mirror of
				https://git.haproxy.org/git/haproxy.git/
				synced 2025-11-04 10:31:14 +01:00 
			
		
		
		
	The commit bf3ae617 introduced a regression about the forward of the trailers in compression mode.
		
			
				
	
	
		
			612 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			612 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * HTTP compression.
 | 
						|
 *
 | 
						|
 * Copyright 2012 Exceliance, David Du Colombier <dducolombier@exceliance.fr>
 | 
						|
 *                            William Lallemand <wlallemand@exceliance.fr>
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version
 | 
						|
 * 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
#ifdef USE_ZLIB
 | 
						|
/* Note: the crappy zlib and openssl libs both define the "free_func" type.
 | 
						|
 * That's a very clever idea to use such a generic name in general purpose
 | 
						|
 * libraries, really... The zlib one is easier to redefine than openssl's,
 | 
						|
 * so let's only fix this one.
 | 
						|
 */
 | 
						|
#define free_func zlib_free_func
 | 
						|
#include <zlib.h>
 | 
						|
#undef free_func
 | 
						|
#endif /* USE_ZLIB */
 | 
						|
 | 
						|
#include <common/compat.h>
 | 
						|
#include <common/memory.h>
 | 
						|
 | 
						|
#include <types/global.h>
 | 
						|
#include <types/compression.h>
 | 
						|
 | 
						|
#include <proto/compression.h>
 | 
						|
#include <proto/freq_ctr.h>
 | 
						|
#include <proto/proto_http.h>
 | 
						|
 | 
						|
 | 
						|
#ifdef USE_ZLIB
 | 
						|
 | 
						|
static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size);
 | 
						|
static void free_zlib(void *opaque, void *ptr);
 | 
						|
 | 
						|
/* zlib allocation  */
 | 
						|
static struct pool_head *zlib_pool_deflate_state = NULL;
 | 
						|
static struct pool_head *zlib_pool_window = NULL;
 | 
						|
static struct pool_head *zlib_pool_prev = NULL;
 | 
						|
static struct pool_head *zlib_pool_head = NULL;
 | 
						|
static struct pool_head *zlib_pool_pending_buf = NULL;
 | 
						|
 | 
						|
long zlib_used_memory = 0;
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
unsigned int compress_min_idle = 0;
 | 
						|
static struct pool_head *pool_comp_ctx = NULL;
 | 
						|
 | 
						|
 | 
						|
const struct comp_algo comp_algos[] =
 | 
						|
{
 | 
						|
	{ "identity", 8, identity_init, identity_add_data, identity_flush, identity_reset, identity_end },
 | 
						|
#ifdef USE_ZLIB
 | 
						|
	{ "deflate",  7, deflate_init,  deflate_add_data,  deflate_flush,  deflate_reset,  deflate_end },
 | 
						|
	{ "gzip",     4, gzip_init,     deflate_add_data,  deflate_flush,  deflate_reset,  deflate_end },
 | 
						|
#endif /* USE_ZLIB */
 | 
						|
	{ NULL,       0, NULL ,         NULL,              NULL,           NULL,           NULL }
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Add a content-type in the configuration
 | 
						|
 */
 | 
						|
int comp_append_type(struct comp *comp, const char *type)
 | 
						|
{
 | 
						|
	struct comp_type *comp_type;
 | 
						|
 | 
						|
	comp_type = calloc(1, sizeof(struct comp_type));
 | 
						|
	comp_type->name_len = strlen(type);
 | 
						|
	comp_type->name = strdup(type);
 | 
						|
	comp_type->next = comp->types;
 | 
						|
	comp->types = comp_type;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add an algorithm in the configuration
 | 
						|
 */
 | 
						|
int comp_append_algo(struct comp *comp, const char *algo)
 | 
						|
{
 | 
						|
	struct comp_algo *comp_algo;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; comp_algos[i].name; i++) {
 | 
						|
		if (!strcmp(algo, comp_algos[i].name)) {
 | 
						|
			comp_algo = calloc(1, sizeof(struct comp_algo));
 | 
						|
			memmove(comp_algo, &comp_algos[i], sizeof(struct comp_algo));
 | 
						|
			comp_algo->next = comp->algos;
 | 
						|
			comp->algos = comp_algo;
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* emit the chunksize followed by a CRLF on the output and return the number of
 | 
						|
 * bytes written. Appends <add_crlf> additional CRLF after the first one. Chunk
 | 
						|
 * sizes are truncated to 6 hex digits (16 MB) and padded left. The caller is
 | 
						|
 * responsible for ensuring there is enough room left in the output buffer for
 | 
						|
 * the string (8 bytes * add_crlf*2).
 | 
						|
 */
 | 
						|
int http_emit_chunk_size(char *out, unsigned int chksz, int add_crlf)
 | 
						|
{
 | 
						|
	int shift;
 | 
						|
	int pos = 0;
 | 
						|
 | 
						|
	for (shift = 20; shift >= 0; shift -= 4)
 | 
						|
		out[pos++] = hextab[(chksz >> shift) & 0xF];
 | 
						|
 | 
						|
	do {
 | 
						|
		out[pos++] = '\r';
 | 
						|
		out[pos++] = '\n';
 | 
						|
	} while (--add_crlf >= 0);
 | 
						|
 | 
						|
	return pos;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Init HTTP compression
 | 
						|
 */
 | 
						|
int http_compression_buffer_init(struct session *s, struct buffer *in, struct buffer *out)
 | 
						|
{
 | 
						|
	struct http_msg *msg = &s->txn.rsp;
 | 
						|
	int left;
 | 
						|
 | 
						|
	/* not enough space */
 | 
						|
	if (in->size - buffer_len(in) < 40)
 | 
						|
	    return -1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Skip data, we don't need them in the new buffer. They are results
 | 
						|
	 * of CHUNK_CRLF and CHUNK_SIZE parsing.
 | 
						|
	 */
 | 
						|
	b_adv(in, msg->next);
 | 
						|
	msg->next = 0;
 | 
						|
	msg->sov = 0;
 | 
						|
	msg->sol = 0;
 | 
						|
 | 
						|
	out->size = global.tune.bufsize;
 | 
						|
	out->i = 0;
 | 
						|
	out->o = 0;
 | 
						|
	out->p = out->data;
 | 
						|
	/* copy output data */
 | 
						|
	if (in->o > 0) {
 | 
						|
		left = in->o - bo_contig_data(in);
 | 
						|
		memcpy(out->data, bo_ptr(in), bo_contig_data(in));
 | 
						|
		out->p += bo_contig_data(in);
 | 
						|
		if (left > 0) { /* second part of the buffer */
 | 
						|
			memcpy(out->p, in->data, left);
 | 
						|
			out->p += left;
 | 
						|
		}
 | 
						|
		out->o = in->o;
 | 
						|
	}
 | 
						|
	out->i += http_emit_chunk_size(out->p, 0, 0);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add data to compress
 | 
						|
 */
 | 
						|
int http_compression_buffer_add_data(struct session *s, struct buffer *in, struct buffer *out)
 | 
						|
{
 | 
						|
	struct http_msg *msg = &s->txn.rsp;
 | 
						|
	int consumed_data = 0;
 | 
						|
	int data_process_len;
 | 
						|
	int left;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Skip data, we don't need them in the new buffer. They are results
 | 
						|
	 * of CHUNK_CRLF and CHUNK_SIZE parsing.
 | 
						|
	 */
 | 
						|
	b_adv(in, msg->next);
 | 
						|
	msg->next = 0;
 | 
						|
	msg->sov = 0;
 | 
						|
	msg->sol = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * select the smallest size between the announced chunk size, the input
 | 
						|
	 * data, and the available output buffer size
 | 
						|
	 */
 | 
						|
	data_process_len = MIN(in->i, msg->chunk_len);
 | 
						|
	data_process_len = MIN(out->size - buffer_len(out), data_process_len);
 | 
						|
 | 
						|
	left = data_process_len - bi_contig_data(in);
 | 
						|
	if (left <= 0) {
 | 
						|
		consumed_data += ret = s->comp_algo->add_data(s->comp_ctx, bi_ptr(in), data_process_len, out);
 | 
						|
		if (ret < 0)
 | 
						|
			return -1;
 | 
						|
 | 
						|
	} else {
 | 
						|
		consumed_data += ret = s->comp_algo->add_data(s->comp_ctx, bi_ptr(in), bi_contig_data(in), out);
 | 
						|
		if (ret < 0)
 | 
						|
			return -1;
 | 
						|
		consumed_data += ret = s->comp_algo->add_data(s->comp_ctx, in->data, left, out);
 | 
						|
		if (ret < 0)
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	b_adv(in, data_process_len);
 | 
						|
	msg->chunk_len -= data_process_len;
 | 
						|
 | 
						|
	return consumed_data;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Flush data in process, and write the header and footer of the chunk. Upon
 | 
						|
 * success, in and out buffers are swapped to avoid a copy.
 | 
						|
 */
 | 
						|
int http_compression_buffer_end(struct session *s, struct buffer **in, struct buffer **out, int end)
 | 
						|
{
 | 
						|
	int to_forward, forwarded;
 | 
						|
	int left;
 | 
						|
	struct http_msg *msg = &s->txn.rsp;
 | 
						|
	struct buffer *ib = *in, *ob = *out;
 | 
						|
 | 
						|
#ifdef USE_ZLIB
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* flush data here */
 | 
						|
 | 
						|
	if (end)
 | 
						|
		ret = s->comp_algo->flush(s->comp_ctx, ob, Z_FINISH); /* end of data */
 | 
						|
	else
 | 
						|
		ret = s->comp_algo->flush(s->comp_ctx, ob, Z_SYNC_FLUSH); /* end of buffer */
 | 
						|
 | 
						|
	if (ret < 0)
 | 
						|
		return -1; /* flush failed */
 | 
						|
 | 
						|
#endif /* USE_ZLIB */
 | 
						|
 | 
						|
	if (ob->i > 8) {
 | 
						|
		/* more than a chunk size => some data were emitted */
 | 
						|
		char *tail = ob->p + ob->i;
 | 
						|
 | 
						|
		/* write real size at the begining of the chunk, no need of wrapping */
 | 
						|
		http_emit_chunk_size(ob->p, ob->i - 8, 0);
 | 
						|
 | 
						|
		/* chunked encoding requires CRLF after data */
 | 
						|
		*tail++ = '\r';
 | 
						|
		*tail++ = '\n';
 | 
						|
 | 
						|
		if (!(msg->flags & HTTP_MSGF_TE_CHNK) && msg->chunk_len == 0) {
 | 
						|
			/* End of data, 0<CRLF><CRLF> is needed but we're not
 | 
						|
			 * in chunked mode on input so we must add it ourselves.
 | 
						|
			 */
 | 
						|
			memcpy(tail, "0\r\n\r\n", 5);
 | 
						|
			tail += 5;
 | 
						|
		}
 | 
						|
		ob->i = tail - ob->p;
 | 
						|
	} else {
 | 
						|
		/* no data were sent, cancel the chunk size */
 | 
						|
		ob->i = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	to_forward = ob->i;
 | 
						|
 | 
						|
	/* update input rate */
 | 
						|
	forwarded = ib->o - ob->o;
 | 
						|
	if (s->comp_ctx && s->comp_ctx->cur_lvl > 0) {
 | 
						|
		update_freq_ctr(&global.comp_bps_in, forwarded);
 | 
						|
		s->fe->fe_counters.comp_in += forwarded;
 | 
						|
		s->be->be_counters.comp_in += forwarded;
 | 
						|
	} else {
 | 
						|
		s->fe->fe_counters.comp_byp += forwarded;
 | 
						|
		s->be->be_counters.comp_byp += forwarded;
 | 
						|
	}
 | 
						|
 | 
						|
	/* copy the remaining data in the tmp buffer. */
 | 
						|
	if (ib->i > 0) {
 | 
						|
		left = ib->i - bi_contig_data(ib);
 | 
						|
		memcpy(bi_end(ob), bi_ptr(ib), bi_contig_data(ib));
 | 
						|
		ob->i += bi_contig_data(ib);
 | 
						|
		if (left > 0) {
 | 
						|
			memcpy(bi_end(ob), ib->data, left);
 | 
						|
			ob->i += left;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* swap the buffers */
 | 
						|
	*in = ob;
 | 
						|
	*out = ib;
 | 
						|
 | 
						|
	if (s->comp_ctx && s->comp_ctx->cur_lvl > 0) {
 | 
						|
		update_freq_ctr(&global.comp_bps_out, to_forward);
 | 
						|
		s->fe->fe_counters.comp_out += to_forward;
 | 
						|
		s->be->be_counters.comp_out += to_forward;
 | 
						|
	}
 | 
						|
 | 
						|
	/* forward the new chunk without remaining data */
 | 
						|
	b_adv(ob, to_forward);
 | 
						|
 | 
						|
	return to_forward;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Alloc the comp_ctx
 | 
						|
 */
 | 
						|
static inline int init_comp_ctx(struct comp_ctx **comp_ctx)
 | 
						|
{
 | 
						|
#ifdef USE_ZLIB
 | 
						|
	z_stream *strm;
 | 
						|
 | 
						|
	if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < sizeof(struct comp_ctx))
 | 
						|
		return -1;
 | 
						|
#endif
 | 
						|
 | 
						|
	if (unlikely(pool_comp_ctx == NULL))
 | 
						|
		pool_comp_ctx = create_pool("comp_ctx", sizeof(struct comp_ctx), MEM_F_SHARED);
 | 
						|
 | 
						|
	*comp_ctx = pool_alloc2(pool_comp_ctx);
 | 
						|
	if (*comp_ctx == NULL)
 | 
						|
		return -1;
 | 
						|
#ifdef USE_ZLIB
 | 
						|
	zlib_used_memory += sizeof(struct comp_ctx);
 | 
						|
 | 
						|
	strm = &(*comp_ctx)->strm;
 | 
						|
	strm->zalloc = alloc_zlib;
 | 
						|
	strm->zfree = free_zlib;
 | 
						|
	strm->opaque = *comp_ctx;
 | 
						|
#endif
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dealloc the comp_ctx
 | 
						|
 */
 | 
						|
static inline int deinit_comp_ctx(struct comp_ctx **comp_ctx)
 | 
						|
{
 | 
						|
	if (!*comp_ctx)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	pool_free2(pool_comp_ctx, *comp_ctx);
 | 
						|
	*comp_ctx = NULL;
 | 
						|
 | 
						|
#ifdef USE_ZLIB
 | 
						|
	zlib_used_memory -= sizeof(struct comp_ctx);
 | 
						|
#endif
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/****************************
 | 
						|
 **** Identity algorithm ****
 | 
						|
 ****************************/
 | 
						|
 | 
						|
/*
 | 
						|
 * Init the identity algorithm
 | 
						|
 */
 | 
						|
int identity_init(struct comp_ctx **comp_ctx, int level)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Process data
 | 
						|
 *   Return size of consumed data or -1 on error
 | 
						|
 */
 | 
						|
int identity_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
 | 
						|
{
 | 
						|
	char *out_data = bi_end(out);
 | 
						|
	int out_len = out->size - buffer_len(out);
 | 
						|
 | 
						|
	if (out_len < in_len)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	memcpy(out_data, in_data, in_len);
 | 
						|
 | 
						|
	out->i += in_len;
 | 
						|
 | 
						|
	return in_len;
 | 
						|
}
 | 
						|
 | 
						|
int identity_flush(struct comp_ctx *comp_ctx, struct buffer *out, int flag)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int identity_reset(struct comp_ctx *comp_ctx)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Deinit the algorithm
 | 
						|
 */
 | 
						|
int identity_end(struct comp_ctx **comp_ctx)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#ifdef USE_ZLIB
 | 
						|
/*
 | 
						|
 * This is a tricky allocation function using the zlib.
 | 
						|
 * This is based on the allocation order in deflateInit2.
 | 
						|
 */
 | 
						|
static void *alloc_zlib(void *opaque, unsigned int items, unsigned int size)
 | 
						|
{
 | 
						|
	struct comp_ctx *ctx = opaque;
 | 
						|
	static char round = 0; /* order in deflateInit2 */
 | 
						|
	void *buf = NULL;
 | 
						|
 | 
						|
	if (global.maxzlibmem > 0 && (global.maxzlibmem - zlib_used_memory) < (long)(items * size))
 | 
						|
		goto end;
 | 
						|
 | 
						|
	switch (round) {
 | 
						|
		case 0:
 | 
						|
			if (zlib_pool_deflate_state == NULL)
 | 
						|
				zlib_pool_deflate_state = create_pool("zlib_state", size * items, MEM_F_SHARED);
 | 
						|
			ctx->zlib_deflate_state = buf = pool_alloc2(zlib_pool_deflate_state);
 | 
						|
		break;
 | 
						|
 | 
						|
		case 1:
 | 
						|
			if (zlib_pool_window == NULL)
 | 
						|
				zlib_pool_window = create_pool("zlib_window", size * items, MEM_F_SHARED);
 | 
						|
			ctx->zlib_window = buf = pool_alloc2(zlib_pool_window);
 | 
						|
		break;
 | 
						|
 | 
						|
		case 2:
 | 
						|
			if (zlib_pool_prev == NULL)
 | 
						|
				zlib_pool_prev = create_pool("zlib_prev", size * items, MEM_F_SHARED);
 | 
						|
			ctx->zlib_prev = buf = pool_alloc2(zlib_pool_prev);
 | 
						|
		break;
 | 
						|
 | 
						|
		case 3:
 | 
						|
			if (zlib_pool_head == NULL)
 | 
						|
				zlib_pool_head = create_pool("zlib_head", size * items, MEM_F_SHARED);
 | 
						|
			ctx->zlib_head = buf = pool_alloc2(zlib_pool_head);
 | 
						|
		break;
 | 
						|
 | 
						|
		case 4:
 | 
						|
			if (zlib_pool_pending_buf == NULL)
 | 
						|
				zlib_pool_pending_buf = create_pool("zlib_pending_buf", size * items, MEM_F_SHARED);
 | 
						|
			ctx->zlib_pending_buf = buf = pool_alloc2(zlib_pool_pending_buf);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	if (buf != NULL)
 | 
						|
		zlib_used_memory += items * size;
 | 
						|
 | 
						|
end:
 | 
						|
 | 
						|
	/* deflateInit2() first allocates and checks the deflate_state, then if
 | 
						|
	 * it succeeds, it allocates all other 4 areas at ones and checks them
 | 
						|
	 * at the end. So we want to correctly count the rounds depending on when
 | 
						|
	 * zlib is supposed to abort.
 | 
						|
	 */
 | 
						|
	if (buf || round)
 | 
						|
		round = (round + 1) % 5;
 | 
						|
	return buf;
 | 
						|
}
 | 
						|
 | 
						|
static void free_zlib(void *opaque, void *ptr)
 | 
						|
{
 | 
						|
	struct comp_ctx *ctx = opaque;
 | 
						|
	struct pool_head *pool = NULL;
 | 
						|
 | 
						|
	if (ptr == ctx->zlib_window)
 | 
						|
		pool = zlib_pool_window;
 | 
						|
	else if (ptr == ctx->zlib_deflate_state)
 | 
						|
		pool = zlib_pool_deflate_state;
 | 
						|
	else if (ptr == ctx->zlib_prev)
 | 
						|
		pool = zlib_pool_prev;
 | 
						|
	else if (ptr == ctx->zlib_head)
 | 
						|
		pool = zlib_pool_head;
 | 
						|
	else if (ptr == ctx->zlib_pending_buf)
 | 
						|
		pool = zlib_pool_pending_buf;
 | 
						|
 | 
						|
	pool_free2(pool, ptr);
 | 
						|
	zlib_used_memory -= pool->size;
 | 
						|
}
 | 
						|
 | 
						|
/**************************
 | 
						|
****  gzip algorithm   ****
 | 
						|
***************************/
 | 
						|
int gzip_init(struct comp_ctx **comp_ctx, int level)
 | 
						|
{
 | 
						|
	z_stream *strm;
 | 
						|
 | 
						|
	if (init_comp_ctx(comp_ctx) < 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	strm = &(*comp_ctx)->strm;
 | 
						|
 | 
						|
	if (deflateInit2(strm, level, Z_DEFLATED, global.tune.zlibwindowsize + 16, global.tune.zlibmemlevel, Z_DEFAULT_STRATEGY) != Z_OK) {
 | 
						|
		deinit_comp_ctx(comp_ctx);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	(*comp_ctx)->cur_lvl = level;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
/**************************
 | 
						|
**** Deflate algorithm ****
 | 
						|
***************************/
 | 
						|
 | 
						|
int deflate_init(struct comp_ctx **comp_ctx, int level)
 | 
						|
{
 | 
						|
	z_stream *strm;
 | 
						|
 | 
						|
	if (init_comp_ctx(comp_ctx) < 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	strm = &(*comp_ctx)->strm;
 | 
						|
 | 
						|
	if (deflateInit(strm, level) != Z_OK) {
 | 
						|
		deinit_comp_ctx(comp_ctx);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	(*comp_ctx)->cur_lvl = level;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the size of consumed data or -1 */
 | 
						|
int deflate_add_data(struct comp_ctx *comp_ctx, const char *in_data, int in_len, struct buffer *out)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	z_stream *strm = &comp_ctx->strm;
 | 
						|
	char *out_data = bi_end(out);
 | 
						|
	int out_len = out->size - buffer_len(out);
 | 
						|
 | 
						|
	if (in_len <= 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
 | 
						|
	if (out_len <= 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	strm->next_in = (unsigned char *)in_data;
 | 
						|
	strm->avail_in = in_len;
 | 
						|
	strm->next_out = (unsigned char *)out_data;
 | 
						|
	strm->avail_out = out_len;
 | 
						|
 | 
						|
	ret = deflate(strm, Z_NO_FLUSH);
 | 
						|
	if (ret != Z_OK)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/* deflate update the available data out */
 | 
						|
	out->i += out_len - strm->avail_out;
 | 
						|
 | 
						|
	return in_len - strm->avail_in;
 | 
						|
}
 | 
						|
 | 
						|
int deflate_flush(struct comp_ctx *comp_ctx, struct buffer *out, int flag)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	int out_len = 0;
 | 
						|
	z_stream *strm = &comp_ctx->strm;
 | 
						|
 | 
						|
	strm->next_out = (unsigned char *)bi_end(out);
 | 
						|
	strm->avail_out = out->size - buffer_len(out);
 | 
						|
 | 
						|
	ret = deflate(strm, flag);
 | 
						|
	if (ret != Z_OK && ret != Z_STREAM_END)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	out_len = (out->size - buffer_len(out)) - strm->avail_out;
 | 
						|
	out->i += out_len;
 | 
						|
 | 
						|
	/* compression limit */
 | 
						|
	if ((global.comp_rate_lim > 0 && (read_freq_ctr(&global.comp_bps_out) > global.comp_rate_lim)) ||    /* rate */
 | 
						|
	   (idle_pct < compress_min_idle)) {                                                                     /* idle */
 | 
						|
		/* decrease level */
 | 
						|
		if (comp_ctx->cur_lvl > 0) {
 | 
						|
			comp_ctx->cur_lvl--;
 | 
						|
			deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY);
 | 
						|
		}
 | 
						|
 | 
						|
	} else if (comp_ctx->cur_lvl < global.tune.comp_maxlevel) {
 | 
						|
		/* increase level */
 | 
						|
		comp_ctx->cur_lvl++ ;
 | 
						|
		deflateParams(&comp_ctx->strm, comp_ctx->cur_lvl, Z_DEFAULT_STRATEGY);
 | 
						|
	}
 | 
						|
 | 
						|
	return out_len;
 | 
						|
}
 | 
						|
 | 
						|
int deflate_reset(struct comp_ctx *comp_ctx)
 | 
						|
{
 | 
						|
	z_stream *strm = &comp_ctx->strm;
 | 
						|
 | 
						|
	if (deflateReset(strm) == Z_OK)
 | 
						|
		return 0;
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
int deflate_end(struct comp_ctx **comp_ctx)
 | 
						|
{
 | 
						|
	z_stream *strm = &(*comp_ctx)->strm;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = deflateEnd(strm);
 | 
						|
 | 
						|
	deinit_comp_ctx(comp_ctx);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* USE_ZLIB */
 | 
						|
 |