mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2025-11-28 14:21:00 +01:00
Since the flag CF_SHUTR is no more set to mark the end of the message, these flags become useless. This patch should be backported to 1.9.
2402 lines
66 KiB
C
2402 lines
66 KiB
C
/*
|
|
* HTT/1 mux-demux for connections
|
|
*
|
|
* Copyright 2018 Christopher Faulet <cfaulet@haproxy.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
#include <common/cfgparse.h>
|
|
#include <common/config.h>
|
|
#include <common/h1.h>
|
|
#include <common/htx.h>
|
|
#include <common/initcall.h>
|
|
|
|
#include <types/pipe.h>
|
|
#include <types/proxy.h>
|
|
#include <types/session.h>
|
|
|
|
#include <proto/connection.h>
|
|
#include <proto/http_htx.h>
|
|
#include <proto/log.h>
|
|
#include <proto/session.h>
|
|
#include <proto/stream.h>
|
|
#include <proto/stream_interface.h>
|
|
|
|
/*
|
|
* H1 Connection flags (32 bits)
|
|
*/
|
|
#define H1C_F_NONE 0x00000000
|
|
|
|
/* Flags indicating why writing output data are blocked */
|
|
#define H1C_F_OUT_ALLOC 0x00000001 /* mux is blocked on lack of output buffer */
|
|
#define H1C_F_OUT_FULL 0x00000002 /* mux is blocked on output buffer full */
|
|
/* 0x00000004 - 0x00000008 unused */
|
|
|
|
/* Flags indicating why reading input data are blocked. */
|
|
#define H1C_F_IN_ALLOC 0x00000010 /* mux is blocked on lack of input buffer */
|
|
#define H1C_F_IN_FULL 0x00000020 /* mux is blocked on input buffer full */
|
|
#define H1C_F_IN_BUSY 0x00000040
|
|
/* 0x00000040 - 0x00000800 unused */
|
|
|
|
#define H1C_F_CS_ERROR 0x00001000 /* connection must be closed ASAP because an error occurred */
|
|
#define H1C_F_CS_SHUTW_NOW 0x00002000 /* connection must be shut down for writes ASAP */
|
|
#define H1C_F_CS_SHUTDOWN 0x00004000 /* connection is shut down for read and writes */
|
|
#define H1C_F_CS_WAIT_CONN 0x00008000 /* waiting for the connection establishment */
|
|
|
|
#define H1C_F_WAIT_NEXT_REQ 0x00010000 /* waiting for the next request to start, use keep-alive timeout */
|
|
|
|
/*
|
|
* H1 Stream flags (32 bits)
|
|
*/
|
|
#define H1S_F_NONE 0x00000000
|
|
#define H1S_F_ERROR 0x00000001 /* An error occurred on the H1 stream */
|
|
#define H1S_F_REQ_ERROR 0x00000002 /* An error occurred during the request parsing/xfer */
|
|
#define H1S_F_RES_ERROR 0x00000004 /* An error occurred during the response parsing/xfer */
|
|
/* 0x00000008 unused */
|
|
#define H1S_F_WANT_KAL 0x00000010
|
|
#define H1S_F_WANT_TUN 0x00000020
|
|
#define H1S_F_WANT_CLO 0x00000040
|
|
#define H1S_F_WANT_MSK 0x00000070
|
|
#define H1S_F_NOT_FIRST 0x00000080 /* The H1 stream is not the first one */
|
|
#define H1S_F_BUF_FLUSH 0x00000100 /* Flush input buffer and don't read more data */
|
|
#define H1S_F_SPLICED_DATA 0x00000200 /* Set when the kernel splicing is in used */
|
|
#define H1S_F_HAVE_I_EOD 0x00000400 /* Set during input process to know the last empty chunk was processed */
|
|
#define H1S_F_HAVE_I_TLR 0x00000800 /* Set during input process to know the trailers were processed */
|
|
#define H1S_F_HAVE_O_EOD 0x00001000 /* Set during output process to know the last empty chunk was processed */
|
|
#define H1S_F_HAVE_O_TLR 0x00002000 /* Set during output process to know the trailers were processed */
|
|
|
|
/* H1 connection descriptor */
|
|
struct h1c {
|
|
struct connection *conn;
|
|
struct proxy *px;
|
|
uint32_t flags; /* Connection flags: H1C_F_* */
|
|
|
|
struct buffer ibuf; /* Input buffer to store data before parsing */
|
|
struct buffer obuf; /* Output buffer to store data after reformatting */
|
|
|
|
struct buffer_wait buf_wait; /* Wait list for buffer allocation */
|
|
struct wait_event wait_event; /* To be used if we're waiting for I/Os */
|
|
|
|
struct h1s *h1s; /* H1 stream descriptor */
|
|
struct task *task; /* timeout management task */
|
|
int timeout; /* idle timeout duration in ticks */
|
|
int shut_timeout; /* idle timeout duration in ticks after stream shutdown */
|
|
};
|
|
|
|
/* H1 stream descriptor */
|
|
struct h1s {
|
|
struct h1c *h1c;
|
|
struct conn_stream *cs;
|
|
struct cs_info csinfo; /* CS info, only used for client connections */
|
|
uint32_t flags; /* Connection flags: H1S_F_* */
|
|
|
|
struct wait_event *recv_wait; /* Address of the wait_event the conn_stream associated is waiting on */
|
|
struct wait_event *send_wait; /* Address of the wait_event the conn_stream associated is waiting on */
|
|
|
|
struct session *sess; /* Associated session */
|
|
struct h1m req;
|
|
struct h1m res;
|
|
|
|
enum http_meth_t meth; /* HTTP resquest method */
|
|
uint16_t status; /* HTTP response status */
|
|
};
|
|
|
|
/* the h1c and h1s pools */
|
|
DECLARE_STATIC_POOL(pool_head_h1c, "h1c", sizeof(struct h1c));
|
|
DECLARE_STATIC_POOL(pool_head_h1s, "h1s", sizeof(struct h1s));
|
|
|
|
static int h1_recv(struct h1c *h1c);
|
|
static int h1_send(struct h1c *h1c);
|
|
static int h1_process(struct h1c *h1c);
|
|
static struct task *h1_io_cb(struct task *t, void *ctx, unsigned short state);
|
|
static void h1_shutw_conn(struct connection *conn, enum cs_shw_mode mode);
|
|
static struct task *h1_timeout_task(struct task *t, void *context, unsigned short state);
|
|
|
|
/*****************************************************/
|
|
/* functions below are for dynamic buffer management */
|
|
/*****************************************************/
|
|
/*
|
|
* Indicates whether or not the we may call the h1_recv() function to
|
|
* attempt to receive data into the buffer and/or parse pending data. The
|
|
* condition is a bit complex due to some API limits for now. The rules are the
|
|
* following :
|
|
* - if an error or a shutdown was detected on the connection and the buffer
|
|
* is empty, we must not attempt to receive
|
|
* - if the input buffer failed to be allocated, we must not try to receive
|
|
* and we know there is nothing pending
|
|
* - if no flag indicates a blocking condition, we may attempt to receive,
|
|
* regardless of whether the input buffer is full or not, so that only de
|
|
* receiving part decides whether or not to block. This is needed because
|
|
* the connection API indeed prevents us from re-enabling receipt that is
|
|
* already enabled in a polled state, so we must always immediately stop as
|
|
* soon as the mux can't proceed so as never to hit an end of read with data
|
|
* pending in the buffers.
|
|
* - otherwise must may not attempt to receive
|
|
*/
|
|
static inline int h1_recv_allowed(const struct h1c *h1c)
|
|
{
|
|
if (b_data(&h1c->ibuf) == 0 && (h1c->flags & (H1C_F_CS_ERROR|H1C_F_CS_SHUTDOWN)))
|
|
return 0;
|
|
|
|
if (h1c->conn->flags & CO_FL_ERROR || conn_xprt_read0_pending(h1c->conn))
|
|
return 0;
|
|
|
|
if (!(h1c->flags & (H1C_F_IN_ALLOC|H1C_F_IN_FULL|H1C_F_IN_BUSY)))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Tries to grab a buffer and to re-enables processing on mux <target>. The h1
|
|
* flags are used to figure what buffer was requested. It returns 1 if the
|
|
* allocation succeeds, in which case the connection is woken up, or 0 if it's
|
|
* impossible to wake up and we prefer to be woken up later.
|
|
*/
|
|
static int h1_buf_available(void *target)
|
|
{
|
|
struct h1c *h1c = target;
|
|
|
|
if ((h1c->flags & H1C_F_IN_ALLOC) && b_alloc_margin(&h1c->ibuf, 0)) {
|
|
h1c->flags &= ~H1C_F_IN_ALLOC;
|
|
if (h1_recv_allowed(h1c))
|
|
tasklet_wakeup(h1c->wait_event.task);
|
|
return 1;
|
|
}
|
|
|
|
if ((h1c->flags & H1C_F_OUT_ALLOC) && b_alloc_margin(&h1c->obuf, 0)) {
|
|
h1c->flags &= ~H1C_F_OUT_ALLOC;
|
|
tasklet_wakeup(h1c->wait_event.task);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate a buffer. If if fails, it adds the mux in buffer wait queue.
|
|
*/
|
|
static inline struct buffer *h1_get_buf(struct h1c *h1c, struct buffer *bptr)
|
|
{
|
|
struct buffer *buf = NULL;
|
|
|
|
if (likely(LIST_ISEMPTY(&h1c->buf_wait.list)) &&
|
|
unlikely((buf = b_alloc_margin(bptr, 0)) == NULL)) {
|
|
h1c->buf_wait.target = h1c;
|
|
h1c->buf_wait.wakeup_cb = h1_buf_available;
|
|
HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock);
|
|
LIST_ADDQ(&buffer_wq, &h1c->buf_wait.list);
|
|
HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock);
|
|
__conn_xprt_stop_recv(h1c->conn);
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Release a buffer, if any, and try to wake up entities waiting in the buffer
|
|
* wait queue.
|
|
*/
|
|
static inline void h1_release_buf(struct h1c *h1c, struct buffer *bptr)
|
|
{
|
|
if (bptr->size) {
|
|
b_free(bptr);
|
|
offer_buffers(h1c->buf_wait.target, tasks_run_queue);
|
|
}
|
|
}
|
|
|
|
/* returns the number of streams in use on a connection to figure if it's
|
|
* idle or not. We can't have an h1s without a CS so checking h1s is fine,
|
|
* as the caller will want to know if it was the last one after a detach().
|
|
*/
|
|
static int h1_used_streams(struct connection *conn)
|
|
{
|
|
struct h1c *h1c = conn->ctx;
|
|
|
|
return h1c->h1s ? 1 : 0;
|
|
}
|
|
|
|
/* returns the number of streams still available on a connection */
|
|
static int h1_avail_streams(struct connection *conn)
|
|
{
|
|
return 1 - h1_used_streams(conn);
|
|
}
|
|
|
|
|
|
/*****************************************************************/
|
|
/* functions below are dedicated to the mux setup and management */
|
|
/*****************************************************************/
|
|
static struct conn_stream *h1s_new_cs(struct h1s *h1s)
|
|
{
|
|
struct conn_stream *cs;
|
|
|
|
cs = cs_new(h1s->h1c->conn);
|
|
if (!cs)
|
|
goto err;
|
|
h1s->cs = cs;
|
|
cs->ctx = h1s;
|
|
|
|
if (h1s->flags & H1S_F_NOT_FIRST)
|
|
cs->flags |= CS_FL_NOT_FIRST;
|
|
|
|
if (stream_create_from_cs(cs) < 0)
|
|
goto err;
|
|
return cs;
|
|
|
|
err:
|
|
cs_free(cs);
|
|
h1s->cs = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
static struct h1s *h1s_create(struct h1c *h1c, struct conn_stream *cs, struct session *sess)
|
|
{
|
|
struct h1s *h1s;
|
|
|
|
h1s = pool_alloc(pool_head_h1s);
|
|
if (!h1s)
|
|
goto fail;
|
|
|
|
h1s->h1c = h1c;
|
|
h1c->h1s = h1s;
|
|
|
|
h1s->sess = sess;
|
|
|
|
h1s->cs = NULL;
|
|
h1s->flags = H1S_F_NONE;
|
|
|
|
h1s->recv_wait = NULL;
|
|
h1s->send_wait = NULL;
|
|
|
|
h1m_init_req(&h1s->req);
|
|
h1s->req.flags |= H1_MF_NO_PHDR;
|
|
|
|
h1m_init_res(&h1s->res);
|
|
h1s->res.flags |= H1_MF_NO_PHDR;
|
|
|
|
h1s->status = 0;
|
|
h1s->meth = HTTP_METH_OTHER;
|
|
|
|
if (h1c->flags & H1C_F_WAIT_NEXT_REQ)
|
|
h1s->flags |= H1S_F_NOT_FIRST;
|
|
h1c->flags &= ~H1C_F_WAIT_NEXT_REQ;
|
|
|
|
if (!conn_is_back(h1c->conn)) {
|
|
if (h1c->px->options2 & PR_O2_REQBUG_OK)
|
|
h1s->req.err_pos = -1;
|
|
}
|
|
else {
|
|
if (h1c->px->options2 & PR_O2_RSPBUG_OK)
|
|
h1s->res.err_pos = -1;
|
|
}
|
|
|
|
/* If a conn_stream already exists, attach it to this H1S. Otherwise we
|
|
* create a new one.
|
|
*/
|
|
if (cs) {
|
|
h1s->csinfo.create_date = date;
|
|
h1s->csinfo.tv_create = now;
|
|
h1s->csinfo.t_handshake = 0;
|
|
h1s->csinfo.t_idle = -1;
|
|
|
|
cs->ctx = h1s;
|
|
h1s->cs = cs;
|
|
}
|
|
else {
|
|
/* For frontend connections we should always have a session */
|
|
sess = h1c->conn->owner;
|
|
|
|
h1s->csinfo.create_date = sess->accept_date;
|
|
h1s->csinfo.tv_create = sess->tv_accept;
|
|
h1s->csinfo.t_handshake = sess->t_handshake;
|
|
h1s->csinfo.t_idle = -1;
|
|
|
|
cs = h1s_new_cs(h1s);
|
|
if (!cs)
|
|
goto fail;
|
|
}
|
|
return h1s;
|
|
|
|
fail:
|
|
pool_free(pool_head_h1s, h1s);
|
|
return NULL;
|
|
}
|
|
|
|
static void h1s_destroy(struct h1s *h1s)
|
|
{
|
|
if (h1s) {
|
|
struct h1c *h1c = h1s->h1c;
|
|
|
|
h1c->h1s = NULL;
|
|
|
|
if (h1s->recv_wait != NULL)
|
|
h1s->recv_wait->events &= ~SUB_RETRY_RECV;
|
|
if (h1s->send_wait != NULL)
|
|
h1s->send_wait->events &= ~SUB_RETRY_SEND;
|
|
|
|
h1c->flags &= ~H1C_F_IN_BUSY;
|
|
h1c->flags |= H1C_F_WAIT_NEXT_REQ;
|
|
if (h1s->flags & (H1S_F_REQ_ERROR|H1S_F_RES_ERROR))
|
|
h1c->flags |= H1C_F_CS_ERROR;
|
|
|
|
cs_free(h1s->cs);
|
|
pool_free(pool_head_h1s, h1s);
|
|
}
|
|
}
|
|
|
|
static const struct cs_info *h1_get_cs_info(struct conn_stream *cs)
|
|
{
|
|
struct h1s *h1s = cs->ctx;
|
|
|
|
if (h1s && !conn_is_back(cs->conn))
|
|
return &h1s->csinfo;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialize the mux once it's attached. It is expected that conn->ctx
|
|
* points to the existing conn_stream (for outgoing connections) or NULL (for
|
|
* incoming ones). Returns < 0 on error.
|
|
*/
|
|
static int h1_init(struct connection *conn, struct proxy *proxy, struct session *sess)
|
|
{
|
|
struct h1c *h1c;
|
|
struct task *t = NULL;
|
|
|
|
h1c = pool_alloc(pool_head_h1c);
|
|
if (!h1c)
|
|
goto fail_h1c;
|
|
h1c->conn = conn;
|
|
h1c->px = proxy;
|
|
|
|
h1c->flags = H1C_F_NONE;
|
|
h1c->ibuf = BUF_NULL;
|
|
h1c->obuf = BUF_NULL;
|
|
h1c->h1s = NULL;
|
|
h1c->task = NULL;
|
|
|
|
LIST_INIT(&h1c->buf_wait.list);
|
|
h1c->wait_event.task = tasklet_new();
|
|
if (!h1c->wait_event.task)
|
|
goto fail;
|
|
h1c->wait_event.task->process = h1_io_cb;
|
|
h1c->wait_event.task->context = h1c;
|
|
h1c->wait_event.events = 0;
|
|
|
|
if (conn->ctx) {
|
|
h1c->shut_timeout = h1c->timeout = proxy->timeout.server;
|
|
if (tick_isset(proxy->timeout.serverfin))
|
|
h1c->shut_timeout = proxy->timeout.serverfin;
|
|
} else {
|
|
h1c->shut_timeout = h1c->timeout = proxy->timeout.client;
|
|
if (tick_isset(proxy->timeout.clientfin))
|
|
h1c->shut_timeout = proxy->timeout.clientfin;
|
|
}
|
|
if (tick_isset(h1c->timeout)) {
|
|
t = task_new(tid_bit);
|
|
if (!t)
|
|
goto fail;
|
|
|
|
h1c->task = t;
|
|
t->process = h1_timeout_task;
|
|
t->context = h1c;
|
|
t->expire = tick_add(now_ms, h1c->timeout);
|
|
}
|
|
|
|
if (!(conn->flags & CO_FL_CONNECTED))
|
|
h1c->flags |= H1C_F_CS_WAIT_CONN;
|
|
|
|
/* Always Create a new H1S */
|
|
if (!h1s_create(h1c, conn->ctx, sess))
|
|
goto fail;
|
|
|
|
conn->ctx = h1c;
|
|
|
|
|
|
if (t)
|
|
task_queue(t);
|
|
|
|
/* Try to read, if nothing is available yet we'll just subscribe */
|
|
tasklet_wakeup(h1c->wait_event.task);
|
|
|
|
/* mux->wake will be called soon to complete the operation */
|
|
return 0;
|
|
|
|
fail:
|
|
if (t)
|
|
task_free(t);
|
|
if (h1c->wait_event.task)
|
|
tasklet_free(h1c->wait_event.task);
|
|
pool_free(pool_head_h1c, h1c);
|
|
fail_h1c:
|
|
return -1;
|
|
}
|
|
|
|
|
|
/* release function for a connection. This one should be called to free all
|
|
* resources allocated to the mux.
|
|
*/
|
|
static void h1_release(struct connection *conn)
|
|
{
|
|
struct h1c *h1c = conn->ctx;
|
|
|
|
if (h1c) {
|
|
if (!LIST_ISEMPTY(&h1c->buf_wait.list)) {
|
|
HA_SPIN_LOCK(BUF_WQ_LOCK, &buffer_wq_lock);
|
|
LIST_DEL(&h1c->buf_wait.list);
|
|
LIST_INIT(&h1c->buf_wait.list);
|
|
HA_SPIN_UNLOCK(BUF_WQ_LOCK, &buffer_wq_lock);
|
|
}
|
|
|
|
h1_release_buf(h1c, &h1c->ibuf);
|
|
h1_release_buf(h1c, &h1c->obuf);
|
|
|
|
if (h1c->task) {
|
|
h1c->task->context = NULL;
|
|
task_wakeup(h1c->task, TASK_WOKEN_OTHER);
|
|
h1c->task = NULL;
|
|
}
|
|
|
|
if (h1c->wait_event.task)
|
|
tasklet_free(h1c->wait_event.task);
|
|
|
|
h1s_destroy(h1c->h1s);
|
|
if (h1c->wait_event.events != 0)
|
|
conn->xprt->unsubscribe(conn, h1c->wait_event.events,
|
|
&h1c->wait_event);
|
|
pool_free(pool_head_h1c, h1c);
|
|
}
|
|
|
|
conn->mux = NULL;
|
|
conn->ctx = NULL;
|
|
|
|
conn_stop_tracking(conn);
|
|
conn_full_close(conn);
|
|
if (conn->destroy_cb)
|
|
conn->destroy_cb(conn);
|
|
conn_free(conn);
|
|
}
|
|
|
|
/******************************************************/
|
|
/* functions below are for the H1 protocol processing */
|
|
/******************************************************/
|
|
/* Parse the request version and set H1_MF_VER_11 on <h1m> if the version is
|
|
* greater or equal to 1.1
|
|
*/
|
|
static void h1_parse_req_vsn(struct h1m *h1m, const struct htx_sl *sl)
|
|
{
|
|
const char *p = HTX_SL_REQ_VPTR(sl);
|
|
|
|
if ((HTX_SL_REQ_VLEN(sl) == 8) &&
|
|
(*(p + 5) > '1' ||
|
|
(*(p + 5) == '1' && *(p + 7) >= '1')))
|
|
h1m->flags |= H1_MF_VER_11;
|
|
}
|
|
|
|
/* Parse the response version and set H1_MF_VER_11 on <h1m> if the version is
|
|
* greater or equal to 1.1
|
|
*/
|
|
static void h1_parse_res_vsn(struct h1m *h1m, const struct htx_sl *sl)
|
|
{
|
|
const char *p = HTX_SL_RES_VPTR(sl);
|
|
|
|
if ((HTX_SL_RES_VLEN(sl) == 8) &&
|
|
(*(p + 5) > '1' ||
|
|
(*(p + 5) == '1' && *(p + 7) >= '1')))
|
|
h1m->flags |= H1_MF_VER_11;
|
|
}
|
|
|
|
/*
|
|
* Check the validity of the request version. If the version is valid, it
|
|
* returns 1. Otherwise, it returns 0.
|
|
*/
|
|
static int h1_process_req_vsn(struct h1s *h1s, struct h1m *h1m, union h1_sl sl)
|
|
{
|
|
struct h1c *h1c = h1s->h1c;
|
|
|
|
/* RFC7230#2.6 has enforced the format of the HTTP version string to be
|
|
* exactly one digit "." one digit. This check may be disabled using
|
|
* option accept-invalid-http-request.
|
|
*/
|
|
if (!(h1c->px->options2 & PR_O2_REQBUG_OK)) {
|
|
if (sl.rq.v.len != 8)
|
|
return 0;
|
|
|
|
if (*(sl.rq.v.ptr + 4) != '/' ||
|
|
!isdigit((unsigned char)*(sl.rq.v.ptr + 5)) ||
|
|
*(sl.rq.v.ptr + 6) != '.' ||
|
|
!isdigit((unsigned char)*(sl.rq.v.ptr + 7)))
|
|
return 0;
|
|
}
|
|
else if (!sl.rq.v.len) {
|
|
/* try to convert HTTP/0.9 requests to HTTP/1.0 */
|
|
|
|
/* RFC 1945 allows only GET for HTTP/0.9 requests */
|
|
if (sl.rq.meth != HTTP_METH_GET)
|
|
return 0;
|
|
|
|
/* HTTP/0.9 requests *must* have a request URI, per RFC 1945 */
|
|
if (!sl.rq.u.len)
|
|
return 0;
|
|
|
|
/* Add HTTP version */
|
|
sl.rq.v = ist("HTTP/1.0");
|
|
return 1;
|
|
}
|
|
|
|
if ((sl.rq.v.len == 8) &&
|
|
((*(sl.rq.v.ptr + 5) > '1') ||
|
|
((*(sl.rq.v.ptr + 5) == '1') && (*(sl.rq.v.ptr + 7) >= '1'))))
|
|
h1m->flags |= H1_MF_VER_11;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Check the validity of the response version. If the version is valid, it
|
|
* returns 1. Otherwise, it returns 0.
|
|
*/
|
|
static int h1_process_res_vsn(struct h1s *h1s, struct h1m *h1m, union h1_sl sl)
|
|
{
|
|
struct h1c *h1c = h1s->h1c;
|
|
|
|
/* RFC7230#2.6 has enforced the format of the HTTP version string to be
|
|
* exactly one digit "." one digit. This check may be disabled using
|
|
* option accept-invalid-http-request.
|
|
*/
|
|
if (!(h1c->px->options2 & PR_O2_RSPBUG_OK)) {
|
|
if (sl.st.v.len != 8)
|
|
return 0;
|
|
|
|
if (*(sl.st.v.ptr + 4) != '/' ||
|
|
!isdigit((unsigned char)*(sl.st.v.ptr + 5)) ||
|
|
*(sl.st.v.ptr + 6) != '.' ||
|
|
!isdigit((unsigned char)*(sl.st.v.ptr + 7)))
|
|
return 0;
|
|
}
|
|
|
|
if ((sl.st.v.len == 8) &&
|
|
((*(sl.st.v.ptr + 5) > '1') ||
|
|
((*(sl.st.v.ptr + 5) == '1') && (*(sl.st.v.ptr + 7) >= '1'))))
|
|
h1m->flags |= H1_MF_VER_11;
|
|
|
|
return 1;
|
|
}
|
|
/* Remove all "Connection:" headers from the HTX message <htx> */
|
|
static void h1_remove_conn_hdrs(struct h1m *h1m, struct htx *htx)
|
|
{
|
|
struct ist hdr = {.ptr = "Connection", .len = 10};
|
|
struct http_hdr_ctx ctx;
|
|
|
|
while (http_find_header(htx, hdr, &ctx, 1))
|
|
http_remove_header(htx, &ctx);
|
|
|
|
h1m->flags &= ~(H1_MF_CONN_KAL|H1_MF_CONN_CLO);
|
|
}
|
|
|
|
/* Add a "Connection:" header with the value <value> into the HTX message
|
|
* <htx>.
|
|
*/
|
|
static void h1_add_conn_hdr(struct h1m *h1m, struct htx *htx, struct ist value)
|
|
{
|
|
struct ist hdr = {.ptr = "Connection", .len = 10};
|
|
|
|
http_add_header(htx, hdr, value);
|
|
}
|
|
|
|
/* Deduce the connection mode of the client connection, depending on the
|
|
* configuration and the H1 message flags. This function is called twice, the
|
|
* first time when the request is parsed and the second time when the response
|
|
* is parsed.
|
|
*/
|
|
static void h1_set_cli_conn_mode(struct h1s *h1s, struct h1m *h1m)
|
|
{
|
|
struct proxy *fe = h1s->h1c->px;
|
|
int flag = H1S_F_WANT_KAL; /* For client connection: server-close == keepalive */
|
|
|
|
/* Tunnel mode can only by set on the frontend */
|
|
if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_TUN)
|
|
flag = H1S_F_WANT_TUN;
|
|
else if ((fe->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO)
|
|
flag = H1S_F_WANT_CLO;
|
|
|
|
/* flags order: CLO > SCL > TUN > KAL */
|
|
if ((h1s->flags & H1S_F_WANT_MSK) < flag)
|
|
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | flag;
|
|
|
|
if (h1m->flags & H1_MF_RESP) {
|
|
/* Either we've established an explicit tunnel, or we're
|
|
* switching the protocol. In both cases, we're very unlikely to
|
|
* understand the next protocols. We have to switch to tunnel
|
|
* mode, so that we transfer the request and responses then let
|
|
* this protocol pass unmodified. When we later implement
|
|
* specific parsers for such protocols, we'll want to check the
|
|
* Upgrade header which contains information about that protocol
|
|
* for responses with status 101 (eg: see RFC2817 about TLS).
|
|
*/
|
|
if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) ||
|
|
h1s->status == 101)
|
|
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_TUN;
|
|
else if (!(h1m->flags & H1_MF_XFER_LEN) || /* no length known => close */
|
|
(h1m->flags & H1_MF_CONN_CLO && h1s->req.state != H1_MSG_DONE)) /*explicit close and unfinished request */
|
|
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
|
|
}
|
|
else {
|
|
if (h1s->flags & H1S_F_WANT_KAL &&
|
|
(!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL)) || /* no KA in HTTP/1.0 */
|
|
h1m->flags & H1_MF_CONN_CLO)) /* explicit close */
|
|
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
|
|
}
|
|
|
|
/* If KAL, check if the frontend is stopping. If yes, switch in CLO mode */
|
|
if (h1s->flags & H1S_F_WANT_KAL && fe->state == PR_STSTOPPED)
|
|
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
|
|
}
|
|
|
|
/* Deduce the connection mode of the client connection, depending on the
|
|
* configuration and the H1 message flags. This function is called twice, the
|
|
* first time when the request is parsed and the second time when the response
|
|
* is parsed.
|
|
*/
|
|
static void h1_set_srv_conn_mode(struct h1s *h1s, struct h1m *h1m)
|
|
{
|
|
struct h1c *h1c = h1s->h1c;
|
|
struct session *sess = h1s->sess;
|
|
struct proxy *be = h1c->px;
|
|
int flag = H1S_F_WANT_KAL;
|
|
int fe_flags = sess ? sess->fe->options : 0;
|
|
|
|
/* Tunnel mode can only by set on the frontend */
|
|
if ((fe_flags & PR_O_HTTP_MODE) == PR_O_HTTP_TUN)
|
|
flag = H1S_F_WANT_TUN;
|
|
|
|
/* For the server connection: server-close == httpclose */
|
|
if ((fe_flags & PR_O_HTTP_MODE) == PR_O_HTTP_SCL ||
|
|
(be->options & PR_O_HTTP_MODE) == PR_O_HTTP_SCL ||
|
|
(fe_flags & PR_O_HTTP_MODE) == PR_O_HTTP_CLO ||
|
|
(be->options & PR_O_HTTP_MODE) == PR_O_HTTP_CLO)
|
|
flag = H1S_F_WANT_CLO;
|
|
|
|
/* flags order: CLO > SCL > TUN > KAL */
|
|
if ((h1s->flags & H1S_F_WANT_MSK) < flag)
|
|
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | flag;
|
|
|
|
if (h1m->flags & H1_MF_RESP) {
|
|
/* Either we've established an explicit tunnel, or we're
|
|
* switching the protocol. In both cases, we're very unlikely to
|
|
* understand the next protocols. We have to switch to tunnel
|
|
* mode, so that we transfer the request and responses then let
|
|
* this protocol pass unmodified. When we later implement
|
|
* specific parsers for such protocols, we'll want to check the
|
|
* Upgrade header which contains information about that protocol
|
|
* for responses with status 101 (eg: see RFC2817 about TLS).
|
|
*/
|
|
if ((h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) ||
|
|
h1s->status == 101)
|
|
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_TUN;
|
|
else if (!(h1m->flags & H1_MF_XFER_LEN)) /* no length known => close */
|
|
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
|
|
else if (h1s->flags & H1S_F_WANT_KAL &&
|
|
(!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL)) || /* no KA in HTTP/1.0 */
|
|
h1m->flags & H1_MF_CONN_CLO)) /* explicit close */
|
|
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
|
|
}
|
|
else {
|
|
if (h1s->flags & H1S_F_WANT_KAL &&
|
|
(!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL)) || /* no KA in HTTP/1.0 */
|
|
h1m->flags & H1_MF_CONN_CLO)) /* explicit close */
|
|
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
|
|
}
|
|
|
|
/* If KAL, check if the backend is stopping. If yes, switch in CLO mode */
|
|
if (h1s->flags & H1S_F_WANT_KAL && be->state == PR_STSTOPPED)
|
|
h1s->flags = (h1s->flags & ~H1S_F_WANT_MSK) | H1S_F_WANT_CLO;
|
|
}
|
|
|
|
static void h1_update_req_conn_hdr(struct h1s *h1s, struct h1m *h1m,
|
|
struct htx *htx, struct ist *conn_val)
|
|
{
|
|
struct proxy *px = h1s->h1c->px;
|
|
|
|
/* Don't update "Connection:" header in TUNNEL mode or if "Upgrage"
|
|
* token is found
|
|
*/
|
|
if (h1s->flags & H1S_F_WANT_TUN || h1m->flags & H1_MF_CONN_UPG)
|
|
return;
|
|
|
|
if (h1s->flags & H1S_F_WANT_KAL || px->options2 & PR_O2_FAKE_KA) {
|
|
if (h1m->flags & H1_MF_CONN_CLO) {
|
|
if (conn_val)
|
|
*conn_val = ist("");
|
|
if (htx)
|
|
h1_remove_conn_hdrs(h1m, htx);
|
|
}
|
|
if (!(h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL))) {
|
|
if (conn_val)
|
|
*conn_val = ist("keep-alive");
|
|
if (htx)
|
|
h1_add_conn_hdr(h1m, htx, ist("keep-alive"));
|
|
}
|
|
if ((h1m->flags & (H1_MF_VER_11|H1_MF_CONN_KAL)) == (H1_MF_VER_11|H1_MF_CONN_KAL)) {
|
|
if (conn_val)
|
|
*conn_val = ist("");
|
|
if (htx)
|
|
h1_remove_conn_hdrs(h1m, htx);
|
|
}
|
|
}
|
|
else { /* H1S_F_WANT_CLO && !PR_O2_FAKE_KA */
|
|
if (h1m->flags & H1_MF_CONN_KAL) {
|
|
if (conn_val)
|
|
*conn_val = ist("");
|
|
if (htx)
|
|
h1_remove_conn_hdrs(h1m, htx);
|
|
}
|
|
if ((h1m->flags & (H1_MF_VER_11|H1_MF_CONN_CLO)) == H1_MF_VER_11) {
|
|
if (conn_val)
|
|
*conn_val = ist("close");
|
|
if (htx)
|
|
h1_add_conn_hdr(h1m, htx, ist("close"));
|
|
}
|
|
if ((h1m->flags & (H1_MF_VER_11|H1_MF_CONN_CLO)) == H1_MF_CONN_CLO) {
|
|
if (conn_val)
|
|
*conn_val = ist("");
|
|
if (htx)
|
|
h1_remove_conn_hdrs(h1m, htx);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void h1_update_res_conn_hdr(struct h1s *h1s, struct h1m *h1m,
|
|
struct htx *htx, struct ist *conn_val)
|
|
{
|
|
/* Don't update "Connection:" header in TUNNEL mode or if "Upgrage"
|
|
* token is found
|
|
*/
|
|
if (h1s->flags & H1S_F_WANT_TUN || h1m->flags & H1_MF_CONN_UPG)
|
|
return;
|
|
|
|
if (h1s->flags & H1S_F_WANT_KAL) {
|
|
if (h1m->flags & H1_MF_CONN_CLO) {
|
|
if (conn_val)
|
|
*conn_val = ist("");
|
|
if (htx)
|
|
h1_remove_conn_hdrs(h1m, htx);
|
|
}
|
|
if (!(h1m->flags & H1_MF_CONN_KAL) &&
|
|
!((h1m->flags & h1s->req.flags) & H1_MF_VER_11)) {
|
|
if (conn_val)
|
|
*conn_val = ist("keep-alive");
|
|
if (htx)
|
|
h1_add_conn_hdr(h1m, htx, ist("keep-alive"));
|
|
}
|
|
else if ((h1m->flags & H1_MF_CONN_KAL) &&
|
|
((h1m->flags & h1s->req.flags) & H1_MF_VER_11)) {
|
|
if (conn_val)
|
|
*conn_val = ist("");
|
|
if (htx)
|
|
h1_remove_conn_hdrs(h1m, htx);
|
|
}
|
|
}
|
|
else { /* H1S_F_WANT_CLO */
|
|
if (h1m->flags & H1_MF_CONN_KAL) {
|
|
if (conn_val)
|
|
*conn_val = ist("");
|
|
if (htx)
|
|
h1_remove_conn_hdrs(h1m, htx);
|
|
}
|
|
if ((h1m->flags & (H1_MF_VER_11|H1_MF_CONN_CLO)) == H1_MF_VER_11) {
|
|
if (conn_val)
|
|
*conn_val = ist("close");
|
|
if (htx)
|
|
h1_add_conn_hdr(h1m, htx, ist("close"));
|
|
}
|
|
if ((h1m->flags & (H1_MF_VER_11|H1_MF_CONN_CLO)) == H1_MF_CONN_CLO) {
|
|
if (conn_val)
|
|
*conn_val = ist("");
|
|
if (htx)
|
|
h1_remove_conn_hdrs(h1m, htx);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set the right connection mode and update "Connection:" header if
|
|
* needed. <htx> and <conn_val> can be NULL. When <htx> is not NULL, the HTX
|
|
* message is updated accordingly. When <conn_val> is not NULL, it is set with
|
|
* the new header value.
|
|
*/
|
|
static void h1_process_conn_mode(struct h1s *h1s, struct h1m *h1m,
|
|
struct htx *htx, struct ist *conn_val)
|
|
{
|
|
if (!conn_is_back(h1s->h1c->conn)) {
|
|
h1_set_cli_conn_mode(h1s, h1m);
|
|
if (h1m->flags & H1_MF_RESP)
|
|
h1_update_res_conn_hdr(h1s, h1m, htx, conn_val);
|
|
}
|
|
else {
|
|
h1_set_srv_conn_mode(h1s, h1m);
|
|
if (!(h1m->flags & H1_MF_RESP))
|
|
h1_update_req_conn_hdr(h1s, h1m, htx, conn_val);
|
|
}
|
|
}
|
|
|
|
|
|
/* Append the description of what is present in error snapshot <es> into <out>.
|
|
* The description must be small enough to always fit in a buffer. The output
|
|
* buffer may be the trash so the trash must not be used inside this function.
|
|
*/
|
|
static void h1_show_error_snapshot(struct buffer *out, const struct error_snapshot *es)
|
|
{
|
|
chunk_appendf(out,
|
|
" H1 connection flags 0x%08x, H1 stream flags 0x%08x\n"
|
|
" H1 msg state %s(%d), H1 msg flags 0x%08x\n"
|
|
" H1 chunk len %lld bytes, H1 body len %lld bytes :\n",
|
|
es->ctx.h1.c_flags, es->ctx.h1.s_flags,
|
|
h1m_state_str(es->ctx.h1.state), es->ctx.h1.state,
|
|
es->ctx.h1.m_flags, es->ctx.h1.m_clen, es->ctx.h1.m_blen);
|
|
}
|
|
/*
|
|
* Capture a bad request or response and archive it in the proxy's structure.
|
|
* By default it tries to report the error position as h1m->err_pos. However if
|
|
* this one is not set, it will then report h1m->next, which is the last known
|
|
* parsing point. The function is able to deal with wrapping buffers. It always
|
|
* displays buffers as a contiguous area starting at buf->p. The direction is
|
|
* determined thanks to the h1m's flags.
|
|
*/
|
|
static void h1_capture_bad_message(struct h1c *h1c, struct h1s *h1s,
|
|
struct h1m *h1m, struct buffer *buf)
|
|
{
|
|
struct session *sess = h1c->conn->owner;
|
|
struct proxy *proxy = h1c->px;
|
|
struct proxy *other_end = sess->fe;
|
|
union error_snapshot_ctx ctx;
|
|
|
|
if (h1s->cs->data && !(h1m->flags & H1_MF_RESP))
|
|
other_end = si_strm(h1s->cs->data)->be;
|
|
|
|
/* http-specific part now */
|
|
ctx.h1.state = h1m->state;
|
|
ctx.h1.c_flags = h1c->flags;
|
|
ctx.h1.s_flags = h1s->flags;
|
|
ctx.h1.m_flags = h1m->flags;
|
|
ctx.h1.m_clen = h1m->curr_len;
|
|
ctx.h1.m_blen = h1m->body_len;
|
|
|
|
proxy_capture_error(proxy, !!(h1m->flags & H1_MF_RESP), other_end,
|
|
h1c->conn->target, sess, buf, 0, 0,
|
|
(h1m->err_pos >= 0) ? h1m->err_pos : h1m->next,
|
|
&ctx, h1_show_error_snapshot);
|
|
}
|
|
|
|
/* Emit the chunksize followed by a CRLF in front of data of the buffer
|
|
* <buf>. It goes backwards and starts with the byte before the buffer's
|
|
* head. The caller is responsible for ensuring there is enough room left before
|
|
* the buffer's head for the string.
|
|
*/
|
|
static void h1_emit_chunk_size(struct buffer *buf, size_t chksz)
|
|
{
|
|
char *beg, *end;
|
|
|
|
beg = end = b_head(buf);
|
|
*--beg = '\n';
|
|
*--beg = '\r';
|
|
do {
|
|
*--beg = hextab[chksz & 0xF];
|
|
} while (chksz >>= 4);
|
|
buf->head -= (end - beg);
|
|
b_add(buf, end - beg);
|
|
}
|
|
|
|
/* Emit a CRLF after the data of the buffer <buf>. The caller is responsible for
|
|
* ensuring there is enough room left in the buffer for the string. */
|
|
static void h1_emit_chunk_crlf(struct buffer *buf)
|
|
{
|
|
*(b_peek(buf, b_data(buf))) = '\r';
|
|
*(b_peek(buf, b_data(buf) + 1)) = '\n';
|
|
b_add(buf, 2);
|
|
}
|
|
|
|
/*
|
|
* Parse HTTP/1 headers. It returns the number of bytes parsed if > 0, or 0 if
|
|
* it couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR
|
|
* flag and filling h1s->err_pos and h1s->err_state fields. This functions is
|
|
* responsible to update the parser state <h1m>.
|
|
*/
|
|
static size_t h1_process_headers(struct h1s *h1s, struct h1m *h1m, struct htx *htx,
|
|
struct buffer *buf, size_t *ofs, size_t max)
|
|
{
|
|
struct http_hdr hdrs[MAX_HTTP_HDR];
|
|
union h1_sl h1sl;
|
|
unsigned int flags = HTX_SL_F_NONE;
|
|
int ret = 0;
|
|
|
|
if (!max)
|
|
goto end;
|
|
|
|
/* Realing input buffer if necessary */
|
|
if (b_head(buf) + b_data(buf) > b_wrap(buf))
|
|
b_slow_realign(buf, trash.area, 0);
|
|
|
|
ret = h1_headers_to_hdr_list(b_peek(buf, *ofs), b_peek(buf, *ofs) + max,
|
|
hdrs, sizeof(hdrs)/sizeof(hdrs[0]), h1m, &h1sl);
|
|
if (ret <= 0) {
|
|
/* Incomplete or invalid message. If the buffer is full, it's an
|
|
* error because headers are too large to be handled by the
|
|
* parser. */
|
|
if (ret < 0 || (!ret && b_full(buf)))
|
|
goto error;
|
|
goto end;
|
|
}
|
|
|
|
/* messages headers fully parsed, do some checks to prepare the body
|
|
* parsing.
|
|
*/
|
|
|
|
/* Be sure to keep some space to do headers rewritting */
|
|
if (ret > (b_size(buf) - global.tune.maxrewrite))
|
|
goto error;
|
|
|
|
/* Save the request's method or the response's status, check if the body
|
|
* length is known and check the VSN validity */
|
|
if (!(h1m->flags & H1_MF_RESP)) {
|
|
h1s->meth = h1sl.rq.meth;
|
|
|
|
/* Request have always a known length */
|
|
h1m->flags |= H1_MF_XFER_LEN;
|
|
if (!(h1m->flags & H1_MF_CHNK) && !h1m->body_len)
|
|
h1m->state = H1_MSG_DONE;
|
|
|
|
if (!h1_process_req_vsn(h1s, h1m, h1sl)) {
|
|
h1m->err_pos = h1sl.rq.v.ptr - b_head(buf);
|
|
h1m->err_state = h1m->state;
|
|
goto vsn_error;
|
|
}
|
|
}
|
|
else {
|
|
h1s->status = h1sl.st.status;
|
|
|
|
if ((h1s->meth == HTTP_METH_HEAD) ||
|
|
(h1s->status >= 100 && h1s->status < 200) ||
|
|
(h1s->status == 204) || (h1s->status == 304) ||
|
|
(h1s->meth == HTTP_METH_CONNECT && h1s->status == 200)) {
|
|
h1m->flags &= ~(H1_MF_CLEN|H1_MF_CHNK);
|
|
h1m->flags |= H1_MF_XFER_LEN;
|
|
h1m->curr_len = h1m->body_len = 0;
|
|
h1m->state = H1_MSG_DONE;
|
|
}
|
|
else if (h1m->flags & (H1_MF_CLEN|H1_MF_CHNK)) {
|
|
h1m->flags |= H1_MF_XFER_LEN;
|
|
if ((h1m->flags & H1_MF_CLEN) && !h1m->body_len)
|
|
h1m->state = H1_MSG_DONE;
|
|
}
|
|
else
|
|
h1m->state = H1_MSG_TUNNEL;
|
|
|
|
if (!h1_process_res_vsn(h1s, h1m, h1sl)) {
|
|
h1m->err_pos = h1sl.st.v.ptr - b_head(buf);
|
|
h1m->err_state = h1m->state;
|
|
goto vsn_error;
|
|
}
|
|
}
|
|
|
|
/* Set HTX start-line flags */
|
|
if (h1m->flags & H1_MF_VER_11)
|
|
flags |= HTX_SL_F_VER_11;
|
|
if (h1m->flags & H1_MF_XFER_ENC)
|
|
flags |= HTX_SL_F_XFER_ENC;
|
|
if (h1m->flags & H1_MF_XFER_LEN) {
|
|
flags |= HTX_SL_F_XFER_LEN;
|
|
if (h1m->flags & H1_MF_CHNK)
|
|
flags |= HTX_SL_F_CHNK;
|
|
else if (h1m->flags & H1_MF_CLEN)
|
|
flags |= HTX_SL_F_CLEN;
|
|
if (h1m->state == H1_MSG_DONE)
|
|
flags |= HTX_SL_F_BODYLESS;
|
|
}
|
|
|
|
if (!(h1m->flags & H1_MF_RESP)) {
|
|
struct htx_sl *sl;
|
|
|
|
sl = htx_add_stline(htx, HTX_BLK_REQ_SL, flags, h1sl.rq.m, h1sl.rq.u, h1sl.rq.v);
|
|
if (!sl || !htx_add_all_headers(htx, hdrs))
|
|
goto error;
|
|
sl->info.req.meth = h1s->meth;
|
|
}
|
|
else {
|
|
struct htx_sl *sl;
|
|
|
|
flags |= HTX_SL_F_IS_RESP;
|
|
sl = htx_add_stline(htx, HTX_BLK_RES_SL, flags, h1sl.st.v, h1sl.st.c, h1sl.st.r);
|
|
if (!sl || !htx_add_all_headers(htx, hdrs))
|
|
goto error;
|
|
sl->info.res.status = h1s->status;
|
|
}
|
|
|
|
if (h1m->state == H1_MSG_DONE) {
|
|
if (!htx_add_endof(htx, HTX_BLK_EOM))
|
|
goto error;
|
|
h1s->cs->flags |= CS_FL_EOI;
|
|
}
|
|
|
|
h1_process_conn_mode(h1s, h1m, htx, NULL);
|
|
|
|
/* If body length cannot be determined, set htx->extra to
|
|
* ULLONG_MAX. This value is impossible in other cases.
|
|
*/
|
|
htx->extra = ((h1m->flags & H1_MF_XFER_LEN) ? h1m->curr_len : ULLONG_MAX);
|
|
|
|
/* Recheck there is enough space to do headers rewritting */
|
|
if (htx_used_space(htx) > b_size(buf) - global.tune.maxrewrite)
|
|
goto error;
|
|
|
|
*ofs += ret;
|
|
end:
|
|
return ret;
|
|
|
|
error:
|
|
h1m->err_state = h1m->state;
|
|
h1m->err_pos = h1m->next;
|
|
vsn_error:
|
|
h1s->flags |= (!(h1m->flags & H1_MF_RESP) ? H1S_F_REQ_ERROR : H1S_F_RES_ERROR);
|
|
h1_capture_bad_message(h1s->h1c, h1s, h1m, buf);
|
|
ret = 0;
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* Parse HTTP/1 body. It returns the number of bytes parsed if > 0, or 0 if it
|
|
* couldn't proceed. Parsing errors are reported by setting H1S_F_*_ERROR flag
|
|
* and filling h1s->err_pos and h1s->err_state fields. This functions is
|
|
* responsible to update the parser state <h1m>.
|
|
*/
|
|
static size_t h1_process_data(struct h1s *h1s, struct h1m *h1m, struct htx *htx,
|
|
struct buffer *buf, size_t *ofs, size_t max,
|
|
struct buffer *htxbuf, size_t reserve)
|
|
{
|
|
uint32_t data_space;
|
|
size_t total = 0;
|
|
int ret = 0;
|
|
|
|
data_space = htx_free_data_space(htx);
|
|
if (data_space <= reserve)
|
|
goto end;
|
|
data_space -= reserve;
|
|
|
|
if (h1m->flags & H1_MF_XFER_LEN) {
|
|
if (h1m->flags & H1_MF_CLEN) {
|
|
/* content-length: read only h2m->body_len */
|
|
ret = max;
|
|
if (ret > data_space)
|
|
ret = data_space;
|
|
if ((uint64_t)ret > h1m->curr_len)
|
|
ret = h1m->curr_len;
|
|
if (ret > b_contig_data(buf, *ofs))
|
|
ret = b_contig_data(buf, *ofs);
|
|
if (ret) {
|
|
/* very often with large files we'll face the following
|
|
* situation :
|
|
* - htx is empty and points to <htxbuf>
|
|
* - ret == buf->data
|
|
* - buf->head == sizeof(struct htx)
|
|
* => we can swap the buffers and place an htx header into
|
|
* the target buffer instead
|
|
*/
|
|
if (unlikely(htx_is_empty(htx) && ret == b_data(buf) &&
|
|
!*ofs && b_head_ofs(buf) == sizeof(struct htx))) {
|
|
void *raw_area = buf->area;
|
|
void *htx_area = htxbuf->area;
|
|
struct htx_blk *blk;
|
|
|
|
buf->area = htx_area;
|
|
htxbuf->area = raw_area;
|
|
htx = (struct htx *)htxbuf->area;
|
|
htx->size = htxbuf->size - sizeof(*htx);
|
|
htx_reset(htx);
|
|
b_set_data(htxbuf, b_size(htxbuf));
|
|
|
|
blk = htx_add_blk(htx, HTX_BLK_DATA, ret);
|
|
blk->info += ret;
|
|
/* nothing else to do, the old buffer now contains an
|
|
* empty pre-initialized HTX header
|
|
*/
|
|
}
|
|
else if (!htx_add_data(htx, ist2(b_peek(buf, *ofs), ret)))
|
|
goto end;
|
|
h1m->curr_len -= ret;
|
|
*ofs += ret;
|
|
total += ret;
|
|
}
|
|
|
|
if (!h1m->curr_len) {
|
|
if (!htx_add_endof(htx, HTX_BLK_EOM))
|
|
goto end;
|
|
h1m->state = H1_MSG_DONE;
|
|
h1s->cs->flags |= CS_FL_EOI;
|
|
}
|
|
}
|
|
else if (h1m->flags & H1_MF_CHNK) {
|
|
new_chunk:
|
|
/* te:chunked : parse chunks */
|
|
if (h1m->state == H1_MSG_CHUNK_CRLF) {
|
|
ret = h1_skip_chunk_crlf(buf, *ofs, *ofs + max);
|
|
if (ret <= 0)
|
|
goto end;
|
|
h1m->state = H1_MSG_CHUNK_SIZE;
|
|
|
|
max -= ret;
|
|
*ofs += ret;
|
|
total += ret;
|
|
}
|
|
|
|
if (h1m->state == H1_MSG_CHUNK_SIZE) {
|
|
unsigned int chksz;
|
|
|
|
ret = h1_parse_chunk_size(buf, *ofs, *ofs + max, &chksz);
|
|
if (ret <= 0)
|
|
goto end;
|
|
if (!chksz) {
|
|
if (!htx_add_endof(htx, HTX_BLK_EOD))
|
|
goto end;
|
|
h1s->flags |= H1S_F_HAVE_I_EOD;
|
|
h1m->state = H1_MSG_TRAILERS;
|
|
}
|
|
else
|
|
h1m->state = H1_MSG_DATA;
|
|
|
|
h1m->curr_len = chksz;
|
|
h1m->body_len += chksz;
|
|
max -= ret;
|
|
*ofs += ret;
|
|
total += ret;
|
|
}
|
|
|
|
if (h1m->state == H1_MSG_DATA) {
|
|
ret = max;
|
|
if (ret > data_space)
|
|
ret = data_space;
|
|
if ((uint64_t)ret > h1m->curr_len)
|
|
ret = h1m->curr_len;
|
|
if (ret > b_contig_data(buf, *ofs))
|
|
ret = b_contig_data(buf, *ofs);
|
|
if (ret) {
|
|
if (!htx_add_data(htx, ist2(b_peek(buf, *ofs), ret)))
|
|
goto end;
|
|
h1m->curr_len -= ret;
|
|
max -= ret;
|
|
*ofs += ret;
|
|
total += ret;
|
|
}
|
|
if (!h1m->curr_len) {
|
|
h1m->state = H1_MSG_CHUNK_CRLF;
|
|
data_space = htx_free_data_space(htx);
|
|
if (data_space <= reserve)
|
|
goto end;
|
|
data_space -= reserve;
|
|
goto new_chunk;
|
|
}
|
|
goto end;
|
|
}
|
|
|
|
if (h1m->state == H1_MSG_TRAILERS) {
|
|
/* Trailers were alread parsed, only the EOM
|
|
* need to be added */
|
|
if (h1s->flags & H1S_F_HAVE_I_TLR)
|
|
goto skip_tlr_parsing;
|
|
|
|
ret = h1_measure_trailers(buf, *ofs, *ofs + max);
|
|
if (ret > data_space)
|
|
ret = (htx_is_empty(htx) ? -1 : 0);
|
|
if (ret <= 0)
|
|
goto end;
|
|
|
|
/* Realing input buffer if tailers wrap. For now
|
|
* this is a workaroung. Because trailers are
|
|
* not split on CRLF, like headers, there is no
|
|
* way to know where to split it when trailers
|
|
* wrap. This is a limitation of
|
|
* h1_measure_trailers.
|
|
*/
|
|
if (b_peek(buf, *ofs) > b_peek(buf, *ofs + ret))
|
|
b_slow_realign(buf, trash.area, 0);
|
|
|
|
if (!htx_add_trailer(htx, ist2(b_peek(buf, *ofs), ret)))
|
|
goto end;
|
|
h1s->flags |= H1S_F_HAVE_I_TLR;
|
|
max -= ret;
|
|
*ofs += ret;
|
|
total += ret;
|
|
|
|
skip_tlr_parsing:
|
|
if (!htx_add_endof(htx, HTX_BLK_EOM))
|
|
goto end;
|
|
h1m->state = H1_MSG_DONE;
|
|
h1s->cs->flags |= CS_FL_EOI;
|
|
}
|
|
}
|
|
else {
|
|
/* XFER_LEN is set but not CLEN nor CHNK, it means there
|
|
* is no body. Switch the message in DONE state
|
|
*/
|
|
if (!htx_add_endof(htx, HTX_BLK_EOM))
|
|
goto end;
|
|
h1m->state = H1_MSG_DONE;
|
|
h1s->cs->flags |= CS_FL_EOI;
|
|
}
|
|
}
|
|
else {
|
|
/* no content length, read till SHUTW */
|
|
ret = max;
|
|
if (ret > data_space)
|
|
ret = data_space;
|
|
if (ret > b_contig_data(buf, *ofs))
|
|
ret = b_contig_data(buf, *ofs);
|
|
if (ret) {
|
|
if (!htx_add_data(htx, ist2(b_peek(buf, *ofs), ret)))
|
|
goto end;
|
|
|
|
*ofs += ret;
|
|
total = ret;
|
|
}
|
|
}
|
|
|
|
end:
|
|
if (ret < 0) {
|
|
h1s->flags |= (!(h1m->flags & H1_MF_RESP) ? H1S_F_REQ_ERROR : H1S_F_RES_ERROR);
|
|
h1m->err_state = h1m->state;
|
|
h1m->err_pos = *ofs + max + ret;
|
|
h1_capture_bad_message(h1s->h1c, h1s, h1m, buf);
|
|
return 0;
|
|
}
|
|
/* update htx->extra, only when the body length is known */
|
|
if (h1m->flags & H1_MF_XFER_LEN)
|
|
htx->extra = h1m->curr_len;
|
|
return total;
|
|
}
|
|
|
|
/*
|
|
* Synchronize the request and the response before reseting them. Except for 1xx
|
|
* responses, we wait that the request and the response are in DONE state and
|
|
* that all data are forwarded for both. For 1xx responses, only the response is
|
|
* reset, waiting the final one. Many 1xx messages can be sent.
|
|
*/
|
|
static void h1_sync_messages(struct h1c *h1c)
|
|
{
|
|
struct h1s *h1s = h1c->h1s;
|
|
|
|
if (!h1s)
|
|
return;
|
|
|
|
if (h1s->res.state == H1_MSG_DONE &&
|
|
(h1s->status < 200 && (h1s->status == 100 || h1s->status >= 102)) &&
|
|
(conn_is_back(h1c->conn) || !b_data(&h1c->obuf))) {
|
|
/* For 100-Continue response or any other informational 1xx
|
|
* response which is non-final, don't reset the request, the
|
|
* transaction is not finished. We take care the response was
|
|
* transferred before.
|
|
*/
|
|
h1m_init_res(&h1s->res);
|
|
h1s->res.flags |= H1_MF_NO_PHDR;
|
|
h1c->flags &= ~H1C_F_IN_BUSY;
|
|
}
|
|
else if (!b_data(&h1c->obuf) &&
|
|
h1s->req.state == H1_MSG_DONE && h1s->res.state == H1_MSG_DONE) {
|
|
if (h1s->flags & H1S_F_WANT_TUN) {
|
|
h1m_init_req(&h1s->req);
|
|
h1m_init_res(&h1s->res);
|
|
h1s->req.state = H1_MSG_TUNNEL;
|
|
h1s->res.state = H1_MSG_TUNNEL;
|
|
h1c->flags &= ~H1C_F_IN_BUSY;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process incoming data. It parses data and transfer them from h1c->ibuf into
|
|
* <buf>. It returns the number of bytes parsed and transferred if > 0, or 0 if
|
|
* it couldn't proceed.
|
|
*/
|
|
static size_t h1_process_input(struct h1c *h1c, struct buffer *buf, int flags)
|
|
{
|
|
struct h1s *h1s = h1c->h1s;
|
|
struct h1m *h1m;
|
|
struct htx *htx;
|
|
size_t data = 0;
|
|
size_t total = 0;
|
|
size_t ret = 0;
|
|
size_t count, rsv;
|
|
int errflag;
|
|
|
|
htx = htx_from_buf(buf);
|
|
|
|
if (!conn_is_back(h1c->conn)) {
|
|
h1m = &h1s->req;
|
|
errflag = H1S_F_REQ_ERROR;
|
|
}
|
|
else {
|
|
h1m = &h1s->res;
|
|
errflag = H1S_F_RES_ERROR;
|
|
}
|
|
|
|
data = htx->data;
|
|
count = b_data(&h1c->ibuf);
|
|
if (!count)
|
|
goto end;
|
|
rsv = ((flags & CO_RFL_KEEP_RSV) ? global.tune.maxrewrite : 0);
|
|
|
|
do {
|
|
if (h1m->state <= H1_MSG_LAST_LF) {
|
|
ret = h1_process_headers(h1s, h1m, htx, &h1c->ibuf, &total, count);
|
|
if (!ret)
|
|
break;
|
|
}
|
|
else if (h1m->state <= H1_MSG_TRAILERS) {
|
|
ret = h1_process_data(h1s, h1m, htx, &h1c->ibuf, &total, count, buf, rsv);
|
|
htx = htx_from_buf(buf);
|
|
if (!ret)
|
|
break;
|
|
}
|
|
else if (h1m->state == H1_MSG_DONE) {
|
|
h1c->flags |= H1C_F_IN_BUSY;
|
|
break;
|
|
}
|
|
else if (h1m->state == H1_MSG_TUNNEL) {
|
|
ret = h1_process_data(h1s, h1m, htx, &h1c->ibuf, &total, count, buf, rsv);
|
|
htx = htx_from_buf(buf);
|
|
if (!ret)
|
|
break;
|
|
}
|
|
else {
|
|
h1s->flags |= errflag;
|
|
break;
|
|
}
|
|
|
|
count -= ret;
|
|
} while (!(h1s->flags & errflag) && count);
|
|
|
|
if (h1s->flags & errflag)
|
|
goto parsing_err;
|
|
|
|
b_del(&h1c->ibuf, total);
|
|
|
|
end:
|
|
htx_to_buf(htx, buf);
|
|
data = (htx->data - data);
|
|
if (h1c->flags & H1C_F_IN_FULL && buf_room_for_htx_data(&h1c->ibuf)) {
|
|
h1c->flags &= ~H1C_F_IN_FULL;
|
|
tasklet_wakeup(h1c->wait_event.task);
|
|
}
|
|
|
|
h1s->cs->flags &= ~(CS_FL_RCV_MORE | CS_FL_WANT_ROOM);
|
|
|
|
if (!b_data(&h1c->ibuf)) {
|
|
h1_release_buf(h1c, &h1c->ibuf);
|
|
h1_sync_messages(h1c);
|
|
}
|
|
else if (!htx_is_empty(htx))
|
|
h1s->cs->flags |= CS_FL_RCV_MORE | CS_FL_WANT_ROOM;
|
|
|
|
if ((h1s->cs->flags & CS_FL_REOS) && (!b_data(&h1c->ibuf) || htx_is_empty(htx))) {
|
|
h1s->cs->flags |= CS_FL_EOS;
|
|
if (h1m->state > H1_MSG_LAST_LF && h1m->state < H1_MSG_DONE)
|
|
h1s->cs->flags |= CS_FL_ERROR;
|
|
}
|
|
|
|
return data;
|
|
|
|
parsing_err:
|
|
b_reset(&h1c->ibuf);
|
|
htx->flags |= HTX_FL_PARSING_ERROR;
|
|
htx_to_buf(htx, buf);
|
|
h1s->cs->flags |= CS_FL_EOS;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Process outgoing data. It parses data and transfer them from the channel buffer into
|
|
* h1c->obuf. It returns the number of bytes parsed and transferred if > 0, or
|
|
* 0 if it couldn't proceed.
|
|
*/
|
|
static size_t h1_process_output(struct h1c *h1c, struct buffer *buf, size_t count)
|
|
{
|
|
struct h1s *h1s = h1c->h1s;
|
|
struct h1m *h1m;
|
|
struct htx *chn_htx;
|
|
struct htx_blk *blk;
|
|
struct buffer *tmp;
|
|
size_t total = 0;
|
|
int process_conn_mode = 1; /* If still 1 on EOH, process the connection mode */
|
|
int errflag;
|
|
|
|
if (!count)
|
|
goto end;
|
|
|
|
chn_htx = htx_from_buf(buf);
|
|
if (htx_is_empty(chn_htx))
|
|
goto end;
|
|
|
|
if (!h1_get_buf(h1c, &h1c->obuf)) {
|
|
h1c->flags |= H1C_F_OUT_ALLOC;
|
|
goto end;
|
|
}
|
|
|
|
if (!conn_is_back(h1c->conn)) {
|
|
h1m = &h1s->res;
|
|
errflag = H1S_F_RES_ERROR;
|
|
}
|
|
else {
|
|
h1m = &h1s->req;
|
|
errflag = H1S_F_REQ_ERROR;
|
|
}
|
|
|
|
/* the htx is non-empty thus has at least one block */
|
|
blk = htx_get_head_blk(chn_htx);
|
|
|
|
tmp = get_trash_chunk();
|
|
|
|
/* Perform some optimizations to reduce the number of buffer copies.
|
|
* First, if the mux's buffer is empty and the htx area contains
|
|
* exactly one data block of the same size as the requested count,
|
|
* then it's possible to simply swap the caller's buffer with the
|
|
* mux's output buffer and adjust offsets and length to match the
|
|
* entire DATA HTX block in the middle. In this case we perform a
|
|
* true zero-copy operation from end-to-end. This is the situation
|
|
* that happens all the time with large files. Second, if this is not
|
|
* possible, but the mux's output buffer is empty, we still have an
|
|
* opportunity to avoid the copy to the intermediary buffer, by making
|
|
* the intermediary buffer's area point to the output buffer's area.
|
|
* In this case we want to skip the HTX header to make sure that copies
|
|
* remain aligned and that this operation remains possible all the
|
|
* time. This goes for headers, data blocks and any data extracted from
|
|
* the HTX blocks.
|
|
*/
|
|
if (!b_data(&h1c->obuf)) {
|
|
h1c->obuf.head = sizeof(struct htx) + blk->addr;
|
|
|
|
if (chn_htx->used == 1 &&
|
|
htx_get_blk_type(blk) == HTX_BLK_DATA &&
|
|
htx_get_blk_value(chn_htx, blk).len == count) {
|
|
void *old_area = h1c->obuf.area;
|
|
|
|
h1c->obuf.area = buf->area;
|
|
h1c->obuf.data = count;
|
|
|
|
buf->area = old_area;
|
|
buf->data = buf->head = 0;
|
|
|
|
/* The message is chunked. We need to emit the chunk
|
|
* size. We have at least the size of the struct htx to
|
|
* write the chunk envelope. It should be enough.
|
|
*/
|
|
if (h1m->flags & H1_MF_CHNK) {
|
|
h1_emit_chunk_size(&h1c->obuf, count);
|
|
h1_emit_chunk_crlf(&h1c->obuf);
|
|
}
|
|
|
|
total += count;
|
|
goto out;
|
|
}
|
|
tmp->area = h1c->obuf.area + h1c->obuf.head;
|
|
}
|
|
|
|
tmp->size = b_room(&h1c->obuf);
|
|
|
|
while (count && !(h1s->flags & errflag) && blk) {
|
|
struct htx_sl *sl;
|
|
struct ist n, v;
|
|
enum htx_blk_type type = htx_get_blk_type(blk);
|
|
uint32_t sz = htx_get_blksz(blk);
|
|
uint32_t vlen;
|
|
|
|
vlen = sz;
|
|
if (vlen > count) {
|
|
if (type != HTX_BLK_DATA && type != HTX_BLK_TLR)
|
|
goto copy;
|
|
vlen = count;
|
|
}
|
|
|
|
switch (type) {
|
|
case HTX_BLK_UNUSED:
|
|
break;
|
|
|
|
case HTX_BLK_REQ_SL:
|
|
h1m_init_req(h1m);
|
|
h1m->flags |= H1_MF_NO_PHDR;
|
|
sl = htx_get_blk_ptr(chn_htx, blk);
|
|
h1s->meth = sl->info.req.meth;
|
|
h1_parse_req_vsn(h1m, sl);
|
|
if (!htx_reqline_to_h1(sl, tmp))
|
|
goto copy;
|
|
h1m->flags |= H1_MF_XFER_LEN;
|
|
if (sl->flags & HTX_SL_F_BODYLESS)
|
|
h1m->flags |= H1_MF_CLEN;
|
|
h1m->state = H1_MSG_HDR_FIRST;
|
|
break;
|
|
|
|
case HTX_BLK_RES_SL:
|
|
h1m_init_res(h1m);
|
|
h1m->flags |= H1_MF_NO_PHDR;
|
|
sl = htx_get_blk_ptr(chn_htx, blk);
|
|
h1s->status = sl->info.res.status;
|
|
h1_parse_res_vsn(h1m, sl);
|
|
if (!htx_stline_to_h1(sl, tmp))
|
|
goto copy;
|
|
if (sl->flags & HTX_SL_F_XFER_LEN)
|
|
h1m->flags |= H1_MF_XFER_LEN;
|
|
if (sl->info.res.status < 200 &&
|
|
(sl->info.res.status == 100 || sl->info.res.status >= 102))
|
|
process_conn_mode = 0;
|
|
h1m->state = H1_MSG_HDR_FIRST;
|
|
break;
|
|
|
|
case HTX_BLK_HDR:
|
|
h1m->state = H1_MSG_HDR_NAME;
|
|
n = htx_get_blk_name(chn_htx, blk);
|
|
v = htx_get_blk_value(chn_htx, blk);
|
|
|
|
if (isteqi(n, ist("transfer-encoding")))
|
|
h1_parse_xfer_enc_header(h1m, v);
|
|
else if (isteqi(n, ist("content-length"))) {
|
|
if (h1_parse_cont_len_header(h1m, &v) <= 0)
|
|
goto skip_hdr;
|
|
}
|
|
else if (isteqi(n, ist("connection"))) {
|
|
h1_parse_connection_header(h1m, v);
|
|
h1_process_conn_mode(h1s, h1m, NULL, &v);
|
|
process_conn_mode = 0;
|
|
if (!v.len)
|
|
goto skip_hdr;
|
|
}
|
|
|
|
if (!htx_hdr_to_h1(n, v, tmp))
|
|
goto copy;
|
|
skip_hdr:
|
|
h1m->state = H1_MSG_HDR_L2_LWS;
|
|
break;
|
|
|
|
case HTX_BLK_PHDR:
|
|
/* not implemented yet */
|
|
h1m->flags |= errflag;
|
|
break;
|
|
|
|
case HTX_BLK_EOH:
|
|
if (h1m->state != H1_MSG_LAST_LF && process_conn_mode) {
|
|
/* There is no "Connection:" header and
|
|
* it the conn_mode must be
|
|
* processed. So do it */
|
|
n = ist("Connection");
|
|
v = ist("");
|
|
h1_process_conn_mode(h1s, h1m, NULL, &v);
|
|
process_conn_mode = 0;
|
|
if (v.len) {
|
|
if (!htx_hdr_to_h1(n, v, tmp))
|
|
goto copy;
|
|
}
|
|
}
|
|
|
|
if (((h1m->flags & (H1_MF_VER_11|H1_MF_RESP|H1_MF_CLEN|H1_MF_CHNK|H1_MF_XFER_LEN)) ==
|
|
(H1_MF_VER_11|H1_MF_XFER_LEN)) ||
|
|
(h1s->status >= 200 && h1s->status != 204 && h1s->status != 304 &&
|
|
h1s->meth != HTTP_METH_HEAD && !(h1s->meth == HTTP_METH_CONNECT && h1s->status == 200) &&
|
|
(h1m->flags & (H1_MF_VER_11|H1_MF_RESP|H1_MF_CLEN|H1_MF_CHNK|H1_MF_XFER_LEN)) ==
|
|
(H1_MF_VER_11|H1_MF_RESP|H1_MF_XFER_LEN))) {
|
|
/* chunking needed but header not seen */
|
|
if (!chunk_memcat(tmp, "transfer-encoding: chunked\r\n", 28))
|
|
goto copy;
|
|
h1m->flags |= H1_MF_CHNK;
|
|
}
|
|
|
|
h1m->state = H1_MSG_LAST_LF;
|
|
if (!chunk_memcat(tmp, "\r\n", 2))
|
|
goto copy;
|
|
|
|
h1m->state = H1_MSG_DATA;
|
|
break;
|
|
|
|
case HTX_BLK_DATA:
|
|
v = htx_get_blk_value(chn_htx, blk);
|
|
v.len = vlen;
|
|
if (!htx_data_to_h1(v, tmp, !!(h1m->flags & H1_MF_CHNK)))
|
|
goto copy;
|
|
break;
|
|
|
|
case HTX_BLK_EOD:
|
|
if (!chunk_memcat(tmp, "0\r\n", 3))
|
|
goto copy;
|
|
h1s->flags |= H1S_F_HAVE_O_EOD;
|
|
h1m->state = H1_MSG_TRAILERS;
|
|
break;
|
|
|
|
case HTX_BLK_TLR:
|
|
if (!(h1s->flags & H1S_F_HAVE_O_EOD)) {
|
|
if (!chunk_memcat(tmp, "0\r\n", 3))
|
|
goto copy;
|
|
h1s->flags |= H1S_F_HAVE_O_EOD;
|
|
}
|
|
v = htx_get_blk_value(chn_htx, blk);
|
|
v.len = vlen;
|
|
if (!htx_trailer_to_h1(v, tmp))
|
|
goto copy;
|
|
h1s->flags |= H1S_F_HAVE_O_TLR;
|
|
break;
|
|
|
|
case HTX_BLK_EOM:
|
|
if ((h1m->flags & H1_MF_CHNK)) {
|
|
if (!(h1s->flags & H1S_F_HAVE_O_EOD)) {
|
|
if (!chunk_memcat(tmp, "0\r\n", 3))
|
|
goto copy;
|
|
h1s->flags |= H1S_F_HAVE_O_EOD;
|
|
}
|
|
if (!(h1s->flags & H1S_F_HAVE_O_TLR)) {
|
|
if (!chunk_memcat(tmp, "\r\n", 2))
|
|
goto copy;
|
|
h1s->flags |= H1S_F_HAVE_O_TLR;
|
|
}
|
|
}
|
|
h1m->state = H1_MSG_DONE;
|
|
break;
|
|
|
|
case HTX_BLK_OOB:
|
|
v = htx_get_blk_value(chn_htx, blk);
|
|
if (!chunk_memcat(tmp, v.ptr, v.len))
|
|
goto copy;
|
|
break;
|
|
|
|
default:
|
|
h1m->flags |= errflag;
|
|
break;
|
|
}
|
|
total += vlen;
|
|
count -= vlen;
|
|
if (sz == vlen)
|
|
blk = htx_remove_blk(chn_htx, blk);
|
|
else {
|
|
htx_cut_data_blk(chn_htx, blk, vlen);
|
|
break;
|
|
}
|
|
}
|
|
|
|
copy:
|
|
/* when the output buffer is empty, tmp shares the same area so that we
|
|
* only have to update pointers and lengths.
|
|
*/
|
|
if (tmp->area == h1c->obuf.area + h1c->obuf.head)
|
|
h1c->obuf.data = tmp->data;
|
|
else
|
|
b_putblk(&h1c->obuf, tmp->area, tmp->data);
|
|
|
|
htx_to_buf(chn_htx, buf);
|
|
out:
|
|
if (!buf_room_for_htx_data(&h1c->obuf))
|
|
h1c->flags |= H1C_F_OUT_FULL;
|
|
end:
|
|
return total;
|
|
}
|
|
|
|
/*********************************************************/
|
|
/* functions below are I/O callbacks from the connection */
|
|
/*********************************************************/
|
|
static void h1_wake_stream_for_recv(struct h1s *h1s)
|
|
{
|
|
if (h1s && h1s->recv_wait) {
|
|
h1s->recv_wait->events &= ~SUB_RETRY_RECV;
|
|
tasklet_wakeup(h1s->recv_wait->task);
|
|
h1s->recv_wait = NULL;
|
|
}
|
|
}
|
|
static void h1_wake_stream_for_send(struct h1s *h1s)
|
|
{
|
|
if (h1s && h1s->send_wait) {
|
|
h1s->send_wait->events &= ~SUB_RETRY_SEND;
|
|
tasklet_wakeup(h1s->send_wait->task);
|
|
h1s->send_wait = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Attempt to read data, and subscribe if none available
|
|
*/
|
|
static int h1_recv(struct h1c *h1c)
|
|
{
|
|
struct connection *conn = h1c->conn;
|
|
struct h1s *h1s = h1c->h1s;
|
|
size_t ret = 0, max;
|
|
int rcvd = 0;
|
|
|
|
if (h1c->wait_event.events & SUB_RETRY_RECV)
|
|
return (b_data(&h1c->ibuf));
|
|
|
|
if (!h1_recv_allowed(h1c)) {
|
|
rcvd = 1;
|
|
goto end;
|
|
}
|
|
|
|
if (h1s && (h1s->flags & (H1S_F_BUF_FLUSH|H1S_F_SPLICED_DATA))) {
|
|
rcvd = 1;
|
|
goto end;
|
|
}
|
|
|
|
if (!h1_get_buf(h1c, &h1c->ibuf)) {
|
|
h1c->flags |= H1C_F_IN_ALLOC;
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* If we only have a small amount of data, realign it,
|
|
* it's probably cheaper than doing 2 recv() calls.
|
|
*/
|
|
if (b_data(&h1c->ibuf) > 0 && b_data(&h1c->ibuf) < 128)
|
|
b_slow_realign(&h1c->ibuf, trash.area, 0);
|
|
|
|
max = buf_room_for_htx_data(&h1c->ibuf);
|
|
if (max) {
|
|
h1c->flags &= ~H1C_F_IN_FULL;
|
|
|
|
b_realign_if_empty(&h1c->ibuf);
|
|
if (!b_data(&h1c->ibuf)) {
|
|
/* try to pre-align the buffer like the rxbufs will be
|
|
* to optimize memory copies.
|
|
*/
|
|
h1c->ibuf.head = sizeof(struct htx);
|
|
}
|
|
ret = conn->xprt->rcv_buf(conn, &h1c->ibuf, max, 0);
|
|
}
|
|
if (ret > 0) {
|
|
rcvd = 1;
|
|
if (h1s && h1s->cs) {
|
|
h1s->cs->flags |= (CS_FL_READ_PARTIAL|CS_FL_RCV_MORE);
|
|
if (h1s->csinfo.t_idle == -1)
|
|
h1s->csinfo.t_idle = tv_ms_elapsed(&h1s->csinfo.tv_create, &now) - h1s->csinfo.t_handshake;
|
|
}
|
|
}
|
|
|
|
if (!h1_recv_allowed(h1c) || !buf_room_for_htx_data(&h1c->ibuf)) {
|
|
rcvd = 1;
|
|
goto end;
|
|
}
|
|
|
|
conn->xprt->subscribe(conn, SUB_RETRY_RECV, &h1c->wait_event);
|
|
|
|
end:
|
|
if (ret > 0 || (conn->flags & CO_FL_ERROR) || conn_xprt_read0_pending(conn))
|
|
h1_wake_stream_for_recv(h1s);
|
|
|
|
if (conn_xprt_read0_pending(conn) && h1s && h1s->cs)
|
|
h1s->cs->flags |= CS_FL_REOS;
|
|
if (!b_data(&h1c->ibuf))
|
|
h1_release_buf(h1c, &h1c->ibuf);
|
|
else if (!buf_room_for_htx_data(&h1c->ibuf))
|
|
h1c->flags |= H1C_F_IN_FULL;
|
|
return rcvd;
|
|
}
|
|
|
|
|
|
/*
|
|
* Try to send data if possible
|
|
*/
|
|
static int h1_send(struct h1c *h1c)
|
|
{
|
|
struct connection *conn = h1c->conn;
|
|
unsigned int flags = 0;
|
|
size_t ret;
|
|
int sent = 0;
|
|
|
|
if (conn->flags & CO_FL_ERROR)
|
|
return 0;
|
|
|
|
if (h1c->flags & H1C_F_CS_WAIT_CONN) {
|
|
if (!(h1c->wait_event.events & SUB_RETRY_SEND))
|
|
conn->xprt->subscribe(conn, SUB_RETRY_SEND, &h1c->wait_event);
|
|
return 0;
|
|
}
|
|
|
|
if (!b_data(&h1c->obuf))
|
|
goto end;
|
|
|
|
if (h1c->flags & H1C_F_OUT_FULL)
|
|
flags |= CO_SFL_MSG_MORE;
|
|
|
|
ret = conn->xprt->snd_buf(conn, &h1c->obuf, b_data(&h1c->obuf), flags);
|
|
if (ret > 0) {
|
|
h1c->flags &= ~H1C_F_OUT_FULL;
|
|
b_del(&h1c->obuf, ret);
|
|
sent = 1;
|
|
}
|
|
|
|
if (conn->flags & (CO_FL_ERROR|CO_FL_SOCK_WR_SH)) {
|
|
/* error or output closed, nothing to send, clear the buffer to release it */
|
|
b_reset(&h1c->obuf);
|
|
}
|
|
|
|
end:
|
|
if (!(h1c->flags & H1C_F_OUT_FULL))
|
|
h1_wake_stream_for_send(h1c->h1s);
|
|
|
|
/* We're done, no more to send */
|
|
if (!b_data(&h1c->obuf)) {
|
|
h1_release_buf(h1c, &h1c->obuf);
|
|
h1_sync_messages(h1c);
|
|
if (h1c->flags & H1C_F_CS_SHUTW_NOW)
|
|
h1_shutw_conn(conn, CS_SHW_NORMAL);
|
|
}
|
|
else if (!(h1c->wait_event.events & SUB_RETRY_SEND))
|
|
conn->xprt->subscribe(conn, SUB_RETRY_SEND, &h1c->wait_event);
|
|
|
|
return sent;
|
|
}
|
|
|
|
|
|
/* callback called on any event by the connection handler.
|
|
* It applies changes and returns zero, or < 0 if it wants immediate
|
|
* destruction of the connection.
|
|
*/
|
|
static int h1_process(struct h1c * h1c)
|
|
{
|
|
struct connection *conn = h1c->conn;
|
|
struct h1s *h1s = h1c->h1s;
|
|
|
|
if (!conn->ctx)
|
|
return -1;
|
|
|
|
if (h1c->flags & H1C_F_CS_WAIT_CONN) {
|
|
if (!(conn->flags & (CO_FL_CONNECTED|CO_FL_ERROR)))
|
|
goto end;
|
|
h1c->flags &= ~H1C_F_CS_WAIT_CONN;
|
|
h1_wake_stream_for_send(h1s);
|
|
}
|
|
|
|
if (!h1s) {
|
|
if (h1c->flags & H1C_F_CS_ERROR ||
|
|
conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH) ||
|
|
conn_xprt_read0_pending(conn))
|
|
goto release;
|
|
if (!conn_is_back(conn) && !(h1c->flags & (H1C_F_CS_SHUTW_NOW|H1C_F_CS_SHUTDOWN))) {
|
|
if (!h1s_create(h1c, NULL, NULL))
|
|
goto release;
|
|
}
|
|
else
|
|
goto end;
|
|
h1s = h1c->h1s;
|
|
}
|
|
|
|
if (b_data(&h1c->ibuf) && h1s->csinfo.t_idle == -1)
|
|
h1s->csinfo.t_idle = tv_ms_elapsed(&h1s->csinfo.tv_create, &now) - h1s->csinfo.t_handshake;
|
|
|
|
if (!b_data(&h1c->ibuf) && h1s && h1s->cs && h1s->cs->data_cb->wake &&
|
|
(conn_xprt_read0_pending(conn) || h1c->flags & H1C_F_CS_ERROR ||
|
|
conn->flags & (CO_FL_ERROR | CO_FL_SOCK_WR_SH))) {
|
|
int flags = 0;
|
|
|
|
if (h1c->flags & H1C_F_CS_ERROR || conn->flags & CO_FL_ERROR)
|
|
flags |= CS_FL_ERROR;
|
|
if (conn_xprt_read0_pending(conn))
|
|
flags |= CS_FL_REOS;
|
|
h1s->cs->flags |= flags;
|
|
h1s->cs->data_cb->wake(h1s->cs);
|
|
}
|
|
end:
|
|
if (h1c->task) {
|
|
h1c->task->expire = TICK_ETERNITY;
|
|
if (b_data(&h1c->obuf)) {
|
|
h1c->task->expire = tick_add(now_ms, ((h1c->flags & (H1C_F_CS_SHUTW_NOW|H1C_F_CS_SHUTDOWN))
|
|
? h1c->shut_timeout
|
|
: h1c->timeout));
|
|
task_queue(h1c->task);
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
release:
|
|
h1_release(conn);
|
|
return -1;
|
|
}
|
|
|
|
static struct task *h1_io_cb(struct task *t, void *ctx, unsigned short status)
|
|
{
|
|
struct h1c *h1c = ctx;
|
|
int ret = 0;
|
|
|
|
if (!(h1c->wait_event.events & SUB_RETRY_SEND))
|
|
ret = h1_send(h1c);
|
|
if (!(h1c->wait_event.events & SUB_RETRY_RECV))
|
|
ret |= h1_recv(h1c);
|
|
if (ret || !h1c->h1s)
|
|
h1_process(h1c);
|
|
return NULL;
|
|
}
|
|
|
|
static void h1_reset(struct connection *conn)
|
|
{
|
|
struct h1c *h1c = conn->ctx;
|
|
|
|
/* Reset the flags, and let the mux know we're waiting for a connection */
|
|
h1c->flags = H1C_F_CS_WAIT_CONN;
|
|
}
|
|
|
|
static int h1_wake(struct connection *conn)
|
|
{
|
|
struct h1c *h1c = conn->ctx;
|
|
int ret;
|
|
|
|
h1_send(h1c);
|
|
ret = h1_process(h1c);
|
|
if (ret == 0) {
|
|
struct h1s *h1s = h1c->h1s;
|
|
|
|
if (h1s && h1s->cs && h1s->cs->data_cb->wake)
|
|
ret = h1s->cs->data_cb->wake(h1s->cs);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Connection timeout management. The principle is that if there's no receipt
|
|
* nor sending for a certain amount of time, the connection is closed.
|
|
*/
|
|
static struct task *h1_timeout_task(struct task *t, void *context, unsigned short state)
|
|
{
|
|
struct h1c *h1c = context;
|
|
int expired = tick_is_expired(t->expire, now_ms);
|
|
|
|
if (!expired && h1c)
|
|
return t;
|
|
|
|
task_delete(t);
|
|
task_free(t);
|
|
|
|
if (!h1c) {
|
|
/* resources were already deleted */
|
|
return NULL;
|
|
}
|
|
|
|
h1c->task = NULL;
|
|
/* If a stream is still attached to the mux, just set an error and wait
|
|
* for the stream's timeout. Otherwise, release the mux. This is only ok
|
|
* because same timeouts are used.
|
|
*/
|
|
if (h1c->h1s && h1c->h1s->cs)
|
|
h1c->flags |= H1C_F_CS_ERROR;
|
|
else
|
|
h1_release(h1c->conn);
|
|
return NULL;
|
|
}
|
|
|
|
/*******************************************/
|
|
/* functions below are used by the streams */
|
|
/*******************************************/
|
|
/*
|
|
* Attach a new stream to a connection
|
|
* (Used for outgoing connections)
|
|
*/
|
|
static struct conn_stream *h1_attach(struct connection *conn, struct session *sess)
|
|
{
|
|
struct h1c *h1c = conn->ctx;
|
|
struct conn_stream *cs = NULL;
|
|
struct h1s *h1s;
|
|
|
|
if (h1c->flags & H1C_F_CS_ERROR)
|
|
goto end;
|
|
|
|
cs = cs_new(h1c->conn);
|
|
if (!cs)
|
|
goto end;
|
|
|
|
h1s = h1s_create(h1c, cs, sess);
|
|
if (h1s == NULL)
|
|
goto end;
|
|
|
|
return cs;
|
|
end:
|
|
cs_free(cs);
|
|
return NULL;
|
|
}
|
|
|
|
/* Retrieves a valid conn_stream from this connection, or returns NULL. For
|
|
* this mux, it's easy as we can only store a single conn_stream.
|
|
*/
|
|
static const struct conn_stream *h1_get_first_cs(const struct connection *conn)
|
|
{
|
|
struct h1c *h1c = conn->ctx;
|
|
struct h1s *h1s = h1c->h1s;
|
|
|
|
if (h1s)
|
|
return h1s->cs;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void h1_destroy(struct connection *conn)
|
|
{
|
|
struct h1c *h1c = conn->ctx;
|
|
|
|
if (!h1c->h1s)
|
|
h1_release(conn);
|
|
}
|
|
|
|
/*
|
|
* Detach the stream from the connection and possibly release the connection.
|
|
*/
|
|
static void h1_detach(struct conn_stream *cs)
|
|
{
|
|
struct h1s *h1s = cs->ctx;
|
|
struct h1c *h1c;
|
|
struct session *sess;
|
|
int has_keepalive;
|
|
int is_not_first;
|
|
|
|
cs->ctx = NULL;
|
|
if (!h1s)
|
|
return;
|
|
|
|
sess = h1s->sess;
|
|
h1c = h1s->h1c;
|
|
h1s->cs = NULL;
|
|
|
|
has_keepalive = h1s->flags & H1S_F_WANT_KAL;
|
|
is_not_first = h1s->flags & H1S_F_NOT_FIRST;
|
|
h1s_destroy(h1s);
|
|
|
|
if (conn_is_back(h1c->conn) && has_keepalive &&
|
|
!(h1c->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH))) {
|
|
/* Never ever allow to reuse a connection from a non-reuse backend */
|
|
if ((h1c->px->options & PR_O_REUSE_MASK) == PR_O_REUSE_NEVR)
|
|
h1c->conn->flags |= CO_FL_PRIVATE;
|
|
|
|
if (!(h1c->conn->owner)) {
|
|
h1c->conn->owner = sess;
|
|
if (!session_add_conn(sess, h1c->conn, h1c->conn->target)) {
|
|
h1c->conn->owner = NULL;
|
|
if (!srv_add_to_idle_list(objt_server(h1c->conn->target), h1c->conn))
|
|
/* The server doesn't want it, let's kill the connection right away */
|
|
h1c->conn->mux->destroy(h1c->conn);
|
|
else
|
|
tasklet_wakeup(h1c->wait_event.task);
|
|
return;
|
|
|
|
}
|
|
}
|
|
if (h1c->conn->owner == sess) {
|
|
int ret = session_check_idle_conn(sess, h1c->conn);
|
|
if (ret == -1)
|
|
/* The connection got destroyed, let's leave */
|
|
return;
|
|
else if (ret == 1) {
|
|
/* The connection was added to the server list,
|
|
* wake the task so we can subscribe to events
|
|
*/
|
|
tasklet_wakeup(h1c->wait_event.task);
|
|
return;
|
|
}
|
|
}
|
|
/* we're in keep-alive with an idle connection, monitor it if not already done */
|
|
if (LIST_ISEMPTY(&h1c->conn->list)) {
|
|
struct server *srv = objt_server(h1c->conn->target);
|
|
|
|
if (srv) {
|
|
if (h1c->conn->flags & CO_FL_PRIVATE)
|
|
LIST_ADD(&srv->priv_conns[tid], &h1c->conn->list);
|
|
else if (is_not_first)
|
|
LIST_ADD(&srv->safe_conns[tid], &h1c->conn->list);
|
|
else
|
|
LIST_ADD(&srv->idle_conns[tid], &h1c->conn->list);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We don't want to close right now unless the connection is in error */
|
|
if ((h1c->flags & (H1C_F_CS_ERROR|H1C_F_CS_SHUTDOWN)) ||
|
|
(h1c->conn->flags & CO_FL_ERROR) || !h1c->conn->owner)
|
|
h1_release(h1c->conn);
|
|
else {
|
|
tasklet_wakeup(h1c->wait_event.task);
|
|
if (h1c->task) {
|
|
h1c->task->expire = TICK_ETERNITY;
|
|
if (b_data(&h1c->obuf)) {
|
|
h1c->task->expire = tick_add(now_ms, ((h1c->flags & (H1C_F_CS_SHUTW_NOW|H1C_F_CS_SHUTDOWN))
|
|
? h1c->shut_timeout
|
|
: h1c->timeout));
|
|
task_queue(h1c->task);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void h1_shutr(struct conn_stream *cs, enum cs_shr_mode mode)
|
|
{
|
|
struct h1s *h1s = cs->ctx;
|
|
|
|
if (!h1s)
|
|
return;
|
|
|
|
if ((h1s->flags & H1S_F_WANT_KAL) &&
|
|
!(cs->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH)))
|
|
return;
|
|
|
|
/* NOTE: Be sure to handle abort (cf. h2_shutr) */
|
|
if (cs->flags & CS_FL_SHR)
|
|
return;
|
|
if (conn_xprt_ready(cs->conn) && cs->conn->xprt->shutr)
|
|
cs->conn->xprt->shutr(cs->conn, (mode == CS_SHR_DRAIN));
|
|
if ((cs->conn->flags & (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH)) == (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH))
|
|
h1s->h1c->flags = (h1s->h1c->flags & ~H1C_F_CS_SHUTW_NOW) | H1C_F_CS_SHUTDOWN;
|
|
}
|
|
|
|
static void h1_shutw(struct conn_stream *cs, enum cs_shw_mode mode)
|
|
{
|
|
struct h1s *h1s = cs->ctx;
|
|
struct h1c *h1c;
|
|
|
|
if (!h1s)
|
|
return;
|
|
h1c = h1s->h1c;
|
|
|
|
if ((h1s->flags & H1S_F_WANT_KAL) &&
|
|
!(h1c->conn->flags & (CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH)) &&
|
|
|
|
h1s->req.state == H1_MSG_DONE && h1s->res.state == H1_MSG_DONE)
|
|
return;
|
|
|
|
h1c->flags |= H1C_F_CS_SHUTW_NOW;
|
|
if ((cs->flags & CS_FL_SHW) || b_data(&h1c->obuf))
|
|
return;
|
|
|
|
h1_shutw_conn(cs->conn, mode);
|
|
}
|
|
|
|
static void h1_shutw_conn(struct connection *conn, enum cs_shw_mode mode)
|
|
{
|
|
struct h1c *h1c = conn->ctx;
|
|
|
|
conn_xprt_shutw(conn);
|
|
conn_sock_shutw(conn, (mode == CS_SHW_NORMAL));
|
|
if ((conn->flags & (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH)) == (CO_FL_SOCK_RD_SH|CO_FL_SOCK_WR_SH))
|
|
h1c->flags = (h1c->flags & ~H1C_F_CS_SHUTW_NOW) | H1C_F_CS_SHUTDOWN;
|
|
}
|
|
|
|
/* Called from the upper layer, to unsubscribe to events */
|
|
static int h1_unsubscribe(struct conn_stream *cs, int event_type, void *param)
|
|
{
|
|
struct wait_event *sw;
|
|
struct h1s *h1s = cs->ctx;
|
|
|
|
if (!h1s)
|
|
return 0;
|
|
|
|
if (event_type & SUB_RETRY_RECV) {
|
|
sw = param;
|
|
if (h1s->recv_wait == sw) {
|
|
sw->events &= ~SUB_RETRY_RECV;
|
|
h1s->recv_wait = NULL;
|
|
}
|
|
}
|
|
if (event_type & SUB_RETRY_SEND) {
|
|
sw = param;
|
|
if (h1s->send_wait == sw) {
|
|
sw->events &= ~SUB_RETRY_SEND;
|
|
h1s->send_wait = NULL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Called from the upper layer, to subscribe to events, such as being able to send */
|
|
static int h1_subscribe(struct conn_stream *cs, int event_type, void *param)
|
|
{
|
|
struct wait_event *sw;
|
|
struct h1s *h1s = cs->ctx;
|
|
|
|
if (!h1s)
|
|
return -1;
|
|
|
|
switch (event_type) {
|
|
case SUB_RETRY_RECV:
|
|
sw = param;
|
|
if (!(sw->events & SUB_RETRY_RECV)) {
|
|
sw->events |= SUB_RETRY_RECV;
|
|
sw->handle = h1s;
|
|
h1s->recv_wait = sw;
|
|
}
|
|
return 0;
|
|
case SUB_RETRY_SEND:
|
|
sw = param;
|
|
if (!(sw->events & SUB_RETRY_SEND)) {
|
|
sw->events |= SUB_RETRY_SEND;
|
|
sw->handle = h1s;
|
|
h1s->send_wait = sw;
|
|
}
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* Called from the upper layer, to receive data */
|
|
static size_t h1_rcv_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags)
|
|
{
|
|
struct h1s *h1s = cs->ctx;
|
|
struct h1c *h1c = h1s->h1c;
|
|
size_t ret = 0;
|
|
|
|
if (!(h1c->flags & H1C_F_IN_ALLOC))
|
|
ret = h1_process_input(h1c, buf, flags);
|
|
|
|
if (flags & CO_RFL_BUF_FLUSH)
|
|
h1s->flags |= H1S_F_BUF_FLUSH;
|
|
else if (ret > 0 || (h1s->flags & H1S_F_SPLICED_DATA)) {
|
|
h1s->flags &= ~H1S_F_SPLICED_DATA;
|
|
if (!(h1c->wait_event.events & SUB_RETRY_RECV))
|
|
tasklet_wakeup(h1c->wait_event.task);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* Called from the upper layer, to send data */
|
|
static size_t h1_snd_buf(struct conn_stream *cs, struct buffer *buf, size_t count, int flags)
|
|
{
|
|
struct h1s *h1s = cs->ctx;
|
|
struct h1c *h1c;
|
|
size_t total = 0;
|
|
|
|
if (!h1s)
|
|
return 0;
|
|
|
|
h1c = h1s->h1c;
|
|
if (h1c->flags & H1C_F_CS_WAIT_CONN)
|
|
return 0;
|
|
|
|
while (total != count) {
|
|
size_t ret = 0;
|
|
|
|
if (!(h1c->flags & (H1C_F_OUT_FULL|H1C_F_OUT_ALLOC)))
|
|
ret = h1_process_output(h1c, buf, count);
|
|
if (!ret)
|
|
break;
|
|
total += ret;
|
|
if (!h1_send(h1c))
|
|
break;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
#if defined(CONFIG_HAP_LINUX_SPLICE)
|
|
/* Send and get, using splicing */
|
|
static int h1_rcv_pipe(struct conn_stream *cs, struct pipe *pipe, unsigned int count)
|
|
{
|
|
struct h1s *h1s = cs->ctx;
|
|
struct h1m *h1m = (!conn_is_back(cs->conn) ? &h1s->req : &h1s->res);
|
|
int ret = 0;
|
|
|
|
if (b_data(&h1s->h1c->ibuf)) {
|
|
h1s->flags |= H1S_F_BUF_FLUSH;
|
|
goto end;
|
|
}
|
|
|
|
h1s->flags &= ~H1S_F_BUF_FLUSH;
|
|
h1s->flags |= H1S_F_SPLICED_DATA;
|
|
if (h1m->state == H1_MSG_DATA && count > h1m->curr_len)
|
|
count = h1m->curr_len;
|
|
ret = cs->conn->xprt->rcv_pipe(cs->conn, pipe, count);
|
|
if (h1m->state == H1_MSG_DATA && ret > 0)
|
|
h1m->curr_len -= ret;
|
|
end:
|
|
return ret;
|
|
|
|
}
|
|
|
|
static int h1_snd_pipe(struct conn_stream *cs, struct pipe *pipe)
|
|
{
|
|
struct h1s *h1s = cs->ctx;
|
|
int ret = 0;
|
|
|
|
if (b_data(&h1s->h1c->obuf))
|
|
goto end;
|
|
|
|
ret = cs->conn->xprt->snd_pipe(cs->conn, pipe);
|
|
end:
|
|
if (pipe->data) {
|
|
if (!(h1s->h1c->wait_event.events & SUB_RETRY_SEND))
|
|
cs->conn->xprt->subscribe(cs->conn, SUB_RETRY_SEND, &h1s->h1c->wait_event);
|
|
}
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/* for debugging with CLI's "show fd" command */
|
|
static void h1_show_fd(struct buffer *msg, struct connection *conn)
|
|
{
|
|
struct h1c *h1c = conn->ctx;
|
|
struct h1s *h1s = h1c->h1s;
|
|
|
|
chunk_appendf(msg, " h1c.flg=0x%x .sub=%d .ibuf=%u@%p+%u/%u .obuf=%u@%p+%u/%u",
|
|
h1c->flags, h1c->wait_event.events,
|
|
(unsigned int)b_data(&h1c->ibuf), b_orig(&h1c->ibuf),
|
|
(unsigned int)b_head_ofs(&h1c->ibuf), (unsigned int)b_size(&h1c->ibuf),
|
|
(unsigned int)b_data(&h1c->obuf), b_orig(&h1c->obuf),
|
|
(unsigned int)b_head_ofs(&h1c->obuf), (unsigned int)b_size(&h1c->obuf));
|
|
|
|
if (h1s) {
|
|
char *method;
|
|
|
|
if (h1s->meth < HTTP_METH_OTHER)
|
|
method = http_known_methods[h1s->meth].ptr;
|
|
else
|
|
method = "UNKNOWN";
|
|
chunk_appendf(msg, " h1s=%p h1s.flg=0x%x .req.state=%s .res.state=%s"
|
|
" .meth=%s status=%d",
|
|
h1s, h1s->flags,
|
|
h1m_state_str(h1s->req.state),
|
|
h1m_state_str(h1s->res.state), method, h1s->status);
|
|
if (h1s->cs)
|
|
chunk_appendf(msg, " .cs.flg=0x%08x .cs.data=%p",
|
|
h1s->cs->flags, h1s->cs->data);
|
|
}
|
|
}
|
|
|
|
/****************************************/
|
|
/* MUX initialization and instanciation */
|
|
/****************************************/
|
|
|
|
/* The mux operations */
|
|
static const struct mux_ops mux_h1_ops = {
|
|
.init = h1_init,
|
|
.wake = h1_wake,
|
|
.attach = h1_attach,
|
|
.get_first_cs = h1_get_first_cs,
|
|
.get_cs_info = h1_get_cs_info,
|
|
.detach = h1_detach,
|
|
.destroy = h1_destroy,
|
|
.avail_streams = h1_avail_streams,
|
|
.used_streams = h1_used_streams,
|
|
.rcv_buf = h1_rcv_buf,
|
|
.snd_buf = h1_snd_buf,
|
|
#if defined(CONFIG_HAP_LINUX_SPLICE)
|
|
.rcv_pipe = h1_rcv_pipe,
|
|
.snd_pipe = h1_snd_pipe,
|
|
#endif
|
|
.subscribe = h1_subscribe,
|
|
.unsubscribe = h1_unsubscribe,
|
|
.shutr = h1_shutr,
|
|
.shutw = h1_shutw,
|
|
.show_fd = h1_show_fd,
|
|
.reset = h1_reset,
|
|
.flags = MX_FL_NONE,
|
|
.name = "h1",
|
|
};
|
|
|
|
|
|
/* this mux registers default HTX proto */
|
|
static struct mux_proto_list mux_proto_htx =
|
|
{ .token = IST(""), .mode = PROTO_MODE_HTX, .side = PROTO_SIDE_BOTH, .mux = &mux_h1_ops };
|
|
|
|
INITCALL1(STG_REGISTER, register_mux_proto, &mux_proto_htx);
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|