mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2025-08-07 23:56:57 +02:00
It's unclear what purpose these functions used to server, however they are not used anywhere, one good reason to remove them.
725 lines
19 KiB
C
725 lines
19 KiB
C
/*
|
|
* HTTP compression.
|
|
*
|
|
* Copyright 2012 Exceliance, David Du Colombier <dducolombier@exceliance.fr>
|
|
* William Lallemand <wlallemand@exceliance.fr>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
|
|
#ifdef USE_ZLIB
|
|
/* Note: the crappy zlib and openssl libs both define the "free_func" type.
|
|
* That's a very clever idea to use such a generic name in general purpose
|
|
* libraries, really... The zlib one is easier to redefine than openssl's,
|
|
* so let's only fix this one.
|
|
*/
|
|
#define free_func zlib_free_func
|
|
#include <zlib.h>
|
|
#undef free_func
|
|
#endif /* USE_ZLIB */
|
|
|
|
#include <common/compat.h>
|
|
#include <common/memory.h>
|
|
|
|
#include <types/global.h>
|
|
#include <types/compression.h>
|
|
|
|
#include <proto/acl.h>
|
|
#include <proto/compression.h>
|
|
#include <proto/freq_ctr.h>
|
|
#include <proto/proto_http.h>
|
|
|
|
|
|
#ifdef USE_ZLIB
|
|
|
|
static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size);
|
|
static void free_zlib(void *opaque, void *ptr);
|
|
|
|
/* zlib allocation */
|
|
static struct pool_head *zlib_pool_deflate_state = NULL;
|
|
static struct pool_head *zlib_pool_window = NULL;
|
|
static struct pool_head *zlib_pool_prev = NULL;
|
|
static struct pool_head *zlib_pool_head = NULL;
|
|
static struct pool_head *zlib_pool_pending_buf = NULL;
|
|
|
|
long zlib_used_memory = 0;
|
|
|
|
#endif
|
|
|
|
unsigned int compress_min_idle = 0;
|
|
static struct pool_head *pool_comp_ctx = NULL;
|
|
|
|
static int identity_init(struct comp_ctx **comp_ctx, int level);
|
|
static int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out);
|
|
static int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out);
|
|
static int identity_finish(struct comp_ctx *comp_ctx, struct buffer *out);
|
|
static int identity_end(struct comp_ctx **comp_ctx);
|
|
|
|
#ifdef USE_ZLIB
|
|
|
|
static int gzip_init(struct comp_ctx **comp_ctx, int level);
|
|
static int raw_def_init(struct comp_ctx **comp_ctx, int level);
|
|
static int deflate_init(struct comp_ctx **comp_ctx, int level);
|
|
static int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out);
|
|
static int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out);
|
|
static int deflate_finish(struct comp_ctx *comp_ctx, struct buffer *out);
|
|
static int deflate_end(struct comp_ctx **comp_ctx);
|
|
|
|
#endif /* USE_ZLIB */
|
|
|
|
|
|
const struct comp_algo comp_algos[] =
|
|
{
|
|
{ "identity", 8, "identity", 8, identity_init, identity_add_data, identity_flush, identity_finish, identity_end },
|
|
#ifdef USE_ZLIB
|
|
{ "deflate", 7, "deflate", 7, deflate_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end },
|
|
{ "raw-deflate", 11, "deflate", 7, raw_def_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end },
|
|
{ "gzip", 4, "gzip", 4, gzip_init, deflate_add_data, deflate_flush, deflate_finish, deflate_end },
|
|
#endif /* USE_ZLIB */
|
|
{ NULL, 0, NULL, 0, NULL , NULL, NULL, NULL, NULL }
|
|
};
|
|
|
|
/*
|
|
* Add a content-type in the configuration
|
|
*/
|
|
int comp_append_type(struct comp *comp, const char *type)
|
|
{
|
|
struct comp_type *comp_type;
|
|
|
|
comp_type = calloc(1, sizeof(struct comp_type));
|
|
comp_type->name_len = strlen(type);
|
|
comp_type->name = strdup(type);
|
|
comp_type->next = comp->types;
|
|
comp->types = comp_type;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add an algorithm in the configuration
|
|
*/
|
|
int comp_append_algo(struct comp *comp, const char *algo)
|
|
{
|
|
struct comp_algo *comp_algo;
|
|
int i;
|
|
|
|
for (i = 0; comp_algos[i].cfg_name; i++) {
|
|
if (!strcmp(algo, comp_algos[i].cfg_name)) {
|
|
comp_algo = calloc(1, sizeof(struct comp_algo));
|
|
memmove(comp_algo, &comp_algos[i], sizeof(struct comp_algo));
|
|
comp_algo->next = comp->algos;
|
|
comp->algos = comp_algo;
|
|
return 0;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/* emit the chunksize followed by a CRLF on the output and return the number of
|
|
* bytes written. It goes backwards and starts with the byte before <end>. It
|
|
* returns the number of bytes written which will not exceed 10 (8 digits, CR,
|
|
* and LF). The caller is responsible for ensuring there is enough room left in
|
|
* the output buffer for the string.
|
|
*/
|
|
int http_emit_chunk_size(char *end, unsigned int chksz)
|
|
{
|
|
char *beg = end;
|
|
|
|
*--beg = '\n';
|
|
*--beg = '\r';
|
|
do {
|
|
*--beg = hextab[chksz & 0xF];
|
|
} while (chksz >>= 4);
|
|
return end - beg;
|
|
}
|
|
|
|
/*
|
|
* Init HTTP compression
|
|
*/
|
|
int http_compression_buffer_init(struct session *s, struct buffer *in, struct buffer *out)
|
|
{
|
|
/* output stream requires at least 10 bytes for the gzip header, plus
|
|
* at least 8 bytes for the gzip trailer (crc+len), plus a possible
|
|
* plus at most 5 bytes per 32kB block and 2 bytes to close the stream.
|
|
*/
|
|
if (in->size - buffer_len(in) < 20 + 5 * ((in->i + 32767) >> 15))
|
|
return -1;
|
|
|
|
/* prepare an empty output buffer in which we reserve enough room for
|
|
* copying the output bytes from <in>, plus 10 extra bytes to write
|
|
* the chunk size. We don't copy the bytes yet so that if we have to
|
|
* cancel the operation later, it's cheap.
|
|
*/
|
|
b_reset(out);
|
|
out->o = in->o;
|
|
out->p += out->o;
|
|
out->i = 10;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add data to compress
|
|
*/
|
|
int http_compression_buffer_add_data(struct session *s, struct buffer *in, struct buffer *out)
|
|
{
|
|
struct http_msg *msg = &s->txn.rsp;
|
|
int consumed_data = 0;
|
|
int data_process_len;
|
|
int block1, block2;
|
|
|
|
/*
|
|
* Temporarily skip already parsed data and chunks to jump to the
|
|
* actual data block. It is fixed before leaving.
|
|
*/
|
|
b_adv(in, msg->next);
|
|
|
|
/*
|
|
* select the smallest size between the announced chunk size, the input
|
|
* data, and the available output buffer size. The compressors are
|
|
* assumed to be able to process all the bytes we pass to them at once.
|
|
*/
|
|
data_process_len = MIN(in->i, msg->chunk_len);
|
|
data_process_len = MIN(out->size - buffer_len(out), data_process_len);
|
|
|
|
block1 = data_process_len;
|
|
if (block1 > bi_contig_data(in))
|
|
block1 = bi_contig_data(in);
|
|
block2 = data_process_len - block1;
|
|
|
|
/* compressors return < 0 upon error or the amount of bytes read */
|
|
consumed_data = s->comp_algo->add_data(s->comp_ctx, bi_ptr(in), block1, out);
|
|
if (consumed_data >= 0 && block2 > 0) {
|
|
consumed_data = s->comp_algo->add_data(s->comp_ctx, in->data, block2, out);
|
|
if (consumed_data >= 0)
|
|
consumed_data += block1;
|
|
}
|
|
|
|
/* restore original buffer pointer */
|
|
b_rew(in, msg->next);
|
|
|
|
if (consumed_data > 0) {
|
|
msg->next += consumed_data;
|
|
msg->chunk_len -= consumed_data;
|
|
}
|
|
return consumed_data;
|
|
}
|
|
|
|
/*
|
|
* Flush data in process, and write the header and footer of the chunk. Upon
|
|
* success, in and out buffers are swapped to avoid a copy.
|
|
*/
|
|
int http_compression_buffer_end(struct session *s, struct buffer **in, struct buffer **out, int end)
|
|
{
|
|
int to_forward;
|
|
int left;
|
|
struct http_msg *msg = &s->txn.rsp;
|
|
struct buffer *ib = *in, *ob = *out;
|
|
char *tail;
|
|
|
|
#ifdef USE_ZLIB
|
|
int ret;
|
|
|
|
/* flush data here */
|
|
|
|
if (end)
|
|
ret = s->comp_algo->finish(s->comp_ctx, ob); /* end of data */
|
|
else
|
|
ret = s->comp_algo->flush(s->comp_ctx, ob); /* end of buffer */
|
|
|
|
if (ret < 0)
|
|
return -1; /* flush failed */
|
|
|
|
#endif /* USE_ZLIB */
|
|
|
|
if (ob->i == 10) {
|
|
/* No data were appended, let's drop the output buffer and
|
|
* keep the input buffer unchanged.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* OK so at this stage, we have an output buffer <ob> looking like this :
|
|
*
|
|
* <-- o --> <------ i ----->
|
|
* +---------+---+------------+-----------+
|
|
* | out | c | comp_in | empty |
|
|
* +---------+---+------------+-----------+
|
|
* data p size
|
|
*
|
|
* <out> is the room reserved to copy ib->o. It starts at ob->data and
|
|
* has not yet been filled. <c> is the room reserved to write the chunk
|
|
* size (10 bytes). <comp_in> is the compressed equivalent of the data
|
|
* part of ib->i. <empty> is the amount of empty bytes at the end of
|
|
* the buffer, into which we may have to copy the remaining bytes from
|
|
* ib->i after the data (chunk size, trailers, ...).
|
|
*/
|
|
|
|
/* Write real size at the begining of the chunk, no need of wrapping.
|
|
* We write the chunk using a dynamic length and adjust ob->p and ob->i
|
|
* accordingly afterwards. That will move <out> away from <data>.
|
|
*/
|
|
left = 10 - http_emit_chunk_size(ob->p + 10, ob->i - 10);
|
|
ob->p += left;
|
|
ob->i -= left;
|
|
|
|
/* Copy previous data from ib->o into ob->o */
|
|
if (ib->o > 0) {
|
|
left = bo_contig_data(ib);
|
|
memcpy(ob->p - ob->o, bo_ptr(ib), left);
|
|
if (ib->o - left) /* second part of the buffer */
|
|
memcpy(ob->p - ob->o + left, ib->data, ib->o - left);
|
|
}
|
|
|
|
/* chunked encoding requires CRLF after data */
|
|
tail = ob->p + ob->i;
|
|
*tail++ = '\r';
|
|
*tail++ = '\n';
|
|
|
|
/* At the end of data, we must write the empty chunk 0<CRLF>,
|
|
* and terminate the trailers section with a last <CRLF>. If
|
|
* we're forwarding a chunked-encoded response, we'll have a
|
|
* trailers section after the empty chunk which needs to be
|
|
* forwarded and which will provide the last CRLF. Otherwise
|
|
* we write it ourselves.
|
|
*/
|
|
if (msg->msg_state >= HTTP_MSG_TRAILERS) {
|
|
memcpy(tail, "0\r\n", 3);
|
|
tail += 3;
|
|
if (msg->msg_state >= HTTP_MSG_DONE) {
|
|
memcpy(tail, "\r\n", 2);
|
|
tail += 2;
|
|
}
|
|
}
|
|
ob->i = tail - ob->p;
|
|
|
|
to_forward = ob->i;
|
|
|
|
/* update input rate */
|
|
if (s->comp_ctx && s->comp_ctx->cur_lvl > 0) {
|
|
update_freq_ctr(&global.comp_bps_in, msg->next);
|
|
s->fe->fe_counters.comp_in += msg->next;
|
|
s->be->be_counters.comp_in += msg->next;
|
|
} else {
|
|
s->fe->fe_counters.comp_byp += msg->next;
|
|
s->be->be_counters.comp_byp += msg->next;
|
|
}
|
|
|
|
/* copy the remaining data in the tmp buffer. */
|
|
b_adv(ib, msg->next);
|
|
msg->next = 0;
|
|
|
|
if (ib->i > 0) {
|
|
left = bi_contig_data(ib);
|
|
memcpy(ob->p + ob->i, bi_ptr(ib), left);
|
|
ob->i += left;
|
|
if (ib->i - left) {
|
|
memcpy(ob->p + ob->i, ib->data, ib->i - left);
|
|
ob->i += ib->i - left;
|
|
}
|
|
}
|
|
|
|
/* swap the buffers */
|
|
*in = ob;
|
|
*out = ib;
|
|
|
|
if (s->comp_ctx && s->comp_ctx->cur_lvl > 0) {
|
|
update_freq_ctr(&global.comp_bps_out, to_forward);
|
|
s->fe->fe_counters.comp_out += to_forward;
|
|
s->be->be_counters.comp_out += to_forward;
|
|
}
|
|
|
|
/* forward the new chunk without remaining data */
|
|
b_adv(ob, to_forward);
|
|
|
|
return to_forward;
|
|
}
|
|
|
|
/*
|
|
* Alloc the comp_ctx
|
|
*/
|
|
static inline int init_comp_ctx(struct comp_ctx **comp_ctx)
|
|
{
|
|
#ifdef USE_ZLIB
|
|
z_stream *strm;
|
|
|
|
if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < sizeof(struct comp_ctx))
|
|
return -1;
|
|
#endif
|
|
|
|
if (unlikely(pool_comp_ctx == NULL))
|
|
pool_comp_ctx = create_pool("comp_ctx", sizeof(struct comp_ctx), MEM_F_SHARED);
|
|
|
|
*comp_ctx = pool_alloc2(pool_comp_ctx);
|
|
if (*comp_ctx == NULL)
|
|
return -1;
|
|
#ifdef USE_ZLIB
|
|
zlib_used_memory += sizeof(struct comp_ctx);
|
|
|
|
strm = &(*comp_ctx)->strm;
|
|
strm->zalloc = alloc_zlib;
|
|
strm->zfree = free_zlib;
|
|
strm->opaque = *comp_ctx;
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Dealloc the comp_ctx
|
|
*/
|
|
static inline int deinit_comp_ctx(struct comp_ctx **comp_ctx)
|
|
{
|
|
if (!*comp_ctx)
|
|
return 0;
|
|
|
|
pool_free2(pool_comp_ctx, *comp_ctx);
|
|
*comp_ctx = NULL;
|
|
|
|
#ifdef USE_ZLIB
|
|
zlib_used_memory -= sizeof(struct comp_ctx);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
/****************************
|
|
**** Identity algorithm ****
|
|
****************************/
|
|
|
|
/*
|
|
* Init the identity algorithm
|
|
*/
|
|
static int identity_init(struct comp_ctx **comp_ctx, int level)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Process data
|
|
* Return size of consumed data or -1 on error
|
|
*/
|
|
static int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
|
|
{
|
|
char *out_data = bi_end(out);
|
|
int out_len = out->size - buffer_len(out);
|
|
|
|
if (out_len < in_len)
|
|
return -1;
|
|
|
|
memcpy(out_data, in_data, in_len);
|
|
|
|
out->i += in_len;
|
|
|
|
return in_len;
|
|
}
|
|
|
|
static int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int identity_finish(struct comp_ctx *comp_ctx, struct buffer *out)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int identity_reset(struct comp_ctx *comp_ctx)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Deinit the algorithm
|
|
*/
|
|
static int identity_end(struct comp_ctx **comp_ctx)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
#ifdef USE_ZLIB
|
|
/*
|
|
* This is a tricky allocation function using the zlib.
|
|
* This is based on the allocation order in deflateInit2.
|
|
*/
|
|
static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size)
|
|
{
|
|
struct comp_ctx *ctx = opaque;
|
|
static char round = 0; /* order in deflateInit2 */
|
|
void *buf = NULL;
|
|
struct pool_head *pool = NULL;
|
|
|
|
if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < (long)(items * size))
|
|
goto end;
|
|
|
|
switch (round) {
|
|
case 0:
|
|
if (zlib_pool_deflate_state == NULL)
|
|
zlib_pool_deflate_state = create_pool("zlib_state", size * items, MEM_F_SHARED);
|
|
pool = zlib_pool_deflate_state;
|
|
ctx->zlib_deflate_state = buf = pool_alloc2(pool);
|
|
break;
|
|
|
|
case 1:
|
|
if (zlib_pool_window == NULL)
|
|
zlib_pool_window = create_pool("zlib_window", size * items, MEM_F_SHARED);
|
|
pool = zlib_pool_window;
|
|
ctx->zlib_window = buf = pool_alloc2(pool);
|
|
break;
|
|
|
|
case 2:
|
|
if (zlib_pool_prev == NULL)
|
|
zlib_pool_prev = create_pool("zlib_prev", size * items, MEM_F_SHARED);
|
|
pool = zlib_pool_prev;
|
|
ctx->zlib_prev = buf = pool_alloc2(pool);
|
|
break;
|
|
|
|
case 3:
|
|
if (zlib_pool_head == NULL)
|
|
zlib_pool_head = create_pool("zlib_head", size * items, MEM_F_SHARED);
|
|
pool = zlib_pool_head;
|
|
ctx->zlib_head = buf = pool_alloc2(pool);
|
|
break;
|
|
|
|
case 4:
|
|
if (zlib_pool_pending_buf == NULL)
|
|
zlib_pool_pending_buf = create_pool("zlib_pending_buf", size * items, MEM_F_SHARED);
|
|
pool = zlib_pool_pending_buf;
|
|
ctx->zlib_pending_buf = buf = pool_alloc2(pool);
|
|
break;
|
|
}
|
|
if (buf != NULL)
|
|
zlib_used_memory += pool->size;
|
|
|
|
end:
|
|
|
|
/* deflateInit2() first allocates and checks the deflate_state, then if
|
|
* it succeeds, it allocates all other 4 areas at ones and checks them
|
|
* at the end. So we want to correctly count the rounds depending on when
|
|
* zlib is supposed to abort.
|
|
*/
|
|
if (buf || round)
|
|
round = (round + 1) % 5;
|
|
return buf;
|
|
}
|
|
|
|
static void free_zlib(void *opaque, void *ptr)
|
|
{
|
|
struct comp_ctx *ctx = opaque;
|
|
struct pool_head *pool = NULL;
|
|
|
|
if (ptr == ctx->zlib_window)
|
|
pool = zlib_pool_window;
|
|
else if (ptr == ctx->zlib_deflate_state)
|
|
pool = zlib_pool_deflate_state;
|
|
else if (ptr == ctx->zlib_prev)
|
|
pool = zlib_pool_prev;
|
|
else if (ptr == ctx->zlib_head)
|
|
pool = zlib_pool_head;
|
|
else if (ptr == ctx->zlib_pending_buf)
|
|
pool = zlib_pool_pending_buf;
|
|
|
|
pool_free2(pool, ptr);
|
|
zlib_used_memory -= pool->size;
|
|
}
|
|
|
|
/**************************
|
|
**** gzip algorithm ****
|
|
***************************/
|
|
static int gzip_init(struct comp_ctx **comp_ctx, int level)
|
|
{
|
|
z_stream *strm;
|
|
|
|
if (init_comp_ctx(comp_ctx) < 0)
|
|
return -1;
|
|
|
|
strm = &(*comp_ctx)->strm;
|
|
|
|
if (deflateInit2(strm, level, Z_DEFLATED, global.tune.zlibwindowsize + 16, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) {
|
|
deinit_comp_ctx(comp_ctx);
|
|
return -1;
|
|
}
|
|
|
|
(*comp_ctx)->cur_lvl = level;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Raw deflate algorithm */
|
|
static int raw_def_init(struct comp_ctx **comp_ctx, int level)
|
|
{
|
|
z_stream *strm;
|
|
|
|
if (init_comp_ctx(comp_ctx) < 0)
|
|
return -1;
|
|
|
|
strm = &(*comp_ctx)->strm;
|
|
|
|
if (deflateInit2(strm, level, Z_DEFLATED, -global.tune.zlibwindowsize, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) {
|
|
deinit_comp_ctx(comp_ctx);
|
|
return -1;
|
|
}
|
|
|
|
(*comp_ctx)->cur_lvl = level;
|
|
return 0;
|
|
}
|
|
|
|
/**************************
|
|
**** Deflate algorithm ****
|
|
***************************/
|
|
|
|
static int deflate_init(struct comp_ctx **comp_ctx, int level)
|
|
{
|
|
z_stream *strm;
|
|
|
|
if (init_comp_ctx(comp_ctx) < 0)
|
|
return -1;
|
|
|
|
strm = &(*comp_ctx)->strm;
|
|
|
|
if (deflateInit2(strm, level, Z_DEFLATED, global.tune.zlibwindowsize, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) {
|
|
deinit_comp_ctx(comp_ctx);
|
|
return -1;
|
|
}
|
|
|
|
(*comp_ctx)->cur_lvl = level;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return the size of consumed data or -1 */
|
|
static int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
|
|
{
|
|
int ret;
|
|
z_stream *strm = &comp_ctx->strm;
|
|
char *out_data = bi_end(out);
|
|
int out_len = out->size - buffer_len(out);
|
|
|
|
if (in_len <= 0)
|
|
return 0;
|
|
|
|
|
|
if (out_len <= 0)
|
|
return -1;
|
|
|
|
strm->next_in = (unsigned char *)in_data;
|
|
strm->avail_in = in_len;
|
|
strm->next_out = (unsigned char *)out_data;
|
|
strm->avail_out = out_len;
|
|
|
|
ret = deflate(strm, Z_NO_FLUSH);
|
|
if (ret != Z_OK)
|
|
return -1;
|
|
|
|
/* deflate update the available data out */
|
|
out->i += out_len - strm->avail_out;
|
|
|
|
return in_len - strm->avail_in;
|
|
}
|
|
|
|
static int deflate_flush_or_finish(struct comp_ctx *comp_ctx, struct buffer *out, int flag)
|
|
{
|
|
int ret;
|
|
int out_len = 0;
|
|
z_stream *strm = &comp_ctx->strm;
|
|
|
|
strm->next_out = (unsigned char *)bi_end(out);
|
|
strm->avail_out = out->size - buffer_len(out);
|
|
|
|
ret = deflate(strm, flag);
|
|
if (ret != Z_OK && ret != Z_STREAM_END)
|
|
return -1;
|
|
|
|
out_len = (out->size - buffer_len(out)) - strm->avail_out;
|
|
out->i += out_len;
|
|
|
|
/* compression limit */
|
|
if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) || /* rate */
|
|
(idle_pct < compress_min_idle)) { /* idle */
|
|
/* decrease level */
|
|
if (comp_ctx->cur_lvl > 0) {
|
|
comp_ctx->cur_lvl--;
|
|
deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY);
|
|
}
|
|
|
|
} else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel) {
|
|
/* increase level */
|
|
comp_ctx->cur_lvl++ ;
|
|
deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY);
|
|
}
|
|
|
|
return out_len;
|
|
}
|
|
|
|
static int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out)
|
|
{
|
|
return deflate_flush_or_finish(comp_ctx, out, Z_SYNC_FLUSH);
|
|
}
|
|
|
|
static int deflate_finish(struct comp_ctx *comp_ctx, struct buffer *out)
|
|
{
|
|
return deflate_flush_or_finish(comp_ctx, out, Z_FINISH);
|
|
}
|
|
|
|
static int deflate_end(struct comp_ctx **comp_ctx)
|
|
{
|
|
z_stream *strm = &(*comp_ctx)->strm;
|
|
int ret;
|
|
|
|
ret = deflateEnd(strm);
|
|
|
|
deinit_comp_ctx(comp_ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#endif /* USE_ZLIB */
|
|
|
|
/* boolean, returns true if compression is used (either gzip or deflate) in the response */
|
|
static int
|
|
smp_fetch_res_comp(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
|
|
const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->type = SMP_T_BOOL;
|
|
smp->data.uint = (l4->comp_algo != NULL);
|
|
return 1;
|
|
}
|
|
|
|
/* string, returns algo */
|
|
static int
|
|
smp_fetch_res_comp_algo(struct proxy *px, struct session *l4, void *l7, unsigned int opt,
|
|
const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
if (!l4->comp_algo)
|
|
return 0;
|
|
|
|
smp->type = SMP_T_STR;
|
|
smp->flags = SMP_F_CONST;
|
|
smp->data.str.str = l4->comp_algo->cfg_name;
|
|
smp->data.str.len = l4->comp_algo->cfg_name_len;
|
|
return 1;
|
|
}
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten */
|
|
static struct acl_kw_list acl_kws = {ILH, {
|
|
{ /* END */ },
|
|
}};
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten */
|
|
static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
|
|
{ "res.comp", smp_fetch_res_comp, 0, NULL, SMP_T_BOOL, SMP_USE_HRSHP },
|
|
{ "res.comp_algo", smp_fetch_res_comp_algo, 0, NULL, SMP_T_STR, SMP_USE_HRSHP },
|
|
{ /* END */ },
|
|
}};
|
|
|
|
__attribute__((constructor))
|
|
static void __comp_fetch_init(void)
|
|
{
|
|
acl_register_keywords(&acl_kws);
|
|
sample_register_fetches(&sample_fetch_keywords);
|
|
}
|