mirror of
https://git.haproxy.org/git/haproxy.git/
synced 2025-09-23 06:41:32 +02:00
Replace all calls to qc_is_listener() (resp. !qc_is_listener()) by calls to objt_listener() (resp. objt_server()). Remove qc_is_listener() implement and QUIC_FL_CONN_LISTENER the flag it relied on.
2488 lines
77 KiB
C
2488 lines
77 KiB
C
/*
|
|
* QUIC protocol implementation. Lower layer with internal features implemented
|
|
* here such as QUIC encryption, idle timeout, acknowledgement and
|
|
* retransmission.
|
|
*
|
|
* Copyright 2020 HAProxy Technologies, Frederic Lecaille <flecaille@haproxy.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <haproxy/quic_rx.h>
|
|
|
|
#include <haproxy/h3.h>
|
|
#include <haproxy/list.h>
|
|
#include <haproxy/ncbuf.h>
|
|
#include <haproxy/proto_quic.h>
|
|
#include <haproxy/quic_ack.h>
|
|
#include <haproxy/quic_cc_drs.h>
|
|
#include <haproxy/quic_cid.h>
|
|
#include <haproxy/quic_retransmit.h>
|
|
#include <haproxy/quic_retry.h>
|
|
#include <haproxy/quic_rules.h>
|
|
#include <haproxy/quic_sock.h>
|
|
#include <haproxy/quic_stream.h>
|
|
#include <haproxy/quic_ssl.h>
|
|
#include <haproxy/quic_tls.h>
|
|
#include <haproxy/quic_token.h>
|
|
#include <haproxy/quic_trace.h>
|
|
#include <haproxy/quic_tx.h>
|
|
#include <haproxy/quic_utils.h>
|
|
#include <haproxy/ssl_sock.h>
|
|
#include <haproxy/trace.h>
|
|
|
|
DECLARE_POOL(pool_head_quic_conn_rxbuf, "quic_conn_rxbuf", QUIC_CONN_RX_BUFSZ);
|
|
DECLARE_POOL(pool_head_quic_dgram, "quic_dgram", sizeof(struct quic_dgram));
|
|
DECLARE_POOL(pool_head_quic_rx_packet, "quic_rx_packet", sizeof(struct quic_rx_packet));
|
|
|
|
/* Decode an expected packet number from <truncated_on> its truncated value,
|
|
* depending on <largest_pn> the largest received packet number, and <pn_nbits>
|
|
* the number of bits used to encode this packet number (its length in bytes * 8).
|
|
* See https://quicwg.org/base-drafts/draft-ietf-quic-transport.html#packet-encoding
|
|
*/
|
|
static uint64_t decode_packet_number(uint64_t largest_pn,
|
|
uint32_t truncated_pn, unsigned int pn_nbits)
|
|
{
|
|
uint64_t expected_pn = largest_pn + 1;
|
|
uint64_t pn_win = (uint64_t)1 << pn_nbits;
|
|
uint64_t pn_hwin = pn_win / 2;
|
|
uint64_t pn_mask = pn_win - 1;
|
|
uint64_t candidate_pn;
|
|
|
|
|
|
candidate_pn = (expected_pn & ~pn_mask) | truncated_pn;
|
|
/* Note that <pn_win> > <pn_hwin>. */
|
|
if (candidate_pn < QUIC_MAX_PACKET_NUM - pn_win &&
|
|
candidate_pn + pn_hwin <= expected_pn)
|
|
return candidate_pn + pn_win;
|
|
|
|
if (candidate_pn > expected_pn + pn_hwin && candidate_pn >= pn_win)
|
|
return candidate_pn - pn_win;
|
|
|
|
return candidate_pn;
|
|
}
|
|
|
|
/* Remove the header protection of <pkt> QUIC packet using <tls_ctx> as QUIC TLS
|
|
* cryptographic context.
|
|
* <largest_pn> is the largest received packet number and <pn> the address of
|
|
* the packet number field for this packet with <byte0> address of its first byte.
|
|
* <end> points to one byte past the end of this packet.
|
|
* Returns 1 if succeeded, 0 if not.
|
|
*/
|
|
static int qc_do_rm_hp(struct quic_conn *qc,
|
|
struct quic_rx_packet *pkt, struct quic_tls_ctx *tls_ctx,
|
|
int64_t largest_pn, unsigned char *pn, unsigned char *byte0)
|
|
{
|
|
int ret, i, pnlen;
|
|
uint64_t packet_number;
|
|
uint32_t truncated_pn = 0;
|
|
unsigned char mask[5] = {0};
|
|
unsigned char *sample;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_RMHP, qc);
|
|
|
|
ret = 0;
|
|
|
|
/* Check there is enough data in this packet. */
|
|
if (pkt->len - (pn - byte0) < QUIC_PACKET_PN_MAXLEN + sizeof mask) {
|
|
TRACE_PROTO("too short packet", QUIC_EV_CONN_RMHP, qc, pkt);
|
|
goto leave;
|
|
}
|
|
|
|
sample = pn + QUIC_PACKET_PN_MAXLEN;
|
|
|
|
if (!quic_tls_hp_decrypt(mask, sample, sizeof mask, tls_ctx->rx.hp_ctx, tls_ctx->rx.hp_key)) {
|
|
TRACE_ERROR("HP removing failed", QUIC_EV_CONN_RMHP, qc, pkt);
|
|
goto leave;
|
|
}
|
|
|
|
*byte0 ^= mask[0] & (*byte0 & QUIC_PACKET_LONG_HEADER_BIT ? 0xf : 0x1f);
|
|
pnlen = (*byte0 & QUIC_PACKET_PNL_BITMASK) + 1;
|
|
for (i = 0; i < pnlen; i++) {
|
|
pn[i] ^= mask[i + 1];
|
|
truncated_pn = (truncated_pn << 8) | pn[i];
|
|
}
|
|
|
|
packet_number = decode_packet_number(largest_pn, truncated_pn, pnlen * 8);
|
|
/* Store remaining information for this unprotected header */
|
|
pkt->pn = packet_number;
|
|
pkt->pnl = pnlen;
|
|
|
|
ret = 1;
|
|
leave:
|
|
TRACE_LEAVE(QUIC_EV_CONN_RMHP, qc);
|
|
return ret;
|
|
}
|
|
|
|
/* Decrypt <pkt> packet using encryption level <qel> for <qc> connection.
|
|
* Decryption is done in place in packet buffer.
|
|
*
|
|
* Returns 1 on success else 0.
|
|
*/
|
|
static int qc_pkt_decrypt(struct quic_conn *qc, struct quic_enc_level *qel,
|
|
struct quic_rx_packet *pkt)
|
|
{
|
|
int ret, kp_changed;
|
|
unsigned char iv[QUIC_TLS_IV_LEN];
|
|
struct quic_tls_ctx *tls_ctx =
|
|
qc_select_tls_ctx(qc, qel, pkt->type, pkt->version);
|
|
QUIC_AEAD_CTX *rx_ctx = tls_ctx->rx.ctx;
|
|
unsigned char *rx_iv = tls_ctx->rx.iv;
|
|
size_t rx_iv_sz = tls_ctx->rx.ivlen;
|
|
unsigned char *rx_key = tls_ctx->rx.key;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_RXPKT, qc);
|
|
|
|
ret = 0;
|
|
kp_changed = 0;
|
|
|
|
if (pkt->type == QUIC_PACKET_TYPE_SHORT) {
|
|
/* The two tested bits are not at the same position,
|
|
* this is why they are first both inversed.
|
|
*/
|
|
if (!(*pkt->data & QUIC_PACKET_KEY_PHASE_BIT) ^ !(tls_ctx->flags & QUIC_FL_TLS_KP_BIT_SET)) {
|
|
if (pkt->pn < tls_ctx->rx.pn) {
|
|
/* The lowest packet number of a previous key phase
|
|
* cannot be null if it really stores previous key phase
|
|
* secrets.
|
|
*/
|
|
// TODO: check if BUG_ON() more suitable
|
|
if (!qc->ku.prv_rx.pn) {
|
|
TRACE_ERROR("null previous packet number", QUIC_EV_CONN_RXPKT, qc);
|
|
goto leave;
|
|
}
|
|
|
|
rx_ctx = qc->ku.prv_rx.ctx;
|
|
rx_iv = qc->ku.prv_rx.iv;
|
|
rx_key = qc->ku.prv_rx.key;
|
|
}
|
|
else if (pkt->pn > qel->pktns->rx.largest_pn) {
|
|
/* Next key phase */
|
|
TRACE_PROTO("Key phase changed", QUIC_EV_CONN_RXPKT, qc);
|
|
kp_changed = 1;
|
|
rx_ctx = qc->ku.nxt_rx.ctx;
|
|
rx_iv = qc->ku.nxt_rx.iv;
|
|
rx_key = qc->ku.nxt_rx.key;
|
|
}
|
|
}
|
|
}
|
|
|
|
quic_aead_iv_build(iv, sizeof iv, rx_iv, rx_iv_sz, pkt->pn);
|
|
|
|
ret = quic_tls_decrypt(pkt->data + pkt->aad_len, pkt->len - pkt->aad_len,
|
|
pkt->data, pkt->aad_len,
|
|
rx_ctx, tls_ctx->rx.aead, rx_key, iv);
|
|
if (!ret) {
|
|
TRACE_ERROR("quic_tls_decrypt() failed", QUIC_EV_CONN_RXPKT, qc);
|
|
goto leave;
|
|
}
|
|
|
|
/* Update the keys only if the packet decryption succeeded. */
|
|
if (kp_changed) {
|
|
quic_tls_rotate_keys(qc);
|
|
/* Toggle the Key Phase bit */
|
|
tls_ctx->flags ^= QUIC_FL_TLS_KP_BIT_SET;
|
|
/* Store the lowest packet number received for the current key phase */
|
|
tls_ctx->rx.pn = pkt->pn;
|
|
/* Prepare the next key update */
|
|
if (!quic_tls_key_update(qc)) {
|
|
TRACE_ERROR("quic_tls_key_update() failed", QUIC_EV_CONN_RXPKT, qc);
|
|
goto leave;
|
|
}
|
|
}
|
|
|
|
/* Update the packet length (required to parse the frames). */
|
|
pkt->len -= QUIC_TLS_TAG_LEN;
|
|
ret = 1;
|
|
leave:
|
|
TRACE_LEAVE(QUIC_EV_CONN_RXPKT, qc);
|
|
return ret;
|
|
}
|
|
|
|
/* Handle <frm> frame whose packet it is attached to has just been acknowledged. The memory allocated
|
|
* for this frame will be at least released in every cases.
|
|
*
|
|
* Returns 1 on success else 0.
|
|
*/
|
|
static int qc_handle_newly_acked_frm(struct quic_conn *qc, struct quic_frame *frm)
|
|
{
|
|
int ret = 0;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc);
|
|
TRACE_PROTO("RX ack TX frm", QUIC_EV_CONN_PRSAFRM, qc, frm);
|
|
|
|
switch (frm->type) {
|
|
case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F:
|
|
{
|
|
struct qf_stream *strm_frm = &frm->stream;
|
|
struct eb64_node *node = NULL;
|
|
struct qc_stream_desc *stream = NULL;
|
|
int ack;
|
|
|
|
/* do not use strm_frm->stream as the qc_stream_desc instance
|
|
* might be freed at this stage. Use the id to do a proper
|
|
* lookup.
|
|
*
|
|
* TODO if lookup operation impact on the perf is noticeable,
|
|
* implement a refcount on qc_stream_desc instances.
|
|
*/
|
|
node = eb64_lookup(&qc->streams_by_id, strm_frm->id);
|
|
if (!node) {
|
|
TRACE_DEVEL("acked stream for released stream", QUIC_EV_CONN_ACKSTRM, qc, strm_frm);
|
|
qc_release_frm(qc, frm);
|
|
/* return as success */
|
|
}
|
|
else {
|
|
stream = eb64_entry(node, struct qc_stream_desc, by_id);
|
|
|
|
ack = qc_stream_desc_ack(stream, strm_frm->offset,
|
|
strm_frm->len,
|
|
frm->type & QUIC_STREAM_FRAME_TYPE_FIN_BIT);
|
|
if (!ack) {
|
|
TRACE_DEVEL("stream consumed on ACK received",
|
|
QUIC_EV_CONN_ACKSTRM, qc, strm_frm, stream);
|
|
|
|
if (qc_stream_desc_done(stream)) {
|
|
/* Free qc_stream_desc instance as transfer is now completed. */
|
|
qc_stream_desc_free(stream, 0);
|
|
stream = NULL;
|
|
|
|
TRACE_DEVEL("stream released and freed", QUIC_EV_CONN_ACKSTRM, qc);
|
|
qc_check_close_on_released_mux(qc);
|
|
}
|
|
|
|
qc_release_frm(qc, frm);
|
|
}
|
|
else if (ack > 0) {
|
|
TRACE_DEVEL("handled out-of-order stream ACK",
|
|
QUIC_EV_CONN_ACKSTRM, qc, strm_frm, stream);
|
|
qc_release_frm(qc, frm);
|
|
}
|
|
else {
|
|
/* Fatal error during qc_stream_desc_ack(). */
|
|
goto leave;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
qc_release_frm(qc, frm);
|
|
}
|
|
|
|
ret = 1;
|
|
leave:
|
|
TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc);
|
|
return ret;
|
|
}
|
|
|
|
/* Collect newly acknowledged TX packets from <pkts> ebtree into <newly_acked_pkts>
|
|
* list depending on <largest> and <smallest> packet number of a range of acknowledged
|
|
* packets announced in an ACK frame. <largest_node> may be provided to start
|
|
* looking from this packet node.
|
|
*/
|
|
static void qc_newly_acked_pkts(struct quic_conn *qc, struct eb_root *pkts,
|
|
struct list *newly_acked_pkts,
|
|
struct eb64_node *largest_node,
|
|
uint64_t largest, uint64_t smallest)
|
|
{
|
|
struct eb64_node *node;
|
|
struct quic_tx_packet *pkt;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc);
|
|
|
|
node = eb64_lookup_ge(pkts, smallest);
|
|
if (!node)
|
|
goto leave;
|
|
|
|
largest_node = largest_node ? largest_node : eb64_lookup_le(pkts, largest);
|
|
if (!largest_node)
|
|
goto leave;
|
|
|
|
while (node && node->key <= largest_node->key) {
|
|
pkt = eb64_entry(node, struct quic_tx_packet, pn_node);
|
|
LIST_APPEND(newly_acked_pkts, &pkt->list);
|
|
node = eb64_next(node);
|
|
eb64_delete(&pkt->pn_node);
|
|
}
|
|
|
|
leave:
|
|
TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc);
|
|
}
|
|
|
|
/* Handle <newly_acked_pkts> list of newly acknowledged TX packets.
|
|
*
|
|
* Returns 1 on success else 0.
|
|
*/
|
|
static int qc_handle_newly_acked_pkts(struct quic_conn *qc,
|
|
unsigned int *pkt_flags, struct list *newly_acked_pkts)
|
|
{
|
|
struct quic_tx_packet *pkt, *tmp;
|
|
int ret = 0;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc);
|
|
|
|
list_for_each_entry_safe(pkt, tmp, newly_acked_pkts, list) {
|
|
struct quic_frame *frm, *frmbak;
|
|
|
|
*pkt_flags |= pkt->flags;
|
|
TRACE_DEVEL("Removing packet #", QUIC_EV_CONN_PRSAFRM, qc, NULL, &pkt->pn_node.key);
|
|
list_for_each_entry_safe(frm, frmbak, &pkt->frms, list) {
|
|
if (!qc_handle_newly_acked_frm(qc, frm))
|
|
goto leave;
|
|
}
|
|
/* If there are others packet in the same datagram <pkt> is attached to,
|
|
* detach the previous one and the next one from <pkt>.
|
|
*/
|
|
quic_tx_packet_dgram_detach(pkt);
|
|
eb64_delete(&pkt->pn_node);
|
|
}
|
|
|
|
ret = 1;
|
|
leave:
|
|
TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc);
|
|
return ret;
|
|
}
|
|
|
|
/* Handle all frames sent from <pkt> packet and reinsert them in the same order
|
|
* they have been sent into <pktns_frm_list>. The loss counter of each frame is
|
|
* incremented and checked if it does not exceed retransmission limit.
|
|
*
|
|
* Returns 1 on success, 0 if a frame loss limit is exceeded. A
|
|
* CONNECTION_CLOSE is scheduled in this case.
|
|
*/
|
|
int qc_handle_frms_of_lost_pkt(struct quic_conn *qc,
|
|
struct quic_tx_packet *pkt,
|
|
struct list *pktns_frm_list)
|
|
{
|
|
struct quic_frame *frm, *frmbak;
|
|
struct list *pkt_frm_list = &pkt->frms;
|
|
uint64_t pn = pkt->pn_node.key;
|
|
int close = 0;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc);
|
|
|
|
list_for_each_entry_safe(frm, frmbak, pkt_frm_list, list) {
|
|
/* First remove this frame from the packet it was attached to */
|
|
LIST_DEL_INIT(&frm->list);
|
|
quic_tx_packet_refdec(pkt);
|
|
/* At this time, this frame is not freed but removed from its packet */
|
|
frm->pkt = NULL;
|
|
/* Remove any reference to this frame */
|
|
qc_frm_unref(frm, qc);
|
|
switch (frm->type) {
|
|
case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F:
|
|
{
|
|
if (qc_stream_frm_is_acked(qc, frm)) {
|
|
qc_frm_free(qc, &frm);
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Do not resend probing packet with old data */
|
|
if (pkt->flags & QUIC_FL_TX_PACKET_PROBE_WITH_OLD_DATA) {
|
|
TRACE_DEVEL("ignored frame with old data from packet", QUIC_EV_CONN_PRSAFRM,
|
|
qc, frm, &pn);
|
|
if (frm->origin)
|
|
LIST_DEL_INIT(&frm->ref);
|
|
qc_frm_free(qc, &frm);
|
|
continue;
|
|
}
|
|
|
|
if (frm->flags & QUIC_FL_TX_FRAME_ACKED) {
|
|
TRACE_DEVEL("already acked frame", QUIC_EV_CONN_PRSAFRM, qc, frm);
|
|
TRACE_DEVEL("freeing frame from packet", QUIC_EV_CONN_PRSAFRM,
|
|
qc, frm, &pn);
|
|
qc_frm_free(qc, &frm);
|
|
}
|
|
else {
|
|
if (++frm->loss_count >= global.tune.quic_max_frame_loss) {
|
|
TRACE_ERROR("retransmission limit reached, closing the connection", QUIC_EV_CONN_PRSAFRM, qc);
|
|
quic_set_connection_close(qc, quic_err_transport(QC_ERR_INTERNAL_ERROR));
|
|
qc_notify_err(qc);
|
|
close = 1;
|
|
}
|
|
|
|
LIST_APPEND(pktns_frm_list, &frm->list);
|
|
TRACE_DEVEL("frame requeued", QUIC_EV_CONN_PRSAFRM, qc, frm);
|
|
}
|
|
}
|
|
|
|
end:
|
|
TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc);
|
|
return !close;
|
|
}
|
|
|
|
/* Send a packet ack event nofication for each newly acked packet of
|
|
* <newly_acked_pkts> list and free them.
|
|
* Always succeeds.
|
|
*/
|
|
static void qc_notify_cc_of_newly_acked_pkts(struct quic_conn *qc,
|
|
struct list *newly_acked_pkts,
|
|
unsigned int bytes_lost,
|
|
unsigned int rtt)
|
|
{
|
|
struct quic_tx_packet *pkt, *tmp;
|
|
struct quic_cc_event ev = { .type = QUIC_CC_EVT_ACK, };
|
|
struct quic_cc_path *p = qc->path;
|
|
struct quic_cc_drs *drs =
|
|
p->cc.algo->get_drs ? p->cc.algo->get_drs(&p->cc) : NULL;
|
|
unsigned int bytes_delivered = 0, pkt_delivered = 0;
|
|
uint64_t time_ns = task_mono_time();
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc);
|
|
|
|
list_for_each_entry_safe(pkt, tmp, newly_acked_pkts, list) {
|
|
pkt->pktns->tx.in_flight -= pkt->in_flight_len;
|
|
p->prep_in_flight -= pkt->in_flight_len;
|
|
if (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING)
|
|
p->ifae_pkts--;
|
|
/* If this packet contained an ACK frame, proceed to the
|
|
* acknowledging of range of acks from the largest acknowledged
|
|
* packet number which was sent in an ACK frame by this packet.
|
|
*/
|
|
if (pkt->largest_acked_pn != -1)
|
|
qc_treat_ack_of_ack(qc, &pkt->pktns->rx.arngs, pkt->largest_acked_pn);
|
|
bytes_delivered += pkt->len;
|
|
pkt_delivered = pkt->rs.delivered;
|
|
ev.ack.acked = pkt->in_flight_len;
|
|
ev.ack.time_sent = pkt->time_sent_ms;
|
|
ev.ack.pn = pkt->pn_node.key;
|
|
/* Note that this event is not emitted for BBR. */
|
|
quic_cc_event(&p->cc, &ev);
|
|
p->in_flight -= pkt->in_flight_len;
|
|
if (drs && (pkt->flags & QUIC_FL_TX_PACKET_ACK_ELICITING))
|
|
quic_cc_drs_update_rate_sample(drs, pkt, time_ns);
|
|
LIST_DEL_INIT(&pkt->list);
|
|
quic_tx_packet_refdec(pkt);
|
|
}
|
|
|
|
if (drs) {
|
|
quic_cc_drs_on_ack_recv(drs, p, pkt_delivered);
|
|
drs->lost += bytes_lost;
|
|
}
|
|
if (p->cc.algo->on_ack_rcvd)
|
|
p->cc.algo->on_ack_rcvd(&p->cc, bytes_delivered, pkt_delivered,
|
|
rtt, bytes_lost, now_ms);
|
|
|
|
TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc);
|
|
|
|
}
|
|
|
|
/* Parse ACK frame into <frm> from a buffer at <buf> address with <end> being at
|
|
* one byte past the end of this buffer. Also update <rtt_sample> if needed, i.e.
|
|
* if the largest acked packet was newly acked and if there was at least one newly
|
|
* acked ack-eliciting packet.
|
|
* Return 1, if succeeded, 0 if not.
|
|
*/
|
|
static int qc_parse_ack_frm(struct quic_conn *qc,
|
|
struct quic_frame *frm,
|
|
struct quic_enc_level *qel,
|
|
unsigned int *rtt_sample,
|
|
const unsigned char **pos, const unsigned char *end)
|
|
{
|
|
struct qf_ack *ack_frm = &frm->ack;
|
|
uint64_t smallest, largest;
|
|
struct eb_root *pkts;
|
|
struct eb64_node *largest_node;
|
|
unsigned int time_sent, pkt_flags;
|
|
struct list newly_acked_pkts = LIST_HEAD_INIT(newly_acked_pkts);
|
|
struct list lost_pkts = LIST_HEAD_INIT(lost_pkts);
|
|
int ret = 0, new_largest_acked_pn = 0;
|
|
struct quic_tx_packet *pkt, *tmp;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PRSAFRM, qc);
|
|
|
|
pkts = &qel->pktns->tx.pkts;
|
|
if (ack_frm->largest_ack > qel->pktns->tx.next_pn) {
|
|
TRACE_DEVEL("ACK for not sent packet", QUIC_EV_CONN_PRSAFRM,
|
|
qc, NULL, &ack_frm->largest_ack);
|
|
goto err;
|
|
}
|
|
|
|
if (ack_frm->first_ack_range > ack_frm->largest_ack) {
|
|
TRACE_DEVEL("too big first ACK range", QUIC_EV_CONN_PRSAFRM,
|
|
qc, NULL, &ack_frm->first_ack_range);
|
|
goto err;
|
|
}
|
|
|
|
largest = ack_frm->largest_ack;
|
|
smallest = largest - ack_frm->first_ack_range;
|
|
pkt_flags = 0;
|
|
largest_node = NULL;
|
|
time_sent = 0;
|
|
|
|
if ((int64_t)ack_frm->largest_ack > qel->pktns->rx.largest_acked_pn) {
|
|
largest_node = eb64_lookup(pkts, largest);
|
|
if (!largest_node) {
|
|
TRACE_DEVEL("Largest acked packet not found",
|
|
QUIC_EV_CONN_PRSAFRM, qc);
|
|
}
|
|
else {
|
|
time_sent = eb64_entry(largest_node,
|
|
struct quic_tx_packet, pn_node)->time_sent_ms;
|
|
new_largest_acked_pn = 1;
|
|
}
|
|
}
|
|
|
|
TRACE_PROTO("RX ack range", QUIC_EV_CONN_PRSAFRM,
|
|
qc, NULL, &largest, &smallest);
|
|
do {
|
|
uint64_t gap, ack_range;
|
|
|
|
qc_newly_acked_pkts(qc, pkts, &newly_acked_pkts,
|
|
largest_node, largest, smallest);
|
|
if (!ack_frm->ack_range_num--)
|
|
break;
|
|
|
|
if (!quic_dec_int(&gap, pos, end)) {
|
|
TRACE_ERROR("quic_dec_int(gap) failed", QUIC_EV_CONN_PRSAFRM, qc);
|
|
goto err;
|
|
}
|
|
|
|
if (smallest < gap + 2) {
|
|
TRACE_DEVEL("wrong gap value", QUIC_EV_CONN_PRSAFRM,
|
|
qc, NULL, &gap, &smallest);
|
|
goto err;
|
|
}
|
|
|
|
largest = smallest - gap - 2;
|
|
if (!quic_dec_int(&ack_range, pos, end)) {
|
|
TRACE_ERROR("quic_dec_int(ack_range) failed", QUIC_EV_CONN_PRSAFRM, qc);
|
|
goto err;
|
|
}
|
|
|
|
if (largest < ack_range) {
|
|
TRACE_DEVEL("wrong ack range value", QUIC_EV_CONN_PRSAFRM,
|
|
qc, NULL, &largest, &ack_range);
|
|
goto err;
|
|
}
|
|
|
|
/* Do not use this node anymore. */
|
|
largest_node = NULL;
|
|
/* Next range */
|
|
smallest = largest - ack_range;
|
|
|
|
TRACE_PROTO("RX next ack range", QUIC_EV_CONN_PRSAFRM,
|
|
qc, NULL, &largest, &smallest);
|
|
} while (1);
|
|
|
|
if (!LIST_ISEMPTY(&newly_acked_pkts)) {
|
|
unsigned int bytes_lost = 0;
|
|
|
|
if (!qc_handle_newly_acked_pkts(qc, &pkt_flags, &newly_acked_pkts))
|
|
goto leave;
|
|
|
|
if (new_largest_acked_pn && (pkt_flags & QUIC_FL_TX_PACKET_ACK_ELICITING)) {
|
|
*rtt_sample = tick_remain(time_sent, now_ms);
|
|
qel->pktns->rx.largest_acked_pn = ack_frm->largest_ack;
|
|
}
|
|
|
|
if (!eb_is_empty(&qel->pktns->tx.pkts)) {
|
|
qc_packet_loss_lookup(qel->pktns, qc, &lost_pkts, &bytes_lost);
|
|
if (!qc_release_lost_pkts(qc, qel->pktns, &lost_pkts, now_ms))
|
|
goto leave;
|
|
}
|
|
|
|
qc_notify_cc_of_newly_acked_pkts(qc, &newly_acked_pkts,
|
|
bytes_lost, *rtt_sample);
|
|
if (quic_peer_validated_addr(qc))
|
|
qc->path->loss.pto_count = 0;
|
|
qc_set_timer(qc);
|
|
qc_notify_send(qc);
|
|
}
|
|
|
|
ret = 1;
|
|
leave:
|
|
TRACE_LEAVE(QUIC_EV_CONN_PRSAFRM, qc);
|
|
return ret;
|
|
|
|
err:
|
|
/* Move back these packets into their tree. */
|
|
list_for_each_entry_safe(pkt, tmp, &newly_acked_pkts, list) {
|
|
LIST_DEL_INIT(&pkt->list);
|
|
eb64_insert(pkts, &pkt->pn_node);
|
|
}
|
|
goto leave;
|
|
}
|
|
|
|
/* Parse a STREAM frame <strm_frm> received in <pkt> packet for <qc>
|
|
* connection. <fin> is true if FIN bit is set on frame type.
|
|
*
|
|
* Return 1 on success. On error, 0 is returned. In this case, the packet
|
|
* containing the frame must not be acknowledged.
|
|
*/
|
|
static int qc_handle_strm_frm(struct quic_rx_packet *pkt,
|
|
struct qf_stream *strm_frm,
|
|
struct quic_conn *qc, char fin)
|
|
{
|
|
int ret;
|
|
|
|
/* RFC9000 13.1. Packet Processing
|
|
*
|
|
* A packet MUST NOT be acknowledged until packet protection has been
|
|
* successfully removed and all frames contained in the packet have
|
|
* been processed. For STREAM frames, this means the data has been
|
|
* enqueued in preparation to be received by the application protocol,
|
|
* but it does not require that data be delivered and consumed.
|
|
*/
|
|
TRACE_ENTER(QUIC_EV_CONN_PRSFRM, qc);
|
|
|
|
ret = qcc_recv(qc->qcc, strm_frm->id, strm_frm->len,
|
|
strm_frm->offset, fin, (char *)strm_frm->data);
|
|
|
|
/* frame rejected - packet must not be acknowledeged */
|
|
TRACE_LEAVE(QUIC_EV_CONN_PRSFRM, qc);
|
|
return !ret;
|
|
}
|
|
|
|
/* Parse <frm> CRYPTO frame coming with <pkt> packet at <qel> <qc> connection.
|
|
*
|
|
* Returns 0 on success or a negative error code. A positive value is used to
|
|
* indicate that the current frame cannot be handled immediately, but it could
|
|
* be solved by running a new packet parsing iteration.
|
|
*
|
|
* Also set <*fast_retrans> as output parameter to 1 if the speed up handshake
|
|
* completion may be run after having received duplicated CRYPTO data.
|
|
*/
|
|
static enum quic_rx_ret_frm qc_handle_crypto_frm(struct quic_conn *qc,
|
|
struct qf_crypto *crypto_frm,
|
|
struct quic_rx_packet *pkt,
|
|
struct quic_enc_level *qel)
|
|
{
|
|
enum ncb_ret ncb_ret;
|
|
enum quic_rx_ret_frm ret = QUIC_RX_RET_FRM_DONE;
|
|
/* XXX TO DO: <cfdebug> is used only for the traces. */
|
|
struct quic_rx_crypto_frm cfdebug = {
|
|
.offset_node.key = crypto_frm->offset,
|
|
.len = crypto_frm->len,
|
|
};
|
|
struct quic_cstream *cstream = qel->cstream;
|
|
struct ncbuf *ncbuf = &qel->cstream->rx.ncbuf;
|
|
uint64_t off_rel;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PRSHPKT, qc);
|
|
|
|
if (unlikely(crypto_frm->offset < cstream->rx.offset)) {
|
|
size_t diff;
|
|
|
|
if (crypto_frm->offset + crypto_frm->len <= cstream->rx.offset) {
|
|
/* Nothing to do */
|
|
TRACE_PROTO("Already received CRYPTO data",
|
|
QUIC_EV_CONN_RXPKT, qc, pkt, &cfdebug);
|
|
ret = QUIC_RX_RET_FRM_DUP;
|
|
goto done;
|
|
}
|
|
|
|
TRACE_PROTO("Partially already received CRYPTO data",
|
|
QUIC_EV_CONN_RXPKT, qc, pkt, &cfdebug);
|
|
|
|
diff = cstream->rx.offset - crypto_frm->offset;
|
|
crypto_frm->len -= diff;
|
|
crypto_frm->data += diff;
|
|
crypto_frm->offset = cstream->rx.offset;
|
|
}
|
|
|
|
if (!quic_get_ncbuf(ncbuf) || ncb_is_null(ncbuf)) {
|
|
TRACE_ERROR("CRYPTO ncbuf allocation failed", QUIC_EV_CONN_PRSHPKT, qc);
|
|
goto err;
|
|
}
|
|
|
|
/* crypto_frm->offset > cstream-trx.offset */
|
|
off_rel = crypto_frm->offset - cstream->rx.offset;
|
|
|
|
/* RFC 9000 7.5. Cryptographic Message Buffering
|
|
*
|
|
* Being unable to buffer CRYPTO frames during the handshake can lead to
|
|
* a connection failure. If an endpoint's buffer is exceeded during the
|
|
* handshake, it can expand its buffer temporarily to complete the
|
|
* handshake. If an endpoint does not expand its buffer, it MUST close
|
|
* the connection with a CRYPTO_BUFFER_EXCEEDED error code.
|
|
*/
|
|
if (off_rel + crypto_frm->len > ncb_size(ncbuf)) {
|
|
TRACE_ERROR("CRYPTO frame too large", QUIC_EV_CONN_PRSHPKT, qc);
|
|
quic_set_connection_close(qc, quic_err_transport(QC_ERR_CRYPTO_BUFFER_EXCEEDED));
|
|
goto err;
|
|
}
|
|
|
|
ncb_ret = ncb_add(ncbuf, off_rel, (const char *)crypto_frm->data,
|
|
crypto_frm->len, NCB_ADD_COMPARE);
|
|
if (ncb_ret != NCB_RET_OK) {
|
|
if (ncb_ret == NCB_RET_DATA_REJ) {
|
|
TRACE_ERROR("overlapping data rejected", QUIC_EV_CONN_PRSHPKT, qc);
|
|
quic_set_connection_close(qc, quic_err_transport(QC_ERR_PROTOCOL_VIOLATION));
|
|
qc_notify_err(qc);
|
|
goto err;
|
|
}
|
|
else if (ncb_ret == NCB_RET_GAP_SIZE) {
|
|
TRACE_DATA("cannot bufferize frame due to gap size limit",
|
|
QUIC_EV_CONN_PRSHPKT, qc);
|
|
ret = QUIC_RX_RET_FRM_AGAIN;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* Reschedule with TASK_HEAVY if CRYPTO data ready for decoding. */
|
|
if (ncb_data(ncbuf, 0)) {
|
|
HA_ATOMIC_OR(&qc->wait_event.tasklet->state, TASK_HEAVY);
|
|
tasklet_wakeup(qc->wait_event.tasklet);
|
|
}
|
|
|
|
done:
|
|
TRACE_LEAVE(QUIC_EV_CONN_PRSHPKT, qc);
|
|
return ret;
|
|
|
|
err:
|
|
TRACE_DEVEL("leaving on error", QUIC_EV_CONN_PRSHPKT, qc);
|
|
return QUIC_RX_RET_FRM_FATAL;
|
|
}
|
|
|
|
/* Handle RETIRE_CONNECTION_ID frame from <frm> frame.
|
|
* Return 1 if succeeded, 0 if not. If succeeded, also set <to_retire>
|
|
* to the CID to be retired if not already retired.
|
|
*/
|
|
static int qc_handle_retire_connection_id_frm(struct quic_conn *qc,
|
|
struct quic_frame *frm,
|
|
struct quic_cid *dcid,
|
|
struct quic_connection_id **to_retire)
|
|
{
|
|
int ret = 0;
|
|
struct qf_retire_connection_id *rcid_frm = &frm->retire_connection_id;
|
|
struct eb64_node *node;
|
|
struct quic_connection_id *conn_id;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PRSHPKT, qc);
|
|
|
|
/* RFC 9000 19.16. RETIRE_CONNECTION_ID Frames:
|
|
* Receipt of a RETIRE_CONNECTION_ID frame containing a sequence number greater
|
|
* than any previously sent to the peer MUST be treated as a connection error
|
|
* of type PROTOCOL_VIOLATION.
|
|
*/
|
|
if (rcid_frm->seq_num >= qc->next_cid_seq_num) {
|
|
TRACE_PROTO("CID seq. number too big", QUIC_EV_CONN_PSTRM, qc, frm);
|
|
goto protocol_violation;
|
|
}
|
|
|
|
/* RFC 9000 19.16. RETIRE_CONNECTION_ID Frames:
|
|
* The sequence number specified in a RETIRE_CONNECTION_ID frame MUST NOT refer to
|
|
* the Destination Connection ID field of the packet in which the frame is contained.
|
|
* The peer MAY treat this as a connection error of type PROTOCOL_VIOLATION.
|
|
*/
|
|
node = eb64_lookup(qc->cids, rcid_frm->seq_num);
|
|
if (!node) {
|
|
TRACE_PROTO("CID already retired", QUIC_EV_CONN_PSTRM, qc, frm);
|
|
goto out;
|
|
}
|
|
|
|
conn_id = eb64_entry(node, struct quic_connection_id, seq_num);
|
|
/* Note that the length of <dcid> has already been checked. It must match the
|
|
* length of the CIDs which have been provided to the peer.
|
|
*/
|
|
if (!memcmp(dcid->data, conn_id->cid.data, QUIC_HAP_CID_LEN)) {
|
|
TRACE_PROTO("cannot retire the current CID", QUIC_EV_CONN_PSTRM, qc, frm);
|
|
goto protocol_violation;
|
|
}
|
|
|
|
*to_retire = conn_id;
|
|
out:
|
|
ret = 1;
|
|
leave:
|
|
TRACE_LEAVE(QUIC_EV_CONN_PRSHPKT, qc);
|
|
return ret;
|
|
protocol_violation:
|
|
quic_set_connection_close(qc, quic_err_transport(QC_ERR_PROTOCOL_VIOLATION));
|
|
qc_notify_err(qc);
|
|
goto leave;
|
|
}
|
|
|
|
/* Returns the <ack_delay> field value in milliseconds from <ack_frm> ACK frame for
|
|
* <conn> QUIC connection. Note that the value of <ack_delay> coming from
|
|
* ACK frame is in microseconds.
|
|
*/
|
|
static inline unsigned int quic_ack_delay_ms(struct qf_ack *ack_frm,
|
|
struct quic_conn *conn)
|
|
{
|
|
return (ack_frm->ack_delay << conn->tx.params.ack_delay_exponent) / 1000;
|
|
}
|
|
|
|
/* Parse all the frames of <pkt> QUIC packet for QUIC connection <qc> and <qel>
|
|
* as encryption level.
|
|
* Returns 1 if succeeded, 0 if failed.
|
|
*/
|
|
static int qc_parse_pkt_frms(struct quic_conn *qc, struct quic_rx_packet *pkt,
|
|
struct quic_enc_level *qel)
|
|
{
|
|
struct list retry_frms = LIST_HEAD_INIT(retry_frms);
|
|
struct quic_frame *frm = NULL, *frm_tmp;
|
|
const unsigned char *pos, *end;
|
|
enum quic_rx_ret_frm ret;
|
|
int fast_retrans = 0;
|
|
/* parsing may be rerun multiple times, but no more than <iter>. */
|
|
int iter = 3, parsing_stage = 0;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_PRSHPKT, qc);
|
|
/* Skip the AAD */
|
|
pos = pkt->data + pkt->aad_len;
|
|
end = pkt->data + pkt->len;
|
|
|
|
/* Packet with no frame. */
|
|
if (pos == end) {
|
|
/* RFC9000 12.4. Frames and Frame Types
|
|
*
|
|
* The payload of a packet that contains frames MUST contain at least
|
|
* one frame, and MAY contain multiple frames and multiple frame types.
|
|
* An endpoint MUST treat receipt of a packet containing no frames as a
|
|
* connection error of type PROTOCOL_VIOLATION. Frames always fit within
|
|
* a single QUIC packet and cannot span multiple packets.
|
|
*/
|
|
quic_set_connection_close(qc, quic_err_transport(QC_ERR_PROTOCOL_VIOLATION));
|
|
goto err;
|
|
}
|
|
|
|
while (pos < end) {
|
|
if (!frm && !(frm = qc_frm_alloc(0))) {
|
|
TRACE_ERROR("cannot allocate frame", QUIC_EV_CONN_PRSHPKT, qc);
|
|
goto err;
|
|
}
|
|
|
|
if (!qc_parse_frm(frm, pkt, &pos, end, qc)) {
|
|
// trace already emitted by function above
|
|
goto err;
|
|
}
|
|
|
|
switch (frm->type) {
|
|
case QUIC_FT_PADDING:
|
|
break;
|
|
case QUIC_FT_PING:
|
|
break;
|
|
case QUIC_FT_ACK:
|
|
case QUIC_FT_ACK_ECN:
|
|
{
|
|
unsigned int rtt_sample;
|
|
rtt_sample = UINT_MAX;
|
|
|
|
if (!qc_parse_ack_frm(qc, frm, qel, &rtt_sample, &pos, end)) {
|
|
// trace already emitted by function above
|
|
goto err;
|
|
}
|
|
|
|
if (rtt_sample != UINT_MAX) {
|
|
unsigned int ack_delay;
|
|
|
|
ack_delay = !quic_application_pktns(qel->pktns, qc) ? 0 :
|
|
qc->state >= QUIC_HS_ST_CONFIRMED ?
|
|
MS_TO_TICKS(QUIC_MIN(quic_ack_delay_ms(&frm->ack, qc), qc->max_ack_delay)) :
|
|
MS_TO_TICKS(quic_ack_delay_ms(&frm->ack, qc));
|
|
quic_loss_srtt_update(&qc->path->loss, rtt_sample, ack_delay, qc);
|
|
}
|
|
break;
|
|
}
|
|
case QUIC_FT_RESET_STREAM:
|
|
if (qc->mux_state == QC_MUX_READY) {
|
|
struct qf_reset_stream *rs_frm = &frm->reset_stream;
|
|
qcc_recv_reset_stream(qc->qcc, rs_frm->id, rs_frm->app_error_code, rs_frm->final_size);
|
|
}
|
|
break;
|
|
case QUIC_FT_STOP_SENDING:
|
|
{
|
|
struct qf_stop_sending *ss_frm = &frm->stop_sending;
|
|
if (qc->mux_state == QC_MUX_READY) {
|
|
if (qcc_recv_stop_sending(qc->qcc, ss_frm->id,
|
|
ss_frm->app_error_code)) {
|
|
TRACE_ERROR("qcc_recv_stop_sending() failed", QUIC_EV_CONN_PRSHPKT, qc);
|
|
goto err;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case QUIC_FT_CRYPTO:
|
|
ret = qc_handle_crypto_frm(qc, &frm->crypto, pkt, qel);
|
|
switch (ret) {
|
|
case QUIC_RX_RET_FRM_FATAL:
|
|
goto err;
|
|
|
|
case QUIC_RX_RET_FRM_AGAIN:
|
|
if (parsing_stage == 0) {
|
|
TRACE_STATE("parsing stage set to 1 (AGAIN encountered)", QUIC_EV_CONN_PRSHPKT, qc);
|
|
++parsing_stage;
|
|
}
|
|
/* Save frame in temp list to reparse it later. A new instance must be used for next packet frames. */
|
|
LIST_APPEND(&retry_frms, &frm->list);
|
|
frm = NULL;
|
|
break;
|
|
|
|
case QUIC_RX_RET_FRM_DUP:
|
|
if (objt_listener(qc->target) && qel == qc->iel &&
|
|
!(qc->flags & QUIC_FL_CONN_HANDSHAKE_SPEED_UP)) {
|
|
fast_retrans = 1;
|
|
}
|
|
break;
|
|
|
|
case QUIC_RX_RET_FRM_DONE:
|
|
if (parsing_stage == 1) {
|
|
TRACE_STATE("parsing stage set to 2 (DONE after AGAIN)", QUIC_EV_CONN_PRSHPKT, qc);
|
|
++parsing_stage;
|
|
}
|
|
break;
|
|
}
|
|
|
|
break;
|
|
case QUIC_FT_NEW_TOKEN:
|
|
if (objt_listener(qc->target)) {
|
|
TRACE_ERROR("reject NEW_TOKEN frame emitted by client",
|
|
QUIC_EV_CONN_PRSHPKT, qc);
|
|
|
|
/* RFC 9000 19.7. NEW_TOKEN Frames
|
|
* Clients MUST NOT send NEW_TOKEN frames. A server MUST treat receipt
|
|
* of a NEW_TOKEN frame as a connection error of type
|
|
* PROTOCOL_VIOLATION.
|
|
*/
|
|
quic_set_connection_close(qc, quic_err_transport(QC_ERR_PROTOCOL_VIOLATION));
|
|
goto err;
|
|
}
|
|
else {
|
|
/* TODO NEW_TOKEN not implemented on client side.
|
|
* Note that for now token is not copied into <data> field
|
|
* of qf_new_token frame. See quic_parse_new_token_frame()
|
|
* for further explanations.
|
|
*/
|
|
}
|
|
break;
|
|
case QUIC_FT_STREAM_8 ... QUIC_FT_STREAM_F:
|
|
{
|
|
struct qf_stream *strm_frm = &frm->stream;
|
|
const char fin = frm->type & QUIC_STREAM_FRAME_TYPE_FIN_BIT;
|
|
const uint64_t max = quic_stream_is_uni(strm_frm->id) ?
|
|
qc->rx.stream_max_uni : qc->rx.stream_max_bidi;
|
|
|
|
/* The upper layer may not be allocated. */
|
|
if (qc->mux_state != QC_MUX_READY) {
|
|
if (strm_frm->id < max) {
|
|
TRACE_DATA("Already closed stream", QUIC_EV_CONN_PRSHPKT, qc);
|
|
}
|
|
else {
|
|
TRACE_DEVEL("No mux for new stream", QUIC_EV_CONN_PRSHPKT, qc);
|
|
if (qc->app_ops == &h3_ops) {
|
|
if (!qc_h3_request_reject(qc, strm_frm->id)) {
|
|
TRACE_ERROR("error on request rejection", QUIC_EV_CONN_PRSHPKT, qc);
|
|
/* This packet will not be acknowledged */
|
|
goto err;
|
|
}
|
|
}
|
|
else {
|
|
/* This packet will not be acknowledged */
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
if (!qc_handle_strm_frm(pkt, strm_frm, qc, fin)) {
|
|
TRACE_ERROR("qc_handle_strm_frm() failed", QUIC_EV_CONN_PRSHPKT, qc);
|
|
goto err;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case QUIC_FT_MAX_DATA:
|
|
if (qc->mux_state == QC_MUX_READY) {
|
|
struct qf_max_data *md_frm = &frm->max_data;
|
|
qcc_recv_max_data(qc->qcc, md_frm->max_data);
|
|
}
|
|
break;
|
|
case QUIC_FT_MAX_STREAM_DATA:
|
|
if (qc->mux_state == QC_MUX_READY) {
|
|
struct qf_max_stream_data *msd_frm = &frm->max_stream_data;
|
|
if (qcc_recv_max_stream_data(qc->qcc, msd_frm->id,
|
|
msd_frm->max_stream_data)) {
|
|
TRACE_ERROR("qcc_recv_max_stream_data() failed", QUIC_EV_CONN_PRSHPKT, qc);
|
|
goto err;
|
|
}
|
|
}
|
|
break;
|
|
case QUIC_FT_MAX_STREAMS_BIDI:
|
|
case QUIC_FT_MAX_STREAMS_UNI:
|
|
if (qc->mux_state == QC_MUX_READY) {
|
|
int bidi;
|
|
struct qf_max_streams *ms_frm;
|
|
|
|
if (frm->type == QUIC_FT_MAX_STREAMS_BIDI) {
|
|
bidi = 1;
|
|
ms_frm = &frm->max_streams_bidi;
|
|
}
|
|
else {
|
|
bidi = 0;
|
|
ms_frm = &frm->max_streams_uni;
|
|
}
|
|
|
|
if (qcc_recv_max_streams(qc->qcc, ms_frm->max_streams, bidi)) {
|
|
TRACE_ERROR("qcc_recv_max_streams() failed", QUIC_EV_CONN_PRSHPKT, qc);
|
|
goto err;
|
|
}
|
|
}
|
|
break;
|
|
case QUIC_FT_DATA_BLOCKED:
|
|
qc->cntrs.data_blocked++;
|
|
break;
|
|
case QUIC_FT_STREAM_DATA_BLOCKED:
|
|
qc->cntrs.stream_data_blocked++;
|
|
break;
|
|
case QUIC_FT_STREAMS_BLOCKED_BIDI:
|
|
qc->cntrs.streams_blocked_bidi++;
|
|
break;
|
|
case QUIC_FT_STREAMS_BLOCKED_UNI:
|
|
qc->cntrs.streams_blocked_uni++;
|
|
break;
|
|
case QUIC_FT_NEW_CONNECTION_ID:
|
|
/* XXX TO DO XXX */
|
|
break;
|
|
case QUIC_FT_RETIRE_CONNECTION_ID:
|
|
{
|
|
struct quic_connection_id *conn_id = NULL;
|
|
|
|
if (!qc_handle_retire_connection_id_frm(qc, frm, &pkt->dcid, &conn_id))
|
|
goto err;
|
|
|
|
if (!conn_id)
|
|
break;
|
|
|
|
quic_cid_delete(conn_id);
|
|
eb64_delete(&conn_id->seq_num);
|
|
pool_free(pool_head_quic_connection_id, conn_id);
|
|
TRACE_PROTO("CID retired", QUIC_EV_CONN_PSTRM, qc);
|
|
|
|
conn_id = new_quic_cid(qc->cids, qc, NULL, NULL);
|
|
if (!conn_id) {
|
|
TRACE_ERROR("CID allocation error", QUIC_EV_CONN_IO_CB, qc);
|
|
}
|
|
else {
|
|
_quic_cid_insert(conn_id);
|
|
qc_build_new_connection_id_frm(qc, conn_id);
|
|
}
|
|
break;
|
|
}
|
|
case QUIC_FT_PATH_CHALLENGE:
|
|
case QUIC_FT_PATH_RESPONSE:
|
|
/* TODO */
|
|
break;
|
|
case QUIC_FT_CONNECTION_CLOSE:
|
|
case QUIC_FT_CONNECTION_CLOSE_APP:
|
|
/* Increment the error counters */
|
|
quic_conn_closed_err_count_inc(qc, frm);
|
|
if (!(qc->flags & QUIC_FL_CONN_DRAINING)) {
|
|
TRACE_STATE("Entering draining state", QUIC_EV_CONN_PRSHPKT, qc);
|
|
/* RFC 9000 10.2. Immediate Close:
|
|
* The closing and draining connection states exist to ensure
|
|
* that connections close cleanly and that delayed or reordered
|
|
* packets are properly discarded. These states SHOULD persist
|
|
* for at least three times the current PTO interval...
|
|
*
|
|
* Rearm the idle timeout only one time when entering draining
|
|
* state.
|
|
*/
|
|
qc->flags |= QUIC_FL_CONN_DRAINING|QUIC_FL_CONN_IMMEDIATE_CLOSE;
|
|
qc_detach_th_ctx_list(qc, 1);
|
|
qc_idle_timer_do_rearm(qc, 0);
|
|
qc_notify_err(qc);
|
|
}
|
|
break;
|
|
case QUIC_FT_HANDSHAKE_DONE:
|
|
if (objt_listener(qc->target)) {
|
|
TRACE_ERROR("non accepted QUIC_FT_HANDSHAKE_DONE frame",
|
|
QUIC_EV_CONN_PRSHPKT, qc);
|
|
|
|
/* RFC 9000 19.20. HANDSHAKE_DONE Frames
|
|
*
|
|
* A
|
|
* server MUST treat receipt of a HANDSHAKE_DONE frame as a connection
|
|
* error of type PROTOCOL_VIOLATION.
|
|
*/
|
|
quic_set_connection_close(qc, quic_err_transport(QC_ERR_PROTOCOL_VIOLATION));
|
|
goto err;
|
|
}
|
|
|
|
qc->state = QUIC_HS_ST_CONFIRMED;
|
|
break;
|
|
default:
|
|
/* Unknown frame type must be rejected by qc_parse_frm(). */
|
|
ABORT_NOW();
|
|
}
|
|
}
|
|
|
|
if (frm)
|
|
qc_frm_free(qc, &frm);
|
|
|
|
while (!LIST_ISEMPTY(&retry_frms)) {
|
|
if (--iter <= 0) {
|
|
TRACE_ERROR("interrupt parsing due to max iteration reached",
|
|
QUIC_EV_CONN_PRSHPKT, qc);
|
|
goto err;
|
|
}
|
|
else if (parsing_stage <= 1) {
|
|
TRACE_ERROR("interrupt parsing due to buffering blocked on gap size limit",
|
|
QUIC_EV_CONN_PRSHPKT, qc);
|
|
goto err;
|
|
}
|
|
|
|
parsing_stage = 0;
|
|
list_for_each_entry_safe(frm, frm_tmp, &retry_frms, list) {
|
|
/* only CRYPTO frames may be reparsed for now */
|
|
BUG_ON(frm->type != QUIC_FT_CRYPTO);
|
|
ret = qc_handle_crypto_frm(qc, &frm->crypto, pkt, qel);
|
|
switch (ret) {
|
|
case QUIC_RX_RET_FRM_FATAL:
|
|
goto err;
|
|
|
|
case QUIC_RX_RET_FRM_AGAIN:
|
|
if (parsing_stage == 0) {
|
|
TRACE_STATE("parsing stage set to 1 (AGAIN encountered)", QUIC_EV_CONN_PRSHPKT, qc);
|
|
++parsing_stage;
|
|
}
|
|
break;
|
|
|
|
case QUIC_RX_RET_FRM_DONE:
|
|
TRACE_PROTO("frame handled after a new parsing iteration",
|
|
QUIC_EV_CONN_PRSAFRM, qc, frm);
|
|
if (parsing_stage == 1) {
|
|
TRACE_STATE("parsing stage set to 2 (DONE after AGAIN)", QUIC_EV_CONN_PRSHPKT, qc);
|
|
++parsing_stage;
|
|
}
|
|
__fallthrough;
|
|
case QUIC_RX_RET_FRM_DUP:
|
|
qc_frm_free(qc, &frm);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Always reset <frm> as it may be dangling after
|
|
* list_for_each_entry_safe() usage. Especially necessary to
|
|
* prevent a crash if loop is interrupted on max iteration.
|
|
*/
|
|
frm = NULL;
|
|
}
|
|
|
|
/* Error should be returned if some frames cannot be parsed. */
|
|
BUG_ON(!LIST_ISEMPTY(&retry_frms));
|
|
|
|
if (fast_retrans && qc->iel && qc->hel) {
|
|
struct quic_enc_level *iqel = qc->iel;
|
|
struct quic_enc_level *hqel = qc->hel;
|
|
|
|
TRACE_PROTO("speeding up handshake completion", QUIC_EV_CONN_PRSHPKT, qc);
|
|
qc_prep_hdshk_fast_retrans(qc, &iqel->pktns->tx.frms, &hqel->pktns->tx.frms);
|
|
qc->flags |= QUIC_FL_CONN_HANDSHAKE_SPEED_UP;
|
|
}
|
|
|
|
/* The server must switch from INITIAL to HANDSHAKE handshake state when it
|
|
* has successfully parse a Handshake packet. The Initial encryption must also
|
|
* be discarded.
|
|
*/
|
|
if (pkt->type == QUIC_PACKET_TYPE_HANDSHAKE && objt_listener(qc->target)) {
|
|
if (qc->state >= QUIC_HS_ST_SERVER_INITIAL) {
|
|
if (qc->ipktns && !quic_tls_pktns_is_dcd(qc, qc->ipktns)) {
|
|
/* Discard the handshake packet number space. */
|
|
TRACE_PROTO("discarding Initial pktns", QUIC_EV_CONN_PRSHPKT, qc);
|
|
quic_pktns_discard(qc->ipktns, qc, 0);
|
|
qc_set_timer(qc);
|
|
qc_el_rx_pkts_del(qc->iel);
|
|
qc_release_pktns_frms(qc, qc->ipktns);
|
|
}
|
|
if (qc->state < QUIC_HS_ST_SERVER_HANDSHAKE)
|
|
qc->state = QUIC_HS_ST_SERVER_HANDSHAKE;
|
|
}
|
|
}
|
|
|
|
TRACE_LEAVE(QUIC_EV_CONN_PRSHPKT, qc);
|
|
return 1;
|
|
|
|
err:
|
|
if (frm)
|
|
qc_frm_free(qc, &frm);
|
|
list_for_each_entry_safe(frm, frm_tmp, &retry_frms, list) {
|
|
qc_frm_free(qc, &frm);
|
|
}
|
|
|
|
TRACE_DEVEL("leaving on error", QUIC_EV_CONN_PRSHPKT, qc);
|
|
return 0;
|
|
}
|
|
|
|
/* Detect the value of the spin bit to be used. */
|
|
static inline void qc_handle_spin_bit(struct quic_conn *qc, struct quic_rx_packet *pkt,
|
|
struct quic_enc_level *qel)
|
|
{
|
|
uint64_t largest_pn = qel->pktns->rx.largest_pn;
|
|
|
|
if (qel != qc->ael || largest_pn == -1 ||
|
|
pkt->pn <= largest_pn)
|
|
return;
|
|
|
|
if (objt_listener(qc->target)) {
|
|
if (pkt->flags & QUIC_FL_RX_PACKET_SPIN_BIT)
|
|
qc->flags |= QUIC_FL_CONN_SPIN_BIT;
|
|
else
|
|
qc->flags &= ~QUIC_FL_CONN_SPIN_BIT;
|
|
}
|
|
else {
|
|
if (pkt->flags & QUIC_FL_RX_PACKET_SPIN_BIT)
|
|
qc->flags &= ~QUIC_FL_CONN_SPIN_BIT;
|
|
else
|
|
qc->flags |= QUIC_FL_CONN_SPIN_BIT;
|
|
}
|
|
}
|
|
|
|
/* Remove the header protection of packets at <el> encryption level.
|
|
* Always succeeds.
|
|
*/
|
|
static void qc_rm_hp_pkts(struct quic_conn *qc, struct quic_enc_level *el)
|
|
{
|
|
struct quic_rx_packet *pqpkt, *pkttmp;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_ELRMHP, qc);
|
|
/* A server must not process incoming 1-RTT packets before the handshake is complete. */
|
|
if (el == qc->ael && objt_listener(qc->target) && qc->state < QUIC_HS_ST_COMPLETE) {
|
|
TRACE_PROTO("RX hp not removed (handshake not completed)",
|
|
QUIC_EV_CONN_ELRMHP, qc);
|
|
goto out;
|
|
}
|
|
|
|
list_for_each_entry_safe(pqpkt, pkttmp, &el->rx.pqpkts, list) {
|
|
struct quic_tls_ctx *tls_ctx;
|
|
|
|
tls_ctx = qc_select_tls_ctx(qc, el, pqpkt->type, pqpkt->version);
|
|
if (!qc_do_rm_hp(qc, pqpkt, tls_ctx, el->pktns->rx.largest_pn,
|
|
pqpkt->data + pqpkt->pn_offset, pqpkt->data)) {
|
|
TRACE_ERROR("RX hp removing error", QUIC_EV_CONN_ELRMHP, qc);
|
|
}
|
|
else {
|
|
qc_handle_spin_bit(qc, pqpkt, el);
|
|
/* The AAD includes the packet number field */
|
|
pqpkt->aad_len = pqpkt->pn_offset + pqpkt->pnl;
|
|
/* Store the packet into the tree of packets to decrypt. */
|
|
pqpkt->pn_node.key = pqpkt->pn;
|
|
eb64_insert(&el->rx.pkts, &pqpkt->pn_node);
|
|
quic_rx_packet_refinc(pqpkt);
|
|
TRACE_PROTO("RX hp removed", QUIC_EV_CONN_ELRMHP, qc, pqpkt);
|
|
}
|
|
LIST_DEL_INIT(&pqpkt->list);
|
|
quic_rx_packet_refdec(pqpkt);
|
|
}
|
|
|
|
out:
|
|
TRACE_LEAVE(QUIC_EV_CONN_ELRMHP, qc);
|
|
}
|
|
|
|
/* Check if it's possible to remove header protection for packets related to
|
|
* encryption level <qel>. If <qel> is NULL, assume it's false.
|
|
*
|
|
* Return true if the operation is possible else false.
|
|
*/
|
|
static int qc_qel_may_rm_hp(struct quic_conn *qc, struct quic_enc_level *qel)
|
|
{
|
|
int ret = 0;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_TRMHP, qc);
|
|
|
|
if (!qel)
|
|
goto cant_rm_hp;
|
|
|
|
if (!quic_tls_has_rx_sec(qel)) {
|
|
TRACE_PROTO("non available secrets", QUIC_EV_CONN_TRMHP, qc);
|
|
goto cant_rm_hp;
|
|
}
|
|
|
|
if (qel == qc->ael && qc->state < QUIC_HS_ST_COMPLETE) {
|
|
TRACE_PROTO("handshake not complete", QUIC_EV_CONN_TRMHP, qc);
|
|
goto cant_rm_hp;
|
|
}
|
|
|
|
/* check if the connection layer is ready before using app level */
|
|
if ((qel == qc->ael || qel == qc->eel) &&
|
|
qc->mux_state == QC_MUX_NULL) {
|
|
TRACE_PROTO("connection layer not ready", QUIC_EV_CONN_TRMHP, qc);
|
|
goto cant_rm_hp;
|
|
}
|
|
|
|
ret = 1;
|
|
cant_rm_hp:
|
|
TRACE_LEAVE(QUIC_EV_CONN_TRMHP, qc);
|
|
return ret;
|
|
}
|
|
|
|
/* Process all the packets for all the encryption levels listed in <qc> QUIC connection.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
int qc_treat_rx_pkts(struct quic_conn *qc)
|
|
{
|
|
int ret = 0;
|
|
struct eb64_node *node;
|
|
int64_t largest_pn = -1;
|
|
unsigned int largest_pn_time_received = 0;
|
|
struct quic_enc_level *qel, *qelbak;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_RXPKT, qc);
|
|
|
|
list_for_each_entry_safe(qel, qelbak, &qc->qel_list, list) {
|
|
/* Treat packets waiting for header packet protection decryption */
|
|
if (!LIST_ISEMPTY(&qel->rx.pqpkts) && qc_qel_may_rm_hp(qc, qel))
|
|
qc_rm_hp_pkts(qc, qel);
|
|
|
|
node = eb64_first(&qel->rx.pkts);
|
|
while (node) {
|
|
struct quic_rx_packet *pkt;
|
|
|
|
pkt = eb64_entry(node, struct quic_rx_packet, pn_node);
|
|
TRACE_DATA("new packet", QUIC_EV_CONN_RXPKT,
|
|
qc, pkt, NULL, qc->xprt_ctx->ssl);
|
|
if (!qc_pkt_decrypt(qc, qel, pkt)) {
|
|
/* Drop the packet */
|
|
TRACE_ERROR("packet decryption failed -> dropped",
|
|
QUIC_EV_CONN_RXPKT, qc, pkt);
|
|
}
|
|
else {
|
|
if (!qc_parse_pkt_frms(qc, pkt, qel)) {
|
|
/* Drop the packet */
|
|
TRACE_ERROR("packet parsing failed -> dropped",
|
|
QUIC_EV_CONN_RXPKT, qc, pkt);
|
|
qc->cntrs.dropped_parsing++;
|
|
}
|
|
else {
|
|
struct quic_arng ar = { .first = pkt->pn, .last = pkt->pn };
|
|
|
|
/* RFC 9000 8.1. Address Validation during Connection Establishment
|
|
*
|
|
* Connection establishment implicitly provides address validation for
|
|
* both endpoints. In particular, receipt of a packet protected with
|
|
* Handshake keys confirms that the peer successfully processed an
|
|
* Initial packet.
|
|
*/
|
|
if (qel == qc->hel &&
|
|
!(qc->flags & QUIC_FL_CONN_PEER_VALIDATED_ADDR)) {
|
|
TRACE_STATE("validate peer address on handshake packet",
|
|
QUIC_EV_CONN_RXPKT, qc, pkt);
|
|
qc->flags |= QUIC_FL_CONN_PEER_VALIDATED_ADDR;
|
|
BUG_ON(!qc->prx_counters->half_open_conn);
|
|
HA_ATOMIC_DEC(&qc->prx_counters->half_open_conn);
|
|
}
|
|
|
|
/* Update the list of ranges to acknowledge. */
|
|
if (quic_update_ack_ranges_list(qc, &qel->pktns->rx.arngs, &ar)) {
|
|
if (pkt->flags & QUIC_FL_RX_PACKET_ACK_ELICITING) {
|
|
int arm_ack_timer =
|
|
qc->state >= QUIC_HS_ST_COMPLETE &&
|
|
qel->pktns == qc->apktns;
|
|
|
|
qel->pktns->flags |= QUIC_FL_PKTNS_ACK_REQUIRED;
|
|
qel->pktns->rx.nb_aepkts_since_last_ack++;
|
|
qc_idle_timer_rearm(qc, 1, arm_ack_timer);
|
|
}
|
|
|
|
if (pkt->pn > largest_pn) {
|
|
largest_pn = pkt->pn;
|
|
largest_pn_time_received = pkt->time_received;
|
|
}
|
|
}
|
|
else {
|
|
TRACE_ERROR("Could not update ack range list",
|
|
QUIC_EV_CONN_RXPKT, qc);
|
|
}
|
|
}
|
|
}
|
|
node = eb64_next(node);
|
|
eb64_delete(&pkt->pn_node);
|
|
quic_rx_packet_refdec(pkt);
|
|
}
|
|
|
|
if (largest_pn != -1 && largest_pn > qel->pktns->rx.largest_pn) {
|
|
/* Update the largest packet number. */
|
|
qel->pktns->rx.largest_pn = largest_pn;
|
|
/* Update the largest acknowledged packet timestamps */
|
|
qel->pktns->rx.largest_time_received = largest_pn_time_received;
|
|
qel->pktns->flags |= QUIC_FL_PKTNS_NEW_LARGEST_PN;
|
|
}
|
|
|
|
/* Release the Initial encryption level and packet number space. */
|
|
if ((qc->flags & QUIC_FL_CONN_IPKTNS_DCD) && qel == qc->iel) {
|
|
qc_enc_level_free(qc, &qc->iel);
|
|
quic_pktns_release(qc, &qc->ipktns);
|
|
}
|
|
|
|
largest_pn = -1;
|
|
}
|
|
|
|
out:
|
|
ret = 1;
|
|
leave:
|
|
TRACE_LEAVE(QUIC_EV_CONN_RXPKT, qc);
|
|
return ret;
|
|
}
|
|
|
|
/* Parse into <pkt> a long header located at <*pos> position, <end> begin a pointer to the end
|
|
* past one byte of this buffer.
|
|
*/
|
|
static inline int quic_packet_read_long_header(unsigned char **pos, const unsigned char *end,
|
|
struct quic_rx_packet *pkt)
|
|
{
|
|
int ret = 0;
|
|
unsigned char dcid_len, scid_len;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_RXPKT);
|
|
|
|
if (end == *pos) {
|
|
TRACE_ERROR("buffer data consumed", QUIC_EV_CONN_RXPKT);
|
|
goto leave;
|
|
}
|
|
|
|
/* Destination Connection ID Length */
|
|
dcid_len = *(*pos)++;
|
|
/* We want to be sure we can read <dcid_len> bytes and one more for <scid_len> value */
|
|
if (dcid_len > QUIC_CID_MAXLEN || end - *pos < dcid_len + 1) {
|
|
TRACE_ERROR("too long DCID", QUIC_EV_CONN_RXPKT);
|
|
goto leave;
|
|
}
|
|
|
|
if (dcid_len) {
|
|
/* Check that the length of this received DCID matches the CID lengths
|
|
* of our implementation for non Initials packets only.
|
|
*/
|
|
if (pkt->version && pkt->version->num &&
|
|
pkt->type != QUIC_PACKET_TYPE_INITIAL &&
|
|
pkt->type != QUIC_PACKET_TYPE_0RTT &&
|
|
dcid_len != QUIC_HAP_CID_LEN) {
|
|
TRACE_ERROR("wrong DCID length", QUIC_EV_CONN_RXPKT);
|
|
goto leave;
|
|
}
|
|
|
|
memcpy(pkt->dcid.data, *pos, dcid_len);
|
|
}
|
|
|
|
pkt->dcid.len = dcid_len;
|
|
*pos += dcid_len;
|
|
|
|
/* Source Connection ID Length */
|
|
scid_len = *(*pos)++;
|
|
if (scid_len > QUIC_CID_MAXLEN || end - *pos < scid_len) {
|
|
TRACE_ERROR("too long SCID", QUIC_EV_CONN_RXPKT);
|
|
goto leave;
|
|
}
|
|
|
|
if (scid_len)
|
|
memcpy(pkt->scid.data, *pos, scid_len);
|
|
pkt->scid.len = scid_len;
|
|
*pos += scid_len;
|
|
|
|
ret = 1;
|
|
leave:
|
|
TRACE_LEAVE(QUIC_EV_CONN_RXPKT);
|
|
return ret;
|
|
}
|
|
|
|
/* Try to remove the header protection of <pkt> QUIC packet with <beg> the
|
|
* address of the packet first byte, using the keys from encryption level <el>.
|
|
*
|
|
* If header protection has been successfully removed, packet data are copied
|
|
* into <qc> Rx buffer. If <el> secrets are not yet available, the copy is also
|
|
* proceeded, and the packet is inserted into <qc> protected packets tree. In
|
|
* both cases, packet can now be considered handled by the <qc> connection.
|
|
*
|
|
* If header protection cannot be removed due to <el> secrets already
|
|
* discarded, no operation is conducted.
|
|
*
|
|
* Returns 1 on success : packet data is now handled by the connection. On
|
|
* error 0 is returned : packet should be dropped by the caller.
|
|
*/
|
|
static int qc_try_rm_hp(struct quic_conn *qc, struct quic_rx_packet *pkt,
|
|
unsigned char *beg, struct quic_enc_level **el)
|
|
{
|
|
int ret = 0;
|
|
unsigned char *pn = NULL; /* Packet number field */
|
|
enum quic_tls_enc_level tel;
|
|
struct quic_enc_level *qel;
|
|
/* Only for traces. */
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_TRMHP, qc);
|
|
BUG_ON(!pkt->pn_offset);
|
|
|
|
/* The packet number is here. This is also the start minus
|
|
* QUIC_PACKET_PN_MAXLEN of the sample used to add/remove the header
|
|
* protection.
|
|
*/
|
|
pn = beg + pkt->pn_offset;
|
|
|
|
tel = quic_packet_type_enc_level(pkt->type);
|
|
qel = qc_quic_enc_level(qc, tel);
|
|
if (!qel) {
|
|
struct quic_enc_level **qc_qel = qel_to_qel_addr(qc, tel);
|
|
struct quic_pktns **qc_pktns = qel_to_quic_pktns(qc, tel);
|
|
|
|
if (!qc_enc_level_alloc(qc, qc_pktns, qc_qel, quic_to_ssl_enc_level(tel))) {
|
|
TRACE_PROTO("Could not allocated an encryption level", QUIC_EV_CONN_ADDDATA, qc);
|
|
goto out;
|
|
}
|
|
|
|
qel = *qc_qel;
|
|
}
|
|
|
|
if (qc_qel_may_rm_hp(qc, qel)) {
|
|
struct quic_tls_ctx *tls_ctx =
|
|
qc_select_tls_ctx(qc, qel, pkt->type, pkt->version);
|
|
|
|
/* Note that the following function enables us to unprotect the packet
|
|
* number and its length subsequently used to decrypt the entire
|
|
* packets.
|
|
*/
|
|
if (!qc_do_rm_hp(qc, pkt, tls_ctx,
|
|
qel->pktns->rx.largest_pn, pn, beg)) {
|
|
TRACE_PROTO("hp error", QUIC_EV_CONN_TRMHP, qc);
|
|
goto out;
|
|
}
|
|
|
|
qc_handle_spin_bit(qc, pkt, qel);
|
|
/* The AAD includes the packet number field. */
|
|
pkt->aad_len = pkt->pn_offset + pkt->pnl;
|
|
if (pkt->len - pkt->aad_len < QUIC_TLS_TAG_LEN) {
|
|
TRACE_PROTO("Too short packet", QUIC_EV_CONN_TRMHP, qc);
|
|
goto out;
|
|
}
|
|
|
|
TRACE_PROTO("RX hp removed", QUIC_EV_CONN_TRMHP, qc, pkt);
|
|
}
|
|
else {
|
|
TRACE_PROTO("RX hp not removed", QUIC_EV_CONN_TRMHP, qc, pkt);
|
|
LIST_APPEND(&qel->rx.pqpkts, &pkt->list);
|
|
quic_rx_packet_refinc(pkt);
|
|
}
|
|
|
|
*el = qel;
|
|
/* No reference counter incrementation here!!! */
|
|
LIST_APPEND(&qc->rx.pkt_list, &pkt->qc_rx_pkt_list);
|
|
memcpy(b_tail(&qc->rx.buf), beg, pkt->len);
|
|
pkt->data = (unsigned char *)b_tail(&qc->rx.buf);
|
|
b_add(&qc->rx.buf, pkt->len);
|
|
|
|
ret = 1;
|
|
out:
|
|
TRACE_LEAVE(QUIC_EV_CONN_TRMHP, qc);
|
|
return ret;
|
|
}
|
|
|
|
/* Return a 32-bits integer in <val> from QUIC packet with <buf> as address.
|
|
* Makes <buf> point to the data after this 32-bits value if succeeded.
|
|
* Note that these 32-bits integers are network bytes ordered.
|
|
* Returns 0 if failed (not enough data in the buffer), 1 if succeeded.
|
|
*/
|
|
static inline int quic_read_uint32(uint32_t *val,
|
|
const unsigned char **buf,
|
|
const unsigned char *end)
|
|
{
|
|
if (end - *buf < sizeof *val)
|
|
return 0;
|
|
|
|
*val = ntohl(read_u32(*buf));
|
|
*buf += sizeof *val;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Parse a QUIC packet header starting at <pos> position without exceeding <end>.
|
|
* Version and type are stored in <pkt> packet instance. Type is set to unknown
|
|
* on two occasions : for unsupported version, in this case version field is
|
|
* set to NULL; for Version Negotiation packet with version number set to 0.
|
|
*
|
|
* Returns 1 on success else 0.
|
|
*/
|
|
int qc_parse_hd_form(struct quic_rx_packet *pkt,
|
|
unsigned char **pos, const unsigned char *end)
|
|
{
|
|
uint32_t version;
|
|
int ret = 0;
|
|
const unsigned char byte0 = **pos;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_RXPKT);
|
|
pkt->version = NULL;
|
|
pkt->type = QUIC_PACKET_TYPE_UNKNOWN;
|
|
|
|
(*pos)++;
|
|
if (byte0 & QUIC_PACKET_LONG_HEADER_BIT) {
|
|
unsigned char type =
|
|
(byte0 >> QUIC_PACKET_TYPE_SHIFT) & QUIC_PACKET_TYPE_BITMASK;
|
|
|
|
/* Version */
|
|
if (!quic_read_uint32(&version, (const unsigned char **)pos, end)) {
|
|
TRACE_ERROR("could not read the packet version", QUIC_EV_CONN_RXPKT);
|
|
goto out;
|
|
}
|
|
|
|
pkt->version = qc_supported_version(version);
|
|
if (version && pkt->version) {
|
|
if (version != QUIC_PROTOCOL_VERSION_2) {
|
|
pkt->type = type;
|
|
}
|
|
else {
|
|
switch (type) {
|
|
case 0:
|
|
pkt->type = QUIC_PACKET_TYPE_RETRY;
|
|
break;
|
|
case 1:
|
|
pkt->type = QUIC_PACKET_TYPE_INITIAL;
|
|
break;
|
|
case 2:
|
|
pkt->type = QUIC_PACKET_TYPE_0RTT;
|
|
break;
|
|
case 3:
|
|
pkt->type = QUIC_PACKET_TYPE_HANDSHAKE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if (byte0 & QUIC_PACKET_SPIN_BIT)
|
|
pkt->flags |= QUIC_FL_RX_PACKET_SPIN_BIT;
|
|
pkt->type = QUIC_PACKET_TYPE_SHORT;
|
|
}
|
|
|
|
ret = 1;
|
|
out:
|
|
TRACE_LEAVE(QUIC_EV_CONN_RXPKT);
|
|
return ret;
|
|
}
|
|
|
|
/* Check that all the bytes between <pos> included and <end> address
|
|
* excluded are null. This is the responsibility of the caller to
|
|
* check that there is at least one byte between <pos> end <end>.
|
|
* Return 1 if this all the bytes are null, 0 if not.
|
|
*/
|
|
static inline int quic_padding_check(const unsigned char *pos,
|
|
const unsigned char *end)
|
|
{
|
|
while (pos < end && !*pos)
|
|
pos++;
|
|
|
|
return pos == end;
|
|
}
|
|
|
|
/* Validate the token, retry or not (provided by NEW_TOKEN) parsed into
|
|
* <pkt> RX packet from <dgram> datagram.
|
|
* Return 1 if succeeded, 0 if not.
|
|
*/
|
|
static inline int quic_token_validate(struct quic_rx_packet *pkt,
|
|
struct quic_dgram *dgram,
|
|
struct listener *l, struct quic_conn *qc,
|
|
struct quic_cid *odcid)
|
|
{
|
|
int ret = 0;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_LPKT, qc);
|
|
|
|
switch (*pkt->token) {
|
|
case QUIC_TOKEN_FMT_RETRY:
|
|
ret = quic_retry_token_check(pkt, dgram, l, qc, odcid);
|
|
break;
|
|
case QUIC_TOKEN_FMT_NEW:
|
|
ret = quic_token_check(pkt, dgram, qc);
|
|
if (!ret) {
|
|
/* Fallback to a retry token in case of any error. */
|
|
dgram->flags |= QUIC_DGRAM_FL_SEND_RETRY;
|
|
}
|
|
break;
|
|
default:
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc, NULL, NULL, pkt->version);
|
|
break;
|
|
}
|
|
|
|
if (!ret)
|
|
goto err;
|
|
|
|
ret = 1;
|
|
leave:
|
|
TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc);
|
|
return ret;
|
|
err:
|
|
TRACE_DEVEL("leaving in error", QUIC_EV_CONN_LPKT, qc);
|
|
goto leave;
|
|
}
|
|
|
|
/* Find the associated connection to the packet <pkt> or create a new one if
|
|
* this is an Initial packet. <dgram> is the datagram containing the packet and
|
|
* <l> is the listener instance on which it was received.
|
|
*
|
|
* By default, <new_tid> is set to -1. However, if thread affinity has been
|
|
* chanbed, it will be set to its new thread ID.
|
|
*
|
|
* Returns the quic-conn instance or NULL if not found or thread affinity
|
|
* changed.
|
|
*/
|
|
static struct quic_conn *quic_rx_pkt_retrieve_conn(struct quic_rx_packet *pkt,
|
|
struct quic_dgram *dgram,
|
|
struct listener *l,
|
|
int *new_tid)
|
|
{
|
|
struct quic_cid token_odcid = { .len = 0 };
|
|
struct quic_conn *qc = NULL;
|
|
struct proxy *prx;
|
|
struct quic_counters *prx_counters;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_LPKT);
|
|
|
|
*new_tid = -1;
|
|
|
|
prx = l->bind_conf->frontend;
|
|
prx_counters = EXTRA_COUNTERS_GET(prx->extra_counters_fe, &quic_stats_module);
|
|
|
|
qc = retrieve_qc_conn_from_cid(pkt, &dgram->saddr, new_tid);
|
|
|
|
/* quic_conn must be set to NULL if bind on another thread. */
|
|
BUG_ON_HOT(qc && *new_tid != -1);
|
|
|
|
/* If connection already created or rebinded on another thread. */
|
|
if (!qc && *new_tid != -1 && tid != *new_tid)
|
|
goto out;
|
|
|
|
if (pkt->type == QUIC_PACKET_TYPE_INITIAL) {
|
|
BUG_ON(!pkt->version); /* This must not happen. */
|
|
|
|
if (!qc) {
|
|
struct quic_connection_id *conn_id;
|
|
int ipv4;
|
|
|
|
/* Reject INITIAL early if listener limits reached. */
|
|
if (unlikely(HA_ATOMIC_LOAD(&l->rx.quic_curr_handshake) >=
|
|
quic_listener_max_handshake(l))) {
|
|
TRACE_DATA("Drop INITIAL on max handshake",
|
|
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
goto out;
|
|
}
|
|
|
|
if (unlikely(HA_ATOMIC_LOAD(&l->rx.quic_curr_accept) >=
|
|
quic_listener_max_accept(l))) {
|
|
TRACE_DATA("Drop INITIAL on max accept",
|
|
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
goto out;
|
|
}
|
|
|
|
if (pkt->token_len) {
|
|
TRACE_PROTO("Initial with token", QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
/* Validate the token, retry or not only when connection is unknown. */
|
|
if (!quic_token_validate(pkt, dgram, l, qc, &token_odcid)) {
|
|
if (dgram->flags & QUIC_DGRAM_FL_SEND_RETRY) {
|
|
if (send_retry(l->rx.fd, &dgram->saddr, pkt, pkt->version)) {
|
|
TRACE_ERROR("Error during Retry generation",
|
|
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
}
|
|
else
|
|
HA_ATOMIC_INC(&prx_counters->retry_sent);
|
|
|
|
goto out;
|
|
}
|
|
|
|
goto err;
|
|
}
|
|
}
|
|
else {
|
|
TRACE_PROTO("Initial without token", QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
}
|
|
|
|
if (!quic_init_exec_rules(l, dgram)) {
|
|
TRACE_USER("drop datagram on quic-initial rules", QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
goto err;
|
|
}
|
|
|
|
/* No need to emit Retry if connection is refused. */
|
|
if (!pkt->token_len && !(dgram->flags & QUIC_DGRAM_FL_REJECT)) {
|
|
if ((l->bind_conf->options & BC_O_QUIC_FORCE_RETRY) ||
|
|
HA_ATOMIC_LOAD(&prx_counters->half_open_conn) >= global.tune.quic_retry_threshold ||
|
|
(dgram->flags & QUIC_DGRAM_FL_SEND_RETRY)) {
|
|
|
|
TRACE_PROTO("Initial without token, sending retry",
|
|
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
if (send_retry(l->rx.fd, &dgram->saddr, pkt, pkt->version)) {
|
|
TRACE_ERROR("Error during Retry generation",
|
|
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
goto out;
|
|
}
|
|
|
|
HA_ATOMIC_INC(&prx_counters->retry_sent);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* RFC 9000 7.2. Negotiating Connection IDs:
|
|
* When an Initial packet is sent by a client that has not previously
|
|
* received an Initial or Retry packet from the server, the client
|
|
* populates the Destination Connection ID field with an unpredictable
|
|
* value. This Destination Connection ID MUST be at least 8 bytes in length.
|
|
*/
|
|
if (pkt->dcid.len < QUIC_ODCID_MINLEN) {
|
|
TRACE_PROTO("dropped packet",
|
|
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
goto err;
|
|
}
|
|
|
|
pkt->saddr = dgram->saddr;
|
|
ipv4 = dgram->saddr.ss_family == AF_INET;
|
|
|
|
/* Generate the first connection CID. This is derived from the client
|
|
* ODCID and address. This allows to retrieve the connection from the
|
|
* ODCID without storing it in the CID tree. This is an interesting
|
|
* optimization as the client is expected to stop using its ODCID in
|
|
* favor of our generated value.
|
|
*/
|
|
conn_id = new_quic_cid(NULL, NULL, &pkt->dcid, &pkt->saddr);
|
|
if (!conn_id)
|
|
goto err;
|
|
|
|
qc = qc_new_conn(pkt->version, ipv4, &pkt->dcid, &pkt->scid, &token_odcid,
|
|
conn_id, &dgram->daddr, &pkt->saddr,
|
|
!!pkt->token_len, l, NULL);
|
|
if (qc == NULL) {
|
|
pool_free(pool_head_quic_connection_id, conn_id);
|
|
goto err;
|
|
}
|
|
|
|
/* Compute and store into the quic_conn the hash used to compute extra CIDs */
|
|
if (quic_hash64_from_cid)
|
|
qc->hash64 = quic_hash64_from_cid(conn_id->cid.data, conn_id->cid.len,
|
|
global.cluster_secret, sizeof(global.cluster_secret));
|
|
|
|
if (quic_cid_insert(conn_id, new_tid)) {
|
|
pool_free(pool_head_quic_connection_id, conn_id);
|
|
quic_conn_release(qc);
|
|
qc = NULL;
|
|
}
|
|
else {
|
|
/* From here, <qc> is the correct connection for this <pkt> Initial
|
|
* packet. <conn_id> must be inserted in the CIDs tree for this
|
|
* connection.
|
|
*/
|
|
eb64_insert(qc->cids, &conn_id->seq_num);
|
|
/* Initialize the next CID sequence number to be used for this connection. */
|
|
qc->next_cid_seq_num = 1;
|
|
|
|
if (dgram->flags & QUIC_DGRAM_FL_REJECT)
|
|
quic_set_connection_close(qc, quic_err_transport(QC_ERR_CONNECTION_REFUSED));
|
|
}
|
|
|
|
if (*new_tid != -1)
|
|
goto out;
|
|
}
|
|
}
|
|
else if (!qc) {
|
|
/* Stateless Reset sent even for Long header packets as haproxy
|
|
* emits stateless_reset_token in its TPs.
|
|
*/
|
|
TRACE_PROTO("RX non Initial pkt without connection", QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
if (!send_stateless_reset(l, &dgram->saddr, pkt))
|
|
TRACE_ERROR("stateless reset not sent", QUIC_EV_CONN_LPKT, qc);
|
|
goto err;
|
|
}
|
|
|
|
out:
|
|
TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc);
|
|
return qc;
|
|
|
|
err:
|
|
HA_ATOMIC_INC(&prx_counters->dropped_pkt);
|
|
|
|
TRACE_LEAVE(QUIC_EV_CONN_LPKT);
|
|
return NULL;
|
|
}
|
|
|
|
/* Parse a QUIC packet starting at <pos>. Data won't be read after <end> even
|
|
* if the packet is incomplete. This function will populate fields of <pkt>
|
|
* instance, most notably its length. <dgram> is the UDP datagram which
|
|
* contains the parsed packet. <o> is the address object type address of the
|
|
* object which receives this received packet. <qc> is the QUIC connection,
|
|
* only valid for QUIC clients.
|
|
*
|
|
* Returns 0 on success else non-zero. Packet length is guaranteed to be set to
|
|
* the real packet value or to cover all data between <pos> and <end> : this is
|
|
* useful to reject a whole datagram.
|
|
*/
|
|
static int quic_rx_pkt_parse(struct quic_conn *qc, struct quic_rx_packet *pkt,
|
|
unsigned char *pos, const unsigned char *end,
|
|
struct quic_dgram *dgram, enum obj_type *o)
|
|
{
|
|
const unsigned char *beg = pos;
|
|
struct quic_counters *prx_counters;
|
|
struct listener *l = objt_listener(o);
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_LPKT);
|
|
|
|
prx_counters = qc_counters(o, &quic_stats_module);
|
|
|
|
if (end <= pos) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
|
|
goto drop;
|
|
}
|
|
|
|
/* Fixed bit */
|
|
if (!(*pos & QUIC_PACKET_FIXED_BIT)) {
|
|
if (!(pkt->flags & QUIC_FL_RX_PACKET_DGRAM_FIRST) &&
|
|
quic_padding_check(pos, end)) {
|
|
/* Some browsers may pad the remaining datagram space with null bytes.
|
|
* That is what we called add padding out of QUIC packets. Such
|
|
* datagrams must be considered as valid. But we can only consume
|
|
* the remaining space.
|
|
*/
|
|
pkt->len = end - pos;
|
|
goto drop_silent;
|
|
}
|
|
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
|
|
goto drop;
|
|
}
|
|
|
|
/* Header form */
|
|
if (!qc_parse_hd_form(pkt, &pos, end)) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
|
|
goto drop;
|
|
}
|
|
|
|
if (pkt->type != QUIC_PACKET_TYPE_SHORT) {
|
|
uint64_t len;
|
|
TRACE_PROTO("long header packet received", QUIC_EV_CONN_LPKT);
|
|
|
|
if (!quic_packet_read_long_header(&pos, end, pkt)) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
|
|
goto drop;
|
|
}
|
|
|
|
/* When multiple QUIC packets are coalesced on the same UDP datagram,
|
|
* they must have the same DCID.
|
|
*/
|
|
if (!(pkt->flags & QUIC_FL_RX_PACKET_DGRAM_FIRST) &&
|
|
(pkt->dcid.len != dgram->dcid_len ||
|
|
memcmp(dgram->dcid, pkt->dcid.data, pkt->dcid.len))) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
|
|
goto drop;
|
|
}
|
|
|
|
/* Retry of Version Negotiation packets are only sent by servers */
|
|
if (l && (pkt->type == QUIC_PACKET_TYPE_RETRY || (pkt->version && !pkt->version->num))) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT);
|
|
goto drop;
|
|
}
|
|
|
|
/* RFC9000 6. Version Negotiation. A Version Negotiation packet is
|
|
* sent only by servers.
|
|
*/
|
|
if (l && !pkt->version) {
|
|
/* unsupported version, send Negotiation packet */
|
|
if (send_version_negotiation(l->rx.fd, &dgram->saddr, pkt)) {
|
|
TRACE_ERROR("VN packet not sent", QUIC_EV_CONN_LPKT);
|
|
goto drop_silent;
|
|
}
|
|
|
|
TRACE_PROTO("VN packet sent", QUIC_EV_CONN_LPKT);
|
|
goto drop_silent;
|
|
}
|
|
|
|
if (pkt->type == QUIC_PACKET_TYPE_INITIAL) {
|
|
/* For Initial packets, and for servers (QUIC clients connections),
|
|
* there is no Initial connection IDs storage.
|
|
*/
|
|
uint64_t token_len;
|
|
|
|
if (!quic_dec_int(&token_len, (const unsigned char **)&pos, end) ||
|
|
end - pos < token_len) {
|
|
TRACE_PROTO("Packet dropped",
|
|
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
goto drop;
|
|
}
|
|
|
|
if (!l && pkt->token_len) {
|
|
/* A server must sent Initial packets with a null token length. */
|
|
TRACE_PROTO("Packet dropped",
|
|
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
goto drop;
|
|
}
|
|
|
|
pkt->token = pos;
|
|
pkt->token_len = token_len;
|
|
pos += pkt->token_len;
|
|
}
|
|
else if (pkt->type == QUIC_PACKET_TYPE_RETRY) {
|
|
if (!quic_retry_packet_check(qc, pkt, beg, end, pos, &qc->retry_token_len))
|
|
/* TODO: should close the connection? */
|
|
goto drop;
|
|
|
|
qc->retry_token = pool_alloc(pool_head_quic_retry_token);
|
|
if (!qc->retry_token) {
|
|
TRACE_ERROR("retry token allocation failed", QUIC_EV_CONN_LPKT);
|
|
}
|
|
else {
|
|
memcpy(qc->retry_token, pos, qc->retry_token_len);
|
|
/* Save the peer Retry source connection ID into the connection ODCID.
|
|
* This is also this connection DCID (or even the first ODCID value).
|
|
* It can be erased because used only to check the retry integrity
|
|
* tag. Then, it will be matched against the retry_source_connection_id
|
|
* transport parameter which will be sent by the server.
|
|
*/
|
|
memcpy(qc->odcid.data, pkt->scid.data, pkt->scid.len);
|
|
qc->odcid.len = pkt->scid.len;
|
|
/* Copy the peer scid to be the destination of the next Initial packet */
|
|
memcpy(qc->dcid.data, pkt->scid.data, pkt->scid.len);
|
|
qc->dcid.len = pkt->scid.len;
|
|
/* Initial packet number space discarding without releasing
|
|
* the existing frames (not already sent).
|
|
*/
|
|
quic_pktns_discard(qc->ipktns, qc, 1);
|
|
qc_set_timer(qc);
|
|
qc_el_rx_pkts_del(qc->iel);
|
|
/* Reset the DISCARDED flag for Initial packet number space */
|
|
qc->flags &= ~QUIC_FL_CONN_IPKTNS_DCD;
|
|
/* Change the Initial TLS cryptographic context */
|
|
quic_tls_ctx_secs_free(&qc->iel->tls_ctx);
|
|
if (!qc_new_isecs(qc, &qc->iel->tls_ctx, qc->original_version,
|
|
qc->dcid.data, qc->dcid.len, !!l))
|
|
goto drop_silent;
|
|
|
|
tasklet_wakeup(qc->wait_event.tasklet);
|
|
}
|
|
|
|
goto drop_silent;
|
|
}
|
|
else if (pkt->type != QUIC_PACKET_TYPE_0RTT) {
|
|
if (pkt->dcid.len != QUIC_HAP_CID_LEN) {
|
|
TRACE_PROTO("Packet dropped",
|
|
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
goto drop;
|
|
}
|
|
}
|
|
|
|
if (!quic_dec_int(&len, (const unsigned char **)&pos, end) ||
|
|
end - pos < len) {
|
|
TRACE_PROTO("Packet dropped",
|
|
QUIC_EV_CONN_LPKT, NULL, NULL, NULL, pkt->version);
|
|
goto drop;
|
|
}
|
|
|
|
/* Packet Number is stored here. Packet Length totalizes the
|
|
* rest of the content.
|
|
*/
|
|
pkt->pn_offset = pos - beg;
|
|
pkt->len = pkt->pn_offset + len;
|
|
|
|
/* Interrupt parsing after packet length retrieval : this
|
|
* ensures that only the packet is dropped but not the whole
|
|
* datagram.
|
|
*/
|
|
|
|
if (pkt->type == QUIC_PACKET_TYPE_INITIAL) {
|
|
if (l) {
|
|
/* RFC 9000. Initial Datagram Size
|
|
*
|
|
* A server MUST discard an Initial packet that is carried in a UDP datagram
|
|
* with a payload that is smaller than the smallest allowed maximum datagram
|
|
* size of 1200 bytes.
|
|
*/
|
|
if (dgram->len < QUIC_INITIAL_PACKET_MINLEN) {
|
|
TRACE_PROTO("RX too short datagram with an Initial packet", QUIC_EV_CONN_LPKT);
|
|
HA_ATOMIC_INC(&prx_counters->too_short_initial_dgram);
|
|
goto drop;
|
|
}
|
|
}
|
|
else {
|
|
/* TODO: This is not clear if a too short RX datagram which carries ack-eliciting
|
|
* packets must be dropped by a client. If this is the case, this is not from
|
|
* here, but after having parsed the datagram frames.
|
|
*
|
|
* RFC 9000. Initial Datagram Size
|
|
*
|
|
* Similarly, a server MUST expand the payload of all UDP datagrams carrying
|
|
* ack-eliciting Initial packets to at least the smallest allowed maximum
|
|
* datagram size of 1200 bytes.
|
|
*/
|
|
if (!(qc->flags & QUIC_FL_CONN_SCID_RECEIVED)) {
|
|
qc->flags |= QUIC_FL_CONN_SCID_RECEIVED;
|
|
memcpy(qc->dcid.data, pkt->scid.data, pkt->scid.len);
|
|
qc->dcid.len = pkt->scid.len;
|
|
}
|
|
}
|
|
}
|
|
else if (pkt->type == QUIC_PACKET_TYPE_0RTT) {
|
|
/* O-RTT packet are not sent by servers. */
|
|
if (!l || !l->bind_conf->ssl_conf.early_data) {
|
|
TRACE_PROTO("RX 0-RTT packet not supported", QUIC_EV_CONN_LPKT);
|
|
goto drop;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
TRACE_PROTO("RX short header packet", QUIC_EV_CONN_LPKT);
|
|
if (end - pos < QUIC_HAP_CID_LEN) {
|
|
TRACE_PROTO("RX pkt dropped", QUIC_EV_CONN_LPKT);
|
|
goto drop;
|
|
}
|
|
|
|
memcpy(pkt->dcid.data, pos, QUIC_HAP_CID_LEN);
|
|
pkt->dcid.len = QUIC_HAP_CID_LEN;
|
|
|
|
/* When multiple QUIC packets are coalesced on the same UDP datagram,
|
|
* they must have the same DCID.
|
|
*/
|
|
if (!(pkt->flags & QUIC_FL_RX_PACKET_DGRAM_FIRST) &&
|
|
(pkt->dcid.len != dgram->dcid_len ||
|
|
memcmp(dgram->dcid, pkt->dcid.data, pkt->dcid.len))) {
|
|
TRACE_PROTO("RX pkt dropped", QUIC_EV_CONN_LPKT);
|
|
goto drop;
|
|
}
|
|
|
|
pos += QUIC_HAP_CID_LEN;
|
|
|
|
pkt->pn_offset = pos - beg;
|
|
/* A short packet is the last one of a UDP datagram. */
|
|
pkt->len = end - beg;
|
|
}
|
|
|
|
TRACE_PROTO("RX pkt parsed", QUIC_EV_CONN_LPKT, NULL, pkt, NULL, pkt->version);
|
|
TRACE_LEAVE(QUIC_EV_CONN_LPKT);
|
|
return 0;
|
|
|
|
drop:
|
|
HA_ATOMIC_INC(&prx_counters->dropped_pkt);
|
|
drop_silent:
|
|
if (!pkt->len)
|
|
pkt->len = end - beg;
|
|
TRACE_PROTO("RX pkt parsing failed", QUIC_EV_CONN_LPKT, NULL, pkt, NULL, pkt->version);
|
|
TRACE_LEAVE(QUIC_EV_CONN_LPKT);
|
|
return -1;
|
|
}
|
|
|
|
/* Check if received packet <pkt> should be drop due to <qc> already in closing
|
|
* state. This can be true if a CONNECTION_CLOSE has already been emitted for
|
|
* this connection.
|
|
*
|
|
* Returns false if connection is not in closing state else true. The caller
|
|
* should drop the whole datagram in the last case to not mess up <qc>
|
|
* CONNECTION_CLOSE rate limit counter.
|
|
*/
|
|
static int qc_rx_check_closing(struct quic_conn *qc,
|
|
struct quic_rx_packet *pkt)
|
|
{
|
|
if (!(qc->flags & QUIC_FL_CONN_CLOSING))
|
|
return 0;
|
|
|
|
TRACE_STATE("Closing state connection", QUIC_EV_CONN_LPKT, qc, NULL, NULL, pkt->version);
|
|
|
|
/* Check if CONNECTION_CLOSE rate reemission is reached. */
|
|
if (++qc->nb_pkt_since_cc >= qc->nb_pkt_for_cc) {
|
|
qc->flags |= QUIC_FL_CONN_IMMEDIATE_CLOSE;
|
|
qc->nb_pkt_for_cc++;
|
|
qc->nb_pkt_since_cc = 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Release the memory for the RX packets which are no more referenced
|
|
* and consume their payloads which have been copied to the RX buffer
|
|
* for the connection.
|
|
* Always succeeds.
|
|
*/
|
|
static void quic_rx_pkts_del(struct quic_conn *qc)
|
|
{
|
|
struct quic_rx_packet *pkt, *pktback;
|
|
|
|
list_for_each_entry_safe(pkt, pktback, &qc->rx.pkt_list, qc_rx_pkt_list) {
|
|
TRACE_PRINTF(TRACE_LEVEL_DEVELOPER, QUIC_EV_CONN_LPKT, qc, 0, 0, 0,
|
|
"pkt #%lld(type=%d,len=%llu,rawlen=%llu,refcnt=%u) (diff: %zd)",
|
|
(long long)pkt->pn_node.key,
|
|
pkt->type, (ull)pkt->len, (ull)pkt->raw_len, pkt->refcnt,
|
|
(unsigned char *)b_head(&qc->rx.buf) - pkt->data);
|
|
if (pkt->data != (unsigned char *)b_head(&qc->rx.buf)) {
|
|
size_t cdata;
|
|
|
|
cdata = b_contig_data(&qc->rx.buf, 0);
|
|
TRACE_PRINTF(TRACE_LEVEL_DEVELOPER, QUIC_EV_CONN_LPKT, qc, 0, 0, 0,
|
|
"cdata=%llu *b_head()=0x%x", (ull)cdata, *b_head(&qc->rx.buf));
|
|
if (cdata && !*b_head(&qc->rx.buf)) {
|
|
/* Consume the remaining data */
|
|
b_del(&qc->rx.buf, cdata);
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (pkt->refcnt)
|
|
break;
|
|
|
|
b_del(&qc->rx.buf, pkt->raw_len);
|
|
LIST_DELETE(&pkt->qc_rx_pkt_list);
|
|
pool_free(pool_head_quic_rx_packet, pkt);
|
|
}
|
|
|
|
/* In frequent cases the buffer will be emptied at this stage. */
|
|
b_realign_if_empty(&qc->rx.buf);
|
|
}
|
|
|
|
/* Handle a parsed packet <pkt> by the connection <qc>. Data will be copied
|
|
* into <qc> receive buffer after header protection removal procedure.
|
|
*
|
|
* <dgram> must be set to the datagram which contains the QUIC packet. <beg>
|
|
* must point to packet buffer first byte.
|
|
*
|
|
* <tasklist_head> may be non-NULL when the caller treat several datagrams for
|
|
* different quic-conn. In this case, each quic-conn tasklet will be appended
|
|
* to it in order to be woken up after the current task.
|
|
*
|
|
* The caller can safely removed the packet data. If packet refcount was not
|
|
* incremented by this function, it means that the connection did not handled
|
|
* it and it should be freed by the caller.
|
|
*/
|
|
static void qc_rx_pkt_handle(struct quic_conn *qc, struct quic_rx_packet *pkt,
|
|
struct quic_dgram *dgram, unsigned char *beg,
|
|
struct list **tasklist_head)
|
|
{
|
|
const struct quic_version *qv = pkt->version;
|
|
struct quic_enc_level *qel = NULL;
|
|
size_t b_cspace;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_LPKT, qc);
|
|
TRACE_PROTO("RX pkt", QUIC_EV_CONN_LPKT, qc, pkt, NULL, qv);
|
|
|
|
if (pkt->flags & QUIC_FL_RX_PACKET_DGRAM_FIRST &&
|
|
qc->flags & QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED) {
|
|
TRACE_PROTO("PTO timer must be armed after anti-amplication was reached",
|
|
QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv);
|
|
TRACE_DEVEL("needs to wakeup the timer task after the amplification limit was reached",
|
|
QUIC_EV_CONN_LPKT, qc);
|
|
/* Reset the anti-amplification bit. It will be set again
|
|
* when sending the next packet if reached again.
|
|
*/
|
|
qc->flags &= ~QUIC_FL_CONN_ANTI_AMPLIFICATION_REACHED;
|
|
qc_set_timer(qc);
|
|
if (qc->timer_task && tick_isset(qc->timer) && tick_is_lt(qc->timer, now_ms))
|
|
task_wakeup(qc->timer_task, TASK_WOKEN_MSG);
|
|
}
|
|
|
|
/* Drop asap packet whose packet number space is discarded. */
|
|
if (quic_tls_pkt_type_pktns_dcd(qc, pkt->type)) {
|
|
TRACE_PROTO("Discarded packet number space", QUIC_EV_CONN_TRMHP, qc);
|
|
goto drop_silent;
|
|
}
|
|
|
|
if (qc->flags & QUIC_FL_CONN_IMMEDIATE_CLOSE) {
|
|
TRACE_PROTO("Connection error",
|
|
QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv);
|
|
goto out;
|
|
}
|
|
|
|
pkt->raw_len = pkt->len;
|
|
quic_rx_pkts_del(qc);
|
|
b_cspace = b_contig_space(&qc->rx.buf);
|
|
if (b_cspace < pkt->len) {
|
|
TRACE_PRINTF(TRACE_LEVEL_DEVELOPER, QUIC_EV_CONN_LPKT, qc, 0, 0, 0,
|
|
"bspace=%llu pkt->len=%llu", (ull)b_cspace, (ull)pkt->len);
|
|
/* Do not consume buf if space not at the end. */
|
|
if (b_tail(&qc->rx.buf) + b_cspace < b_wrap(&qc->rx.buf)) {
|
|
TRACE_PROTO("Packet dropped",
|
|
QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv);
|
|
qc->cntrs.dropped_pkt_bufoverrun++;
|
|
goto drop_silent;
|
|
}
|
|
|
|
/* Let us consume the remaining contiguous space. */
|
|
if (b_cspace) {
|
|
b_putchr(&qc->rx.buf, 0x00);
|
|
b_cspace--;
|
|
}
|
|
b_add(&qc->rx.buf, b_cspace);
|
|
if (b_contig_space(&qc->rx.buf) < pkt->len) {
|
|
TRACE_PROTO("Too big packet",
|
|
QUIC_EV_CONN_LPKT, qc, pkt, &pkt->len, qv);
|
|
qc->cntrs.dropped_pkt_bufoverrun++;
|
|
goto drop_silent;
|
|
}
|
|
}
|
|
|
|
if (!qc_try_rm_hp(qc, pkt, beg, &qel)) {
|
|
TRACE_PROTO("Packet dropped", QUIC_EV_CONN_LPKT, qc, NULL, NULL, qv);
|
|
goto drop;
|
|
}
|
|
|
|
TRACE_DATA("New packet", QUIC_EV_CONN_LPKT, qc, pkt, NULL, qv);
|
|
if (pkt->aad_len) {
|
|
/* Insert this RX packet in its encryption level tree */
|
|
pkt->pn_node.key = pkt->pn;
|
|
quic_rx_packet_refinc(pkt);
|
|
eb64_insert(&qel->rx.pkts, &pkt->pn_node);
|
|
}
|
|
out:
|
|
*tasklist_head = tasklet_wakeup_after(*tasklist_head,
|
|
qc->wait_event.tasklet);
|
|
|
|
drop_silent:
|
|
TRACE_PROTO("RX pkt", QUIC_EV_CONN_LPKT, qc ? qc : NULL, pkt, NULL, qv);
|
|
TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc ? qc : NULL);
|
|
return;
|
|
|
|
drop:
|
|
qc->cntrs.dropped_pkt++;
|
|
TRACE_PROTO("packet drop", QUIC_EV_CONN_LPKT, qc, pkt, NULL, qv);
|
|
TRACE_LEAVE(QUIC_EV_CONN_LPKT, qc);
|
|
}
|
|
|
|
/* Handle a new <dgram> received. Parse each QUIC packets and copied their
|
|
* content to a quic-conn instance. The datagram content can be released after
|
|
* this function.
|
|
*
|
|
* If datagram has been received on a quic-conn owned FD, <from_qc> must be set
|
|
* to the connection instance. <o> is the object type address of the object
|
|
* (listener or server) receiving the datagram. The caller is
|
|
* responsible to ensure that the first packet is destined to this connection
|
|
* by comparing CIDs.
|
|
*
|
|
* If datagram has been received on a receiver FD, <from_qc> will be NULL. This
|
|
* function will thus retrieve the connection from the CID tree or allocate a
|
|
* new one if possible. <li> is the listener attached to the receiver.
|
|
*
|
|
* Returns 0 on success else non-zero. If an error happens, some packets from
|
|
* the datagram may not have been parsed.
|
|
*/
|
|
int quic_dgram_parse(struct quic_dgram *dgram, struct quic_conn *from_qc,
|
|
enum obj_type *o)
|
|
{
|
|
struct quic_rx_packet *pkt;
|
|
struct quic_conn *qc = NULL;
|
|
unsigned char *pos, *end;
|
|
struct list *tasklist_head = NULL;
|
|
|
|
TRACE_ENTER(QUIC_EV_CONN_LPKT);
|
|
|
|
pos = dgram->buf;
|
|
end = pos + dgram->len;
|
|
do {
|
|
pkt = pool_alloc(pool_head_quic_rx_packet);
|
|
if (!pkt) {
|
|
TRACE_ERROR("RX packet allocation failed", QUIC_EV_CONN_LPKT);
|
|
goto err;
|
|
}
|
|
|
|
LIST_INIT(&pkt->qc_rx_pkt_list);
|
|
pkt->version = NULL;
|
|
pkt->type = QUIC_PACKET_TYPE_UNKNOWN;
|
|
pkt->pn_offset = 0;
|
|
pkt->len = 0;
|
|
pkt->raw_len = 0;
|
|
pkt->token = NULL;
|
|
pkt->token_len = 0;
|
|
pkt->aad_len = 0;
|
|
pkt->data = NULL;
|
|
pkt->pn_node.key = (uint64_t)-1;
|
|
pkt->refcnt = 0;
|
|
pkt->flags = 0;
|
|
pkt->time_received = now_ms;
|
|
|
|
/* Set flag if pkt is the first one in dgram. */
|
|
if (pos == dgram->buf)
|
|
pkt->flags |= QUIC_FL_RX_PACKET_DGRAM_FIRST;
|
|
|
|
quic_rx_packet_refinc(pkt);
|
|
if (quic_rx_pkt_parse(from_qc, pkt, pos, end, dgram, o))
|
|
goto next;
|
|
|
|
/* Search quic-conn instance for first packet of the datagram.
|
|
* quic_rx_packet_parse() is responsible to discard packets
|
|
* with different DCID as the first one in the same datagram.
|
|
*/
|
|
if (!qc) {
|
|
int new_tid = -1;
|
|
struct listener *li = objt_listener(o);
|
|
|
|
qc = from_qc ? from_qc : quic_rx_pkt_retrieve_conn(pkt, dgram, li, &new_tid);
|
|
/* qc is NULL if receiving a non Initial packet for an
|
|
* unknown connection or on connection affinity rebind.
|
|
*/
|
|
if (!qc) {
|
|
if (new_tid >= 0) {
|
|
MT_LIST_APPEND(&quic_dghdlrs[new_tid].dgrams,
|
|
&dgram->handler_list);
|
|
tasklet_wakeup(quic_dghdlrs[new_tid].task);
|
|
pool_free(pool_head_quic_rx_packet, pkt);
|
|
goto out;
|
|
}
|
|
|
|
/* Skip the entire datagram. */
|
|
pkt->len = end - pos;
|
|
goto next;
|
|
}
|
|
|
|
dgram->qc = qc;
|
|
}
|
|
|
|
/* Ensure quic_conn access only occurs on its attached thread. */
|
|
BUG_ON_HOT(((struct quic_connection_id *)
|
|
eb64_entry(eb64_first(qc->cids), struct quic_connection_id, seq_num))->tid != tid);
|
|
|
|
/* Ensure thread connection migration is finalized ASAP. */
|
|
if (qc->flags & QUIC_FL_CONN_TID_REBIND)
|
|
qc_finalize_tid_rebind(qc);
|
|
|
|
if (qc_rx_check_closing(qc, pkt)) {
|
|
/* Skip the entire datagram. */
|
|
pkt->len = end - pos;
|
|
goto next;
|
|
}
|
|
|
|
/* Detect QUIC connection migration. */
|
|
if (ipcmp(&qc->peer_addr, &dgram->saddr, 1)) {
|
|
if (qc_handle_conn_migration(qc, &dgram->saddr, &dgram->daddr)) {
|
|
/* Skip the entire datagram. */
|
|
TRACE_ERROR("error during connection migration, datagram dropped", QUIC_EV_CONN_LPKT, qc);
|
|
pkt->len = end - pos;
|
|
goto next;
|
|
}
|
|
}
|
|
|
|
qc_rx_pkt_handle(qc, pkt, dgram, pos, &tasklist_head);
|
|
|
|
next:
|
|
pos += pkt->len;
|
|
quic_rx_packet_refdec(pkt);
|
|
|
|
/* Free rejected packets */
|
|
if (!pkt->refcnt) {
|
|
BUG_ON(LIST_INLIST(&pkt->qc_rx_pkt_list));
|
|
pool_free(pool_head_quic_rx_packet, pkt);
|
|
}
|
|
} while (pos < end);
|
|
|
|
/* Increasing the received bytes counter by the UDP datagram length
|
|
* if this datagram could be associated to a connection.
|
|
*/
|
|
if (dgram->qc)
|
|
dgram->qc->bytes.rx += dgram->len;
|
|
|
|
/* This must never happen. */
|
|
BUG_ON(pos > end);
|
|
BUG_ON(pos < end || pos > dgram->buf + dgram->len);
|
|
/* Mark this datagram as consumed */
|
|
HA_ATOMIC_STORE(&dgram->buf, NULL);
|
|
|
|
out:
|
|
TRACE_LEAVE(QUIC_EV_CONN_LPKT);
|
|
return 0;
|
|
|
|
err:
|
|
/* Mark this datagram as consumed as maybe at least some packets were parsed. */
|
|
HA_ATOMIC_STORE(&dgram->buf, NULL);
|
|
TRACE_LEAVE(QUIC_EV_CONN_LPKT);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|