mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2025-08-11 17:46:57 +02:00
These salts are used to derive initial secrets to decrypt the first Initial packet. We support draft-29 and v1 QUIC version initial salts. Add parameters to our QUIC-TLS API functions used to derive these secret for these salts. Make our xprt_quic use the correct initial salt upon QUIC version field found in the first paquet. Useful to support connections with curl which use draft-29 QUIC version.
381 lines
12 KiB
C
381 lines
12 KiB
C
#include <string.h>
|
|
|
|
#include <openssl/ssl.h>
|
|
|
|
#if defined(OPENSSL_IS_BORINGSSL)
|
|
#include <openssl/hkdf.h>
|
|
#else
|
|
#include <openssl/evp.h>
|
|
#include <openssl/kdf.h>
|
|
#endif
|
|
|
|
#include <haproxy/buf.h>
|
|
#include <haproxy/chunk.h>
|
|
//#include <haproxy/quic_tls-t.h>
|
|
#include <haproxy/xprt_quic.h>
|
|
|
|
|
|
__attribute__((format (printf, 3, 4)))
|
|
void hexdump(const void *buf, size_t buflen, const char *title_fmt, ...);
|
|
|
|
/* Dump the RX/TX secrets of <secs> QUIC TLS secrets. */
|
|
void quic_tls_keys_hexdump(struct buffer *buf, struct quic_tls_secrets *secs)
|
|
{
|
|
int i;
|
|
size_t aead_keylen = (size_t)EVP_CIPHER_key_length(secs->aead);
|
|
size_t aead_ivlen = (size_t)EVP_CIPHER_iv_length(secs->aead);
|
|
size_t hp_len = (size_t)EVP_CIPHER_key_length(secs->hp);
|
|
|
|
chunk_appendf(buf, "\n key=");
|
|
for (i = 0; i < aead_keylen; i++)
|
|
chunk_appendf(buf, "%02x", secs->key[i]);
|
|
chunk_appendf(buf, "\n iv=");
|
|
for (i = 0; i < aead_ivlen; i++)
|
|
chunk_appendf(buf, "%02x", secs->iv[i]);
|
|
chunk_appendf(buf, "\n hp=");
|
|
for (i = 0; i < hp_len; i++)
|
|
chunk_appendf(buf, "%02x", secs->hp_key[i]);
|
|
}
|
|
|
|
/* Dump <secret> TLS secret. */
|
|
void quic_tls_secret_hexdump(struct buffer *buf,
|
|
const unsigned char *secret, size_t secret_len)
|
|
{
|
|
int i;
|
|
|
|
chunk_appendf(buf, " secret=");
|
|
for (i = 0; i < secret_len; i++)
|
|
chunk_appendf(buf, "%02x", secret[i]);
|
|
}
|
|
|
|
#if defined(OPENSSL_IS_BORINGSSL)
|
|
int quic_hkdf_extract(const EVP_MD *md,
|
|
unsigned char *buf, size_t *buflen,
|
|
const unsigned char *key, size_t keylen,
|
|
const unsigned char *salt, size_t saltlen)
|
|
{
|
|
return HKDF_extract(buf, buflen, md, key, keylen, salt, saltlen);
|
|
}
|
|
|
|
int quic_hkdf_expand(const EVP_MD *md,
|
|
unsigned char *buf, size_t buflen,
|
|
const unsigned char *key, size_t keylen,
|
|
const unsigned char *label, size_t labellen)
|
|
{
|
|
return HKDF_expand(buf, buflen, md, key, keylen, label, labellen);
|
|
}
|
|
#else
|
|
int quic_hkdf_extract(const EVP_MD *md,
|
|
unsigned char *buf, size_t *buflen,
|
|
const unsigned char *key, size_t keylen,
|
|
const unsigned char *salt, size_t saltlen)
|
|
{
|
|
EVP_PKEY_CTX *ctx;
|
|
|
|
ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
if (EVP_PKEY_derive_init(ctx) <= 0 ||
|
|
EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY) <= 0 ||
|
|
EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 ||
|
|
EVP_PKEY_CTX_set1_hkdf_salt(ctx, salt, saltlen) <= 0 ||
|
|
EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 ||
|
|
EVP_PKEY_derive(ctx, buf, buflen) <= 0)
|
|
goto err;
|
|
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return 1;
|
|
|
|
err:
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return 0;
|
|
}
|
|
|
|
int quic_hkdf_expand(const EVP_MD *md,
|
|
unsigned char *buf, size_t buflen,
|
|
const unsigned char *key, size_t keylen,
|
|
const unsigned char *label, size_t labellen)
|
|
{
|
|
EVP_PKEY_CTX *ctx;
|
|
|
|
ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
if (EVP_PKEY_derive_init(ctx) <= 0 ||
|
|
EVP_PKEY_CTX_hkdf_mode(ctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY) <= 0 ||
|
|
EVP_PKEY_CTX_set_hkdf_md(ctx, md) <= 0 ||
|
|
EVP_PKEY_CTX_set1_hkdf_key(ctx, key, keylen) <= 0 ||
|
|
EVP_PKEY_CTX_add1_hkdf_info(ctx, label, labellen) <= 0 ||
|
|
EVP_PKEY_derive(ctx, buf, &buflen) <= 0)
|
|
goto err;
|
|
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return 1;
|
|
|
|
err:
|
|
EVP_PKEY_CTX_free(ctx);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/* https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#protection-keys
|
|
* refers to:
|
|
*
|
|
* https://tools.ietf.org/html/rfc8446#section-7.1:
|
|
* 7.1. Key Schedule
|
|
*
|
|
* The key derivation process makes use of the HKDF-Extract and
|
|
* HKDF-Expand functions as defined for HKDF [RFC5869], as well as the
|
|
* functions defined below:
|
|
*
|
|
* HKDF-Expand-Label(Secret, Label, Context, Length) =
|
|
* HKDF-Expand(Secret, HkdfLabel, Length)
|
|
*
|
|
* Where HkdfLabel is specified as:
|
|
*
|
|
* struct {
|
|
* uint16 length = Length;
|
|
* opaque label<7..255> = "tls13 " + Label;
|
|
* opaque context<0..255> = Context;
|
|
* } HkdfLabel;
|
|
*
|
|
* Derive-Secret(Secret, Label, Messages) =
|
|
* HKDF-Expand-Label(Secret, Label,
|
|
* Transcript-Hash(Messages), Hash.length)
|
|
*
|
|
*/
|
|
int quic_hkdf_expand_label(const EVP_MD *md,
|
|
unsigned char *buf, size_t buflen,
|
|
const unsigned char *key, size_t keylen,
|
|
const unsigned char *label, size_t labellen)
|
|
{
|
|
unsigned char hdkf_label[256], *pos;
|
|
const unsigned char hdkf_label_label[] = "tls13 ";
|
|
size_t hdkf_label_label_sz = sizeof hdkf_label_label - 1;
|
|
|
|
pos = hdkf_label;
|
|
*pos++ = buflen >> 8;
|
|
*pos++ = buflen & 0xff;
|
|
*pos++ = hdkf_label_label_sz + labellen;
|
|
memcpy(pos, hdkf_label_label, hdkf_label_label_sz);
|
|
pos += hdkf_label_label_sz;
|
|
memcpy(pos, label, labellen);
|
|
pos += labellen;
|
|
*pos++ = '\0';
|
|
|
|
return quic_hkdf_expand(md, buf, buflen,
|
|
key, keylen, hdkf_label, pos - hdkf_label);
|
|
}
|
|
|
|
/*
|
|
* This function derives two keys from <secret> is <ctx> as TLS cryptographic context.
|
|
* ->key is the TLS key to be derived to encrypt/decrypt data at TLS level.
|
|
* ->iv is the initialization vector to be used with ->key.
|
|
* ->hp_key is the key to be derived for header protection.
|
|
* Obviouly these keys have the same size becaused derived with the same TLS cryptographic context.
|
|
*/
|
|
int quic_tls_derive_keys(const EVP_CIPHER *aead, const EVP_CIPHER *hp,
|
|
const EVP_MD *md,
|
|
unsigned char *key, size_t keylen,
|
|
unsigned char *iv, size_t ivlen,
|
|
unsigned char *hp_key, size_t hp_keylen,
|
|
const unsigned char *secret, size_t secretlen)
|
|
{
|
|
size_t aead_keylen = (size_t)EVP_CIPHER_key_length(aead);
|
|
size_t aead_ivlen = (size_t)EVP_CIPHER_iv_length(aead);
|
|
size_t hp_len = (size_t)EVP_CIPHER_key_length(hp);
|
|
const unsigned char key_label[] = "quic key";
|
|
const unsigned char iv_label[] = "quic iv";
|
|
const unsigned char hp_key_label[] = "quic hp";
|
|
|
|
if (aead_keylen > keylen || aead_ivlen > ivlen || hp_len > hp_keylen)
|
|
return 0;
|
|
|
|
if (!quic_hkdf_expand_label(md, key, aead_keylen, secret, secretlen,
|
|
key_label, sizeof key_label - 1) ||
|
|
!quic_hkdf_expand_label(md, iv, aead_ivlen, secret, secretlen,
|
|
iv_label, sizeof iv_label - 1) ||
|
|
!quic_hkdf_expand_label(md, hp_key, hp_len, secret, secretlen,
|
|
hp_key_label, sizeof hp_key_label - 1))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Derive the initial secret from <secret> and QUIC version dependent salt.
|
|
* Returns the size of the derived secret if succeeded, 0 if not.
|
|
*/
|
|
int quic_derive_initial_secret(const EVP_MD *md,
|
|
const unsigned char *initial_salt, size_t initial_salt_sz,
|
|
unsigned char *initial_secret, size_t initial_secret_sz,
|
|
const unsigned char *secret, size_t secret_sz)
|
|
{
|
|
if (!quic_hkdf_extract(md, initial_secret, &initial_secret_sz, secret, secret_sz,
|
|
initial_salt, initial_salt_sz))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Derive the client initial secret from the initial secret.
|
|
* Returns the size of the derived secret if succeeded, 0 if not.
|
|
*/
|
|
int quic_tls_derive_initial_secrets(const EVP_MD *md,
|
|
unsigned char *rx, size_t rx_sz,
|
|
unsigned char *tx, size_t tx_sz,
|
|
const unsigned char *secret, size_t secret_sz,
|
|
int server)
|
|
{
|
|
const unsigned char client_label[] = "client in";
|
|
const unsigned char server_label[] = "server in";
|
|
const unsigned char *tx_label, *rx_label;
|
|
size_t rx_label_sz, tx_label_sz;
|
|
|
|
if (server) {
|
|
rx_label = client_label;
|
|
rx_label_sz = sizeof client_label;
|
|
tx_label = server_label;
|
|
tx_label_sz = sizeof server_label;
|
|
}
|
|
else {
|
|
rx_label = server_label;
|
|
rx_label_sz = sizeof server_label;
|
|
tx_label = client_label;
|
|
tx_label_sz = sizeof client_label;
|
|
}
|
|
|
|
if (!quic_hkdf_expand_label(md, rx, rx_sz, secret, secret_sz,
|
|
rx_label, rx_label_sz - 1) ||
|
|
!quic_hkdf_expand_label(md, tx, tx_sz, secret, secret_sz,
|
|
tx_label, tx_label_sz - 1))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Build an IV into <iv> buffer with <ivlen> as size from <aead_iv> with
|
|
* <aead_ivlen> as size depending on <pn> packet number.
|
|
* This is the function which must be called to build an AEAD IV for the AEAD cryptographic algorithm
|
|
* used to encrypt/decrypt the QUIC packet payloads depending on the packet number <pn>.
|
|
* This function fails and return 0 only if the two buffer lengths are different, 1 if not.
|
|
*/
|
|
int quic_aead_iv_build(unsigned char *iv, size_t ivlen,
|
|
unsigned char *aead_iv, size_t aead_ivlen, uint64_t pn)
|
|
{
|
|
int i;
|
|
unsigned int shift;
|
|
unsigned char *pos = iv;
|
|
|
|
if (ivlen != aead_ivlen)
|
|
return 0;
|
|
|
|
for (i = 0; i < ivlen - sizeof pn; i++)
|
|
*pos++ = *aead_iv++;
|
|
|
|
/* Only the remaining (sizeof pn) bytes are XOR'ed. */
|
|
shift = 56;
|
|
for (i = aead_ivlen - sizeof pn; i < aead_ivlen ; i++, shift -= 8)
|
|
*pos++ = *aead_iv++ ^ (pn >> shift);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* https://quicwg.org/base-drafts/draft-ietf-quic-tls.html#aead
|
|
*
|
|
* 5.3. AEAD Usage
|
|
*
|
|
* Packets are protected prior to applying header protection (Section 5.4).
|
|
* The unprotected packet header is part of the associated data (A). When removing
|
|
* packet protection, an endpoint first removes the header protection.
|
|
* (...)
|
|
* These ciphersuites have a 16-byte authentication tag and produce an output 16
|
|
* bytes larger than their input.
|
|
* The key and IV for the packet are computed as described in Section 5.1. The nonce,
|
|
* N, is formed by combining the packet protection IV with the packet number. The 62
|
|
* bits of the reconstructed QUIC packet number in network byte order are left-padded
|
|
* with zeros to the size of the IV. The exclusive OR of the padded packet number and
|
|
* the IV forms the AEAD nonce.
|
|
*
|
|
* The associated data, A, for the AEAD is the contents of the QUIC header, starting
|
|
* from the flags byte in either the short or long header, up to and including the
|
|
* unprotected packet number.
|
|
*
|
|
* The input plaintext, P, for the AEAD is the payload of the QUIC packet, as described
|
|
* in [QUIC-TRANSPORT].
|
|
*
|
|
* The output ciphertext, C, of the AEAD is transmitted in place of P.
|
|
*
|
|
* Some AEAD functions have limits for how many packets can be encrypted under the same
|
|
* key and IV (see for example [AEBounds]). This might be lower than the packet number limit.
|
|
* An endpoint MUST initiate a key update (Section 6) prior to exceeding any limit set for
|
|
* the AEAD that is in use.
|
|
*/
|
|
|
|
int quic_tls_encrypt(unsigned char *buf, size_t len,
|
|
const unsigned char *aad, size_t aad_len,
|
|
const EVP_CIPHER *aead, const unsigned char *key, const unsigned char *iv)
|
|
{
|
|
EVP_CIPHER_CTX *ctx;
|
|
int ret, outlen;
|
|
|
|
ret = 0;
|
|
ctx = EVP_CIPHER_CTX_new();
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
if (!EVP_EncryptInit_ex(ctx, aead, NULL, key, iv) ||
|
|
!EVP_EncryptUpdate(ctx, NULL, &outlen, aad, aad_len) ||
|
|
!EVP_EncryptUpdate(ctx, buf, &outlen, buf, len) ||
|
|
!EVP_EncryptFinal_ex(ctx, buf + outlen, &outlen) ||
|
|
!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, QUIC_TLS_TAG_LEN, buf + len))
|
|
goto out;
|
|
|
|
ret = 1;
|
|
|
|
out:
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int quic_tls_decrypt(unsigned char *buf, size_t len,
|
|
unsigned char *aad, size_t aad_len,
|
|
const EVP_CIPHER *aead, const unsigned char *key, const unsigned char *iv)
|
|
{
|
|
int ret, outlen;
|
|
size_t off;
|
|
EVP_CIPHER_CTX *ctx;
|
|
|
|
ret = 0;
|
|
off = 0;
|
|
ctx = EVP_CIPHER_CTX_new();
|
|
if (!ctx)
|
|
return 0;
|
|
|
|
if (!EVP_DecryptInit_ex(ctx, aead, NULL, key, iv) ||
|
|
!EVP_DecryptUpdate(ctx, NULL, &outlen, aad, aad_len) ||
|
|
!EVP_DecryptUpdate(ctx, buf, &outlen, buf, len - QUIC_TLS_TAG_LEN))
|
|
goto out;
|
|
|
|
off += outlen;
|
|
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, QUIC_TLS_TAG_LEN,
|
|
buf + len - QUIC_TLS_TAG_LEN) ||
|
|
!EVP_DecryptFinal_ex(ctx, buf + off, &outlen))
|
|
goto out;
|
|
|
|
off += outlen;
|
|
|
|
ret = off;
|
|
|
|
out:
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
return ret;
|
|
}
|