_I_INF_TOTAL_BYTES_OUT] = mkf_u64(0, glob_out_bytes);
info[ST_I_INF_TOTAL_SPLICED_BYTES_OUT] = mkf_u64(0, glob_spl_bytes);
info[ST_I_INF_BYTES_OUT_RATE] = mkf_u64(FN_RATE, glob_out_b32);
info[ST_I_INF_DEBUG_COMMANDS_ISSUED] = mkf_u32(0, debug_commands_issued);
info[ST_I_INF_CUM_LOG_MSGS] = mkf_u32(FN_COUNTER, cum_log_messages);
info[ST_I_INF_TAINTED] = mkf_str(FO_STATUS, chunk_newstr(out));
chunk_appendf(out, "%#x", get_tainted());
info[ST_I_INF_WARNINGS] = mkf_u32(FN_COUNTER, HA_ATOMIC_LOAD(&tot_warnings));
info[ST_I_INF_MAXCONN_REACHED] = mkf_u32(FN_COUNTER, HA_ATOMIC_LOAD(&maxconn_reached));
info[ST_I_INF_BOOTTIME_MS] = mkf_u32(FN_DURATION, boot);
info[ST_I_INF_NICED_TASKS] = mkf_u32(0, total_niced_running_tasks());
return 1;
}
/* This function dumps information onto the stream connector's read buffer.
* It returns 0 as long as it does not complete, non-zero upon completion.
* No state is used.
*/
static int stats_dump_info_to_buffer(struct stconn *sc)
{
struct appctx *appctx = __sc_appctx(sc);
struct show_stat_ctx *ctx = appctx->svcctx;
struct buffer *chk = &ctx->chunk;
int ret;
int current_field;
if (!stats_fill_info(stat_line_info, ST_I_INF_MAX, ctx->flags))
return 0;
chunk_reset(chk);
more:
current_field = ctx->field;
if (ctx->flags & STAT_FMT_TYPED)
ret = stats_dump_typed_info_fields(chk, stat_line_info, ctx);
else if (ctx->flags & STAT_FMT_JSON)
ret = stats_dump_json_info_fields(chk, stat_line_info, ctx);
else
ret = stats_dump_info_fields(chk, stat_line_info, ctx);
if (applet_putchk(appctx, chk) == -1) {
/* restore previous field */
ctx->field = current_field;
return 0;
}
if (ret && ctx->field) {
/* partial dump */
goto more;
}
ctx->field = 0;
return 1;
}
static int cli_parse_clear_counters(char **args, char *payload, struct appctx *appctx, void *private)
{
struct proxy *px;
struct server *sv;
struct listener *li;
struct stats_module *mod;
int clrall = 0;
if (strcmp(args[2], "all") == 0)
clrall = 1;
/* check permissions */
if (!cli_has_level(appctx, ACCESS_LVL_OPER) ||
(clrall && !cli_has_level(appctx, ACCESS_LVL_ADMIN)))
return 1;
for (px = proxies_list; px; px = px->next) {
if (clrall) {
memset(&px->be_counters, 0, sizeof(px->be_counters));
memset(&px->fe_counters, 0, sizeof(px->fe_counters));
}
else {
px->be_counters.conn_max = 0;
px->be_counters.p.http.rps_max = 0;
px->be_counters.sps_max = 0;
px->be_counters.cps_max = 0;
px->be_counters.nbpend_max = 0;
px->be_counters.qtime_max = 0;
px->be_counters.ctime_max = 0;
px->be_counters.dtime_max = 0;
px->be_counters.ttime_max = 0;
px->fe_counters.conn_max = 0;
px->fe_counters.p.http.rps_max = 0;
px->fe_counters.sps_max = 0;
px->fe_counters.cps_max = 0;
}
for (sv = px->srv; sv; sv = sv->next)
if (clrall)
memset(&sv->counters, 0, sizeof(sv->counters));
else {
sv->counters.cur_sess_max = 0;
sv->counters.nbpend_max = 0;
sv->counters.sps_max = 0;
sv->counters.qtime_max = 0;
sv->counters.ctime_max = 0;
sv->counters.dtime_max = 0;
sv->counters.ttime_max = 0;
}
list_for_each_entry(li, &px->conf.listeners, by_fe)
if (li->counters) {
if (clrall)
memset(li->counters, 0, sizeof(*li->counters));
else
li->counters->conn_max = 0;
}
}
global.cps_max = 0;
global.sps_max = 0;
global.ssl_max = 0;
global.ssl_fe_keys_max = 0;
global.ssl_be_keys_max = 0;
list_for_each_entry(mod, &stats_module_list[STATS_DOMAIN_PROXY], list) {
if (!mod->clearable && !clrall)
continue;
for (px = proxies_list; px; px = px->next) {
enum stats_domain_px_cap mod_cap = stats_px_get_cap(mod->domain_flags);
if (px->cap & PR_CAP_FE && mod_cap & STATS_PX_CAP_FE) {
EXTRA_COUNTERS_INIT(px->extra_counters_fe,
mod,
mod->counters,
mod->counters_size);
}
if (px->cap & PR_CAP_BE && mod_cap & STATS_PX_CAP_BE) {
EXTRA_COUNTERS_INIT(px->extra_counters_be,
mod,
mod->counters,
mod->counters_size);
}
if (mod_cap & STATS_PX_CAP_SRV) {
for (sv = px->srv; sv; sv = sv->next) {
EXTRA_COUNTERS_INIT(sv->extra_counters,
mod,
mod->counters,
mod->counters_size);
}
}
if (mod_cap & STATS_PX_CAP_LI) {
list_for_each_entry(li, &px->conf.listeners, by_fe) {
EXTRA_COUNTERS_INIT(li->extra_counters,
mod,
mod->counters,
mod->counters_size);
}
}
}
}
resolv_stats_clear_counters(clrall, &stats_module_list[STATS_DOMAIN_RESOLVERS]);
memset(activity, 0, sizeof(activity));
return 1;
}
static int cli_parse_show_info(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_stat_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
int arg = 2;
ctx->scope_str = 0;
ctx->scope_len = 0;
ctx->flags = 0;
ctx->field = 0; /* explicit default value */
while (*args[arg]) {
if (strcmp(args[arg], "typed") == 0)
ctx->flags = (ctx->flags & ~STAT_FMT_MASK) | STAT_FMT_TYPED;
else if (strcmp(args[arg], "json") == 0)
ctx->flags = (ctx->flags & ~STAT_FMT_MASK) | STAT_FMT_JSON;
else if (strcmp(args[arg], "desc") == 0)
ctx->flags |= STAT_SHOW_FDESC;
else if (strcmp(args[arg], "float") == 0)
ctx->flags |= STAT_USE_FLOAT;
arg++;
}
return 0;
}
static int cli_parse_show_stat(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_stat_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
int arg = 2;
ctx->scope_str = 0;
ctx->scope_len = 0;
ctx->http_px = NULL; // not under http context
ctx->flags = STAT_SHNODE | STAT_SHDESC;
if ((strm_li(appctx_strm(appctx))->bind_conf->level & ACCESS_LVL_MASK) >= ACCESS_LVL_OPER)
ctx->flags |= STAT_SHLGNDS;
/* proxy is the default domain */
ctx->domain = STATS_DOMAIN_PROXY;
if (strcmp(args[arg], "domain") == 0) {
++args;
if (strcmp(args[arg], "proxy") == 0) {
++args;
} else if (strcmp(args[arg], "resolvers") == 0) {
ctx->domain = STATS_DOMAIN_RESOLVERS;
++args;
} else {
return cli_err(appctx, "Invalid statistics domain.\n");
}
}
if (ctx->domain == STATS_DOMAIN_PROXY
&& *args[arg] && *args[arg+1] && *args[arg+2]) {
struct proxy *px;
px = proxy_find_by_name(args[arg], 0, 0);
if (px)
ctx->iid = px->uuid;
else
ctx->iid = atoi(args[arg]);
if (!ctx->iid)
return cli_err(appctx, "No such proxy.\n");
ctx->flags |= STAT_BOUND;
ctx->type = atoi(args[arg+1]);
ctx->sid = atoi(args[arg+2]);
arg += 3;
}
while (*args[arg]) {
if (strcmp(args[arg], "typed") == 0)
ctx->flags = (ctx->flags & ~STAT_FMT_MASK) | STAT_FMT_TYPED;
else if (strcmp(args[arg], "json") == 0)
ctx->flags = (ctx->flags & ~STAT_FMT_MASK) | STAT_FMT_JSON;
else if (strcmp(args[arg], "desc") == 0)
ctx->flags |= STAT_SHOW_FDESC;
else if (strcmp(args[arg], "no-maint") == 0)
ctx->flags |= STAT_HIDE_MAINT;
else if (strcmp(args[arg], "up") == 0)
ctx->flags |= STAT_HIDE_DOWN;
arg++;
}
return 0;
}
static int cli_io_handler_dump_info(struct appctx *appctx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
ctx->chunk = b_make(trash.area, trash.size, 0, 0);
return stats_dump_info_to_buffer(appctx_sc(appctx));
}
/* This I/O handler runs as an applet embedded in a stream connector. It is
* used to send raw stats over a socket.
*/
static int cli_io_handler_dump_stat(struct appctx *appctx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
ctx->chunk = b_make(trash.area, trash.size, 0, 0);
return stats_dump_stat_to_buffer(appctx_sc(appctx), NULL, NULL);
}
static void cli_io_handler_release_stat(struct appctx *appctx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
if (ctx->px_st == STAT_PX_ST_SV)
srv_drop(ctx->obj2);
}
static int cli_io_handler_dump_json_schema(struct appctx *appctx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
ctx->chunk = b_make(trash.area, trash.size, 0, 0);
return stats_dump_json_schema_to_buffer(appctx);
}
int stats_allocate_proxy_counters_internal(struct extra_counters **counters,
int type, int px_cap)
{
struct stats_module *mod;
EXTRA_COUNTERS_REGISTER(counters, type, alloc_failed);
list_for_each_entry(mod, &stats_module_list[STATS_DOMAIN_PROXY], list) {
if (!(stats_px_get_cap(mod->domain_flags) & px_cap))
continue;
EXTRA_COUNTERS_ADD(mod, *counters, mod->counters, mod->counters_size);
}
EXTRA_COUNTERS_ALLOC(*counters, alloc_failed);
list_for_each_entry(mod, &stats_module_list[STATS_DOMAIN_PROXY], list) {
if (!(stats_px_get_cap(mod->domain_flags) & px_cap))
continue;
EXTRA_COUNTERS_INIT(*counters, mod, mod->counters, mod->counters_size);
}
return 1;
alloc_failed:
return 0;
}
/* Initialize and allocate all extra counters for a proxy and its attached
* servers/listeners with all already registered stats module
*/
int stats_allocate_proxy_counters(struct proxy *px)
{
struct server *sv;
struct listener *li;
if (px->cap & PR_CAP_FE) {
if (!stats_allocate_proxy_counters_internal(&px->extra_counters_fe,
COUNTERS_FE,
STATS_PX_CAP_FE)) {
return 0;
}
}
if (px->cap & PR_CAP_BE) {
if (!stats_allocate_proxy_counters_internal(&px->extra_counters_be,
COUNTERS_BE,
STATS_PX_CAP_BE)) {
return 0;
}
}
for (sv = px->srv; sv; sv = sv->next) {
if (!stats_allocate_proxy_counters_internal(&sv->extra_counters,
COUNTERS_SV,
STATS_PX_CAP_SRV)) {
return 0;
}
}
list_for_each_entry(li, &px->conf.listeners, by_fe) {
if (!stats_allocate_proxy_counters_internal(&li->extra_counters,
COUNTERS_LI,
STATS_PX_CAP_LI)) {
return 0;
}
}
return 1;
}
void stats_register_module(struct stats_module *m)
{
const uint8_t domain = stats_get_domain(m->domain_flags);
LIST_APPEND(&stats_module_list[domain], &m->list);
metrics_len[domain] += m->stats_count;
}
static int allocate_stats_px_postcheck(void)
{
struct stats_module *mod;
size_t i = ST_I_PX_MAX;
int err_code = 0;
struct proxy *px;
metrics_len[STATS_DOMAIN_PROXY] += ST_I_PX_MAX;
metrics[STATS_DOMAIN_PROXY] = malloc(metrics_len[STATS_DOMAIN_PROXY] * sizeof(struct name_desc));
if (!metrics[STATS_DOMAIN_PROXY]) {
ha_alert("stats: cannot allocate all fields for proxy statistics\n");
err_code |= ERR_ALERT | ERR_FATAL;
return err_code;
}
memcpy(metrics[STATS_DOMAIN_PROXY], metrics_px,
ST_I_PX_MAX * sizeof(struct name_desc));
list_for_each_entry(mod, &stats_module_list[STATS_DOMAIN_PROXY], list) {
memcpy(metrics[STATS_DOMAIN_PROXY] + i,
mod->stats,
mod->stats_count * sizeof(struct name_desc));
i += mod->stats_count;
}
for (px = proxies_list; px; px = px->next) {
if (!stats_allocate_proxy_counters(px)) {
ha_alert("stats: cannot allocate all counters for proxy statistics\n");
err_code |= ERR_ALERT | ERR_FATAL;
return err_code;
}
}
/* wait per-thread alloc to perform corresponding stat_lines allocation */
return err_code;
}
REGISTER_CONFIG_POSTPARSER("allocate-stats-px", allocate_stats_px_postcheck);
static int allocate_stats_rslv_postcheck(void)
{
struct stats_module *mod;
size_t i = 0;
int err_code = 0;
metrics[STATS_DOMAIN_RESOLVERS] = malloc(metrics_len[STATS_DOMAIN_RESOLVERS] * sizeof(struct name_desc));
if (!metrics[STATS_DOMAIN_RESOLVERS]) {
ha_alert("stats: cannot allocate all fields for resolver statistics\n");
err_code |= ERR_ALERT | ERR_FATAL;
return err_code;
}
list_for_each_entry(mod, &stats_module_list[STATS_DOMAIN_RESOLVERS], list) {
memcpy(metrics[STATS_DOMAIN_RESOLVERS] + i,
mod->stats,
mod->stats_count * sizeof(struct name_desc));
i += mod->stats_count;
}
if (!resolv_allocate_counters(&stats_module_list[STATS_DOMAIN_RESOLVERS])) {
ha_alert("stats: cannot allocate all counters for resolver statistics\n");
err_code |= ERR_ALERT | ERR_FATAL;
return err_code;
}
/* wait per-thread alloc to perform corresponding stat_lines allocation */
return err_code;
}
REGISTER_CONFIG_POSTPARSER("allocate-stats-resolver", allocate_stats_rslv_postcheck);
static int allocate_stat_lines_per_thread(void)
{
int domains[] = { STATS_DOMAIN_PROXY, STATS_DOMAIN_RESOLVERS }, i;
for (i = 0; i < STATS_DOMAIN_COUNT; ++i) {
const int domain = domains[i];
stat_lines[domain] = malloc(metrics_len[domain] * sizeof(struct field));
if (!stat_lines[domain])
return 0;
}
return 1;
}
REGISTER_PER_THREAD_ALLOC(allocate_stat_lines_per_thread);
static int allocate_trash_counters(void)
{
struct stats_module *mod;
int domains[] = { STATS_DOMAIN_PROXY, STATS_DOMAIN_RESOLVERS }, i;
size_t max_counters_size = 0;
/* calculate the greatest counters used by any stats modules */
for (i = 0; i < STATS_DOMAIN_COUNT; ++i) {
list_for_each_entry(mod, &stats_module_list[domains[i]], list) {
max_counters_size = mod->counters_size > max_counters_size ?
mod->counters_size : max_counters_size;
}
}
/* allocate the trash with the size of the greatest counters */
if (max_counters_size) {
trash_counters = malloc(max_counters_size);
if (!trash_counters) {
ha_alert("stats: cannot allocate trash counters for statistics\n");
return 0;
}
}
return 1;
}
REGISTER_PER_THREAD_ALLOC(allocate_trash_counters);
static void deinit_stat_lines_per_thread(void)
{
int domains[] = { STATS_DOMAIN_PROXY, STATS_DOMAIN_RESOLVERS }, i;
for (i = 0; i < STATS_DOMAIN_COUNT; ++i) {
const int domain = domains[i];
ha_free(&stat_lines[domain]);
}
}
REGISTER_PER_THREAD_FREE(deinit_stat_lines_per_thread);
static void deinit_stats(void)
{
int domains[] = { STATS_DOMAIN_PROXY, STATS_DOMAIN_RESOLVERS }, i;
for (i = 0; i < STATS_DOMAIN_COUNT; ++i) {
const int domain = domains[i];
if (metrics[domain])
free(metrics[domain]);
}
}
REGISTER_POST_DEINIT(deinit_stats);
static void free_trash_counters(void)
{
if (trash_counters)
free(trash_counters);
}
REGISTER_PER_THREAD_FREE(free_trash_counters);
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "clear", "counters", NULL }, "clear counters [all] : clear max statistics counters (or all counters)", cli_parse_clear_counters, NULL, NULL },
{ { "show", "info", NULL }, "show info [desc|json|typed|float]* : report information about the running process", cli_parse_show_info, cli_io_handler_dump_info, NULL },
{ { "show", "stat", NULL }, "show stat [desc|json|no-maint|typed|up]*: report counters for each proxy and server", cli_parse_show_stat, cli_io_handler_dump_stat, cli_io_handler_release_stat },
{ { "show", "schema", "json", NULL }, "show schema json : report schema used for stats", NULL, cli_io_handler_dump_json_schema, NULL },
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/