mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2025-08-10 09:07:02 +02:00
When the peer applet is waiting for a synchronisation with the global sync task, we must notify it won't consume data. Otherwise, if some data are already waiting in the input buffer, the applet will be woken up in loop and this wil trigger the watchdog. Once synchronized, the applet is woken up. In that case, the peer applet must indicate it is going to consume data again. This patch should fix the issue #2656. It must be backported to 3.0.
4267 lines
124 KiB
C
4267 lines
124 KiB
C
/*
|
|
* Peer synchro management.
|
|
*
|
|
* Copyright 2010 EXCELIANCE, Emeric Brun <ebrun@exceliance.fr>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <import/eb32tree.h>
|
|
#include <import/ebmbtree.h>
|
|
#include <import/ebpttree.h>
|
|
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/applet.h>
|
|
#include <haproxy/cfgparse.h>
|
|
#include <haproxy/channel.h>
|
|
#include <haproxy/cli.h>
|
|
#include <haproxy/dict.h>
|
|
#include <haproxy/errors.h>
|
|
#include <haproxy/fd.h>
|
|
#include <haproxy/frontend.h>
|
|
#include <haproxy/net_helper.h>
|
|
#include <haproxy/obj_type-t.h>
|
|
#include <haproxy/peers.h>
|
|
#include <haproxy/proxy.h>
|
|
#include <haproxy/sc_strm.h>
|
|
#include <haproxy/session-t.h>
|
|
#include <haproxy/signal.h>
|
|
#include <haproxy/stats-t.h>
|
|
#include <haproxy/stconn.h>
|
|
#include <haproxy/stick_table.h>
|
|
#include <haproxy/stream.h>
|
|
#include <haproxy/task.h>
|
|
#include <haproxy/thread.h>
|
|
#include <haproxy/time.h>
|
|
#include <haproxy/tools.h>
|
|
#include <haproxy/trace.h>
|
|
|
|
/***********************************/
|
|
/* Current shared table sync state */
|
|
/***********************************/
|
|
#define SHTABLE_F_TEACH_STAGE1 0x00000001 /* Teach state 1 complete */
|
|
#define SHTABLE_F_TEACH_STAGE2 0x00000002 /* Teach state 2 complete */
|
|
|
|
|
|
#define PEER_RESYNC_TIMEOUT 5000 /* 5 seconds */
|
|
#define PEER_RECONNECT_TIMEOUT 5000 /* 5 seconds */
|
|
#define PEER_LOCAL_RECONNECT_TIMEOUT 500 /* 500ms */
|
|
#define PEER_HEARTBEAT_TIMEOUT 3000 /* 3 seconds */
|
|
|
|
/* default maximum of updates sent at once */
|
|
#define PEER_DEF_MAX_UPDATES_AT_ONCE 200
|
|
|
|
/* flags for "show peers" */
|
|
#define PEERS_SHOW_F_DICT 0x00000001 /* also show the contents of the dictionary */
|
|
|
|
/*****************************/
|
|
/* Sync message class */
|
|
/*****************************/
|
|
enum {
|
|
PEER_MSG_CLASS_CONTROL = 0,
|
|
PEER_MSG_CLASS_ERROR,
|
|
PEER_MSG_CLASS_STICKTABLE = 10,
|
|
PEER_MSG_CLASS_RESERVED = 255,
|
|
};
|
|
|
|
/*****************************/
|
|
/* control message types */
|
|
/*****************************/
|
|
enum {
|
|
PEER_MSG_CTRL_RESYNCREQ = 0,
|
|
PEER_MSG_CTRL_RESYNCFINISHED,
|
|
PEER_MSG_CTRL_RESYNCPARTIAL,
|
|
PEER_MSG_CTRL_RESYNCCONFIRM,
|
|
PEER_MSG_CTRL_HEARTBEAT,
|
|
};
|
|
|
|
/*****************************/
|
|
/* error message types */
|
|
/*****************************/
|
|
enum {
|
|
PEER_MSG_ERR_PROTOCOL = 0,
|
|
PEER_MSG_ERR_SIZELIMIT,
|
|
};
|
|
|
|
/* network key types;
|
|
* network types were directly and mistakenly
|
|
* mapped on sample types, to keep backward
|
|
* compatiblitiy we keep those values but
|
|
* we now use a internal/network mapping
|
|
* to avoid further mistakes adding or
|
|
* modifying internals types
|
|
*/
|
|
enum {
|
|
PEER_KT_ANY = 0, /* any type */
|
|
PEER_KT_RESV1, /* UNUSED */
|
|
PEER_KT_SINT, /* signed 64bits integer type */
|
|
PEER_KT_RESV3, /* UNUSED */
|
|
PEER_KT_IPV4, /* ipv4 type */
|
|
PEER_KT_IPV6, /* ipv6 type */
|
|
PEER_KT_STR, /* char string type */
|
|
PEER_KT_BIN, /* buffer type */
|
|
PEER_KT_TYPES /* number of types, must always be last */
|
|
};
|
|
|
|
/* Map used to retrieve network type from internal type
|
|
* Note: Undeclared mapping maps entry to PEER_KT_ANY == 0
|
|
*/
|
|
static int peer_net_key_type[SMP_TYPES] = {
|
|
[SMP_T_SINT] = PEER_KT_SINT,
|
|
[SMP_T_IPV4] = PEER_KT_IPV4,
|
|
[SMP_T_IPV6] = PEER_KT_IPV6,
|
|
[SMP_T_STR] = PEER_KT_STR,
|
|
[SMP_T_BIN] = PEER_KT_BIN,
|
|
};
|
|
|
|
/* Map used to retrieve internal type from external type
|
|
* Note: Undeclared mapping maps entry to SMP_T_ANY == 0
|
|
*/
|
|
static int peer_int_key_type[PEER_KT_TYPES] = {
|
|
[PEER_KT_SINT] = SMP_T_SINT,
|
|
[PEER_KT_IPV4] = SMP_T_IPV4,
|
|
[PEER_KT_IPV6] = SMP_T_IPV6,
|
|
[PEER_KT_STR] = SMP_T_STR,
|
|
[PEER_KT_BIN] = SMP_T_BIN,
|
|
};
|
|
|
|
/*
|
|
* Parameters used by functions to build peer protocol messages. */
|
|
struct peer_prep_params {
|
|
struct {
|
|
struct peer *peer;
|
|
} hello;
|
|
struct {
|
|
unsigned int st1;
|
|
} error_status;
|
|
struct {
|
|
struct stksess *stksess;
|
|
struct shared_table *shared_table;
|
|
unsigned int updateid;
|
|
int use_identifier;
|
|
int use_timed;
|
|
struct peer *peer;
|
|
} updt;
|
|
struct {
|
|
struct shared_table *shared_table;
|
|
} swtch;
|
|
struct {
|
|
struct shared_table *shared_table;
|
|
} ack;
|
|
struct {
|
|
unsigned char head[2];
|
|
} control;
|
|
struct {
|
|
unsigned char head[2];
|
|
} error;
|
|
};
|
|
|
|
/*******************************/
|
|
/* stick table sync mesg types */
|
|
/* Note: ids >= 128 contains */
|
|
/* id message contains data */
|
|
/*******************************/
|
|
#define PEER_MSG_STKT_UPDATE 0x80
|
|
#define PEER_MSG_STKT_INCUPDATE 0x81
|
|
#define PEER_MSG_STKT_DEFINE 0x82
|
|
#define PEER_MSG_STKT_SWITCH 0x83
|
|
#define PEER_MSG_STKT_ACK 0x84
|
|
#define PEER_MSG_STKT_UPDATE_TIMED 0x85
|
|
#define PEER_MSG_STKT_INCUPDATE_TIMED 0x86
|
|
/* All the stick-table message identifiers abova have the #7 bit set */
|
|
#define PEER_MSG_STKT_BIT 7
|
|
#define PEER_MSG_STKT_BIT_MASK (1 << PEER_MSG_STKT_BIT)
|
|
|
|
/* The maximum length of an encoded data length. */
|
|
#define PEER_MSG_ENC_LENGTH_MAXLEN 5
|
|
|
|
/* Minimum 64-bits value encoded with 2 bytes */
|
|
#define PEER_ENC_2BYTES_MIN 0xf0 /* 0xf0 (or 240) */
|
|
/* 3 bytes */
|
|
#define PEER_ENC_3BYTES_MIN ((1ULL << 11) | PEER_ENC_2BYTES_MIN) /* 0x8f0 (or 2288) */
|
|
/* 4 bytes */
|
|
#define PEER_ENC_4BYTES_MIN ((1ULL << 18) | PEER_ENC_3BYTES_MIN) /* 0x408f0 (or 264432) */
|
|
/* 5 bytes */
|
|
#define PEER_ENC_5BYTES_MIN ((1ULL << 25) | PEER_ENC_4BYTES_MIN) /* 0x20408f0 (or 33818864) */
|
|
/* 6 bytes */
|
|
#define PEER_ENC_6BYTES_MIN ((1ULL << 32) | PEER_ENC_5BYTES_MIN) /* 0x1020408f0 (or 4328786160) */
|
|
/* 7 bytes */
|
|
#define PEER_ENC_7BYTES_MIN ((1ULL << 39) | PEER_ENC_6BYTES_MIN) /* 0x81020408f0 (or 554084600048) */
|
|
/* 8 bytes */
|
|
#define PEER_ENC_8BYTES_MIN ((1ULL << 46) | PEER_ENC_7BYTES_MIN) /* 0x4081020408f0 (or 70922828777712) */
|
|
/* 9 bytes */
|
|
#define PEER_ENC_9BYTES_MIN ((1ULL << 53) | PEER_ENC_8BYTES_MIN) /* 0x204081020408f0 (or 9078122083518704) */
|
|
/* 10 bytes */
|
|
#define PEER_ENC_10BYTES_MIN ((1ULL << 60) | PEER_ENC_9BYTES_MIN) /* 0x10204081020408f0 (or 1161999626690365680) */
|
|
|
|
/* #7 bit used to detect the last byte to be encoded */
|
|
#define PEER_ENC_STOP_BIT 7
|
|
/* The byte minimum value with #7 bit set */
|
|
#define PEER_ENC_STOP_BYTE (1 << PEER_ENC_STOP_BIT)
|
|
/* The left most number of bits set for PEER_ENC_2BYTES_MIN */
|
|
#define PEER_ENC_2BYTES_MIN_BITS 4
|
|
|
|
#define PEER_MSG_HEADER_LEN 2
|
|
|
|
#define PEER_STKT_CACHE_MAX_ENTRIES 128
|
|
|
|
/**********************************/
|
|
/* Peer Session IO handler states */
|
|
/**********************************/
|
|
|
|
enum {
|
|
PEER_SESS_ST_ACCEPT = 0, /* Initial state for session create by an accept, must be zero! */
|
|
PEER_SESS_ST_GETVERSION, /* Validate supported protocol version */
|
|
PEER_SESS_ST_GETHOST, /* Validate host ID correspond to local host id */
|
|
PEER_SESS_ST_GETPEER, /* Validate peer ID correspond to a known remote peer id */
|
|
/* after this point, data were possibly exchanged */
|
|
PEER_SESS_ST_SENDSUCCESS, /* Send ret code 200 (success) and wait for message */
|
|
PEER_SESS_ST_CONNECT, /* Initial state for session create on a connect, push presentation into buffer */
|
|
PEER_SESS_ST_GETSTATUS, /* Wait for the welcome message */
|
|
PEER_SESS_ST_WAITMSG, /* Wait for data messages */
|
|
PEER_SESS_ST_EXIT, /* Exit with status code */
|
|
PEER_SESS_ST_ERRPROTO, /* Send error proto message before exit */
|
|
PEER_SESS_ST_ERRSIZE, /* Send error size message before exit */
|
|
PEER_SESS_ST_END, /* Killed session */
|
|
};
|
|
|
|
/***************************************************/
|
|
/* Peer Session status code - part of the protocol */
|
|
/***************************************************/
|
|
|
|
#define PEER_SESS_SC_CONNECTCODE 100 /* connect in progress */
|
|
#define PEER_SESS_SC_CONNECTEDCODE 110 /* tcp connect success */
|
|
|
|
#define PEER_SESS_SC_SUCCESSCODE 200 /* accept or connect successful */
|
|
|
|
#define PEER_SESS_SC_TRYAGAIN 300 /* try again later */
|
|
|
|
#define PEER_SESS_SC_ERRPROTO 501 /* error protocol */
|
|
#define PEER_SESS_SC_ERRVERSION 502 /* unknown protocol version */
|
|
#define PEER_SESS_SC_ERRHOST 503 /* bad host name */
|
|
#define PEER_SESS_SC_ERRPEER 504 /* unknown peer */
|
|
|
|
#define PEER_SESSION_PROTO_NAME "HAProxyS"
|
|
#define PEER_MAJOR_VER 2
|
|
#define PEER_MINOR_VER 1
|
|
#define PEER_DWNGRD_MINOR_VER 0
|
|
|
|
static size_t proto_len = sizeof(PEER_SESSION_PROTO_NAME) - 1;
|
|
struct peers *cfg_peers = NULL;
|
|
static int peers_max_updates_at_once = PEER_DEF_MAX_UPDATES_AT_ONCE;
|
|
static void peer_session_forceshutdown(struct peer *peer);
|
|
|
|
static struct ebpt_node *dcache_tx_insert(struct dcache *dc,
|
|
struct dcache_tx_entry *i);
|
|
static inline void flush_dcache(struct peer *peer);
|
|
|
|
/* trace source and events */
|
|
static void peers_trace(enum trace_level level, uint64_t mask,
|
|
const struct trace_source *src,
|
|
const struct ist where, const struct ist func,
|
|
const void *a1, const void *a2, const void *a3, const void *a4);
|
|
|
|
static const struct trace_event peers_trace_events[] = {
|
|
#define PEERS_EV_UPDTMSG (1 << 0)
|
|
{ .mask = PEERS_EV_UPDTMSG, .name = "updtmsg", .desc = "update message received" },
|
|
#define PEERS_EV_ACKMSG (1 << 1)
|
|
{ .mask = PEERS_EV_ACKMSG, .name = "ackmsg", .desc = "ack message received" },
|
|
#define PEERS_EV_SWTCMSG (1 << 2)
|
|
{ .mask = PEERS_EV_SWTCMSG, .name = "swtcmsg", .desc = "switch message received" },
|
|
#define PEERS_EV_DEFMSG (1 << 3)
|
|
{ .mask = PEERS_EV_DEFMSG, .name = "defmsg", .desc = "definition message received" },
|
|
#define PEERS_EV_CTRLMSG (1 << 4)
|
|
{ .mask = PEERS_EV_CTRLMSG, .name = "ctrlmsg", .desc = "control message sent/received" },
|
|
#define PEERS_EV_SESSREL (1 << 5)
|
|
{ .mask = PEERS_EV_SESSREL, .name = "sessrl", .desc = "peer session releasing" },
|
|
#define PEERS_EV_PROTOERR (1 << 6)
|
|
{ .mask = PEERS_EV_PROTOERR, .name = "protoerr", .desc = "protocol error" },
|
|
{ }
|
|
};
|
|
|
|
static const struct name_desc peers_trace_lockon_args[4] = {
|
|
/* arg1 */ { /* already used by the connection */ },
|
|
/* arg2 */ { .name="peers", .desc="Peers protocol" },
|
|
/* arg3 */ { },
|
|
/* arg4 */ { }
|
|
};
|
|
|
|
static const struct name_desc peers_trace_decoding[] = {
|
|
#define PEERS_VERB_CLEAN 1
|
|
{ .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" },
|
|
{ /* end */ }
|
|
};
|
|
|
|
|
|
struct trace_source trace_peers = {
|
|
.name = IST("peers"),
|
|
.desc = "Peers protocol",
|
|
.arg_def = TRC_ARG1_CONN, /* TRACE()'s first argument is always a connection */
|
|
.default_cb = peers_trace,
|
|
.known_events = peers_trace_events,
|
|
.lockon_args = peers_trace_lockon_args,
|
|
.decoding = peers_trace_decoding,
|
|
.report_events = ~0, /* report everything by default */
|
|
};
|
|
|
|
/* Return peer control message types as strings (only for debugging purpose). */
|
|
static inline char *ctrl_msg_type_str(unsigned int type)
|
|
{
|
|
switch (type) {
|
|
case PEER_MSG_CTRL_RESYNCREQ:
|
|
return "RESYNCREQ";
|
|
case PEER_MSG_CTRL_RESYNCFINISHED:
|
|
return "RESYNCFINISHED";
|
|
case PEER_MSG_CTRL_RESYNCPARTIAL:
|
|
return "RESYNCPARTIAL";
|
|
case PEER_MSG_CTRL_RESYNCCONFIRM:
|
|
return "RESYNCCONFIRM";
|
|
case PEER_MSG_CTRL_HEARTBEAT:
|
|
return "HEARTBEAT";
|
|
default:
|
|
return "???";
|
|
}
|
|
}
|
|
|
|
#define TRACE_SOURCE &trace_peers
|
|
INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE);
|
|
|
|
static void peers_trace(enum trace_level level, uint64_t mask,
|
|
const struct trace_source *src,
|
|
const struct ist where, const struct ist func,
|
|
const void *a1, const void *a2, const void *a3, const void *a4)
|
|
{
|
|
if (mask & (PEERS_EV_UPDTMSG|PEERS_EV_ACKMSG|PEERS_EV_SWTCMSG)) {
|
|
if (a2) {
|
|
const struct peer *peer = a2;
|
|
|
|
chunk_appendf(&trace_buf, " peer=%s", peer->id);
|
|
}
|
|
if (a3) {
|
|
const char *p = a3;
|
|
|
|
chunk_appendf(&trace_buf, " @%p", p);
|
|
}
|
|
if (a4) {
|
|
const size_t *val = a4;
|
|
|
|
chunk_appendf(&trace_buf, " %llu", (unsigned long long)*val);
|
|
}
|
|
}
|
|
|
|
if (mask & PEERS_EV_DEFMSG) {
|
|
if (a2) {
|
|
const struct peer *peer = a2;
|
|
|
|
chunk_appendf(&trace_buf, " peer=%s", peer->id);
|
|
}
|
|
if (a3) {
|
|
const char *p = a3;
|
|
|
|
chunk_appendf(&trace_buf, " @%p", p);
|
|
}
|
|
if (a4) {
|
|
const int *val = a4;
|
|
|
|
chunk_appendf(&trace_buf, " %d", *val);
|
|
}
|
|
}
|
|
|
|
if (mask & PEERS_EV_CTRLMSG) {
|
|
if (a2) {
|
|
const unsigned char *ctrl_msg_type = a2;
|
|
|
|
chunk_appendf(&trace_buf, " %s", ctrl_msg_type_str(*ctrl_msg_type));
|
|
|
|
}
|
|
if (a3) {
|
|
const char *local_peer = a3;
|
|
|
|
chunk_appendf(&trace_buf, " %s", local_peer);
|
|
}
|
|
|
|
if (a4) {
|
|
const char *remote_peer = a4;
|
|
|
|
chunk_appendf(&trace_buf, " -> %s", remote_peer);
|
|
}
|
|
}
|
|
|
|
if (mask & (PEERS_EV_SESSREL|PEERS_EV_PROTOERR)) {
|
|
if (a2) {
|
|
const struct peer *peer = a2;
|
|
struct peers *peers = NULL;
|
|
|
|
if (peer->appctx)
|
|
peers = peer->peers;
|
|
|
|
if (peers)
|
|
chunk_appendf(&trace_buf, " %s", peers->local->id);
|
|
chunk_appendf(&trace_buf, " -> %s", peer->id);
|
|
}
|
|
|
|
if (a3) {
|
|
const int *prev_state = a3;
|
|
|
|
chunk_appendf(&trace_buf, " prev_state=%d\n", *prev_state);
|
|
}
|
|
}
|
|
}
|
|
|
|
static const char *statuscode_str(int statuscode)
|
|
{
|
|
switch (statuscode) {
|
|
case PEER_SESS_SC_CONNECTCODE:
|
|
return "CONN";
|
|
case PEER_SESS_SC_CONNECTEDCODE:
|
|
return "HSHK";
|
|
case PEER_SESS_SC_SUCCESSCODE:
|
|
return "ESTA";
|
|
case PEER_SESS_SC_TRYAGAIN:
|
|
return "RETR";
|
|
case PEER_SESS_SC_ERRPROTO:
|
|
return "PROT";
|
|
case PEER_SESS_SC_ERRVERSION:
|
|
return "VERS";
|
|
case PEER_SESS_SC_ERRHOST:
|
|
return "NAME";
|
|
case PEER_SESS_SC_ERRPEER:
|
|
return "UNKN";
|
|
default:
|
|
return "NONE";
|
|
}
|
|
}
|
|
|
|
static const char *peer_app_state_str(enum peer_app_state appstate)
|
|
{
|
|
switch (appstate) {
|
|
case PEER_APP_ST_STOPPED:
|
|
return "STOPPED";
|
|
case PEER_APP_ST_STARTING:
|
|
return "STARTING";
|
|
case PEER_APP_ST_RUNNING:
|
|
return "RUNNING";
|
|
case PEER_APP_ST_STOPPING:
|
|
return "STOPPING";
|
|
default:
|
|
return "UNKNOWN";
|
|
}
|
|
}
|
|
|
|
static const char *peer_learn_state_str(enum peer_learn_state learnstate)
|
|
{
|
|
switch (learnstate) {
|
|
case PEER_LR_ST_NOTASSIGNED:
|
|
return "NOTASSIGNED";
|
|
case PEER_LR_ST_ASSIGNED:
|
|
return "ASSIGNED";
|
|
case PEER_LR_ST_PROCESSING:
|
|
return "PROCESSING";
|
|
case PEER_LR_ST_FINISHED:
|
|
return "FINISHED";
|
|
default:
|
|
return "UNKNOWN";
|
|
}
|
|
}
|
|
|
|
/* This function encode an uint64 to 'dynamic' length format.
|
|
The encoded value is written at address *str, and the
|
|
caller must assure that size after *str is large enough.
|
|
At return, the *str is set at the next Byte after then
|
|
encoded integer. The function returns then length of the
|
|
encoded integer in Bytes */
|
|
int intencode(uint64_t i, char **str) {
|
|
int idx = 0;
|
|
unsigned char *msg;
|
|
|
|
msg = (unsigned char *)*str;
|
|
if (i < PEER_ENC_2BYTES_MIN) {
|
|
msg[0] = (unsigned char)i;
|
|
*str = (char *)&msg[idx+1];
|
|
return (idx+1);
|
|
}
|
|
|
|
msg[idx] =(unsigned char)i | PEER_ENC_2BYTES_MIN;
|
|
i = (i - PEER_ENC_2BYTES_MIN) >> PEER_ENC_2BYTES_MIN_BITS;
|
|
while (i >= PEER_ENC_STOP_BYTE) {
|
|
msg[++idx] = (unsigned char)i | PEER_ENC_STOP_BYTE;
|
|
i = (i - PEER_ENC_STOP_BYTE) >> PEER_ENC_STOP_BIT;
|
|
}
|
|
msg[++idx] = (unsigned char)i;
|
|
*str = (char *)&msg[idx+1];
|
|
return (idx+1);
|
|
}
|
|
|
|
|
|
/* This function returns a decoded 64bits unsigned integer
|
|
* from a varint
|
|
*
|
|
* Calling:
|
|
* - *str must point on the first byte of the buffer to decode.
|
|
* - end must point on the next byte after the end of the buffer
|
|
* we are authorized to parse (buf + buflen)
|
|
*
|
|
* At return:
|
|
*
|
|
* On success *str will point at the byte following
|
|
* the fully decoded integer into the buffer. and
|
|
* the decoded value is returned.
|
|
*
|
|
* If end is reached before the integer was fully decoded,
|
|
* *str is set to NULL and the caller have to check this
|
|
* to know there is a decoding error. In this case
|
|
* the returned integer is also forced to 0
|
|
*/
|
|
uint64_t intdecode(char **str, char *end)
|
|
{
|
|
unsigned char *msg;
|
|
uint64_t i;
|
|
int shift;
|
|
|
|
if (!*str)
|
|
return 0;
|
|
|
|
msg = (unsigned char *)*str;
|
|
if (msg >= (unsigned char *)end)
|
|
goto fail;
|
|
|
|
i = *(msg++);
|
|
if (i >= PEER_ENC_2BYTES_MIN) {
|
|
shift = PEER_ENC_2BYTES_MIN_BITS;
|
|
do {
|
|
if (msg >= (unsigned char *)end)
|
|
goto fail;
|
|
i += (uint64_t)*msg << shift;
|
|
shift += PEER_ENC_STOP_BIT;
|
|
} while (*(msg++) >= PEER_ENC_STOP_BYTE);
|
|
}
|
|
*str = (char *)msg;
|
|
return i;
|
|
|
|
fail:
|
|
*str = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Build a "hello" peer protocol message.
|
|
* Return the number of written bytes written to build this messages if succeeded,
|
|
* 0 if not.
|
|
*/
|
|
static int peer_prepare_hellomsg(char *msg, size_t size, struct peer_prep_params *p)
|
|
{
|
|
int min_ver, ret;
|
|
struct peer *peer;
|
|
|
|
peer = p->hello.peer;
|
|
min_ver = (peer->flags & PEER_F_DWNGRD) ? PEER_DWNGRD_MINOR_VER : PEER_MINOR_VER;
|
|
/* Prepare headers */
|
|
ret = snprintf(msg, size, PEER_SESSION_PROTO_NAME " %d.%d\n%s\n%s %d %d\n",
|
|
(int)PEER_MAJOR_VER, min_ver, peer->id, localpeer, (int)getpid(), (int)1);
|
|
if (ret >= size)
|
|
return 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Build a "handshake succeeded" status message.
|
|
* Return the number of written bytes written to build this messages if succeeded,
|
|
* 0 if not.
|
|
*/
|
|
static int peer_prepare_status_successmsg(char *msg, size_t size, struct peer_prep_params *p)
|
|
{
|
|
int ret;
|
|
|
|
ret = snprintf(msg, size, "%d\n", (int)PEER_SESS_SC_SUCCESSCODE);
|
|
if (ret >= size)
|
|
return 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Build an error status message.
|
|
* Return the number of written bytes written to build this messages if succeeded,
|
|
* 0 if not.
|
|
*/
|
|
static int peer_prepare_status_errormsg(char *msg, size_t size, struct peer_prep_params *p)
|
|
{
|
|
int ret;
|
|
unsigned int st1;
|
|
|
|
st1 = p->error_status.st1;
|
|
ret = snprintf(msg, size, "%u\n", st1);
|
|
if (ret >= size)
|
|
return 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Set the stick-table UPDATE message type byte at <msg_type> address,
|
|
* depending on <use_identifier> and <use_timed> boolean parameters.
|
|
* Always successful.
|
|
*/
|
|
static inline void peer_set_update_msg_type(char *msg_type, int use_identifier, int use_timed)
|
|
{
|
|
if (use_timed) {
|
|
if (use_identifier)
|
|
*msg_type = PEER_MSG_STKT_UPDATE_TIMED;
|
|
else
|
|
*msg_type = PEER_MSG_STKT_INCUPDATE_TIMED;
|
|
}
|
|
else {
|
|
if (use_identifier)
|
|
*msg_type = PEER_MSG_STKT_UPDATE;
|
|
else
|
|
*msg_type = PEER_MSG_STKT_INCUPDATE;
|
|
}
|
|
}
|
|
/*
|
|
* This prepare the data update message on the stick session <ts>, <st> is the considered
|
|
* stick table.
|
|
* <msg> is a buffer of <size> to receive data message content
|
|
* If function returns 0, the caller should consider we were unable to encode this message (TODO:
|
|
* check size)
|
|
*/
|
|
static int peer_prepare_updatemsg(char *msg, size_t size, struct peer_prep_params *p)
|
|
{
|
|
uint32_t netinteger;
|
|
unsigned short datalen;
|
|
char *cursor, *datamsg;
|
|
unsigned int data_type;
|
|
void *data_ptr;
|
|
struct stksess *ts;
|
|
struct shared_table *st;
|
|
unsigned int updateid;
|
|
int use_identifier;
|
|
int use_timed;
|
|
struct peer *peer;
|
|
|
|
ts = p->updt.stksess;
|
|
st = p->updt.shared_table;
|
|
updateid = p->updt.updateid;
|
|
use_identifier = p->updt.use_identifier;
|
|
use_timed = p->updt.use_timed;
|
|
peer = p->updt.peer;
|
|
|
|
cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN;
|
|
|
|
/* construct message */
|
|
|
|
/* check if we need to send the update identifier */
|
|
if (!st->last_pushed || updateid < st->last_pushed || ((updateid - st->last_pushed) != 1)) {
|
|
use_identifier = 1;
|
|
}
|
|
|
|
/* encode update identifier if needed */
|
|
if (use_identifier) {
|
|
netinteger = htonl(updateid);
|
|
memcpy(cursor, &netinteger, sizeof(netinteger));
|
|
cursor += sizeof(netinteger);
|
|
}
|
|
|
|
if (use_timed) {
|
|
netinteger = htonl(tick_remain(now_ms, ts->expire));
|
|
memcpy(cursor, &netinteger, sizeof(netinteger));
|
|
cursor += sizeof(netinteger);
|
|
}
|
|
|
|
/* encode the key */
|
|
if (st->table->type == SMP_T_STR) {
|
|
int stlen = strlen((char *)ts->key.key);
|
|
|
|
intencode(stlen, &cursor);
|
|
memcpy(cursor, ts->key.key, stlen);
|
|
cursor += stlen;
|
|
}
|
|
else if (st->table->type == SMP_T_SINT) {
|
|
netinteger = htonl(read_u32(ts->key.key));
|
|
memcpy(cursor, &netinteger, sizeof(netinteger));
|
|
cursor += sizeof(netinteger);
|
|
}
|
|
else {
|
|
memcpy(cursor, ts->key.key, st->table->key_size);
|
|
cursor += st->table->key_size;
|
|
}
|
|
|
|
HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock);
|
|
/* encode values */
|
|
for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) {
|
|
|
|
data_ptr = stktable_data_ptr(st->table, ts, data_type);
|
|
if (data_ptr) {
|
|
/* in case of array all elements use
|
|
* the same std_type and they are linearly
|
|
* encoded.
|
|
*/
|
|
if (stktable_data_types[data_type].is_array) {
|
|
unsigned int idx = 0;
|
|
|
|
switch (stktable_data_types[data_type].std_type) {
|
|
case STD_T_SINT: {
|
|
int data;
|
|
|
|
do {
|
|
data = stktable_data_cast(data_ptr, std_t_sint);
|
|
intencode(data, &cursor);
|
|
|
|
data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx);
|
|
} while(data_ptr);
|
|
break;
|
|
}
|
|
case STD_T_UINT: {
|
|
unsigned int data;
|
|
|
|
do {
|
|
data = stktable_data_cast(data_ptr, std_t_uint);
|
|
intencode(data, &cursor);
|
|
|
|
data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx);
|
|
} while(data_ptr);
|
|
break;
|
|
}
|
|
case STD_T_ULL: {
|
|
unsigned long long data;
|
|
|
|
do {
|
|
data = stktable_data_cast(data_ptr, std_t_ull);
|
|
intencode(data, &cursor);
|
|
|
|
data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx);
|
|
} while(data_ptr);
|
|
break;
|
|
}
|
|
case STD_T_FRQP: {
|
|
struct freq_ctr *frqp;
|
|
|
|
do {
|
|
frqp = &stktable_data_cast(data_ptr, std_t_frqp);
|
|
intencode((unsigned int)(now_ms - frqp->curr_tick), &cursor);
|
|
intencode(frqp->curr_ctr, &cursor);
|
|
intencode(frqp->prev_ctr, &cursor);
|
|
|
|
data_ptr = stktable_data_ptr_idx(st->table, ts, data_type, ++idx);
|
|
} while(data_ptr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* array elements fully encoded
|
|
* proceed next data_type.
|
|
*/
|
|
continue;
|
|
}
|
|
switch (stktable_data_types[data_type].std_type) {
|
|
case STD_T_SINT: {
|
|
int data;
|
|
|
|
data = stktable_data_cast(data_ptr, std_t_sint);
|
|
intencode(data, &cursor);
|
|
break;
|
|
}
|
|
case STD_T_UINT: {
|
|
unsigned int data;
|
|
|
|
data = stktable_data_cast(data_ptr, std_t_uint);
|
|
intencode(data, &cursor);
|
|
break;
|
|
}
|
|
case STD_T_ULL: {
|
|
unsigned long long data;
|
|
|
|
data = stktable_data_cast(data_ptr, std_t_ull);
|
|
intencode(data, &cursor);
|
|
break;
|
|
}
|
|
case STD_T_FRQP: {
|
|
struct freq_ctr *frqp;
|
|
|
|
frqp = &stktable_data_cast(data_ptr, std_t_frqp);
|
|
intencode((unsigned int)(now_ms - frqp->curr_tick), &cursor);
|
|
intencode(frqp->curr_ctr, &cursor);
|
|
intencode(frqp->prev_ctr, &cursor);
|
|
break;
|
|
}
|
|
case STD_T_DICT: {
|
|
struct dict_entry *de;
|
|
struct ebpt_node *cached_de;
|
|
struct dcache_tx_entry cde = { };
|
|
char *beg, *end;
|
|
size_t value_len, data_len;
|
|
struct dcache *dc;
|
|
|
|
de = stktable_data_cast(data_ptr, std_t_dict);
|
|
if (!de) {
|
|
/* No entry */
|
|
intencode(0, &cursor);
|
|
break;
|
|
}
|
|
|
|
dc = peer->dcache;
|
|
cde.entry.key = de;
|
|
cached_de = dcache_tx_insert(dc, &cde);
|
|
if (cached_de == &cde.entry) {
|
|
if (cde.id + 1 >= PEER_ENC_2BYTES_MIN)
|
|
break;
|
|
/* Encode the length of the remaining data -> 1 */
|
|
intencode(1, &cursor);
|
|
/* Encode the cache entry ID */
|
|
intencode(cde.id + 1, &cursor);
|
|
}
|
|
else {
|
|
/* Leave enough room to encode the remaining data length. */
|
|
end = beg = cursor + PEER_MSG_ENC_LENGTH_MAXLEN;
|
|
/* Encode the dictionary entry key */
|
|
intencode(cde.id + 1, &end);
|
|
/* Encode the length of the dictionary entry data */
|
|
value_len = de->len;
|
|
intencode(value_len, &end);
|
|
/* Copy the data */
|
|
memcpy(end, de->value.key, value_len);
|
|
end += value_len;
|
|
/* Encode the length of the data */
|
|
data_len = end - beg;
|
|
intencode(data_len, &cursor);
|
|
memmove(cursor, beg, data_len);
|
|
cursor += data_len;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock);
|
|
|
|
/* Compute datalen */
|
|
datalen = (cursor - datamsg);
|
|
|
|
/* prepare message header */
|
|
msg[0] = PEER_MSG_CLASS_STICKTABLE;
|
|
peer_set_update_msg_type(&msg[1], use_identifier, use_timed);
|
|
cursor = &msg[2];
|
|
intencode(datalen, &cursor);
|
|
|
|
/* move data after header */
|
|
memmove(cursor, datamsg, datalen);
|
|
|
|
/* return header size + data_len */
|
|
return (cursor - msg) + datalen;
|
|
}
|
|
|
|
/*
|
|
* This prepare the switch table message to targeted share table <st>.
|
|
* <msg> is a buffer of <size> to receive data message content
|
|
* If function returns 0, the caller should consider we were unable to encode this message (TODO:
|
|
* check size)
|
|
*/
|
|
static int peer_prepare_switchmsg(char *msg, size_t size, struct peer_prep_params *params)
|
|
{
|
|
int len;
|
|
unsigned short datalen;
|
|
struct buffer *chunk;
|
|
char *cursor, *datamsg, *chunkp, *chunkq;
|
|
uint64_t data = 0;
|
|
unsigned int data_type;
|
|
struct shared_table *st;
|
|
|
|
st = params->swtch.shared_table;
|
|
cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN;
|
|
|
|
/* Encode data */
|
|
|
|
/* encode local id */
|
|
intencode(st->local_id, &cursor);
|
|
|
|
/* encode table name */
|
|
len = strlen(st->table->nid);
|
|
intencode(len, &cursor);
|
|
memcpy(cursor, st->table->nid, len);
|
|
cursor += len;
|
|
|
|
/* encode table type */
|
|
|
|
intencode(peer_net_key_type[st->table->type], &cursor);
|
|
|
|
/* encode table key size */
|
|
intencode(st->table->key_size, &cursor);
|
|
|
|
chunk = get_trash_chunk();
|
|
chunkp = chunkq = chunk->area;
|
|
/* encode available known data types in table */
|
|
for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) {
|
|
if (st->table->data_ofs[data_type]) {
|
|
/* stored data types parameters are all linearly encoded
|
|
* at the end of the 'table definition' message.
|
|
*
|
|
* Currently only array data_types and and data_types
|
|
* using freq_counter base type have parameters:
|
|
*
|
|
* - array has always at least one parameter set to the
|
|
* number of elements.
|
|
*
|
|
* - array of base-type freq_counters has an additional
|
|
* parameter set to the period used to compute those
|
|
* freq_counters.
|
|
*
|
|
* - simple freq counter has a parameter set to the period
|
|
* used to compute
|
|
*
|
|
* A set of parameter for a datatype MUST BE prefixed
|
|
* by the data-type id itself:
|
|
* This is useless because the data_types are ordered and
|
|
* the data_type bitfield already gives the information of
|
|
* stored types, but it was designed this way when the
|
|
* push of period parameter was added for freq counters
|
|
* and we don't want to break the compatibility.
|
|
*
|
|
*/
|
|
if (stktable_data_types[data_type].is_array) {
|
|
/* This is an array type so we first encode
|
|
* the data_type itself to prefix parameters
|
|
*/
|
|
intencode(data_type, &chunkq);
|
|
|
|
/* We encode the first parameter which is
|
|
* the number of elements of this array
|
|
*/
|
|
intencode(st->table->data_nbelem[data_type], &chunkq);
|
|
|
|
/* for array of freq counters, there is an additional
|
|
* period parameter to encode
|
|
*/
|
|
if (stktable_data_types[data_type].std_type == STD_T_FRQP)
|
|
intencode(st->table->data_arg[data_type].u, &chunkq);
|
|
}
|
|
else if (stktable_data_types[data_type].std_type == STD_T_FRQP) {
|
|
/* this datatype is a simple freq counter not part
|
|
* of an array. We encode the data_type itself
|
|
* to prefix the 'period' parameter
|
|
*/
|
|
intencode(data_type, &chunkq);
|
|
intencode(st->table->data_arg[data_type].u, &chunkq);
|
|
}
|
|
/* set the bit corresponding to stored data type */
|
|
data |= 1ULL << data_type;
|
|
}
|
|
}
|
|
intencode(data, &cursor);
|
|
|
|
/* Encode stick-table entries duration. */
|
|
intencode(st->table->expire, &cursor);
|
|
|
|
if (chunkq > chunkp) {
|
|
chunk->data = chunkq - chunkp;
|
|
memcpy(cursor, chunk->area, chunk->data);
|
|
cursor += chunk->data;
|
|
}
|
|
|
|
/* Compute datalen */
|
|
datalen = (cursor - datamsg);
|
|
|
|
/* prepare message header */
|
|
msg[0] = PEER_MSG_CLASS_STICKTABLE;
|
|
msg[1] = PEER_MSG_STKT_DEFINE;
|
|
cursor = &msg[2];
|
|
intencode(datalen, &cursor);
|
|
|
|
/* move data after header */
|
|
memmove(cursor, datamsg, datalen);
|
|
|
|
/* return header size + data_len */
|
|
return (cursor - msg) + datalen;
|
|
}
|
|
|
|
/*
|
|
* This prepare the acknowledge message on the stick session <ts>, <st> is the considered
|
|
* stick table.
|
|
* <msg> is a buffer of <size> to receive data message content
|
|
* If function returns 0, the caller should consider we were unable to encode this message (TODO:
|
|
* check size)
|
|
*/
|
|
static int peer_prepare_ackmsg(char *msg, size_t size, struct peer_prep_params *p)
|
|
{
|
|
unsigned short datalen;
|
|
char *cursor, *datamsg;
|
|
uint32_t netinteger;
|
|
struct shared_table *st;
|
|
|
|
cursor = datamsg = msg + PEER_MSG_HEADER_LEN + PEER_MSG_ENC_LENGTH_MAXLEN;
|
|
|
|
st = p->ack.shared_table;
|
|
intencode(st->remote_id, &cursor);
|
|
netinteger = htonl(st->last_get);
|
|
memcpy(cursor, &netinteger, sizeof(netinteger));
|
|
cursor += sizeof(netinteger);
|
|
|
|
/* Compute datalen */
|
|
datalen = (cursor - datamsg);
|
|
|
|
/* prepare message header */
|
|
msg[0] = PEER_MSG_CLASS_STICKTABLE;
|
|
msg[1] = PEER_MSG_STKT_ACK;
|
|
cursor = &msg[2];
|
|
intencode(datalen, &cursor);
|
|
|
|
/* move data after header */
|
|
memmove(cursor, datamsg, datalen);
|
|
|
|
/* return header size + data_len */
|
|
return (cursor - msg) + datalen;
|
|
}
|
|
|
|
/*
|
|
* Function to deinit connected peer
|
|
*/
|
|
void __peer_session_deinit(struct peer *peer)
|
|
{
|
|
struct peers *peers = peer->peers;
|
|
int thr;
|
|
|
|
if (!peers || !peer->appctx)
|
|
return;
|
|
|
|
thr = peer->appctx->t->tid;
|
|
HA_ATOMIC_DEC(&peers->applet_count[thr]);
|
|
|
|
if (peer->appctx->st0 == PEER_SESS_ST_WAITMSG)
|
|
HA_ATOMIC_DEC(&connected_peers);
|
|
|
|
HA_ATOMIC_DEC(&active_peers);
|
|
|
|
flush_dcache(peer);
|
|
|
|
/* Re-init current table pointers to force announcement on re-connect */
|
|
peer->remote_table = peer->last_local_table = peer->stop_local_table = NULL;
|
|
peer->appctx = NULL;
|
|
|
|
/* reset teaching flags to 0 */
|
|
peer->flags &= ~PEER_TEACH_FLAGS;
|
|
|
|
/* Mark the peer as stopping and wait for the sync task */
|
|
peer->flags |= PEER_F_WAIT_SYNCTASK_ACK;
|
|
peer->appstate = PEER_APP_ST_STOPPING;
|
|
|
|
task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
|
|
}
|
|
|
|
static int peer_session_init(struct appctx *appctx)
|
|
{
|
|
struct peer *peer = appctx->svcctx;
|
|
struct stream *s;
|
|
struct sockaddr_storage *addr = NULL;
|
|
|
|
if (!sockaddr_alloc(&addr, &peer->srv->addr, sizeof(peer->srv->addr)))
|
|
goto out_error;
|
|
set_host_port(addr, peer->srv->svc_port);
|
|
|
|
if (appctx_finalize_startup(appctx, peer->peers->peers_fe, &BUF_NULL) == -1)
|
|
goto out_free_addr;
|
|
|
|
s = appctx_strm(appctx);
|
|
/* applet is waiting for data */
|
|
applet_need_more_data(appctx);
|
|
appctx_wakeup(appctx);
|
|
|
|
/* initiate an outgoing connection */
|
|
s->scb->dst = addr;
|
|
s->scb->flags |= (SC_FL_RCV_ONCE|SC_FL_NOLINGER);
|
|
s->flags = SF_ASSIGNED;
|
|
s->target = peer_session_target(peer, s);
|
|
|
|
s->do_log = NULL;
|
|
s->uniq_id = 0;
|
|
|
|
_HA_ATOMIC_INC(&active_peers);
|
|
return 0;
|
|
|
|
out_free_addr:
|
|
sockaddr_free(&addr);
|
|
out_error:
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Callback to release a session with a peer
|
|
*/
|
|
static void peer_session_release(struct appctx *appctx)
|
|
{
|
|
struct peer *peer = appctx->svcctx;
|
|
|
|
TRACE_PROTO("releasing peer session", PEERS_EV_SESSREL, NULL, peer);
|
|
/* appctx->svcctx is not a peer session */
|
|
if (appctx->st0 < PEER_SESS_ST_SENDSUCCESS)
|
|
return;
|
|
|
|
/* peer session identified */
|
|
if (peer) {
|
|
HA_SPIN_LOCK(PEER_LOCK, &peer->lock);
|
|
if (peer->appctx == appctx)
|
|
__peer_session_deinit(peer);
|
|
peer->flags &= ~PEER_F_ALIVE;
|
|
HA_SPIN_UNLOCK(PEER_LOCK, &peer->lock);
|
|
}
|
|
}
|
|
|
|
/* Retrieve the major and minor versions of peers protocol
|
|
* announced by a remote peer. <str> is a null-terminated
|
|
* string with the following format: "<maj_ver>.<min_ver>".
|
|
*/
|
|
static int peer_get_version(const char *str,
|
|
unsigned int *maj_ver, unsigned int *min_ver)
|
|
{
|
|
unsigned int majv, minv;
|
|
const char *pos, *saved;
|
|
const char *end;
|
|
|
|
saved = pos = str;
|
|
end = str + strlen(str);
|
|
|
|
majv = read_uint(&pos, end);
|
|
if (saved == pos || *pos++ != '.')
|
|
return -1;
|
|
|
|
saved = pos;
|
|
minv = read_uint(&pos, end);
|
|
if (saved == pos || pos != end)
|
|
return -1;
|
|
|
|
*maj_ver = majv;
|
|
*min_ver = minv;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Parse a line terminated by an optional '\r' character, followed by a mandatory
|
|
* '\n' character.
|
|
* Returns 1 if succeeded or 0 if a '\n' character could not be found, and -1 if
|
|
* a line could not be read because the communication channel is closed.
|
|
*/
|
|
static inline int peer_getline(struct appctx *appctx)
|
|
{
|
|
struct stconn *sc = appctx_sc(appctx);
|
|
int n;
|
|
|
|
n = co_getline(sc_oc(sc), trash.area, trash.size);
|
|
if (!n)
|
|
return 0;
|
|
|
|
if (n < 0 || trash.area[n - 1] != '\n') {
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
return -1;
|
|
}
|
|
|
|
if (n > 1 && (trash.area[n - 2] == '\r'))
|
|
trash.area[n - 2] = 0;
|
|
else
|
|
trash.area[n - 1] = 0;
|
|
|
|
co_skip(sc_oc(sc), n);
|
|
|
|
return n;
|
|
}
|
|
|
|
/*
|
|
* Send a message after having called <peer_prepare_msg> to build it.
|
|
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appcxt st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_msg(struct appctx *appctx,
|
|
int (*peer_prepare_msg)(char *, size_t, struct peer_prep_params *),
|
|
struct peer_prep_params *params)
|
|
{
|
|
int ret, msglen;
|
|
|
|
msglen = peer_prepare_msg(trash.area, trash.size, params);
|
|
if (!msglen) {
|
|
/* internal error: message does not fit in trash */
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
return 0;
|
|
}
|
|
|
|
/* message to buffer */
|
|
ret = applet_putblk(appctx, trash.area, msglen);
|
|
if (ret <= 0) {
|
|
if (ret != -1)
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Send a hello message.
|
|
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appcxt st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_hellomsg(struct appctx *appctx, struct peer *peer)
|
|
{
|
|
struct peer_prep_params p = {
|
|
.hello.peer = peer,
|
|
};
|
|
|
|
return peer_send_msg(appctx, peer_prepare_hellomsg, &p);
|
|
}
|
|
|
|
/*
|
|
* Send a success peer handshake status message.
|
|
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appcxt st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_status_successmsg(struct appctx *appctx)
|
|
{
|
|
return peer_send_msg(appctx, peer_prepare_status_successmsg, NULL);
|
|
}
|
|
|
|
/*
|
|
* Send a peer handshake status error message.
|
|
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appcxt st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_status_errormsg(struct appctx *appctx)
|
|
{
|
|
struct peer_prep_params p = {
|
|
.error_status.st1 = appctx->st1,
|
|
};
|
|
|
|
return peer_send_msg(appctx, peer_prepare_status_errormsg, &p);
|
|
}
|
|
|
|
/*
|
|
* Send a stick-table switch message.
|
|
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appcxt st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_switchmsg(struct shared_table *st, struct appctx *appctx)
|
|
{
|
|
struct peer_prep_params p = {
|
|
.swtch.shared_table = st,
|
|
};
|
|
|
|
return peer_send_msg(appctx, peer_prepare_switchmsg, &p);
|
|
}
|
|
|
|
/*
|
|
* Send a stick-table update acknowledgement message.
|
|
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appcxt st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_ackmsg(struct shared_table *st, struct appctx *appctx)
|
|
{
|
|
struct peer_prep_params p = {
|
|
.ack.shared_table = st,
|
|
};
|
|
|
|
return peer_send_msg(appctx, peer_prepare_ackmsg, &p);
|
|
}
|
|
|
|
/*
|
|
* Send a stick-table update message.
|
|
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appcxt st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_updatemsg(struct shared_table *st, struct appctx *appctx, struct stksess *ts,
|
|
unsigned int updateid, int use_identifier, int use_timed)
|
|
{
|
|
struct peer_prep_params p = {
|
|
.updt = {
|
|
.stksess = ts,
|
|
.shared_table = st,
|
|
.updateid = updateid,
|
|
.use_identifier = use_identifier,
|
|
.use_timed = use_timed,
|
|
.peer = appctx->svcctx,
|
|
},
|
|
};
|
|
|
|
return peer_send_msg(appctx, peer_prepare_updatemsg, &p);
|
|
}
|
|
|
|
/*
|
|
* Build a peer protocol control class message.
|
|
* Returns the number of written bytes used to build the message if succeeded,
|
|
* 0 if not.
|
|
*/
|
|
static int peer_prepare_control_msg(char *msg, size_t size, struct peer_prep_params *p)
|
|
{
|
|
if (size < sizeof p->control.head)
|
|
return 0;
|
|
|
|
msg[0] = p->control.head[0];
|
|
msg[1] = p->control.head[1];
|
|
|
|
return 2;
|
|
}
|
|
|
|
/*
|
|
* Send a stick-table synchronization request message.
|
|
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appctx st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_resync_reqmsg(struct appctx *appctx,
|
|
struct peer *peer, struct peers *peers)
|
|
{
|
|
struct peer_prep_params p = {
|
|
.control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_RESYNCREQ, },
|
|
};
|
|
|
|
TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
|
|
NULL, &p.control.head[1], peers->local->id, peer->id);
|
|
|
|
return peer_send_msg(appctx, peer_prepare_control_msg, &p);
|
|
}
|
|
|
|
/*
|
|
* Send a stick-table synchronization confirmation message.
|
|
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appctx st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_resync_confirmsg(struct appctx *appctx,
|
|
struct peer *peer, struct peers *peers)
|
|
{
|
|
struct peer_prep_params p = {
|
|
.control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_RESYNCCONFIRM, },
|
|
};
|
|
|
|
TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
|
|
NULL, &p.control.head[1], peers->local->id, peer->id);
|
|
|
|
return peer_send_msg(appctx, peer_prepare_control_msg, &p);
|
|
}
|
|
|
|
/*
|
|
* Send a stick-table synchronization finished message.
|
|
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appctx st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_resync_finishedmsg(struct appctx *appctx,
|
|
struct peer *peer, struct peers *peers)
|
|
{
|
|
struct peer_prep_params p = {
|
|
.control.head = { PEER_MSG_CLASS_CONTROL, },
|
|
};
|
|
|
|
p.control.head[1] = (HA_ATOMIC_LOAD(&peers->flags) & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FINISHED ?
|
|
PEER_MSG_CTRL_RESYNCFINISHED : PEER_MSG_CTRL_RESYNCPARTIAL;
|
|
|
|
TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
|
|
NULL, &p.control.head[1], peers->local->id, peer->id);
|
|
|
|
return peer_send_msg(appctx, peer_prepare_control_msg, &p);
|
|
}
|
|
|
|
/*
|
|
* Send a heartbeat message.
|
|
* Return 0 if the message could not be built modifying the appctx st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appctx st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_heartbeatmsg(struct appctx *appctx,
|
|
struct peer *peer, struct peers *peers)
|
|
{
|
|
struct peer_prep_params p = {
|
|
.control.head = { PEER_MSG_CLASS_CONTROL, PEER_MSG_CTRL_HEARTBEAT, },
|
|
};
|
|
|
|
TRACE_PROTO("send control message", PEERS_EV_CTRLMSG,
|
|
NULL, &p.control.head[1], peers->local->id, peer->id);
|
|
|
|
return peer_send_msg(appctx, peer_prepare_control_msg, &p);
|
|
}
|
|
|
|
/*
|
|
* Build a peer protocol error class message.
|
|
* Returns the number of written bytes used to build the message if succeeded,
|
|
* 0 if not.
|
|
*/
|
|
static int peer_prepare_error_msg(char *msg, size_t size, struct peer_prep_params *p)
|
|
{
|
|
if (size < sizeof p->error.head)
|
|
return 0;
|
|
|
|
msg[0] = p->error.head[0];
|
|
msg[1] = p->error.head[1];
|
|
|
|
return 2;
|
|
}
|
|
|
|
/*
|
|
* Send a "size limit reached" error message.
|
|
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appctx st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_error_size_limitmsg(struct appctx *appctx)
|
|
{
|
|
struct peer_prep_params p = {
|
|
.error.head = { PEER_MSG_CLASS_ERROR, PEER_MSG_ERR_SIZELIMIT, },
|
|
};
|
|
|
|
return peer_send_msg(appctx, peer_prepare_error_msg, &p);
|
|
}
|
|
|
|
/*
|
|
* Send a "peer protocol" error message.
|
|
* Return 0 if the message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appctx st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_error_protomsg(struct appctx *appctx)
|
|
{
|
|
struct peer_prep_params p = {
|
|
.error.head = { PEER_MSG_CLASS_ERROR, PEER_MSG_ERR_PROTOCOL, },
|
|
};
|
|
|
|
return peer_send_msg(appctx, peer_prepare_error_msg, &p);
|
|
}
|
|
|
|
/*
|
|
* Function used to lookup for recent stick-table updates associated with
|
|
* <st> shared stick-table when a lesson must be taught a peer (learn state is not PEER_LR_ST_NOTASSIGNED).
|
|
*/
|
|
static inline struct stksess *peer_teach_process_stksess_lookup(struct shared_table *st)
|
|
{
|
|
struct eb32_node *eb;
|
|
struct stksess *ret;
|
|
|
|
eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1);
|
|
if (!eb) {
|
|
eb = eb32_first(&st->table->updates);
|
|
if (!eb || (eb->key == st->last_pushed)) {
|
|
st->table->commitupdate = st->last_pushed = st->table->localupdate;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* if distance between the last pushed and the retrieved key
|
|
* is greater than the distance last_pushed and the local_update
|
|
* this means we are beyond localupdate.
|
|
*/
|
|
if ((eb->key - st->last_pushed) > (st->table->localupdate - st->last_pushed)) {
|
|
st->table->commitupdate = st->last_pushed = st->table->localupdate;
|
|
return NULL;
|
|
}
|
|
|
|
ret = eb32_entry(eb, struct stksess, upd);
|
|
if (!_HA_ATOMIC_LOAD(&ret->seen))
|
|
_HA_ATOMIC_STORE(&ret->seen, 1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Function used to lookup for recent stick-table updates associated with
|
|
* <st> shared stick-table during teach state 1 step.
|
|
*/
|
|
static inline struct stksess *peer_teach_stage1_stksess_lookup(struct shared_table *st)
|
|
{
|
|
struct eb32_node *eb;
|
|
struct stksess *ret;
|
|
|
|
eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1);
|
|
if (!eb) {
|
|
st->flags |= SHTABLE_F_TEACH_STAGE1;
|
|
eb = eb32_first(&st->table->updates);
|
|
if (eb)
|
|
st->last_pushed = eb->key - 1;
|
|
return NULL;
|
|
}
|
|
|
|
ret = eb32_entry(eb, struct stksess, upd);
|
|
if (!_HA_ATOMIC_LOAD(&ret->seen))
|
|
_HA_ATOMIC_STORE(&ret->seen, 1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Function used to lookup for recent stick-table updates associated with
|
|
* <st> shared stick-table during teach state 2 step.
|
|
*/
|
|
static inline struct stksess *peer_teach_stage2_stksess_lookup(struct shared_table *st)
|
|
{
|
|
struct eb32_node *eb;
|
|
struct stksess *ret;
|
|
|
|
eb = eb32_lookup_ge(&st->table->updates, st->last_pushed+1);
|
|
if (!eb || eb->key > st->teaching_origin) {
|
|
st->flags |= SHTABLE_F_TEACH_STAGE2;
|
|
return NULL;
|
|
}
|
|
|
|
ret = eb32_entry(eb, struct stksess, upd);
|
|
if (!_HA_ATOMIC_LOAD(&ret->seen))
|
|
_HA_ATOMIC_STORE(&ret->seen, 1);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Generic function to emit update messages for <st> stick-table when a lesson must
|
|
* be taught to the peer <p>.
|
|
*
|
|
* This function temporary unlock/lock <st> when it sends stick-table updates or
|
|
* when decrementing its refcount in case of any error when it sends this updates.
|
|
* It must be called with the stick-table lock released.
|
|
*
|
|
* Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appcxt st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
* If it returns 0 or -1, this function leave <st> locked if already locked when entering this function
|
|
* unlocked if not already locked when entering this function.
|
|
*/
|
|
static inline int peer_send_teachmsgs(struct appctx *appctx, struct peer *p,
|
|
struct stksess *(*peer_stksess_lookup)(struct shared_table *),
|
|
struct shared_table *st)
|
|
{
|
|
int ret, new_pushed, use_timed;
|
|
int updates_sent = 0;
|
|
|
|
ret = 1;
|
|
use_timed = 0;
|
|
if (st != p->last_local_table) {
|
|
ret = peer_send_switchmsg(st, appctx);
|
|
if (ret <= 0)
|
|
return ret;
|
|
|
|
p->last_local_table = st;
|
|
}
|
|
|
|
if (peer_stksess_lookup != peer_teach_process_stksess_lookup)
|
|
use_timed = !(p->flags & PEER_F_DWNGRD);
|
|
|
|
/* We force new pushed to 1 to force identifier in update message */
|
|
new_pushed = 1;
|
|
|
|
HA_RWLOCK_RDLOCK(STK_TABLE_LOCK, &st->table->updt_lock);
|
|
|
|
while (1) {
|
|
struct stksess *ts;
|
|
unsigned updateid;
|
|
|
|
/* push local updates */
|
|
ts = peer_stksess_lookup(st);
|
|
if (!ts) {
|
|
ret = 1; // done
|
|
break;
|
|
}
|
|
|
|
updateid = ts->upd.key;
|
|
if (p->srv->shard && ts->shard != p->srv->shard) {
|
|
/* Skip this entry */
|
|
st->last_pushed = updateid;
|
|
new_pushed = 1;
|
|
continue;
|
|
}
|
|
|
|
HA_ATOMIC_INC(&ts->ref_cnt);
|
|
HA_RWLOCK_RDUNLOCK(STK_TABLE_LOCK, &st->table->updt_lock);
|
|
|
|
ret = peer_send_updatemsg(st, appctx, ts, updateid, new_pushed, use_timed);
|
|
HA_RWLOCK_RDLOCK(STK_TABLE_LOCK, &st->table->updt_lock);
|
|
HA_ATOMIC_DEC(&ts->ref_cnt);
|
|
if (ret <= 0)
|
|
break;
|
|
|
|
st->last_pushed = updateid;
|
|
|
|
if (peer_stksess_lookup == peer_teach_process_stksess_lookup) {
|
|
uint commitid = _HA_ATOMIC_LOAD(&st->table->commitupdate);
|
|
|
|
while ((int)(updateid - commitid) > 0) {
|
|
if (_HA_ATOMIC_CAS(&st->table->commitupdate, &commitid, updateid))
|
|
break;
|
|
__ha_cpu_relax();
|
|
}
|
|
}
|
|
|
|
/* identifier may not needed in next update message */
|
|
new_pushed = 0;
|
|
|
|
updates_sent++;
|
|
if (updates_sent >= peers_max_updates_at_once) {
|
|
applet_have_more_data(appctx);
|
|
ret = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
HA_RWLOCK_RDUNLOCK(STK_TABLE_LOCK, &st->table->updt_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Function to emit update messages for <st> stick-table when a lesson must
|
|
* be taught to the peer <p> (learn state is not PEER_LR_ST_NOTASSIGNED).
|
|
*
|
|
* Note that <st> shared stick-table is locked when calling this function, and
|
|
* the lock is dropped then re-acquired.
|
|
*
|
|
* Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appcxt st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_teach_process_msgs(struct appctx *appctx, struct peer *p,
|
|
struct shared_table *st)
|
|
{
|
|
return peer_send_teachmsgs(appctx, p, peer_teach_process_stksess_lookup, st);
|
|
}
|
|
|
|
/*
|
|
* Function to emit update messages for <st> stick-table when a lesson must
|
|
* be taught to the peer <p> during teach state 1 step. It must be called with
|
|
* the stick-table lock released.
|
|
*
|
|
* Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appcxt st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_teach_stage1_msgs(struct appctx *appctx, struct peer *p,
|
|
struct shared_table *st)
|
|
{
|
|
return peer_send_teachmsgs(appctx, p, peer_teach_stage1_stksess_lookup, st);
|
|
}
|
|
|
|
/*
|
|
* Function to emit update messages for <st> stick-table when a lesson must
|
|
* be taught to the peer <p> during teach state 1 step. It must be called with
|
|
* the stick-table lock released.
|
|
*
|
|
* Return 0 if any message could not be built modifying the appcxt st0 to PEER_SESS_ST_END value.
|
|
* Returns -1 if there was not enough room left to send the message,
|
|
* any other negative returned value must be considered as an error with an appcxt st0
|
|
* returned value equal to PEER_SESS_ST_END.
|
|
*/
|
|
static inline int peer_send_teach_stage2_msgs(struct appctx *appctx, struct peer *p,
|
|
struct shared_table *st)
|
|
{
|
|
return peer_send_teachmsgs(appctx, p, peer_teach_stage2_stksess_lookup, st);
|
|
}
|
|
|
|
|
|
/*
|
|
* Function used to parse a stick-table update message after it has been received
|
|
* by <p> peer with <msg_cur> as address of the pointer to the position in the
|
|
* receipt buffer with <msg_end> being position of the end of the stick-table message.
|
|
* Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
|
|
* was encountered.
|
|
* <exp> must be set if the stick-table entry expires.
|
|
* <updt> must be set for PEER_MSG_STKT_UPDATE or PEER_MSG_STKT_UPDATE_TIMED stick-table
|
|
* messages, in this case the stick-table update message is received with a stick-table
|
|
* update ID.
|
|
* <totl> is the length of the stick-table update message computed upon receipt.
|
|
*/
|
|
static int peer_treat_updatemsg(struct appctx *appctx, struct peer *p, int updt, int exp,
|
|
char **msg_cur, char *msg_end, int msg_len, int totl)
|
|
{
|
|
struct shared_table *st = p->remote_table;
|
|
struct stktable *table;
|
|
struct stksess *ts, *newts;
|
|
struct stksess *wts = NULL; /* write_to stksess */
|
|
uint32_t update;
|
|
int expire;
|
|
unsigned int data_type;
|
|
size_t keylen;
|
|
void *data_ptr;
|
|
char *msg_save;
|
|
|
|
TRACE_ENTER(PEERS_EV_UPDTMSG, NULL, p);
|
|
/* Here we have data message */
|
|
if (!st)
|
|
goto ignore_msg;
|
|
|
|
table = st->table;
|
|
|
|
expire = MS_TO_TICKS(table->expire);
|
|
|
|
if (updt) {
|
|
if (msg_len < sizeof(update)) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
|
|
goto malformed_exit;
|
|
}
|
|
|
|
memcpy(&update, *msg_cur, sizeof(update));
|
|
*msg_cur += sizeof(update);
|
|
st->last_get = htonl(update);
|
|
}
|
|
else {
|
|
st->last_get++;
|
|
}
|
|
|
|
if (exp) {
|
|
size_t expire_sz = sizeof expire;
|
|
|
|
if (*msg_cur + expire_sz > msg_end) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, *msg_cur);
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, msg_end, &expire_sz);
|
|
goto malformed_exit;
|
|
}
|
|
|
|
memcpy(&expire, *msg_cur, expire_sz);
|
|
*msg_cur += expire_sz;
|
|
expire = ntohl(expire);
|
|
}
|
|
|
|
newts = stksess_new(table, NULL);
|
|
if (!newts)
|
|
goto ignore_msg;
|
|
|
|
if (table->type == SMP_T_STR) {
|
|
unsigned int to_read, to_store;
|
|
|
|
to_read = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
|
|
goto malformed_free_newts;
|
|
}
|
|
|
|
to_store = MIN(to_read, table->key_size - 1);
|
|
if (*msg_cur + to_store > msg_end) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, *msg_cur);
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, msg_end, &to_store);
|
|
goto malformed_free_newts;
|
|
}
|
|
|
|
keylen = to_store;
|
|
memcpy(newts->key.key, *msg_cur, keylen);
|
|
newts->key.key[keylen] = 0;
|
|
*msg_cur += to_read;
|
|
}
|
|
else if (table->type == SMP_T_SINT) {
|
|
unsigned int netinteger;
|
|
|
|
if (*msg_cur + sizeof(netinteger) > msg_end) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, *msg_cur);
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, msg_end);
|
|
goto malformed_free_newts;
|
|
}
|
|
|
|
keylen = sizeof(netinteger);
|
|
memcpy(&netinteger, *msg_cur, keylen);
|
|
netinteger = ntohl(netinteger);
|
|
memcpy(newts->key.key, &netinteger, keylen);
|
|
*msg_cur += keylen;
|
|
}
|
|
else {
|
|
if (*msg_cur + table->key_size > msg_end) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, *msg_cur);
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, msg_end, &table->key_size);
|
|
goto malformed_free_newts;
|
|
}
|
|
|
|
keylen = table->key_size;
|
|
memcpy(newts->key.key, *msg_cur, keylen);
|
|
*msg_cur += keylen;
|
|
}
|
|
|
|
newts->shard = stktable_get_key_shard(table, newts->key.key, keylen);
|
|
|
|
/* lookup for existing entry */
|
|
ts = stktable_set_entry(table, newts);
|
|
if (ts != newts) {
|
|
stksess_free(table, newts);
|
|
newts = NULL;
|
|
}
|
|
|
|
msg_save = *msg_cur;
|
|
|
|
update_wts:
|
|
|
|
HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock);
|
|
|
|
for (data_type = 0 ; data_type < STKTABLE_DATA_TYPES ; data_type++) {
|
|
uint64_t decoded_int;
|
|
unsigned int idx;
|
|
int ignore = 0;
|
|
|
|
if (!((1ULL << data_type) & st->remote_data))
|
|
continue;
|
|
|
|
/* We shouldn't learn local-only values. Also, when handling the
|
|
* write_to table we must ignore types that can be processed
|
|
* so we don't interfere with any potential arithmetic logic
|
|
* performed on them (ie: cumulative counters).
|
|
*/
|
|
if (stktable_data_types[data_type].is_local ||
|
|
(table != st->table && !stktable_data_types[data_type].as_is))
|
|
ignore = 1;
|
|
|
|
if (stktable_data_types[data_type].is_array) {
|
|
/* in case of array all elements
|
|
* use the same std_type and they
|
|
* are linearly encoded.
|
|
* The number of elements was provided
|
|
* by table definition message
|
|
*/
|
|
switch (stktable_data_types[data_type].std_type) {
|
|
case STD_T_SINT:
|
|
for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) {
|
|
decoded_int = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
|
|
goto malformed_unlock;
|
|
}
|
|
|
|
data_ptr = stktable_data_ptr_idx(table, ts, data_type, idx);
|
|
if (data_ptr && !ignore)
|
|
stktable_data_cast(data_ptr, std_t_sint) = decoded_int;
|
|
}
|
|
break;
|
|
case STD_T_UINT:
|
|
for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) {
|
|
decoded_int = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
|
|
goto malformed_unlock;
|
|
}
|
|
|
|
data_ptr = stktable_data_ptr_idx(table, ts, data_type, idx);
|
|
if (data_ptr && !ignore)
|
|
stktable_data_cast(data_ptr, std_t_uint) = decoded_int;
|
|
}
|
|
break;
|
|
case STD_T_ULL:
|
|
for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) {
|
|
decoded_int = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
|
|
goto malformed_unlock;
|
|
}
|
|
|
|
data_ptr = stktable_data_ptr_idx(table, ts, data_type, idx);
|
|
if (data_ptr && !ignore)
|
|
stktable_data_cast(data_ptr, std_t_ull) = decoded_int;
|
|
}
|
|
break;
|
|
case STD_T_FRQP:
|
|
for (idx = 0; idx < st->remote_data_nbelem[data_type]; idx++) {
|
|
struct freq_ctr data;
|
|
|
|
/* First bit is reserved for the freq_ctr lock
|
|
* Note: here we're still protected by the stksess lock
|
|
* so we don't need to update the update the freq_ctr
|
|
* using its internal lock.
|
|
*/
|
|
|
|
decoded_int = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
|
|
goto malformed_unlock;
|
|
}
|
|
|
|
data.curr_tick = tick_add(now_ms, -decoded_int) & ~0x1;
|
|
data.curr_ctr = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
|
|
goto malformed_unlock;
|
|
}
|
|
|
|
data.prev_ctr = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
|
|
goto malformed_unlock;
|
|
}
|
|
|
|
data_ptr = stktable_data_ptr_idx(table, ts, data_type, idx);
|
|
if (data_ptr && !ignore)
|
|
stktable_data_cast(data_ptr, std_t_frqp) = data;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* array is fully decoded
|
|
* proceed next data_type.
|
|
*/
|
|
continue;
|
|
}
|
|
decoded_int = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
|
|
goto malformed_unlock;
|
|
}
|
|
|
|
switch (stktable_data_types[data_type].std_type) {
|
|
case STD_T_SINT:
|
|
data_ptr = stktable_data_ptr(table, ts, data_type);
|
|
if (data_ptr && !ignore)
|
|
stktable_data_cast(data_ptr, std_t_sint) = decoded_int;
|
|
break;
|
|
|
|
case STD_T_UINT:
|
|
data_ptr = stktable_data_ptr(table, ts, data_type);
|
|
if (data_ptr && !ignore)
|
|
stktable_data_cast(data_ptr, std_t_uint) = decoded_int;
|
|
break;
|
|
|
|
case STD_T_ULL:
|
|
data_ptr = stktable_data_ptr(table, ts, data_type);
|
|
if (data_ptr && !ignore)
|
|
stktable_data_cast(data_ptr, std_t_ull) = decoded_int;
|
|
break;
|
|
|
|
case STD_T_FRQP: {
|
|
struct freq_ctr data;
|
|
|
|
/* First bit is reserved for the freq_ctr lock
|
|
Note: here we're still protected by the stksess lock
|
|
so we don't need to update the update the freq_ctr
|
|
using its internal lock.
|
|
*/
|
|
|
|
data.curr_tick = tick_add(now_ms, -decoded_int) & ~0x1;
|
|
data.curr_ctr = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
|
|
goto malformed_unlock;
|
|
}
|
|
|
|
data.prev_ctr = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG, NULL, p);
|
|
goto malformed_unlock;
|
|
}
|
|
|
|
data_ptr = stktable_data_ptr(table, ts, data_type);
|
|
if (data_ptr && !ignore)
|
|
stktable_data_cast(data_ptr, std_t_frqp) = data;
|
|
break;
|
|
}
|
|
case STD_T_DICT: {
|
|
struct buffer *chunk;
|
|
size_t data_len, value_len;
|
|
unsigned int id;
|
|
struct dict_entry *de;
|
|
struct dcache *dc;
|
|
char *end;
|
|
|
|
if (!decoded_int) {
|
|
/* No entry. */
|
|
break;
|
|
}
|
|
data_len = decoded_int;
|
|
if (*msg_cur + data_len > msg_end) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, *msg_cur);
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, msg_end, &data_len);
|
|
goto malformed_unlock;
|
|
}
|
|
|
|
/* Compute the end of the current data, <msg_end> being at the end of
|
|
* the entire message.
|
|
*/
|
|
end = *msg_cur + data_len;
|
|
id = intdecode(msg_cur, end);
|
|
if (!*msg_cur || !id) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, *msg_cur, &id);
|
|
goto malformed_unlock;
|
|
}
|
|
|
|
dc = p->dcache;
|
|
if (*msg_cur == end) {
|
|
/* Dictionary entry key without value. */
|
|
if (id > dc->max_entries) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, NULL, &id);
|
|
goto malformed_unlock;
|
|
}
|
|
/* IDs sent over the network are numbered from 1. */
|
|
de = dc->rx[id - 1].de;
|
|
}
|
|
else {
|
|
chunk = get_trash_chunk();
|
|
value_len = intdecode(msg_cur, end);
|
|
if (!*msg_cur || *msg_cur + value_len > end ||
|
|
unlikely(value_len + 1 >= chunk->size)) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, *msg_cur, &value_len);
|
|
TRACE_PROTO("malformed message", PEERS_EV_UPDTMSG,
|
|
NULL, p, end, &chunk->size);
|
|
goto malformed_unlock;
|
|
}
|
|
|
|
chunk_memcpy(chunk, *msg_cur, value_len);
|
|
chunk->area[chunk->data] = '\0';
|
|
*msg_cur += value_len;
|
|
|
|
de = dict_insert(&server_key_dict, chunk->area);
|
|
dict_entry_unref(&server_key_dict, dc->rx[id - 1].de);
|
|
dc->rx[id - 1].de = de;
|
|
}
|
|
if (de) {
|
|
data_ptr = stktable_data_ptr(table, ts, data_type);
|
|
if (data_ptr && !ignore) {
|
|
HA_ATOMIC_INC(&de->refcount);
|
|
stktable_data_cast(data_ptr, std_t_dict) = de;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (st->table->write_to.t && table != st->table->write_to.t) {
|
|
struct stktable_key stkey = { .key = ts->key.key, .key_len = keylen };
|
|
|
|
/* While we're still under the main ts lock, try to get related
|
|
* write_to stksess with main ts key
|
|
*/
|
|
wts = stktable_get_entry(st->table->write_to.t, &stkey);
|
|
}
|
|
|
|
/* Force new expiration */
|
|
ts->expire = tick_add(now_ms, expire);
|
|
|
|
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
|
|
stktable_touch_remote(table, ts, 1);
|
|
|
|
if (wts) {
|
|
/* Start over the message decoding for wts as we got a valid stksess
|
|
* for write_to table, so we need to refresh the entry with supported
|
|
* values.
|
|
*
|
|
* We prefer to do the decoding a second time even though it might
|
|
* cost a bit more than copying from main ts to wts, but doing so
|
|
* enables us to get rid of main ts lock: we only need the wts lock
|
|
* since upstream data is still available in msg_cur
|
|
*/
|
|
ts = wts;
|
|
table = st->table->write_to.t;
|
|
wts = NULL; /* so we don't get back here */
|
|
*msg_cur = msg_save;
|
|
goto update_wts;
|
|
}
|
|
|
|
ignore_msg:
|
|
TRACE_LEAVE(PEERS_EV_UPDTMSG, NULL, p);
|
|
return 1;
|
|
|
|
malformed_unlock:
|
|
/* malformed message */
|
|
HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock);
|
|
stktable_touch_remote(st->table, ts, 1);
|
|
appctx->st0 = PEER_SESS_ST_ERRPROTO;
|
|
TRACE_DEVEL("leaving in error", PEERS_EV_UPDTMSG);
|
|
return 0;
|
|
|
|
malformed_free_newts:
|
|
/* malformed message */
|
|
stksess_free(st->table, newts);
|
|
malformed_exit:
|
|
appctx->st0 = PEER_SESS_ST_ERRPROTO;
|
|
TRACE_DEVEL("leaving in error", PEERS_EV_UPDTMSG);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function used to parse a stick-table update acknowledgement message after it
|
|
* has been received by <p> peer with <msg_cur> as address of the pointer to the position in the
|
|
* receipt buffer with <msg_end> being the position of the end of the stick-table message.
|
|
* Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
|
|
* was encountered.
|
|
* Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO.
|
|
*/
|
|
static inline int peer_treat_ackmsg(struct appctx *appctx, struct peer *p,
|
|
char **msg_cur, char *msg_end)
|
|
{
|
|
/* ack message */
|
|
uint32_t table_id ;
|
|
uint32_t update;
|
|
struct shared_table *st;
|
|
|
|
/* ignore ack during teaching process */
|
|
if (p->flags & PEER_F_TEACH_PROCESS)
|
|
return 1;
|
|
|
|
table_id = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur || (*msg_cur + sizeof(update) > msg_end)) {
|
|
/* malformed message */
|
|
|
|
TRACE_PROTO("malformed message", PEERS_EV_ACKMSG,
|
|
NULL, p, *msg_cur);
|
|
appctx->st0 = PEER_SESS_ST_ERRPROTO;
|
|
return 0;
|
|
}
|
|
|
|
memcpy(&update, *msg_cur, sizeof(update));
|
|
update = ntohl(update);
|
|
|
|
for (st = p->tables; st; st = st->next) {
|
|
if (st->local_id == table_id) {
|
|
st->update = update;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Function used to parse a stick-table switch message after it has been received
|
|
* by <p> peer with <msg_cur> as address of the pointer to the position in the
|
|
* receipt buffer with <msg_end> being the position of the end of the stick-table message.
|
|
* Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
|
|
* was encountered.
|
|
* Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO.
|
|
*/
|
|
static inline int peer_treat_switchmsg(struct appctx *appctx, struct peer *p,
|
|
char **msg_cur, char *msg_end)
|
|
{
|
|
struct shared_table *st;
|
|
int table_id;
|
|
|
|
table_id = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_SWTCMSG, NULL, p);
|
|
/* malformed message */
|
|
appctx->st0 = PEER_SESS_ST_ERRPROTO;
|
|
return 0;
|
|
}
|
|
|
|
p->remote_table = NULL;
|
|
for (st = p->tables; st; st = st->next) {
|
|
if (st->remote_id == table_id) {
|
|
p->remote_table = st;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Function used to parse a stick-table definition message after it has been received
|
|
* by <p> peer with <msg_cur> as address of the pointer to the position in the
|
|
* receipt buffer with <msg_end> being the position of the end of the stick-table message.
|
|
* Update <msg_curr> accordingly to the peer protocol specs if no peer protocol error
|
|
* was encountered.
|
|
* <totl> is the length of the stick-table update message computed upon receipt.
|
|
* Return 1 if succeeded, 0 if not with the appctx state st0 set to PEER_SESS_ST_ERRPROTO.
|
|
*/
|
|
static inline int peer_treat_definemsg(struct appctx *appctx, struct peer *p,
|
|
char **msg_cur, char *msg_end, int totl)
|
|
{
|
|
int table_id_len;
|
|
struct shared_table *st;
|
|
int table_type;
|
|
int table_keylen;
|
|
int table_id;
|
|
uint64_t table_data;
|
|
|
|
table_id = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
|
|
goto malformed_exit;
|
|
}
|
|
|
|
table_id_len = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p, *msg_cur);
|
|
goto malformed_exit;
|
|
}
|
|
|
|
p->remote_table = NULL;
|
|
if (!table_id_len || (*msg_cur + table_id_len) >= msg_end) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p, *msg_cur, &table_id_len);
|
|
goto malformed_exit;
|
|
}
|
|
|
|
for (st = p->tables; st; st = st->next) {
|
|
/* Reset IDs */
|
|
if (st->remote_id == table_id)
|
|
st->remote_id = 0;
|
|
|
|
if (!p->remote_table && (table_id_len == strlen(st->table->nid)) &&
|
|
(memcmp(st->table->nid, *msg_cur, table_id_len) == 0))
|
|
p->remote_table = st;
|
|
}
|
|
|
|
if (!p->remote_table) {
|
|
TRACE_PROTO("ignored message", PEERS_EV_DEFMSG, NULL, p);
|
|
goto ignore_msg;
|
|
}
|
|
|
|
*msg_cur += table_id_len;
|
|
if (*msg_cur >= msg_end) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
|
|
goto malformed_exit;
|
|
}
|
|
|
|
table_type = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
|
|
goto malformed_exit;
|
|
}
|
|
|
|
table_keylen = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
|
|
goto malformed_exit;
|
|
}
|
|
|
|
table_data = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
TRACE_PROTO("malformed message", PEERS_EV_DEFMSG, NULL, p);
|
|
goto malformed_exit;
|
|
}
|
|
|
|
if (p->remote_table->table->type != peer_int_key_type[table_type]
|
|
|| p->remote_table->table->key_size != table_keylen) {
|
|
p->remote_table = NULL;
|
|
TRACE_PROTO("ignored message", PEERS_EV_DEFMSG, NULL, p);
|
|
goto ignore_msg;
|
|
}
|
|
|
|
/* Check if there there is the additional expire data */
|
|
intdecode(msg_cur, msg_end);
|
|
if (*msg_cur) {
|
|
uint64_t data_type;
|
|
uint64_t type;
|
|
|
|
/* This define contains the expire data so we consider
|
|
* it also contain all data_types parameters.
|
|
*/
|
|
for (data_type = 0; data_type < STKTABLE_DATA_TYPES; data_type++) {
|
|
if (table_data & (1ULL << data_type)) {
|
|
if (stktable_data_types[data_type].is_array) {
|
|
/* This should be an array
|
|
* so we parse the data_type prefix
|
|
* because we must have parameters.
|
|
*/
|
|
type = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
p->remote_table = NULL;
|
|
TRACE_PROTO("missing meta data for array", PEERS_EV_DEFMSG, NULL, p);
|
|
goto ignore_msg;
|
|
}
|
|
|
|
/* check if the data_type match the current from the bitfield */
|
|
if (type != data_type) {
|
|
p->remote_table = NULL;
|
|
TRACE_PROTO("meta data mismatch type", PEERS_EV_DEFMSG, NULL, p);
|
|
goto ignore_msg;
|
|
}
|
|
|
|
/* decode the nbelem of the array */
|
|
p->remote_table->remote_data_nbelem[type] = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
p->remote_table = NULL;
|
|
TRACE_PROTO("missing array size meta data for array", PEERS_EV_DEFMSG, NULL, p);
|
|
goto ignore_msg;
|
|
}
|
|
|
|
/* if it is an array of frqp, we must also have the period to decode */
|
|
if (stktable_data_types[data_type].std_type == STD_T_FRQP) {
|
|
intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
p->remote_table = NULL;
|
|
TRACE_PROTO("missing period for frqp", PEERS_EV_DEFMSG, NULL, p);
|
|
goto ignore_msg;
|
|
}
|
|
}
|
|
}
|
|
else if (stktable_data_types[data_type].std_type == STD_T_FRQP) {
|
|
/* This should be a std freq counter data_type
|
|
* so we parse the data_type prefix
|
|
* because we must have parameters.
|
|
*/
|
|
type = intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
p->remote_table = NULL;
|
|
TRACE_PROTO("missing meta data for frqp", PEERS_EV_DEFMSG, NULL, p);
|
|
goto ignore_msg;
|
|
}
|
|
|
|
/* check if the data_type match the current from the bitfield */
|
|
if (type != data_type) {
|
|
p->remote_table = NULL;
|
|
TRACE_PROTO("meta data mismatch type", PEERS_EV_DEFMSG, NULL, p);
|
|
goto ignore_msg;
|
|
}
|
|
|
|
/* decode the period */
|
|
intdecode(msg_cur, msg_end);
|
|
if (!*msg_cur) {
|
|
p->remote_table = NULL;
|
|
TRACE_PROTO("missing period for frqp", PEERS_EV_DEFMSG, NULL, p);
|
|
goto ignore_msg;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
uint64_t data_type;
|
|
|
|
/* There is not additional data but
|
|
* array size parameter is mandatory to parse array
|
|
* so we consider an error if an array data_type is define
|
|
* but there is no additional data.
|
|
*/
|
|
for (data_type = 0; data_type < STKTABLE_DATA_TYPES; data_type++) {
|
|
if (table_data & (1ULL << data_type)) {
|
|
if (stktable_data_types[data_type].is_array) {
|
|
p->remote_table = NULL;
|
|
TRACE_PROTO("missing array size meta data for array", PEERS_EV_DEFMSG, NULL, p);
|
|
goto ignore_msg;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
p->remote_table->remote_data = table_data;
|
|
p->remote_table->remote_id = table_id;
|
|
|
|
ignore_msg:
|
|
return 1;
|
|
|
|
malformed_exit:
|
|
/* malformed message */
|
|
appctx->st0 = PEER_SESS_ST_ERRPROTO;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Receive a stick-table message or pre-parse any other message.
|
|
* The message's header will be sent into <msg_head> which must be at least
|
|
* <msg_head_sz> bytes long (at least 7 to store 32-bit variable lengths).
|
|
* The first two bytes are always read, and the rest is only read if the
|
|
* first bytes indicate a stick-table message. If the message is a stick-table
|
|
* message, the varint is decoded and the equivalent number of bytes will be
|
|
* copied into the trash at trash.area. <totl> is incremented by the number of
|
|
* bytes read EVEN IN CASE OF INCOMPLETE MESSAGES.
|
|
* Returns 1 if there was no error, if not, returns 0 if not enough data were available,
|
|
* -1 if there was an error updating the appctx state st0 accordingly.
|
|
*/
|
|
static inline int peer_recv_msg(struct appctx *appctx, char *msg_head, size_t msg_head_sz,
|
|
uint32_t *msg_len, int *totl)
|
|
{
|
|
int reql;
|
|
struct stconn *sc = appctx_sc(appctx);
|
|
char *cur;
|
|
|
|
reql = co_getblk(sc_oc(sc), msg_head, 2 * sizeof(char), *totl);
|
|
if (reql <= 0) /* closed or EOL not found */
|
|
goto incomplete;
|
|
|
|
*totl += reql;
|
|
|
|
if (!(msg_head[1] & PEER_MSG_STKT_BIT_MASK))
|
|
return 1;
|
|
|
|
/* This is a stick-table message, let's go on */
|
|
|
|
/* Read and Decode message length */
|
|
msg_head += *totl;
|
|
msg_head_sz -= *totl;
|
|
reql = co_data(sc_oc(sc)) - *totl;
|
|
if (reql > msg_head_sz)
|
|
reql = msg_head_sz;
|
|
|
|
reql = co_getblk(sc_oc(sc), msg_head, reql, *totl);
|
|
if (reql <= 0) /* closed */
|
|
goto incomplete;
|
|
|
|
cur = msg_head;
|
|
*msg_len = intdecode(&cur, cur + reql);
|
|
if (!cur) {
|
|
/* the number is truncated, did we read enough ? */
|
|
if (reql < msg_head_sz)
|
|
goto incomplete;
|
|
|
|
/* malformed message */
|
|
TRACE_PROTO("malformed message: too large length encoding", PEERS_EV_UPDTMSG);
|
|
appctx->st0 = PEER_SESS_ST_ERRPROTO;
|
|
return -1;
|
|
}
|
|
*totl += cur - msg_head;
|
|
|
|
/* Read message content */
|
|
if (*msg_len) {
|
|
if (*msg_len > trash.size) {
|
|
/* Status code is not success, abort */
|
|
appctx->st0 = PEER_SESS_ST_ERRSIZE;
|
|
return -1;
|
|
}
|
|
|
|
reql = co_getblk(sc_oc(sc), trash.area, *msg_len, *totl);
|
|
if (reql <= 0) /* closed */
|
|
goto incomplete;
|
|
*totl += reql;
|
|
}
|
|
|
|
return 1;
|
|
|
|
incomplete:
|
|
if (reql < 0 || (sc->flags & (SC_FL_SHUT_DONE|SC_FL_SHUT_WANTED))) {
|
|
/* there was an error or the message was truncated */
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Treat the awaited message with <msg_head> as header.*
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
static inline int peer_treat_awaited_msg(struct appctx *appctx, struct peer *peer, unsigned char *msg_head,
|
|
char **msg_cur, char *msg_end, int msg_len, int totl)
|
|
{
|
|
struct peers *peers = peer->peers;
|
|
|
|
if (msg_head[0] == PEER_MSG_CLASS_CONTROL) {
|
|
if (msg_head[1] == PEER_MSG_CTRL_RESYNCREQ) {
|
|
struct shared_table *st;
|
|
/* Reset message: remote need resync */
|
|
|
|
TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
|
|
NULL, &msg_head[1], peers->local->id, peer->id);
|
|
/* prepare tables for a global push */
|
|
for (st = peer->tables; st; st = st->next) {
|
|
st->teaching_origin = st->last_pushed = st->update;
|
|
st->flags = 0;
|
|
}
|
|
|
|
/* reset teaching flags to 0 */
|
|
peer->flags &= ~PEER_TEACH_FLAGS;
|
|
|
|
/* flag to start to teach lesson */
|
|
peer->flags |= (PEER_F_TEACH_PROCESS|PEER_F_DBG_RESYNC_REQUESTED);
|
|
}
|
|
else if (msg_head[1] == PEER_MSG_CTRL_RESYNCFINISHED) {
|
|
TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
|
|
NULL, &msg_head[1], peers->local->id, peer->id);
|
|
if (peer->learnstate == PEER_LR_ST_PROCESSING) {
|
|
peer->learnstate = PEER_LR_ST_FINISHED;
|
|
peer->flags |= PEER_F_WAIT_SYNCTASK_ACK;
|
|
task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
|
|
}
|
|
peer->confirm++;
|
|
}
|
|
else if (msg_head[1] == PEER_MSG_CTRL_RESYNCPARTIAL) {
|
|
TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
|
|
NULL, &msg_head[1], peers->local->id, peer->id);
|
|
if (peer->learnstate == PEER_LR_ST_PROCESSING) {
|
|
peer->learnstate = PEER_LR_ST_FINISHED;
|
|
peer->flags |= (PEER_F_LEARN_NOTUP2DATE|PEER_F_WAIT_SYNCTASK_ACK);
|
|
task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
|
|
}
|
|
peer->confirm++;
|
|
}
|
|
else if (msg_head[1] == PEER_MSG_CTRL_RESYNCCONFIRM) {
|
|
struct shared_table *st;
|
|
|
|
TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
|
|
NULL, &msg_head[1], peers->local->id, peer->id);
|
|
/* If stopping state */
|
|
if (stopping) {
|
|
/* Close session, push resync no more needed */
|
|
peer->flags |= PEER_F_LOCAL_TEACH_COMPLETE;
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
return 0;
|
|
}
|
|
for (st = peer->tables; st; st = st->next) {
|
|
st->update = st->last_pushed = st->teaching_origin;
|
|
st->flags = 0;
|
|
}
|
|
|
|
/* reset teaching flags to 0 */
|
|
peer->flags &= ~PEER_TEACH_FLAGS;
|
|
}
|
|
else if (msg_head[1] == PEER_MSG_CTRL_HEARTBEAT) {
|
|
TRACE_PROTO("received control message", PEERS_EV_CTRLMSG,
|
|
NULL, &msg_head[1], peers->local->id, peer->id);
|
|
peer->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT));
|
|
peer->rx_hbt++;
|
|
}
|
|
}
|
|
else if (msg_head[0] == PEER_MSG_CLASS_STICKTABLE) {
|
|
if (msg_head[1] == PEER_MSG_STKT_DEFINE) {
|
|
if (!peer_treat_definemsg(appctx, peer, msg_cur, msg_end, totl))
|
|
return 0;
|
|
}
|
|
else if (msg_head[1] == PEER_MSG_STKT_SWITCH) {
|
|
if (!peer_treat_switchmsg(appctx, peer, msg_cur, msg_end))
|
|
return 0;
|
|
}
|
|
else if (msg_head[1] == PEER_MSG_STKT_UPDATE ||
|
|
msg_head[1] == PEER_MSG_STKT_INCUPDATE ||
|
|
msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED ||
|
|
msg_head[1] == PEER_MSG_STKT_INCUPDATE_TIMED) {
|
|
int update, expire;
|
|
|
|
update = msg_head[1] == PEER_MSG_STKT_UPDATE || msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED;
|
|
expire = msg_head[1] == PEER_MSG_STKT_UPDATE_TIMED || msg_head[1] == PEER_MSG_STKT_INCUPDATE_TIMED;
|
|
if (!peer_treat_updatemsg(appctx, peer, update, expire,
|
|
msg_cur, msg_end, msg_len, totl))
|
|
return 0;
|
|
|
|
}
|
|
else if (msg_head[1] == PEER_MSG_STKT_ACK) {
|
|
if (!peer_treat_ackmsg(appctx, peer, msg_cur, msg_end))
|
|
return 0;
|
|
}
|
|
}
|
|
else if (msg_head[0] == PEER_MSG_CLASS_RESERVED) {
|
|
appctx->st0 = PEER_SESS_ST_ERRPROTO;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Send any message to <peer> peer.
|
|
* Returns 1 if succeeded, or -1 or 0 if failed.
|
|
* -1 means an internal error occurred, 0 is for a peer protocol error leading
|
|
* to a peer state change (from the peer I/O handler point of view).
|
|
*
|
|
* - peer->last_local_table is the last table for which we send an update
|
|
* messages.
|
|
*
|
|
* - peer->stop_local_table is the last evaluated table. It is unset when the
|
|
* teaching process starts. But we use it as a
|
|
* restart point when the loop is interrupted. It is
|
|
* especially useful when the number of tables exceeds
|
|
* peers_max_updates_at_once value.
|
|
*
|
|
* When a teaching lopp is started, the peer's last_local_table is saved in a
|
|
* local variable. This variable is used as a finish point. When the crrent
|
|
* table is equal to it, it means all tables were evaluated, all updates where
|
|
* sent and the teaching process is finished.
|
|
*
|
|
* peer->stop_local_table is always NULL when the teaching process begins. It is
|
|
* only reset at the end. In the mean time, it always point on a table.
|
|
*/
|
|
|
|
static inline int peer_send_msgs(struct appctx *appctx,
|
|
struct peer *peer, struct peers *peers)
|
|
{
|
|
int repl;
|
|
|
|
/* Need to request a resync (only possible for a remote peer at this stage) */
|
|
if (peer->learnstate == PEER_LR_ST_ASSIGNED) {
|
|
BUG_ON(peer->local);
|
|
repl = peer_send_resync_reqmsg(appctx, peer, peers);
|
|
if (repl <= 0)
|
|
return repl;
|
|
peer->learnstate = PEER_LR_ST_PROCESSING;
|
|
}
|
|
|
|
/* Nothing to read, now we start to write */
|
|
if (peer->tables) {
|
|
struct shared_table *st;
|
|
struct shared_table *last_local_table;
|
|
int updates = 0;
|
|
|
|
last_local_table = peer->last_local_table;
|
|
if (!last_local_table)
|
|
last_local_table = peer->tables;
|
|
if (!peer->stop_local_table)
|
|
peer->stop_local_table = last_local_table;
|
|
st = peer->stop_local_table->next;
|
|
|
|
while (1) {
|
|
if (!st)
|
|
st = peer->tables;
|
|
/* It remains some updates to ack */
|
|
if (st->last_get != st->last_acked) {
|
|
repl = peer_send_ackmsg(st, appctx);
|
|
if (repl <= 0)
|
|
return repl;
|
|
|
|
st->last_acked = st->last_get;
|
|
}
|
|
|
|
if (!(peer->flags & PEER_F_TEACH_PROCESS)) {
|
|
int must_send;
|
|
|
|
HA_RWLOCK_RDLOCK(STK_TABLE_LOCK, &st->table->updt_lock);
|
|
must_send = (peer->learnstate == PEER_LR_ST_NOTASSIGNED) && (st->last_pushed != st->table->localupdate);
|
|
HA_RWLOCK_RDUNLOCK(STK_TABLE_LOCK, &st->table->updt_lock);
|
|
|
|
if (must_send) {
|
|
repl = peer_send_teach_process_msgs(appctx, peer, st);
|
|
if (repl <= 0) {
|
|
peer->stop_local_table = peer->last_local_table;
|
|
return repl;
|
|
}
|
|
}
|
|
}
|
|
else if (!(peer->flags & PEER_F_TEACH_FINISHED)) {
|
|
if (!(st->flags & SHTABLE_F_TEACH_STAGE1)) {
|
|
repl = peer_send_teach_stage1_msgs(appctx, peer, st);
|
|
if (repl <= 0) {
|
|
peer->stop_local_table = peer->last_local_table;
|
|
return repl;
|
|
}
|
|
}
|
|
|
|
if (!(st->flags & SHTABLE_F_TEACH_STAGE2)) {
|
|
repl = peer_send_teach_stage2_msgs(appctx, peer, st);
|
|
if (repl <= 0) {
|
|
peer->stop_local_table = peer->last_local_table;
|
|
return repl;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (st == last_local_table) {
|
|
peer->stop_local_table = NULL;
|
|
break;
|
|
}
|
|
|
|
/* This one is to be sure to restart from <st->next> if we are interrupted
|
|
* because of peer_send_teach_stage2_msgs or because buffer is full
|
|
* when sedning an ackmsg. In both cases current <st> was evaluated and
|
|
* we must restart from <st->next>
|
|
*/
|
|
peer->stop_local_table = st;
|
|
|
|
updates++;
|
|
if (updates >= peers_max_updates_at_once) {
|
|
applet_have_more_data(appctx);
|
|
return -1;
|
|
}
|
|
|
|
st = st->next;
|
|
}
|
|
}
|
|
|
|
if ((peer->flags & PEER_F_TEACH_PROCESS) && !(peer->flags & PEER_F_TEACH_FINISHED)) {
|
|
repl = peer_send_resync_finishedmsg(appctx, peer, peers);
|
|
if (repl <= 0)
|
|
return repl;
|
|
|
|
/* flag finished message sent */
|
|
peer->flags |= PEER_F_TEACH_FINISHED;
|
|
}
|
|
|
|
/* Confirm finished or partial messages */
|
|
while (peer->confirm) {
|
|
repl = peer_send_resync_confirmsg(appctx, peer, peers);
|
|
if (repl <= 0)
|
|
return repl;
|
|
|
|
peer->confirm--;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Read and parse a first line of a "hello" peer protocol message.
|
|
* Returns 0 if could not read a line, -1 if there was a read error or
|
|
* the line is malformed, 1 if succeeded.
|
|
*/
|
|
static inline int peer_getline_version(struct appctx *appctx,
|
|
unsigned int *maj_ver, unsigned int *min_ver)
|
|
{
|
|
int reql;
|
|
|
|
reql = peer_getline(appctx);
|
|
if (!reql)
|
|
return 0;
|
|
|
|
if (reql < 0)
|
|
return -1;
|
|
|
|
/* test protocol */
|
|
if (strncmp(PEER_SESSION_PROTO_NAME " ", trash.area, proto_len + 1) != 0) {
|
|
appctx->st0 = PEER_SESS_ST_EXIT;
|
|
appctx->st1 = PEER_SESS_SC_ERRPROTO;
|
|
return -1;
|
|
}
|
|
if (peer_get_version(trash.area + proto_len + 1, maj_ver, min_ver) == -1 ||
|
|
*maj_ver != PEER_MAJOR_VER || *min_ver > PEER_MINOR_VER) {
|
|
appctx->st0 = PEER_SESS_ST_EXIT;
|
|
appctx->st1 = PEER_SESS_SC_ERRVERSION;
|
|
return -1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Read and parse a second line of a "hello" peer protocol message.
|
|
* Returns 0 if could not read a line, -1 if there was a read error or
|
|
* the line is malformed, 1 if succeeded.
|
|
*/
|
|
static inline int peer_getline_host(struct appctx *appctx)
|
|
{
|
|
int reql;
|
|
|
|
reql = peer_getline(appctx);
|
|
if (!reql)
|
|
return 0;
|
|
|
|
if (reql < 0)
|
|
return -1;
|
|
|
|
/* test hostname match */
|
|
if (strcmp(localpeer, trash.area) != 0) {
|
|
appctx->st0 = PEER_SESS_ST_EXIT;
|
|
appctx->st1 = PEER_SESS_SC_ERRHOST;
|
|
return -1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Read and parse a last line of a "hello" peer protocol message.
|
|
* Returns 0 if could not read a character, -1 if there was a read error or
|
|
* the line is malformed, 1 if succeeded.
|
|
* Set <curpeer> accordingly (the remote peer sending the "hello" message).
|
|
*/
|
|
static inline int peer_getline_last(struct appctx *appctx, struct peer **curpeer)
|
|
{
|
|
char *p;
|
|
int reql;
|
|
struct peer *peer;
|
|
struct stream *s = appctx_strm(appctx);
|
|
struct peers *peers = strm_fe(s)->parent;
|
|
|
|
reql = peer_getline(appctx);
|
|
if (!reql)
|
|
return 0;
|
|
|
|
if (reql < 0)
|
|
return -1;
|
|
|
|
/* parse line "<peer name> <pid> <relative_pid>" */
|
|
p = strchr(trash.area, ' ');
|
|
if (!p) {
|
|
appctx->st0 = PEER_SESS_ST_EXIT;
|
|
appctx->st1 = PEER_SESS_SC_ERRPROTO;
|
|
return -1;
|
|
}
|
|
*p = 0;
|
|
|
|
/* lookup known peer */
|
|
for (peer = peers->remote; peer; peer = peer->next) {
|
|
if (strcmp(peer->id, trash.area) == 0)
|
|
break;
|
|
}
|
|
|
|
/* if unknown peer */
|
|
if (!peer) {
|
|
appctx->st0 = PEER_SESS_ST_EXIT;
|
|
appctx->st1 = PEER_SESS_SC_ERRPEER;
|
|
return -1;
|
|
}
|
|
*curpeer = peer;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Init <peer> peer after validating a connection at peer protocol level. It may
|
|
* a incoming or outgoing connection. The peer init must be acknowledge by the
|
|
* sync task. Message processing is blocked in the meanwhile.
|
|
*/
|
|
static inline void init_connected_peer(struct peer *peer, struct peers *peers)
|
|
{
|
|
struct shared_table *st;
|
|
|
|
peer->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
|
|
|
|
/* Init cursors */
|
|
for (st = peer->tables; st ; st = st->next) {
|
|
uint updateid, commitid;
|
|
|
|
st->last_get = st->last_acked = 0;
|
|
HA_RWLOCK_WRLOCK(STK_TABLE_LOCK, &st->table->updt_lock);
|
|
/* if st->update appears to be in future it means
|
|
* that the last acked value is very old and we
|
|
* remain unconnected a too long time to use this
|
|
* acknowledgement as a reset.
|
|
* We should update the protocol to be able to
|
|
* signal the remote peer that it needs a full resync.
|
|
* Here a partial fix consist to set st->update at
|
|
* the max past value.
|
|
*/
|
|
if ((int)(st->table->localupdate - st->update) < 0)
|
|
st->update = st->table->localupdate + (2147483648U);
|
|
st->teaching_origin = st->last_pushed = st->update;
|
|
st->flags = 0;
|
|
|
|
updateid = st->last_pushed;
|
|
commitid = _HA_ATOMIC_LOAD(&st->table->commitupdate);
|
|
|
|
while ((int)(updateid - commitid) > 0) {
|
|
if (_HA_ATOMIC_CAS(&st->table->commitupdate, &commitid, updateid))
|
|
break;
|
|
__ha_cpu_relax();
|
|
}
|
|
|
|
HA_RWLOCK_WRUNLOCK(STK_TABLE_LOCK, &st->table->updt_lock);
|
|
}
|
|
|
|
/* Awake main task to ack the new peer state */
|
|
task_wakeup(peers->sync_task, TASK_WOKEN_MSG);
|
|
|
|
/* Init confirm counter */
|
|
peer->confirm = 0;
|
|
|
|
/* reset teaching flags to 0 */
|
|
peer->flags &= ~PEER_TEACH_FLAGS;
|
|
|
|
if (peer->local && !(appctx_is_back(peer->appctx))) {
|
|
/* If the local peer has established the connection (appctx is
|
|
* on the frontend side), flag it to start to teach lesson.
|
|
*/
|
|
peer->flags |= PEER_F_TEACH_PROCESS;
|
|
}
|
|
|
|
/* Mark the peer as starting and wait the sync task */
|
|
peer->flags |= PEER_F_WAIT_SYNCTASK_ACK;
|
|
peer->appstate = PEER_APP_ST_STARTING;
|
|
}
|
|
|
|
/*
|
|
* IO Handler to handle message exchange with a peer
|
|
*/
|
|
static void peer_io_handler(struct appctx *appctx)
|
|
{
|
|
struct stconn *sc = appctx_sc(appctx);
|
|
struct stream *s = __sc_strm(sc);
|
|
struct peers *curpeers = strm_fe(s)->parent;
|
|
struct peer *curpeer = NULL;
|
|
int reql = 0;
|
|
int repl = 0;
|
|
unsigned int maj_ver, min_ver;
|
|
int prev_state;
|
|
|
|
if (unlikely(se_fl_test(appctx->sedesc, (SE_FL_EOS|SE_FL_ERROR)))) {
|
|
co_skip(sc_oc(sc), co_data(sc_oc(sc)));
|
|
goto out;
|
|
}
|
|
|
|
/* Check if the input buffer is available. */
|
|
if (sc_ib(sc)->size == 0) {
|
|
sc_need_room(sc, 0);
|
|
goto out;
|
|
}
|
|
|
|
while (1) {
|
|
prev_state = appctx->st0;
|
|
switchstate:
|
|
maj_ver = min_ver = (unsigned int)-1;
|
|
switch(appctx->st0) {
|
|
case PEER_SESS_ST_ACCEPT:
|
|
prev_state = appctx->st0;
|
|
appctx->svcctx = NULL;
|
|
appctx->st0 = PEER_SESS_ST_GETVERSION;
|
|
__fallthrough;
|
|
case PEER_SESS_ST_GETVERSION:
|
|
prev_state = appctx->st0;
|
|
reql = peer_getline_version(appctx, &maj_ver, &min_ver);
|
|
if (reql <= 0) {
|
|
if (!reql)
|
|
goto out;
|
|
goto switchstate;
|
|
}
|
|
|
|
appctx->st0 = PEER_SESS_ST_GETHOST;
|
|
__fallthrough;
|
|
case PEER_SESS_ST_GETHOST:
|
|
prev_state = appctx->st0;
|
|
reql = peer_getline_host(appctx);
|
|
if (reql <= 0) {
|
|
if (!reql)
|
|
goto out;
|
|
goto switchstate;
|
|
}
|
|
|
|
appctx->st0 = PEER_SESS_ST_GETPEER;
|
|
__fallthrough;
|
|
case PEER_SESS_ST_GETPEER: {
|
|
prev_state = appctx->st0;
|
|
reql = peer_getline_last(appctx, &curpeer);
|
|
if (reql <= 0) {
|
|
if (!reql)
|
|
goto out;
|
|
goto switchstate;
|
|
}
|
|
|
|
HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
|
|
if (curpeer->appctx && curpeer->appctx != appctx) {
|
|
if (curpeer->local) {
|
|
/* Local connection, reply a retry */
|
|
appctx->st0 = PEER_SESS_ST_EXIT;
|
|
appctx->st1 = PEER_SESS_SC_TRYAGAIN;
|
|
goto switchstate;
|
|
}
|
|
|
|
/* we're killing a connection, we must apply a random delay before
|
|
* retrying otherwise the other end will do the same and we can loop
|
|
* for a while.
|
|
*/
|
|
curpeer->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000));
|
|
peer_session_forceshutdown(curpeer);
|
|
|
|
curpeer->heartbeat = TICK_ETERNITY;
|
|
curpeer->coll++;
|
|
}
|
|
if (maj_ver != (unsigned int)-1 && min_ver != (unsigned int)-1) {
|
|
if (min_ver == PEER_DWNGRD_MINOR_VER) {
|
|
curpeer->flags |= PEER_F_DWNGRD;
|
|
}
|
|
else {
|
|
curpeer->flags &= ~PEER_F_DWNGRD;
|
|
}
|
|
}
|
|
curpeer->appctx = appctx;
|
|
curpeer->flags |= PEER_F_ALIVE;
|
|
appctx->svcctx = curpeer;
|
|
appctx->st0 = PEER_SESS_ST_SENDSUCCESS;
|
|
_HA_ATOMIC_INC(&active_peers);
|
|
}
|
|
__fallthrough;
|
|
case PEER_SESS_ST_SENDSUCCESS: {
|
|
prev_state = appctx->st0;
|
|
if (!curpeer) {
|
|
curpeer = appctx->svcctx;
|
|
HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
|
|
if (curpeer->appctx != appctx) {
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
goto switchstate;
|
|
}
|
|
}
|
|
|
|
repl = peer_send_status_successmsg(appctx);
|
|
if (repl <= 0) {
|
|
if (repl == -1)
|
|
goto out;
|
|
goto switchstate;
|
|
}
|
|
|
|
/* Register status code */
|
|
curpeer->statuscode = PEER_SESS_SC_SUCCESSCODE;
|
|
curpeer->last_hdshk = now_ms;
|
|
|
|
init_connected_peer(curpeer, curpeers);
|
|
|
|
/* switch to waiting message state */
|
|
_HA_ATOMIC_INC(&connected_peers);
|
|
appctx->st0 = PEER_SESS_ST_WAITMSG;
|
|
goto switchstate;
|
|
}
|
|
case PEER_SESS_ST_CONNECT: {
|
|
prev_state = appctx->st0;
|
|
if (!curpeer) {
|
|
curpeer = appctx->svcctx;
|
|
HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
|
|
if (curpeer->appctx != appctx) {
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
goto switchstate;
|
|
}
|
|
}
|
|
|
|
repl = peer_send_hellomsg(appctx, curpeer);
|
|
if (repl <= 0) {
|
|
if (repl == -1)
|
|
goto out;
|
|
goto switchstate;
|
|
}
|
|
|
|
/* switch to the waiting statuscode state */
|
|
appctx->st0 = PEER_SESS_ST_GETSTATUS;
|
|
}
|
|
__fallthrough;
|
|
case PEER_SESS_ST_GETSTATUS: {
|
|
prev_state = appctx->st0;
|
|
if (!curpeer) {
|
|
curpeer = appctx->svcctx;
|
|
HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
|
|
if (curpeer->appctx != appctx) {
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
goto switchstate;
|
|
}
|
|
}
|
|
|
|
if (sc_ic(sc)->flags & CF_WROTE_DATA)
|
|
curpeer->statuscode = PEER_SESS_SC_CONNECTEDCODE;
|
|
|
|
reql = peer_getline(appctx);
|
|
if (!reql)
|
|
goto out;
|
|
|
|
if (reql < 0)
|
|
goto switchstate;
|
|
|
|
/* Register status code */
|
|
curpeer->statuscode = atoi(trash.area);
|
|
curpeer->last_hdshk = now_ms;
|
|
|
|
/* Awake main task */
|
|
task_wakeup(curpeers->sync_task, TASK_WOKEN_MSG);
|
|
|
|
/* If status code is success */
|
|
if (curpeer->statuscode == PEER_SESS_SC_SUCCESSCODE) {
|
|
init_connected_peer(curpeer, curpeers);
|
|
}
|
|
else {
|
|
if (curpeer->statuscode == PEER_SESS_SC_ERRVERSION)
|
|
curpeer->flags |= PEER_F_DWNGRD;
|
|
/* Status code is not success, abort */
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
goto switchstate;
|
|
}
|
|
_HA_ATOMIC_INC(&connected_peers);
|
|
appctx->st0 = PEER_SESS_ST_WAITMSG;
|
|
}
|
|
__fallthrough;
|
|
case PEER_SESS_ST_WAITMSG: {
|
|
uint32_t msg_len = 0;
|
|
char *msg_cur = trash.area;
|
|
char *msg_end = trash.area;
|
|
unsigned char msg_head[7]; // 2 + 5 for varint32
|
|
int totl = 0;
|
|
|
|
prev_state = appctx->st0;
|
|
if (!curpeer) {
|
|
curpeer = appctx->svcctx;
|
|
HA_SPIN_LOCK(PEER_LOCK, &curpeer->lock);
|
|
if (curpeer->appctx != appctx) {
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
goto switchstate;
|
|
}
|
|
}
|
|
|
|
if (curpeer->flags & PEER_F_WAIT_SYNCTASK_ACK) {
|
|
applet_wont_consume(appctx);
|
|
goto out;
|
|
}
|
|
applet_will_consume(appctx);
|
|
|
|
/* local peer is assigned of a lesson, start it */
|
|
if (curpeer->learnstate == PEER_LR_ST_ASSIGNED && curpeer->local)
|
|
curpeer->learnstate = PEER_LR_ST_PROCESSING;
|
|
|
|
reql = peer_recv_msg(appctx, (char *)msg_head, sizeof msg_head, &msg_len, &totl);
|
|
if (reql <= 0) {
|
|
if (reql == -1)
|
|
goto switchstate;
|
|
goto send_msgs;
|
|
}
|
|
|
|
msg_end += msg_len;
|
|
if (!peer_treat_awaited_msg(appctx, curpeer, msg_head, &msg_cur, msg_end, msg_len, totl))
|
|
goto switchstate;
|
|
|
|
curpeer->flags |= PEER_F_ALIVE;
|
|
|
|
/* skip consumed message */
|
|
co_skip(sc_oc(sc), totl);
|
|
/* loop on that state to peek next message */
|
|
goto switchstate;
|
|
|
|
send_msgs:
|
|
if (curpeer->flags & PEER_F_HEARTBEAT) {
|
|
curpeer->flags &= ~PEER_F_HEARTBEAT;
|
|
repl = peer_send_heartbeatmsg(appctx, curpeer, curpeers);
|
|
if (repl <= 0) {
|
|
if (repl == -1)
|
|
goto out;
|
|
goto switchstate;
|
|
}
|
|
curpeer->tx_hbt++;
|
|
}
|
|
/* we get here when a peer_recv_msg() returns 0 in reql */
|
|
repl = peer_send_msgs(appctx, curpeer, curpeers);
|
|
if (repl <= 0) {
|
|
if (repl == -1)
|
|
goto out;
|
|
goto switchstate;
|
|
}
|
|
|
|
/* noting more to do */
|
|
goto out;
|
|
}
|
|
case PEER_SESS_ST_EXIT:
|
|
if (prev_state == PEER_SESS_ST_WAITMSG)
|
|
_HA_ATOMIC_DEC(&connected_peers);
|
|
prev_state = appctx->st0;
|
|
if (peer_send_status_errormsg(appctx) == -1)
|
|
goto out;
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
goto switchstate;
|
|
case PEER_SESS_ST_ERRSIZE: {
|
|
if (prev_state == PEER_SESS_ST_WAITMSG)
|
|
_HA_ATOMIC_DEC(&connected_peers);
|
|
prev_state = appctx->st0;
|
|
if (peer_send_error_size_limitmsg(appctx) == -1)
|
|
goto out;
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
goto switchstate;
|
|
}
|
|
case PEER_SESS_ST_ERRPROTO: {
|
|
TRACE_PROTO("protocol error", PEERS_EV_PROTOERR,
|
|
NULL, curpeer, &prev_state);
|
|
if (curpeer)
|
|
curpeer->proto_err++;
|
|
if (prev_state == PEER_SESS_ST_WAITMSG)
|
|
_HA_ATOMIC_DEC(&connected_peers);
|
|
prev_state = appctx->st0;
|
|
if (peer_send_error_protomsg(appctx) == -1) {
|
|
TRACE_PROTO("could not send error message", PEERS_EV_PROTOERR);
|
|
goto out;
|
|
}
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
prev_state = appctx->st0;
|
|
}
|
|
__fallthrough;
|
|
case PEER_SESS_ST_END: {
|
|
if (prev_state == PEER_SESS_ST_WAITMSG)
|
|
_HA_ATOMIC_DEC(&connected_peers);
|
|
prev_state = appctx->st0;
|
|
if (curpeer) {
|
|
HA_SPIN_UNLOCK(PEER_LOCK, &curpeer->lock);
|
|
curpeer = NULL;
|
|
}
|
|
se_fl_set(appctx->sedesc, SE_FL_EOS|SE_FL_EOI);
|
|
co_skip(sc_oc(sc), co_data(sc_oc(sc)));
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
sc_opposite(sc)->flags |= SC_FL_RCV_ONCE;
|
|
|
|
if (curpeer)
|
|
HA_SPIN_UNLOCK(PEER_LOCK, &curpeer->lock);
|
|
return;
|
|
}
|
|
|
|
static struct applet peer_applet = {
|
|
.obj_type = OBJ_TYPE_APPLET,
|
|
.name = "<PEER>", /* used for logging */
|
|
.fct = peer_io_handler,
|
|
.init = peer_session_init,
|
|
.release = peer_session_release,
|
|
};
|
|
|
|
|
|
/*
|
|
* Use this function to force a close of a peer session
|
|
*/
|
|
static void peer_session_forceshutdown(struct peer *peer)
|
|
{
|
|
struct appctx *appctx = peer->appctx;
|
|
|
|
/* Note that the peer sessions which have just been created
|
|
* (->st0 == PEER_SESS_ST_CONNECT) must not
|
|
* be shutdown, if not, the TCP session will never be closed
|
|
* and stay in CLOSE_WAIT state after having been closed by
|
|
* the remote side.
|
|
*/
|
|
if (!appctx || appctx->st0 == PEER_SESS_ST_CONNECT)
|
|
return;
|
|
|
|
if (appctx->applet != &peer_applet)
|
|
return;
|
|
|
|
__peer_session_deinit(peer);
|
|
|
|
appctx->st0 = PEER_SESS_ST_END;
|
|
appctx_wakeup(appctx);
|
|
}
|
|
|
|
/* Pre-configures a peers frontend to accept incoming connections */
|
|
void peers_setup_frontend(struct proxy *fe)
|
|
{
|
|
fe->fe_counters.last_change = ns_to_sec(now_ns);
|
|
fe->cap = PR_CAP_FE | PR_CAP_BE;
|
|
fe->mode = PR_MODE_PEERS;
|
|
fe->maxconn = 0;
|
|
fe->conn_retries = CONN_RETRIES;
|
|
fe->timeout.connect = MS_TO_TICKS(1000);
|
|
fe->timeout.client = MS_TO_TICKS(5000);
|
|
fe->timeout.server = MS_TO_TICKS(5000);
|
|
fe->accept = frontend_accept;
|
|
fe->default_target = &peer_applet.obj_type;
|
|
fe->options2 |= PR_O2_INDEPSTR | PR_O2_SMARTCON | PR_O2_SMARTACC;
|
|
}
|
|
|
|
/*
|
|
* Create a new peer session in assigned state (connect will start automatically)
|
|
*/
|
|
static struct appctx *peer_session_create(struct peers *peers, struct peer *peer)
|
|
{
|
|
struct appctx *appctx;
|
|
unsigned int thr = 0;
|
|
int idx;
|
|
|
|
peer->new_conn++;
|
|
peer->reconnect = tick_add(now_ms, (stopping ? MS_TO_TICKS(PEER_LOCAL_RECONNECT_TIMEOUT) : MS_TO_TICKS(PEER_RECONNECT_TIMEOUT)));
|
|
peer->heartbeat = TICK_ETERNITY;
|
|
peer->statuscode = PEER_SESS_SC_CONNECTCODE;
|
|
peer->last_hdshk = now_ms;
|
|
|
|
for (idx = 0; idx < global.nbthread; idx++)
|
|
thr = peers->applet_count[idx] < peers->applet_count[thr] ? idx : thr;
|
|
appctx = appctx_new_on(&peer_applet, NULL, thr);
|
|
if (!appctx)
|
|
goto out_close;
|
|
appctx->svcctx = (void *)peer;
|
|
|
|
appctx->st0 = PEER_SESS_ST_CONNECT;
|
|
peer->appctx = appctx;
|
|
|
|
HA_ATOMIC_INC(&peers->applet_count[thr]);
|
|
appctx_wakeup(appctx);
|
|
return appctx;
|
|
|
|
out_close:
|
|
return NULL;
|
|
}
|
|
|
|
/* Clear LEARN flags to a given peer, dealing with aborts if it was assigned for
|
|
* learning. In this case, the resync timeout is re-armed.
|
|
*/
|
|
static void clear_peer_learning_status(struct peer *peer)
|
|
{
|
|
if (peer->learnstate != PEER_LR_ST_NOTASSIGNED) {
|
|
struct peers *peers = peer->peers;
|
|
|
|
/* unassign current peer for learning */
|
|
HA_ATOMIC_AND(&peers->flags, ~PEERS_F_RESYNC_ASSIGN);
|
|
HA_ATOMIC_OR(&peers->flags, (peer->local ? PEERS_F_DBG_RESYNC_LOCALABORT : PEERS_F_DBG_RESYNC_REMOTEABORT));
|
|
|
|
/* reschedule a resync */
|
|
peer->peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(5000));
|
|
peer->learnstate = PEER_LR_ST_NOTASSIGNED;
|
|
}
|
|
peer->flags &= ~PEER_F_LEARN_NOTUP2DATE;
|
|
}
|
|
|
|
static void sync_peer_learn_state(struct peers *peers, struct peer *peer)
|
|
{
|
|
unsigned int flags = 0;
|
|
|
|
if (peer->learnstate != PEER_LR_ST_FINISHED)
|
|
return;
|
|
|
|
/* The learning process is now finished */
|
|
if (peer->flags & PEER_F_LEARN_NOTUP2DATE) {
|
|
/* Partial resync */
|
|
flags |= (peer->local ? PEERS_F_DBG_RESYNC_LOCALPARTIAL : PEERS_F_DBG_RESYNC_REMOTEPARTIAL);
|
|
peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
|
|
}
|
|
else {
|
|
/* Full resync */
|
|
struct peer *rem_peer;
|
|
int commit_a_finish = 1;
|
|
|
|
if (peer->srv->shard) {
|
|
flags |= PEERS_F_DBG_RESYNC_REMOTEPARTIAL;
|
|
peer->flags |= PEER_F_LEARN_NOTUP2DATE;
|
|
for (rem_peer = peers->remote; rem_peer; rem_peer = rem_peer->next) {
|
|
if (rem_peer->srv->shard && rem_peer != peer) {
|
|
HA_SPIN_LOCK(PEER_LOCK, &rem_peer->lock);
|
|
if (rem_peer->srv->shard == peer->srv->shard) {
|
|
/* flag all peers from same shard
|
|
* notup2date to disable request
|
|
* of a resync frm them
|
|
*/
|
|
rem_peer->flags |= PEER_F_LEARN_NOTUP2DATE;
|
|
}
|
|
else if (!(rem_peer->flags & PEER_F_LEARN_NOTUP2DATE)) {
|
|
/* it remains some other shards not requested
|
|
* we don't commit a resync finish to request
|
|
* the other shards
|
|
*/
|
|
commit_a_finish = 0;
|
|
}
|
|
HA_SPIN_UNLOCK(PEER_LOCK, &rem_peer->lock);
|
|
}
|
|
}
|
|
|
|
if (!commit_a_finish) {
|
|
/* it remains some shard to request, we schedule a new request */
|
|
peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
|
|
}
|
|
}
|
|
|
|
if (commit_a_finish) {
|
|
flags |= (PEERS_F_RESYNC_LOCAL_FINISHED|PEERS_F_RESYNC_REMOTE_FINISHED);
|
|
flags |= (peer->local ? PEERS_F_DBG_RESYNC_LOCALFINISHED : PEERS_F_DBG_RESYNC_REMOTEFINISHED);
|
|
}
|
|
}
|
|
peer->learnstate = PEER_LR_ST_NOTASSIGNED;
|
|
HA_ATOMIC_AND(&peers->flags, ~PEERS_F_RESYNC_ASSIGN);
|
|
HA_ATOMIC_OR(&peers->flags, flags);
|
|
|
|
if (peer->appctx)
|
|
appctx_wakeup(peer->appctx);
|
|
}
|
|
|
|
/* Synchronise the peer applet state with its associated peers section. This
|
|
* function handles STARTING->RUNNING and STOPPING->STOPPED transitions.
|
|
*/
|
|
static void sync_peer_app_state(struct peers *peers, struct peer *peer)
|
|
{
|
|
if (peer->appstate == PEER_APP_ST_STOPPING) {
|
|
clear_peer_learning_status(peer);
|
|
peer->appstate = PEER_APP_ST_STOPPED;
|
|
}
|
|
else if (peer->appstate == PEER_APP_ST_STARTING) {
|
|
clear_peer_learning_status(peer);
|
|
if (peer->local & appctx_is_back(peer->appctx)) {
|
|
/* if local peer has accepted the connection (appctx is
|
|
* on the backend side), flag it to learn a lesson and
|
|
* be sure it will start immediately. This only happens
|
|
* if no resync is in progress and if the lacal resync
|
|
* was not already performed.
|
|
*/
|
|
if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMLOCAL &&
|
|
!(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
|
|
/* assign local peer for a lesson */
|
|
peer->learnstate = PEER_LR_ST_ASSIGNED;
|
|
HA_ATOMIC_OR(&peers->flags, PEERS_F_RESYNC_ASSIGN|PEERS_F_DBG_RESYNC_LOCALASSIGN);
|
|
}
|
|
}
|
|
else if (!peer->local) {
|
|
/* If a connection was validated for a remote peer, flag
|
|
* it to learn a lesson but don't start it yet. The peer
|
|
* must request it explicitly. This only happens if no
|
|
* resync is in progress and if the remote resync was
|
|
* not already performed.
|
|
*/
|
|
if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE &&
|
|
!(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
|
|
/* assign remote peer for a lesson */
|
|
peer->learnstate = PEER_LR_ST_ASSIGNED;
|
|
HA_ATOMIC_OR(&peers->flags, PEERS_F_RESYNC_ASSIGN|PEERS_F_DBG_RESYNC_REMOTEASSIGN);
|
|
}
|
|
}
|
|
peer->appstate = PEER_APP_ST_RUNNING;
|
|
appctx_wakeup(peer->appctx);
|
|
}
|
|
}
|
|
|
|
/* Process the sync task for a running process. It is called from process_peer_sync() only */
|
|
static void __process_running_peer_sync(struct task *task, struct peers *peers, unsigned int state)
|
|
{
|
|
struct peer *peer;
|
|
struct shared_table *st;
|
|
|
|
/* resync timeout set to TICK_ETERNITY means we just start
|
|
* a new process and timer was not initialized.
|
|
* We must arm this timer to switch to a request to a remote
|
|
* node if incoming connection from old local process never
|
|
* comes.
|
|
*/
|
|
if (peers->resync_timeout == TICK_ETERNITY)
|
|
peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
|
|
|
|
if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMLOCAL) &&
|
|
(!nb_oldpids || tick_is_expired(peers->resync_timeout, now_ms)) &&
|
|
!(peers->flags & PEERS_F_RESYNC_ASSIGN)) {
|
|
/* Resync from local peer needed
|
|
no peer was assigned for the lesson
|
|
and no old local peer found
|
|
or resync timeout expire */
|
|
|
|
/* flag no more resync from local, to try resync from remotes */
|
|
HA_ATOMIC_OR(&peers->flags, PEERS_F_RESYNC_LOCAL_FINISHED|PEERS_F_DBG_RESYNC_LOCALTIMEOUT);
|
|
|
|
/* reschedule a resync */
|
|
peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
|
|
}
|
|
|
|
/* For each session */
|
|
for (peer = peers->remote; peer; peer = peer->next) {
|
|
HA_SPIN_LOCK(PEER_LOCK, &peer->lock);
|
|
|
|
sync_peer_learn_state(peers, peer);
|
|
sync_peer_app_state(peers, peer);
|
|
|
|
/* Peer changes, if any, were now ack by the sync task. Unblock
|
|
* the peer (any wakeup should already be performed, no need to
|
|
* do it here)
|
|
*/
|
|
peer->flags &= ~PEER_F_WAIT_SYNCTASK_ACK;
|
|
|
|
/* For each remote peers */
|
|
if (!peer->local) {
|
|
if (!peer->appctx) {
|
|
/* no active peer connection */
|
|
if (peer->statuscode == 0 ||
|
|
((peer->statuscode == PEER_SESS_SC_CONNECTCODE ||
|
|
peer->statuscode == PEER_SESS_SC_SUCCESSCODE ||
|
|
peer->statuscode == PEER_SESS_SC_CONNECTEDCODE) &&
|
|
tick_is_expired(peer->reconnect, now_ms))) {
|
|
/* connection never tried
|
|
* or previous peer connection established with success
|
|
* or previous peer connection failed while connecting
|
|
* and reconnection timer is expired */
|
|
|
|
/* retry a connect */
|
|
peer->appctx = peer_session_create(peers, peer);
|
|
}
|
|
else if (!tick_is_expired(peer->reconnect, now_ms)) {
|
|
/* If previous session failed during connection
|
|
* but reconnection timer is not expired */
|
|
|
|
/* reschedule task for reconnect */
|
|
task->expire = tick_first(task->expire, peer->reconnect);
|
|
}
|
|
/* else do nothing */
|
|
} /* !peer->appctx */
|
|
else if (peer->statuscode == PEER_SESS_SC_SUCCESSCODE) {
|
|
/* current peer connection is active and established */
|
|
if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE) &&
|
|
!(peers->flags & PEERS_F_RESYNC_ASSIGN) &&
|
|
!(peer->flags & PEER_F_LEARN_NOTUP2DATE)) {
|
|
/* Resync from a remote is needed
|
|
* and no peer was assigned for lesson
|
|
* and current peer may be up2date */
|
|
|
|
/* assign peer for the lesson */
|
|
peer->learnstate = PEER_LR_ST_ASSIGNED;
|
|
HA_ATOMIC_OR(&peers->flags, PEERS_F_RESYNC_ASSIGN|PEERS_F_DBG_RESYNC_REMOTEASSIGN);
|
|
|
|
/* wake up peer handler to handle a request of resync */
|
|
appctx_wakeup(peer->appctx);
|
|
}
|
|
else {
|
|
int update_to_push = 0;
|
|
|
|
/* Awake session if there is data to push */
|
|
for (st = peer->tables; st ; st = st->next) {
|
|
if (st->last_pushed != st->table->localupdate) {
|
|
/* wake up the peer handler to push local updates */
|
|
update_to_push = 1;
|
|
/* There is no need to send a heartbeat message
|
|
* when some updates must be pushed. The remote
|
|
* peer will consider <peer> peer as alive when it will
|
|
* receive these updates.
|
|
*/
|
|
peer->flags &= ~PEER_F_HEARTBEAT;
|
|
/* Re-schedule another one later. */
|
|
peer->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
|
|
/* Refresh reconnect if necessary */
|
|
if (tick_is_expired(peer->reconnect, now_ms))
|
|
peer->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT));
|
|
/* We are going to send updates, let's ensure we will
|
|
* come back to send heartbeat messages or to reconnect.
|
|
*/
|
|
task->expire = tick_first(peer->reconnect, peer->heartbeat);
|
|
appctx_wakeup(peer->appctx);
|
|
break;
|
|
}
|
|
}
|
|
/* When there are updates to send we do not reconnect
|
|
* and do not send heartbeat message either.
|
|
*/
|
|
if (!update_to_push) {
|
|
if (tick_is_expired(peer->reconnect, now_ms)) {
|
|
if (peer->flags & PEER_F_ALIVE) {
|
|
/* This peer was alive during a 'reconnect' period.
|
|
* Flag it as not alive again for the next period.
|
|
*/
|
|
peer->flags &= ~PEER_F_ALIVE;
|
|
peer->reconnect = tick_add(now_ms, MS_TO_TICKS(PEER_RECONNECT_TIMEOUT));
|
|
}
|
|
else {
|
|
peer->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000));
|
|
peer->heartbeat = TICK_ETERNITY;
|
|
peer_session_forceshutdown(peer);
|
|
sync_peer_app_state(peers, peer);
|
|
peer->no_hbt++;
|
|
}
|
|
}
|
|
else if (tick_is_expired(peer->heartbeat, now_ms)) {
|
|
peer->heartbeat = tick_add(now_ms, MS_TO_TICKS(PEER_HEARTBEAT_TIMEOUT));
|
|
peer->flags |= PEER_F_HEARTBEAT;
|
|
appctx_wakeup(peer->appctx);
|
|
}
|
|
task->expire = tick_first(peer->reconnect, peer->heartbeat);
|
|
}
|
|
}
|
|
/* else do nothing */
|
|
} /* SUCCESSCODE */
|
|
} /* !peer->peer->local */
|
|
|
|
HA_SPIN_UNLOCK(PEER_LOCK, &peer->lock);
|
|
} /* for */
|
|
|
|
/* Resync from remotes expired or no remote peer: consider resync is finished */
|
|
if (((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FROMREMOTE) &&
|
|
!(peers->flags & PEERS_F_RESYNC_ASSIGN) &&
|
|
(tick_is_expired(peers->resync_timeout, now_ms) || !peers->remote->next)) {
|
|
/* Resync from remote peer needed
|
|
* no peer was assigned for the lesson
|
|
* and resync timeout expire */
|
|
|
|
/* flag no more resync from remote, consider resync is finished */
|
|
HA_ATOMIC_OR(&peers->flags, PEERS_F_RESYNC_REMOTE_FINISHED|PEERS_F_DBG_RESYNC_REMOTETIMEOUT);
|
|
}
|
|
|
|
if ((peers->flags & PEERS_RESYNC_STATEMASK) != PEERS_RESYNC_FINISHED) {
|
|
/* Resync not finished*/
|
|
/* reschedule task to resync timeout if not expired, to ended resync if needed */
|
|
if (!tick_is_expired(peers->resync_timeout, now_ms))
|
|
task->expire = tick_first(task->expire, peers->resync_timeout);
|
|
}
|
|
}
|
|
|
|
/* Process the sync task for a stopping process. It is called from process_peer_sync() only */
|
|
static void __process_stopping_peer_sync(struct task *task, struct peers *peers, unsigned int state)
|
|
{
|
|
struct peer *peer;
|
|
struct shared_table *st;
|
|
static int dont_stop = 0;
|
|
|
|
/* For each peer */
|
|
for (peer = peers->remote; peer; peer = peer->next) {
|
|
HA_SPIN_LOCK(PEER_LOCK, &peer->lock);
|
|
|
|
sync_peer_learn_state(peers, peer);
|
|
sync_peer_app_state(peers, peer);
|
|
|
|
/* Peer changes, if any, were now ack by the sync task. Unblock
|
|
* the peer (any wakeup should already be performed, no need to
|
|
* do it here)
|
|
*/
|
|
peer->flags &= ~PEER_F_WAIT_SYNCTASK_ACK;
|
|
|
|
if ((state & TASK_WOKEN_SIGNAL) && !dont_stop) {
|
|
/* we're killing a connection, we must apply a random delay before
|
|
* retrying otherwise the other end will do the same and we can loop
|
|
* for a while.
|
|
*/
|
|
peer->reconnect = tick_add(now_ms, MS_TO_TICKS(50 + ha_random() % 2000));
|
|
if (peer->appctx) {
|
|
peer_session_forceshutdown(peer);
|
|
sync_peer_app_state(peers, peer);
|
|
}
|
|
}
|
|
|
|
HA_SPIN_UNLOCK(PEER_LOCK, &peer->lock);
|
|
}
|
|
|
|
/* We've just received the signal */
|
|
if (state & TASK_WOKEN_SIGNAL) {
|
|
if (!dont_stop) {
|
|
/* add DO NOT STOP flag if not present */
|
|
_HA_ATOMIC_INC(&jobs);
|
|
dont_stop = 1;
|
|
|
|
/* Set resync timeout for the local peer and request a immediate reconnect */
|
|
peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
|
|
peers->local->reconnect = now_ms;
|
|
}
|
|
}
|
|
|
|
peer = peers->local;
|
|
HA_SPIN_LOCK(PEER_LOCK, &peer->lock);
|
|
if (peer->flags & PEER_F_LOCAL_TEACH_COMPLETE) {
|
|
if (dont_stop) {
|
|
/* resync of new process was complete, current process can die now */
|
|
_HA_ATOMIC_DEC(&jobs);
|
|
dont_stop = 0;
|
|
for (st = peer->tables; st ; st = st->next)
|
|
HA_ATOMIC_DEC(&st->table->refcnt);
|
|
}
|
|
}
|
|
else if (!peer->appctx) {
|
|
/* Re-arm resync timeout if necessary */
|
|
if (!tick_isset(peers->resync_timeout))
|
|
peers->resync_timeout = tick_add(now_ms, MS_TO_TICKS(PEER_RESYNC_TIMEOUT));
|
|
|
|
/* If there's no active peer connection */
|
|
if ((peers->flags & PEERS_RESYNC_STATEMASK) == PEERS_RESYNC_FINISHED &&
|
|
!tick_is_expired(peers->resync_timeout, now_ms) &&
|
|
(peer->statuscode == 0 ||
|
|
peer->statuscode == PEER_SESS_SC_SUCCESSCODE ||
|
|
peer->statuscode == PEER_SESS_SC_CONNECTEDCODE ||
|
|
peer->statuscode == PEER_SESS_SC_TRYAGAIN)) {
|
|
/* The resync is finished for the local peer and
|
|
* the resync timeout is not expired and
|
|
* connection never tried
|
|
* or previous peer connection was successfully established
|
|
* or previous tcp connect succeeded but init state incomplete
|
|
* or during previous connect, peer replies a try again statuscode */
|
|
|
|
if (!tick_is_expired(peer->reconnect, now_ms)) {
|
|
/* reconnection timer is not expired. reschedule task for reconnect */
|
|
task->expire = tick_first(task->expire, peer->reconnect);
|
|
}
|
|
else {
|
|
/* connect to the local peer if we must push a local sync */
|
|
if (dont_stop) {
|
|
peer_session_create(peers, peer);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* Other error cases */
|
|
if (dont_stop) {
|
|
/* unable to resync new process, current process can die now */
|
|
_HA_ATOMIC_DEC(&jobs);
|
|
dont_stop = 0;
|
|
for (st = peer->tables; st ; st = st->next)
|
|
HA_ATOMIC_DEC(&st->table->refcnt);
|
|
}
|
|
}
|
|
}
|
|
else if (peer->statuscode == PEER_SESS_SC_SUCCESSCODE ) {
|
|
/* Reset resync timeout during a resync */
|
|
peers->resync_timeout = TICK_ETERNITY;
|
|
|
|
/* current peer connection is active and established
|
|
* wake up all peer handlers to push remaining local updates */
|
|
for (st = peer->tables; st ; st = st->next) {
|
|
if (st->last_pushed != st->table->localupdate) {
|
|
appctx_wakeup(peer->appctx);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
HA_SPIN_UNLOCK(PEER_LOCK, &peer->lock);
|
|
}
|
|
|
|
/*
|
|
* Task processing function to manage re-connect, peer session
|
|
* tasks wakeup on local update and heartbeat. Let's keep it exported so that it
|
|
* resolves in stack traces and "show tasks".
|
|
*/
|
|
struct task *process_peer_sync(struct task * task, void *context, unsigned int state)
|
|
{
|
|
struct peers *peers = context;
|
|
|
|
task->expire = TICK_ETERNITY;
|
|
|
|
if (!stopping) {
|
|
/* Normal case (not soft stop)*/
|
|
__process_running_peer_sync(task, peers, state);
|
|
|
|
}
|
|
else {
|
|
/* soft stop case */
|
|
__process_stopping_peer_sync(task, peers, state);
|
|
} /* stopping */
|
|
|
|
/* Wakeup for re-connect */
|
|
return task;
|
|
}
|
|
|
|
|
|
/*
|
|
* returns 0 in case of error.
|
|
*/
|
|
int peers_init_sync(struct peers *peers)
|
|
{
|
|
struct peer * curpeer;
|
|
|
|
for (curpeer = peers->remote; curpeer; curpeer = curpeer->next) {
|
|
peers->peers_fe->maxconn += 3;
|
|
}
|
|
|
|
peers->sync_task = task_new_anywhere();
|
|
if (!peers->sync_task)
|
|
return 0;
|
|
|
|
memset(peers->applet_count, 0, sizeof(peers->applet_count));
|
|
peers->sync_task->process = process_peer_sync;
|
|
peers->sync_task->context = (void *)peers;
|
|
peers->sighandler = signal_register_task(0, peers->sync_task, 0);
|
|
task_wakeup(peers->sync_task, TASK_WOKEN_INIT);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Allocate a cache a dictionary entries used upon transmission.
|
|
*/
|
|
static struct dcache_tx *new_dcache_tx(size_t max_entries)
|
|
{
|
|
struct dcache_tx *d;
|
|
struct ebpt_node *entries;
|
|
|
|
d = malloc(sizeof *d);
|
|
entries = calloc(max_entries, sizeof *entries);
|
|
if (!d || !entries)
|
|
goto err;
|
|
|
|
d->lru_key = 0;
|
|
d->prev_lookup = NULL;
|
|
d->cached_entries = EB_ROOT_UNIQUE;
|
|
d->entries = entries;
|
|
|
|
return d;
|
|
|
|
err:
|
|
free(d);
|
|
free(entries);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Allocate a cache of dictionary entries with <name> as name and <max_entries>
|
|
* as maximum of entries.
|
|
* Return the dictionary cache if succeeded, NULL if not.
|
|
* Must be deallocated calling free_dcache().
|
|
*/
|
|
static struct dcache *new_dcache(size_t max_entries)
|
|
{
|
|
struct dcache_tx *dc_tx;
|
|
struct dcache *dc;
|
|
struct dcache_rx *dc_rx;
|
|
|
|
dc = calloc(1, sizeof *dc);
|
|
dc_tx = new_dcache_tx(max_entries);
|
|
dc_rx = calloc(max_entries, sizeof *dc_rx);
|
|
if (!dc || !dc_tx || !dc_rx)
|
|
goto err;
|
|
|
|
dc->tx = dc_tx;
|
|
dc->rx = dc_rx;
|
|
dc->max_entries = max_entries;
|
|
|
|
return dc;
|
|
|
|
err:
|
|
free(dc);
|
|
free(dc_tx);
|
|
free(dc_rx);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Look for the dictionary entry with the value of <i> in <d> cache of dictionary
|
|
* entries used upon transmission.
|
|
* Return the entry if found, NULL if not.
|
|
*/
|
|
static struct ebpt_node *dcache_tx_lookup_value(struct dcache_tx *d,
|
|
struct dcache_tx_entry *i)
|
|
{
|
|
return ebpt_lookup(&d->cached_entries, i->entry.key);
|
|
}
|
|
|
|
/*
|
|
* Flush <dc> cache.
|
|
* Always succeeds.
|
|
*/
|
|
static inline void flush_dcache(struct peer *peer)
|
|
{
|
|
int i;
|
|
struct dcache *dc = peer->dcache;
|
|
|
|
for (i = 0; i < dc->max_entries; i++) {
|
|
ebpt_delete(&dc->tx->entries[i]);
|
|
dc->tx->entries[i].key = NULL;
|
|
dict_entry_unref(&server_key_dict, dc->rx[i].de);
|
|
dc->rx[i].de = NULL;
|
|
}
|
|
dc->tx->prev_lookup = NULL;
|
|
dc->tx->lru_key = 0;
|
|
|
|
memset(dc->rx, 0, dc->max_entries * sizeof *dc->rx);
|
|
}
|
|
|
|
/*
|
|
* Insert a dictionary entry in <dc> cache part used upon transmission (->tx)
|
|
* with information provided by <i> dictionary cache entry (especially the value
|
|
* to be inserted if not already). Return <i> if already present in the cache
|
|
* or something different of <i> if not.
|
|
*/
|
|
static struct ebpt_node *dcache_tx_insert(struct dcache *dc, struct dcache_tx_entry *i)
|
|
{
|
|
struct dcache_tx *dc_tx;
|
|
struct ebpt_node *o;
|
|
|
|
dc_tx = dc->tx;
|
|
|
|
if (dc_tx->prev_lookup && dc_tx->prev_lookup->key == i->entry.key) {
|
|
o = dc_tx->prev_lookup;
|
|
} else {
|
|
o = dcache_tx_lookup_value(dc_tx, i);
|
|
if (o) {
|
|
/* Save it */
|
|
dc_tx->prev_lookup = o;
|
|
}
|
|
}
|
|
|
|
if (o) {
|
|
/* Copy the ID. */
|
|
i->id = o - dc->tx->entries;
|
|
return &i->entry;
|
|
}
|
|
|
|
/* The new entry to put in cache */
|
|
dc_tx->prev_lookup = o = &dc_tx->entries[dc_tx->lru_key];
|
|
|
|
ebpt_delete(o);
|
|
o->key = i->entry.key;
|
|
ebpt_insert(&dc_tx->cached_entries, o);
|
|
i->id = dc_tx->lru_key;
|
|
|
|
/* Update the index for the next entry to put in cache */
|
|
dc_tx->lru_key = (dc_tx->lru_key + 1) & (dc->max_entries - 1);
|
|
|
|
return o;
|
|
}
|
|
|
|
/*
|
|
* Allocate a dictionary cache for each peer of <peers> section.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
int peers_alloc_dcache(struct peers *peers)
|
|
{
|
|
struct peer *p;
|
|
|
|
for (p = peers->remote; p; p = p->next) {
|
|
p->dcache = new_dcache(PEER_STKT_CACHE_MAX_ENTRIES);
|
|
if (!p->dcache)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Function used to register a table for sync on a group of peers
|
|
* Returns 0 in case of success.
|
|
*/
|
|
int peers_register_table(struct peers *peers, struct stktable *table)
|
|
{
|
|
struct shared_table *st;
|
|
struct peer * curpeer;
|
|
int id = 0;
|
|
int retval = 0;
|
|
|
|
for (curpeer = peers->remote; curpeer; curpeer = curpeer->next) {
|
|
st = calloc(1,sizeof(*st));
|
|
if (!st) {
|
|
retval = 1;
|
|
break;
|
|
}
|
|
st->table = table;
|
|
st->next = curpeer->tables;
|
|
if (curpeer->tables)
|
|
id = curpeer->tables->local_id;
|
|
st->local_id = id + 1;
|
|
|
|
/* If peer is local we inc table
|
|
* refcnt to protect against flush
|
|
* until this process pushed all
|
|
* table content to the new one
|
|
*/
|
|
if (curpeer->local)
|
|
HA_ATOMIC_INC(&st->table->refcnt);
|
|
curpeer->tables = st;
|
|
}
|
|
|
|
table->sync_task = peers->sync_task;
|
|
|
|
return retval;
|
|
}
|
|
|
|
/* context used by a "show peers" command */
|
|
struct show_peers_ctx {
|
|
void *target; /* if non-null, dump only this section and stop */
|
|
struct peers *peers; /* "peers" section being currently dumped. */
|
|
struct peer *peer; /* "peer" being currently dumped. */
|
|
int flags; /* non-zero if "dict" dump requested */
|
|
enum {
|
|
STATE_HEAD = 0, /* dump the section's header */
|
|
STATE_PEER, /* dump the whole peer */
|
|
STATE_DONE, /* finished */
|
|
} state; /* parser's state */
|
|
};
|
|
|
|
/*
|
|
* Parse the "show peers" command arguments.
|
|
* Returns 0 if succeeded, 1 if not with the ->msg of the appctx set as
|
|
* error message.
|
|
*/
|
|
static int cli_parse_show_peers(char **args, char *payload, struct appctx *appctx, void *private)
|
|
{
|
|
struct show_peers_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
|
|
|
|
if (strcmp(args[2], "dict") == 0) {
|
|
/* show the dictionaries (large dump) */
|
|
ctx->flags |= PEERS_SHOW_F_DICT;
|
|
args++;
|
|
} else if (strcmp(args[2], "-") == 0)
|
|
args++; // allows to show a section called "dict"
|
|
|
|
if (*args[2]) {
|
|
struct peers *p;
|
|
|
|
for (p = cfg_peers; p; p = p->next) {
|
|
if (strcmp(p->id, args[2]) == 0) {
|
|
ctx->target = p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!p)
|
|
return cli_err(appctx, "No such peers\n");
|
|
}
|
|
|
|
/* where to start from */
|
|
ctx->peers = ctx->target ? ctx->target : cfg_peers;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function dumps the peer state information of <peers> "peers" section.
|
|
* Returns 0 if the output buffer is full and needs to be called again, non-zero if not.
|
|
* Dedicated to be called by cli_io_handler_show_peers() cli I/O handler.
|
|
*/
|
|
static int peers_dump_head(struct buffer *msg, struct appctx *appctx, struct peers *peers)
|
|
{
|
|
struct tm tm;
|
|
|
|
get_localtime(peers->last_change, &tm);
|
|
chunk_appendf(msg, "%p: [%02d/%s/%04d:%02d:%02d:%02d] id=%s disabled=%d flags=0x%x resync_timeout=%s task_calls=%u\n",
|
|
peers,
|
|
tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900,
|
|
tm.tm_hour, tm.tm_min, tm.tm_sec,
|
|
peers->id, peers->disabled, HA_ATOMIC_LOAD(&peers->flags),
|
|
peers->resync_timeout ?
|
|
tick_is_expired(peers->resync_timeout, now_ms) ? "<PAST>" :
|
|
human_time(TICKS_TO_MS(peers->resync_timeout - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>",
|
|
peers->sync_task ? peers->sync_task->calls : 0);
|
|
|
|
if (applet_putchk(appctx, msg) == -1)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This function dumps <peer> state information.
|
|
* Returns 0 if the output buffer is full and needs to be called again, non-zero
|
|
* if not. Dedicated to be called by cli_io_handler_show_peers() cli I/O handler.
|
|
*/
|
|
static int peers_dump_peer(struct buffer *msg, struct appctx *appctx, struct peer *peer, int flags)
|
|
{
|
|
struct connection *conn;
|
|
char pn[INET6_ADDRSTRLEN];
|
|
struct stconn *peer_cs;
|
|
struct stream *peer_s;
|
|
struct shared_table *st;
|
|
|
|
addr_to_str(&peer->srv->addr, pn, sizeof pn);
|
|
chunk_appendf(msg, " %p: id=%s(%s,%s) addr=%s:%d app_state=%s learn_state=%s last_status=%s",
|
|
peer, peer->id,
|
|
peer->local ? "local" : "remote",
|
|
peer->appctx ? "active" : "inactive",
|
|
pn, peer->srv->svc_port,
|
|
peer_app_state_str(peer->appstate),
|
|
peer_learn_state_str(peer->learnstate),
|
|
statuscode_str(peer->statuscode));
|
|
|
|
chunk_appendf(msg, " last_hdshk=%s\n",
|
|
peer->last_hdshk ? human_time(TICKS_TO_MS(now_ms - peer->last_hdshk),
|
|
TICKS_TO_MS(1000)) : "<NEVER>");
|
|
|
|
chunk_appendf(msg, " reconnect=%s",
|
|
peer->reconnect ?
|
|
tick_is_expired(peer->reconnect, now_ms) ? "<PAST>" :
|
|
human_time(TICKS_TO_MS(peer->reconnect - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>");
|
|
|
|
chunk_appendf(msg, " heartbeat=%s",
|
|
peer->heartbeat ?
|
|
tick_is_expired(peer->heartbeat, now_ms) ? "<PAST>" :
|
|
human_time(TICKS_TO_MS(peer->heartbeat - now_ms),
|
|
TICKS_TO_MS(1000)) : "<NEVER>");
|
|
|
|
chunk_appendf(msg, " confirm=%u tx_hbt=%u rx_hbt=%u no_hbt=%u new_conn=%u proto_err=%u coll=%u\n",
|
|
peer->confirm, peer->tx_hbt, peer->rx_hbt,
|
|
peer->no_hbt, peer->new_conn, peer->proto_err, peer->coll);
|
|
|
|
chunk_appendf(&trash, " flags=0x%x", peer->flags);
|
|
|
|
if (!peer->appctx)
|
|
goto table_info;
|
|
|
|
chunk_appendf(&trash, " appctx:%p st0=%d st1=%d task_calls=%u",
|
|
peer->appctx, peer->appctx->st0, peer->appctx->st1,
|
|
peer->appctx->t ? peer->appctx->t->calls : 0);
|
|
|
|
peer_cs = appctx_sc(peer->appctx);
|
|
if (!peer_cs) {
|
|
/* the appctx might exist but not yet be initialized due to
|
|
* deferred initialization used to balance applets across
|
|
* threads.
|
|
*/
|
|
goto table_info;
|
|
}
|
|
|
|
peer_s = __sc_strm(peer_cs);
|
|
|
|
chunk_appendf(&trash, " state=%s", sc_state_str(sc_opposite(peer_cs)->state));
|
|
|
|
conn = objt_conn(strm_orig(peer_s));
|
|
if (conn)
|
|
chunk_appendf(&trash, "\n xprt=%s", conn_get_xprt_name(conn));
|
|
|
|
switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) {
|
|
case AF_INET:
|
|
case AF_INET6:
|
|
chunk_appendf(&trash, " src=%s:%d", pn, get_host_port(conn->src));
|
|
break;
|
|
case AF_UNIX:
|
|
chunk_appendf(&trash, " src=unix:%d", strm_li(peer_s)->luid);
|
|
break;
|
|
}
|
|
|
|
switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) {
|
|
case AF_INET:
|
|
case AF_INET6:
|
|
chunk_appendf(&trash, " addr=%s:%d", pn, get_host_port(conn->dst));
|
|
break;
|
|
case AF_UNIX:
|
|
chunk_appendf(&trash, " addr=unix:%d", strm_li(peer_s)->luid);
|
|
break;
|
|
}
|
|
|
|
table_info:
|
|
if (peer->remote_table)
|
|
chunk_appendf(&trash, "\n remote_table:%p id=%s local_id=%d remote_id=%d",
|
|
peer->remote_table,
|
|
peer->remote_table->table->id,
|
|
peer->remote_table->local_id,
|
|
peer->remote_table->remote_id);
|
|
|
|
if (peer->last_local_table)
|
|
chunk_appendf(&trash, "\n last_local_table:%p id=%s local_id=%d remote_id=%d",
|
|
peer->last_local_table,
|
|
peer->last_local_table->table->id,
|
|
peer->last_local_table->local_id,
|
|
peer->last_local_table->remote_id);
|
|
|
|
if (peer->tables) {
|
|
chunk_appendf(&trash, "\n shared tables:");
|
|
for (st = peer->tables; st; st = st->next) {
|
|
int i, count;
|
|
struct stktable *t;
|
|
struct dcache *dcache;
|
|
|
|
t = st->table;
|
|
dcache = peer->dcache;
|
|
|
|
chunk_appendf(&trash, "\n %p local_id=%d remote_id=%d "
|
|
"flags=0x%x remote_data=0x%llx",
|
|
st, st->local_id, st->remote_id,
|
|
st->flags, (unsigned long long)st->remote_data);
|
|
chunk_appendf(&trash, "\n last_acked=%u last_pushed=%u last_get=%u"
|
|
" teaching_origin=%u update=%u",
|
|
st->last_acked, st->last_pushed, st->last_get,
|
|
st->teaching_origin, st->update);
|
|
chunk_appendf(&trash, "\n table:%p id=%s update=%u localupdate=%u"
|
|
" commitupdate=%u refcnt=%u",
|
|
t, t->id, t->update, t->localupdate, _HA_ATOMIC_LOAD(&t->commitupdate), t->refcnt);
|
|
if (flags & PEERS_SHOW_F_DICT) {
|
|
chunk_appendf(&trash, "\n TX dictionary cache:");
|
|
count = 0;
|
|
for (i = 0; i < dcache->max_entries; i++) {
|
|
struct ebpt_node *node;
|
|
struct dict_entry *de;
|
|
|
|
node = &dcache->tx->entries[i];
|
|
if (!node->key)
|
|
break;
|
|
|
|
if (!count++)
|
|
chunk_appendf(&trash, "\n ");
|
|
de = node->key;
|
|
chunk_appendf(&trash, " %3u -> %s", i, (char *)de->value.key);
|
|
count &= 0x3;
|
|
}
|
|
chunk_appendf(&trash, "\n RX dictionary cache:");
|
|
count = 0;
|
|
for (i = 0; i < dcache->max_entries; i++) {
|
|
if (!count++)
|
|
chunk_appendf(&trash, "\n ");
|
|
chunk_appendf(&trash, " %3u -> %s", i,
|
|
dcache->rx[i].de ?
|
|
(char *)dcache->rx[i].de->value.key : "-");
|
|
count &= 0x3;
|
|
}
|
|
} else {
|
|
chunk_appendf(&trash, "\n Dictionary cache not dumped (use \"show peers dict\")");
|
|
}
|
|
}
|
|
}
|
|
|
|
end:
|
|
chunk_appendf(&trash, "\n");
|
|
if (applet_putchk(appctx, msg) == -1)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This function dumps all the peers of "peers" section.
|
|
* Returns 0 if the output buffer is full and needs to be called
|
|
* again, non-zero if not. It proceeds in an isolated thread, so
|
|
* there is no thread safety issue here.
|
|
*/
|
|
static int cli_io_handler_show_peers(struct appctx *appctx)
|
|
{
|
|
struct show_peers_ctx *ctx = appctx->svcctx;
|
|
int ret = 0, first_peers = 1;
|
|
|
|
thread_isolate();
|
|
|
|
chunk_reset(&trash);
|
|
|
|
while (ctx->state != STATE_DONE) {
|
|
switch (ctx->state) {
|
|
case STATE_HEAD:
|
|
if (!ctx->peers) {
|
|
/* No more peers list. */
|
|
ctx->state = STATE_DONE;
|
|
}
|
|
else {
|
|
if (!first_peers)
|
|
chunk_appendf(&trash, "\n");
|
|
else
|
|
first_peers = 0;
|
|
if (!peers_dump_head(&trash, appctx, ctx->peers))
|
|
goto out;
|
|
|
|
ctx->peer = ctx->peers->remote;
|
|
ctx->peers = ctx->peers->next;
|
|
ctx->state = STATE_PEER;
|
|
}
|
|
break;
|
|
|
|
case STATE_PEER:
|
|
if (!ctx->peer) {
|
|
/* End of peer list */
|
|
if (!ctx->target)
|
|
ctx->state = STATE_HEAD; // next one
|
|
else
|
|
ctx->state = STATE_DONE;
|
|
}
|
|
else {
|
|
if (!peers_dump_peer(&trash, appctx, ctx->peer, ctx->flags))
|
|
goto out;
|
|
|
|
ctx->peer = ctx->peer->next;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
ret = 1;
|
|
out:
|
|
thread_release();
|
|
return ret;
|
|
}
|
|
|
|
|
|
struct peers_kw_list peers_keywords = {
|
|
.list = LIST_HEAD_INIT(peers_keywords.list)
|
|
};
|
|
|
|
void peers_register_keywords(struct peers_kw_list *pkwl)
|
|
{
|
|
LIST_APPEND(&peers_keywords.list, &pkwl->list);
|
|
}
|
|
|
|
/* config parser for global "tune.peers.max-updates-at-once" */
|
|
static int cfg_parse_max_updt_at_once(char **args, int section_type, struct proxy *curpx,
|
|
const struct proxy *defpx, const char *file, int line,
|
|
char **err)
|
|
{
|
|
int arg = -1;
|
|
|
|
if (too_many_args(1, args, err, NULL))
|
|
return -1;
|
|
|
|
if (*(args[1]) != 0)
|
|
arg = atoi(args[1]);
|
|
|
|
if (arg < 1) {
|
|
memprintf(err, "'%s' expects an integer argument greater than 0.", args[0]);
|
|
return -1;
|
|
}
|
|
|
|
peers_max_updates_at_once = arg;
|
|
return 0;
|
|
}
|
|
|
|
/* config keyword parsers */
|
|
static struct cfg_kw_list cfg_kws = {ILH, {
|
|
{ CFG_GLOBAL, "tune.peers.max-updates-at-once", cfg_parse_max_updt_at_once },
|
|
{ 0, NULL, NULL }
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, cfg_register_keywords, &cfg_kws);
|
|
|
|
/*
|
|
* CLI keywords.
|
|
*/
|
|
static struct cli_kw_list cli_kws = {{ }, {
|
|
{ { "show", "peers", NULL }, "show peers [dict|-] [section] : dump some information about all the peers or this peers section", cli_parse_show_peers, cli_io_handler_show_peers, },
|
|
{},
|
|
}};
|
|
|
|
/* Register cli keywords */
|
|
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
|